
Università Italo-Francese / Université Franco-Italienne,
AGREEMENT FOR THE CO-DIRECTION OF THE Ph.D

THESIS:

Sapienza, Università di Roma: Université Claude Bernard, Lyon 1:

Dept. of Computer Science Ecole doctorale E2M2

Supervisor Tiziana Calamoneri Supervisor Marie-France Sagot

Author: Mattia Gastaldello

Enumeration Algorithms and Graph
Theoretical Models to Address Biological

Problems Related To Symbiosis

Contents

Introduction 5
0.1 Enumeration algorithms . 10

0.1.1 Complexity Classes for Enumeration Algorithms 10
0.1.2 Techniques to Design Enumeration Algorithms 12

Cytoplasmic Incompatibility and Chain Graphs 17
1.1 Introduction and Motivations . 17
1.2 Models for the Cytoplasmic Incompatibilty 19
1.3 Preliminary Notation . 25
1.4 Toxin and Antitoxin: The graph theoretic interpretation 27
1.5 Chian Graphs and Bipartite Edge Covers 30

1.5.1 Enumerating Maximal Chain Subgraphs 30
1.5.2 Minimum Chain Subgraph Cover 37
1.5.3 Enumeration of Minimal Chain Subgraph Covers 38

1.6 Chain Graphs and Interval Orders . 42
1.6.1 Preliminaries on Poset Theory . 43
1.6.2 Computation of the Interval Order Dimension 43
1.6.3 Enumeration of Minimal Extensions and Maximal Reductions of

Interval Order . 44
1.7 Computing the Poset Dimension . 44

1.7.1 Reversing Critical Pairs . 46
1.7.2 Computing rk(P) Employing Critical Pairs 50
1.7.3 Not Reversing Some Critical Pairs 51

1.8 Conclusions and Open Problems . 54

Cophylogeny and Reconciliations 55
2.1 Introduction . 55
2.2 Preliminaries and Notation . 56
2.3 The Reconciliation Model . 56
2.4 Eucalypt . 61
2.5 Preliminary Lemmas . 64
2.6 ∼1 Equivalence Class . 69

ii CONTENTS

2.7 ∼2 Equivalence Class . 74
2.8 A New Distance Measure between Reconciliations 88
2.9 Experimental Results . 91

2.9.1 Equivalence Classes . 92
2.9.2 Metric Space . 97

2.10 Conclusions and Open Problems . 100

Bibliography 102

Abstract

In this thesis, we address two graph theoretical problems connected to two different bio-
logical problems both related to symbiosis (two organisms live in symbiosis if they have
a close and long term interaction).

The first problem is related to the size of a minimum cover by chain subgraphs of
a bipartite graph. A chain graph is a bipartite graph whose nodes can be ordered by
neighbourhood inclusion.
In biological terms, the size of a minimum cover by chain subgraphs represents the number
of genetic factors involved in the phenomenon of Cytoplasmic Incompatibility (CI) induced
by some parasitic bacteria in their insects host. CI results in the impossibility to give
birth to an healthy offspring when an infected male mates with an uninfected female.

In particular, in the first half of the thesis we address three related problems.
One is the enumeration of all the maximal edge induced chain subgraphs of a bipartite
graph G, for which we provide a polynomial delay algorithm (Algorithm 3 in Section 1.5.1)
with a delay of O(n2m) where n is the number of nodes and m the number of edges of G.
In the same section, we show that n

2
! and 2

√
m logm bound the number of maximal chain

subgraphs of G and use them to establish the input-sensitive complexity of Algorithm 3.

The second problem we treat is finding the minimum number of chain subgraphs
needed to cover all the edges of a bipartite graph. To solve this problem, we provide in
Section 1.5.2 an exact exponential algorithm which runs in time O∗((2 + ε)m), for every
ε > 0, by combining Algorithm 3 with the inclusion-exclusion technique [7] (by O∗ we
denote standard big O notation but omitting polynomial factors). Notice that, since a
cover by chain subgraphs is a family of subsets of edges, the existence of an algorithm
whose complexity is close to 2m is not obvious. Indeed, the basic search space would have
size 22

m , which corresponds to all families of subsets of edges of a graph on m edges.

The third problem we approach is the enumeration of all minimal covers by chain
subgraphs of a bipartite graph G and show that it is possible to enumerate all such
minimal covers of G in time O([(m+1)|S|]log((m+1)|S|)) where S is the number of minimal
covers of G and m the maximum number of chain graphs in a minimal cover.

In Section 1.6, we present the relations between the second problem and the compu-
tation of the interval order dimension of a bipartite poset and in Sections 1.5.1 and 1.5.2
the interpretation of the results in the context of poset and interval poset dimension.
Indeed, we can straightforwardly compute the interval dimension of a bipartite poset P

2

in O∗((2 + ε)p) where p is the number of incomparable pairs of Q.

Finally, in Section 1.7, we extend our result on interval poset dimension to the problem
of computing the poset dimension of a poset by means of Trotter split operation [84] and
we obtain a procedure which computes it still in O∗((2 + ε)p/2).
To improve our results on the poset dimension and to perform better than O(

√
2
p
), i.e.

the minimum time to run the inclusion-exclusion formula on which these results are based,
we introduce for each poset an associated graph GCP , called the graph of critical pairs.
In this way we obtain two algorithms, an exponential and a polynomial space one. These
algorithms compute the poset dimension in 2q and O(2.9977q) time respectively where
q is the number of critical pairs of P (intuitively, critical pairs are the fundamental
incomparable pairs to consider).

We then conclude this first part with some open questions related to these problems.

In the second part of the thesis, we deal with the Reconciliation Model of two phyloge-
netic trees and the exploration of its optimal solutions space. Phylogenetic tree reconcili-
ation is the approach commonly used to investigate the coevolution of sets of organisms
such as hosts and symbionts. Given a phylogenetic tree for each such set, respectively
denoted by H and S, together with a mapping ϕ of the leaves of S to the leaves of H, a
reconciliation is a mapping � of the internal nodes of S to the nodes of H which extends
ϕ with some constraints.

Depending on the mapping of a node and its children, four types of events can be
identified [4, 22, 73]: cospeciation (when host and parasite evolve together), duplication
(when the parasite evolves into different species but not the host, and at least one of the
new parasite species remains associated with the host), loss (when the host evolves into
two new species but not the parasite, leading to the loss of the parasite in one of the
two new host species) and host switch (when the parasite evolves into two new species
with one species remaining with its current host while the other switches, that is jumps
to another host species).
Given a cost for each kind of event, C = (cc, cd, cl, ch) respectively, we can assign a total
cost to each reconciliation. The set of reconciliations with minimum cost is denoted by
R(H,P, ϕ, C) and its elements are said to represent parsimonious reconciliations. How-
ever, their number can be often huge.
Without further information, any biological interpretation of the underlying coevolution
would require that all the parsimonious reconciliations are enumerated and examined.
The latter is however impossible without providing some sort of high level view of the
situation.

In this thesis, we approached this problem by introducing two equivalence relations
∼1 and ∼2 (Section 2.6 and Section 2.7) to collect similar reconciliations and reduce the
optimal solutions set to a smaller set of representatives of these equivalence classes.

3

In Section 2.8, we introduce a new distance among optimal reconciliations DH and we
compare it with the distances already present in literature. In the same section, we show
that we can embed the set of parsimonious reconciliations R(H,P, ϕ, C) into the discrete
k dimensional hypercube Hk = {0, 1}k and that DH coincides with the Hamming Distance
on Hk. The equivalence distances ∼1,∼2 and the distance DH are all based on the set
of host-switch edges of a reconciliation Θ̃ (i.e. the edges of P which are mapped to a
non-edge of H).

In Section 1.3, we present a series of results on reconciliations based on the conditions
cc ≤ cd and cl > 0 which lead to Theorem 12 which proves that Θ̃ characterize the
reconciliations.

In the literature, it is known [46, 48, 71, 82] that when host-switch events are forbidden,
there is just one optimal reconciliation given by the least common ancestor map, lca :

V (P) → V (H), which recursively (starting from the leaf mapping) maps a parasite tree
internal node u to the least common ancestor of the host tree nodes lca(u1), lca(u2) where
u1, u2 are the children of u.

To the best of our knowledge, we do not know about any other results like Theorem
12.

In Section 2.9, we present some experimental results to show the efficacy of ∼1 and
∼2 and we comment these results under the light of the chosen cost vector C. The
most outstanding results we obtain is in the case of the dataset related to the parasite
Wolbachia (a bacterium with many interesting aspects, see Section 1.1) where we pass
from ∼ 4.08 · 1042 parsimonious reconciliations to ∼ 1.15 · 103 representatives.

In the second half of Section 2.9, inspired by the work of Robinson and Foulds on
distances between phylogenetic trees [78], we present and comment some statistics and
histograms on DH and the dimension k of Hk.

We conclude the chapter with some open problems and some comments in Section
2.10.

4

Introduction

A graph is an abstract representation of objects (its nodes) and the pairwise relations or
interactions among them (its edges). This extreme simplicity and flexibility makes graphs
and graph theory suitable for many applications and models of real life situations. Some
examples that surely do not cover all the application areas are: systems optimization of
the distribution of goods (or of informations and data), a website and all the links to its
pages, the evolutionary history of species, the metabolic network of some bacteria, the
reconstruction of a whole genome or transcriptome from its fragments (DNA or RNA-seq
reads), time scheduling for the exploitation of shared resources (such as time, working
forces, physical location of objects), social networks and social interactions.

It is clear then the importance of graph theory and algorithms in order to solve real
life problems. Indeed, most such problems correspond to classical ones in graph theory
such as: network flows, decomposition of graphs, enumeration of graphs or of subgraphs,
graph coloring, routing problems and edge or node coverings.

In particular, many of the more recent real-life problems come from biology which,
thanks also to the new technologies, provides complex simulations and allows to collect
an amount of data that is estimated, for the next future, to be of orders of magnitude
greater than any other source of data.

In this thesis, we study some graph theoretical problems which model two specific
biological questions, both related to symbiosis. Two organisms are said to live in symbiosis
if they have a strong and long term biological interaction. This phenomenon involves
almost all the living entities, with the interactions varying in terms of frequency and type
of interaction.

More specifically, we study the following two symbiosis-related problems: the Cyto-
plasmic Incompatibility phenomenon, which is related to some formulations of the cover
problem in bipartite graphs, and the Reconciliation of phylogenetic trees whose enumer-
ation requires a better exploration of the solutions space. In fact, very often biological
problems require to list all the possible solutions, to then discern among them by means
of further knowledge based on experimental data, hence, they are a good source of enu-
meration problems and a good motivation to develop efficient enumeration algorithm.

The first topic we consider, the phenomenon of Cytoplasmic Incompatibility (CI),
occurs in some biological interactions of parasitic nature between bacteria and the insect

6

hosts inside which they live. CI consists basically in promoting the spread of the parasite
in the host population by discouraging the breeding with uninfected hosts. The better
known example of this kind of phenomenon is perhaps the one of mosquitos and of the
bacterium Wolbachia which was tested and employed for instance in Florida in 2017 as
a solution to control the spread of the Zika virus. Wolbachia is a parasite which lives in
the reproductive organs of most of the insects, a fact that in itself makes the research
on Wolbachia of high interest for many applications (such as the one cited here). Zika
is a virus originally from Africa and extremely dangerous for humans as it is believed
to cause birth defects such as abnormally small brains. To address this threat, the U.S.
Food and Drug Administration approved the release of male mosquitos artificially infected
with specific Wolbachia bacterial strains which prevent successful breeding with the local
population of mosquitos with the final aim to reduce the population size.

In order to understand the phenomenon of CI, it is necessary to search for the genes
in the genome of the bacterium that are responsible for it. The genome of an organism is
its genetic material in terms of its chromosomes and the DNA constituting them. In the
case of Wolbachia, there is a single chromosome that is circular. The cost for obtaining
a good quality genome for Wolbachia has become drastically low due to the recent DNA
sequencing technologies and also to its small size (which is ∼ 6,000 times smaller than
the human genome).

However, such genome contains on average ∼ 1,000 genes and at the moment the
best approach to identify the genes involved in CI phenomenon is comparative genomics,
i.e. the comparison of different genomes, gene structures etc. in order to identify similar
features in order to identify the potentially responsible genes.

The approach we employed in the first chapter of the thesis is an approach "external"
to the genome of the bacterium in the sense that we do not compare the genomes of
similar CI-inducing bacteria such as Wolbachia but we start from the observation of the
patterns of successful and failed breedings between the hosts infected by different families
of the bacterium. In this way, such external approach comes as a support to a comparative
genomics approach.

This approach is based on the so-called Toxin and Antitoxin Model, described in Chap-
ter 1, which has a graph theoretical formulation in terms of computing the size of a min-
imum edge cover by chain subgraphs in a bipartite graph. A chain graph is a bipartite
graph whose nodes can be ordered by neighbourhood inclusion.
Intuitively, the bipartite graph with its edges represents the successful breeding between
male and female hosts and each chain graph of the cover represents a genetic factor in-
volved in the phenomenon. Based on a parsimonious criterion, we then search for the size
of a minimum cover.

To this purpose, we started from the problem of enumerating all maximal chain sub-
graphs of a given bipartite graph and we proposed an algorithm which efficiently enumer-

7

ates them.
We then considered the problem of enumerating all the minimal covers by chain sub-
graphs and, separately, the problem of computing the size of a minimum cover avoiding
the enumeration of all the covers.
The problem of minimal covers (by chain subgraphs) of a bipartite graph is strictly related
to the problem of computing the interval poset dimension of a bipartite ordered set.
Our solutions and conclusions on these four related problems can be found in [17], in [16]
(currently under review) and in this thesis in Sections 1.1-1.6 of Chapter 1.In Section 1.7.2
of the same chapter, we present this relation and the interpretation of our results in the
context of poset dimension theory. Finally, we applied and studied the same approach,
in the case of the poset dimension and we introduced a special graph which helps us to
compute it. This is a joint work currently in manuscript version [42].

Symbiosis, as a source of interesting graph theoretical problems, and enumeration
algorithms, as solutions to these problems, play both a central role in the thesis. Indeed,
not only enumeration is an important aspect for the problem related to CI (as different
covers imply different genetic structures) but also the second topic of this thesis is related
to enumeration and symbiosis.

Indeed, in this second part of the thesis, we deal with the symbiotic interactions
between species from an evolutionary point of view. Again we deal with a graph theoretical
model which describes how these symbiotic interactions evolved in time up to the current
state. The final challenge then will be to efficiently enumerate and explore the various
optimal solutions which come out of this model. Indeed, many possible solutions to the
model are equally sound and it happens very often that even a small input dataset gives
rise to an exponential number of optimal solutions. Furthermore, the computation of just
a single optimal solution is in itself an NP-hard problem.

The model we use to study and describe the coevolution of two sets of species that
interact is the Reconciliation Model which is based on the phylogenetic trees of two sym-
biotic sets of organisms. A phylogenetic tree is a tree graph whose set of leaves represent
the currently living species, while the evolution and the ancestry relations are represented
by the branchings of the tree.

Without loss of generality, in the following we will explain the model in the case of
symbiosis where the two phylogenetic trees model the evolution of a set of parasites and of
the host species with which these interact. However the model can be applied also in the
case of a set of species and one or a set of their genes, to study the evolution of that gene
(or those genes) with respect to the evolution of the species, or in the case of biogeography,
i.e. of the study of how the species are geographically distributed. In this latter case,
the phylogenetic tree of the species is compared to the cladogram of a geographical area,
i.e. to a tree graph which represents the similarities between geographical areas by the
branching of the tree, the leaves representing those areas and the tree distance measure

8

their similarity.
Given two phylogenetic trees, one of a set of parasites and one of their hosts, the

Reconciliation Model consists in defining a function, called reconciliation, from the nodes
of the parasite tree to the nodes of the host tree. This function must be conform to
some constraints such as the temporal order of the species which has to be preserved once
mapped on the host tree. As part of the input, we have also the mapping of the leaves of
the parasite tree to those of the host tree.

A reconciliation permits to model and identify evolutionary events such as cospeciation
which occurs when the branching of the trees agree on a given node. This situation
happens when the host evolves into different species and such change induces an evolution
of the parasite as well.

In the case of a bacterium, it may probably happen that it evolves much faster than
its host. The reconciliation model can describe this phenomenon by mapping a parasite
tree node together with its sibling to the same host tree node. In this case, we speak
about a duplication event and the number of such adjacent parasite tree nodes can be
interpreted as the rate of evolution of the parasite with respect to the host.

The loss event occurs when the host speciates and one of the two new species becomes
immune to the parasite infection.

Finally, the so-called host switch occurs when a parasite infects a host species evolu-
tionarily different from the current one. Current well known examples of this phenomenon
are all those viruses which typically affect other species and which then end up by infect-
ing humans, such as SARS which originally was a virus affecting bats, EBOLA found as
well in African bats but also in some Pigs in the Philippines, and finally Avian Flu which
was a virus transmitted from birds.

For these reasons as well, there is a wide interest in the scientific community on such
host-switch event, on its frequency and on the rapidity of adaptation of parasites and
viruses, the so-called parasite paradox. Indeed, it is not clear how a parasite can be highly
specialized on the hosts which they infected for generations and then suddenly change
its host and develop traits that enable it to detect the new host, to ensure reproductive
continuity, to adapt its metabolic system to the new host and to defend itself from its
immune system.

A possible resolution of this paradox is that the parasite is conservative in terms of
resource use (of its host), i.e. ancestral traits developed in the past to survive in some
hosts are preserved in its DNA and may help it to survive in the new host if the latter
presents analogous conditions. When the parasite is exposed to such a host and ends up
infecting it, we have an host-range expansion of the parasite. This exposure is actually
one explanation for the many host switches of disease vectors; a main reason for these
various exposures to a new host is related to the relaxed environmental conditions that

9

are themselves a consequence of the climate change. For instance, the warming up of the
arctic area may explain the appearance in 2008 on the low Arctic Victoria Island of two
lungworms Umingmakstrongylus and Varestrongylus which are both muskoxens parasites;
the second one is also a caribou parasite.
Both parasites were found before only on the mainland, however, the warming up of
the region has relaxed the geographical acceptable boundaries for the survival of their
larvae and the seasonal migrations of the caribou on the mainland may have facilitated
their introduction in the island. It is not to be excluded that there was, in the case
of Umingmakstrongylus, a host switch from caribou to muskoxen and it is not to be
excluded that it will happen in the future a host switch of the Varestrongylus in the
opposite direction.

The host-switch event is perhaps the most interesting one (of the four presented), both
in terms of biological implications and graph theoretical ones; indeed, also in terms of the
complexity of computing the solutions of the reconciliation model, the presence of host
switches is responsible for its NP-hardness as such switches may involve all species (all
nodes) in the host tree.

In the second chapter of the thesis, we define two equivalence relations among the
reconciliations that are both based on some host-switch properties. We then present
two equivalence relations and a new distance between reconciliations, all based on host
switches. Furthermore, we show that a knowledge of only the host switches of a reconcil-
iation is enough to reconstruct all the reconciliations under some conditions.

The two equivalence classes group together reconciliations which differ slightly in some
host switches. By choosing a canonical representative in the class, we can restrict ourselves
to work with a reduced number of objects without losing the possibility of recovering all
the original set.
We show that the number of representatives is often much lower compared to the total
number of optimal reconciliations, in some cases passing from ∼ 1048 objects to ∼ 103.

Moreover, we discuss a distance based on host switches and we present some exper-
imental results which show some of the characteristics of the new distance. Along the
chapter, we also compare our distance with some other recently defined and already known
ones underlining their advantages and disadvantages.
We present the results and the definitions of the two equivalence classes in [41] (in this
thesis Section 2.1-2.7) and, together with the results and definition of the distance, in [40]
(Section 2.8 of the thesis).

We proceed now with an introduction on enumeration algorithms which will conclude
the introduction to the thesis.

10

0.1 Enumeration algorithms

An enumeration algorithm is an algorithm which lists all the optimal solutions, without
repetition and possibly in a efficient way. We present here after an informal definition of
what means solve an enumeration problem (an interested reader may refers to [58] or for
a complexity theory dissertation [60, 81]):

Definition 1. Let A be a problem, x an instance of A and A(x) the set of solutions of A
on x.
An algorithm is said to solve the enumeration problem Enum(A) if, for each instance x

of A, it computes a sequence of elements y1, . . . , yn such that:

1. {y1, . . . , yn} = A(x),

2. i �= j → yi �= yj

In real life applications finding a single optimal solution is often not enough. For
instance, referring to social networks analysis, a classical problem in the field [52, 57, 85]
consist in listing all the communities (the maximal clique subgraphs). Another example,
this time taken from metabolism biology, are the chemical changes in a metabolic network
which can be studied by listing specific maximal acyclic subgraphs [9].

Generally speaking, there are contexts as computational biology, where there is often
the need of pass through all the space of solutions. Just to cite one classic and fundamental
situation: often a model offer different equivalent optimal solution solutions as for instance
the number of optimal reconciliation (i.e. a model of coevolution of organism) of in Tables
2.3-2.12 of Chapter 2.

To chose among these solutions requires to undergo a phase of exploration of the
solution space and to employ further knowledge external to the model to chose the best
solution which fit with the additional information.

In all these three situations we have to be able to explore all the solution space, hence
we need to have an efficient Enumeration Algorithm to list all the elements of the space.

In designing enumeration algorithms a classical situation in which we may occurs is
the risk of a redundant repetition of solutions output and, on the other hand, the risk
to cut out many solutions which will be missing. To avoid these risks, there are ad-hoc
solutions as the introduction of some order among the object to enumerate [57] or, in the
case of isomorphic solutions, the choice of a canonical representative which will be the
only one outputted among all the isomorphic ones. In Section 0.1.2 we present some more
general classical approaches for enumeration algorithms.

0.1.1 Complexity Classes for Enumeration Algorithms

We could regards enumeration algorithms in a classical context and actually we can also
have a decision version of the Enum(A) problem of Definition 1, presented informally
here under:

0.1 Enumeration algorithms 11

Definition 2. Let A be a problem, x an instance of A,A(x) the set of solutions of A on
x.An algorithm is said to solve the decisional version enumeration problem
DecisionEnum(A,S) if, for each instance x of A and each set S, it can decide if S equals
A(x).

Posed the problem in a decision version, we could employ all the classical theory of
complexity classes P,NP, co−NP,#P etc.. However, let us observe that it happens very
often to have an exponential number of elements to enumerate. Then, we cannot expect
in general to develop polynomial algorithms as at least an operation for each element has
to be spent. For instance, by the classical results of Moon and Moser [64], the number of
maximal clique subgraphs in a graph with n nodes can be 3n/3. Hence the performance
of the algorithm is heavily influenced by the dimension of the output. Yet we need a way
to evaluate the goodness of such an algorithms.

Here after we present some definitions, as given in [52], to describe the efficiency
of an enumeration algorithm. These definitions are usually referred as output sensitive
complexities and the belonging of an enumeration algorithm to one of the defined classes,
can be already very informative on how it enumerate as we better explain in the following:

Definition 3. An algorithm is said to run in polynomial total time if the time required
to output all the solutions can be bound by a polynomial in the input and output size. The
class TotalP is the class of all polynomial total time algorithms.

A stronger notion of total polynomial time is the following:

Definition 4. An algorithm is said to run in incremental polynomial time if given several
solutions, it can determine another solution or the non-existence of another one in time
bounded by a polynomial in the combined size of the input and the given solutions. Let
IncP be the class of all incremental polynomial algorithms.

It is clear that an algorithm that runs in incremental polynomial time runs also in
polynomial total time, hence IncP ⊆ TotalP .However, observe that even if an algorithm
requires an exponential time to generate a solution s it may be still possible that it runs
in incremental polynomial time if there are sufficient polynomially computable solution,
i.e. we bound the exponential time for s by the exponential number of easier solution to
compute.

Any enumeration problem Enum(A) can be put in the following form:

Problem 1. Let A(x) be the set of all the solutions of a given problem Enum(A) and let
S ⊆ A(x). Decide if A(x) \ S = ∅ or exhibit an element s ∈ A(x) \ S.

If we are able to solve Problem 1 in polynomial time for any instance x, then we have
an incremental polynomial time procedure to solve Enum(A).

Many problems have been proved to be solvable in incremental polynomial time as
for example enumerating all the circuits of a matroid [53], enumerating all minimal edge
dominating sets [45] or maximal independent sets of an hypergraph [10].

12

Definition 5. An algorithm is said to run in polynomial delay if the time spent until
the output of the first solution as well as the time between optimal solutions is bound by a
polynomial in the input size. We call DelayP the class of all polynomial delay algorithms.

Observe that a polynomial delay algorithm is also an incremental polynomial algorithm
(i.e. DelayP ⊆ IncP) and it is what is considered good enumeration algorithm. Observe
that it is also accepted an exponential time delay before the first output.

The algorithm described in Section 1.5.1 can enumerate all maximal chain subgraphs
of a bipartite graph in polynomial time delay and requires only the space proportional
to the input size (see Section 1.6 for problems equivalent to this one as enumerating all
maximal interval order reductions).

Other enumeration problems which are known to be in DelayP are, for example, the
enumeration of all the bubbles in a direct graph [6], the chordal graphs in a graph [54] and
the ideals of a poset [55].

Regarding the classes of DelayP and IncP at the moment it is not known if they are
well separated [81] (i.e. DelayP � IncP), although we have the following results on the
complexity of the other classes:

Proposition 1 ([81]). P = NP if and only if TotalP = EnumP .

Proposition 2 ([81]). If TotalP = IncP then P = coNP ∩NP .

0.1.2 Techniques to Design Enumeration Algorithms

This section is inspired by the methods collected and presented in [2, 58]. Among the
classic approaches to enumerate all the solutions of a given problem there is the brute
force one which enumerates all the solutions by enlarging a given one and removing the
non feasible ones or by a divide and conquer approach. This method is acceptably efficient
in the case of contained size problems.

Here after although we present some finer techniques which avoid in a more elegant
way the problem of finding the same solution many times and the one of missing a solution.

Backtracking

This approach is often used when the set of solutions S has the so called downward closure
property, to be more formal: let U be a set such that S ⊆ 2U then for each X ∈ S and each
Y ⊆ X we have Y ∈ S. In particular this mean that we can enumerate all the solutions
in S by extending them in all possible ways. We start from the empty set recursively and
once reached the end of the current branch we backtracing and exploring other paths. The
problem of no redundancy of solutions can be solved by adding elements of U to enlarge
the current solution by choosing them in an arbitrary but fixed order.
In this way it is possible to avoid redundant solutions by extending with elements greater

0.1 Enumeration algorithms 13

than all the current ones, without having to store an exponential number of solutions. An
example is given by Algorithm 1 taken from [58].

It is implied in this schema that when we are able to answer in polynomial time to
the question: "given X are there any other supersets of X ′ ∈ S?" , then there exist a
polynomial delay algorithm which can enumerate the elements of S.

Algorithm 1: BACKTRACK(G)
Input: A solution G ∈ S
Output: All the other solutions containing G.

1 output G;
2 foreach e � maxg∈G do
3 if {e} ∪G ∈ S then
4 BACKTRACK({e} ∪G)

Binary Partition

This schema can be applied when we can explore the set of solutions by partitioning
it according to some property and we can output a solution only if the partition is a
singleton, i.e. a leaf of the recursion tree we are defining in this way. In general, if there
exists an oracle which can partition the the set in polynomial time and the height of the
tree is bounded by a polynomial in the input size, we have a polynomial delay algorithm.
If each partition does not form empty sets, the number of internal nodes is bounded by
the number of leaves and then we have a total polynomial time algorithm.

This method have been successfully employed to enumerate for example: st-paths in
undirected graphs [36], perfect matchings in bipartite graphs [86], k-trees in undirected
graphs [37].

As an example we show how we can enumerate with Algorithm 2 the elements of the
set G[s, t] of all the paths from a node s to a node t in a graph G. We partition the
current set in two sets: the set of paths which include an edge and the set of paths which
do not include it.

To this extend we define the graph G − v as the graph G with the node v ∈ V (G)

removed together with all the edges incident to it, and G − e as the graph G with the
edge e ∈ E(G) removed. Let v be a node in the neighbourhood of s, then G[s, t] =

(G− v)[s, t] ∪ (
G− (s, v)

)
[v, t].

We can then define a recursive procedure up to the case when s = t where we reach the
leaf of the recursion tree and we are ready to output the solution, as done in Algorithm
2.

Finally to design an efficient algorithm we should assure to do not waste time in
descending a branch of the recursive tree without finding a solution at the end or at least

14

avoiding to pay this cost too many times. We can do this by check if there exists at least
a path between s and t in the current graph by performing a DFS (Deep First Search).

Algorithm 2: PATHs(G,s,t,π)
Input: An undirected graph G, two of its nodes s, t and a path π initially empty
Output: All the paths in G from s to t.

1 if s = t then
2 output π;
3 return;

4 Choose an arc e = (s, r);

5 if G− s[r, t] = ∅ then
6 PATHs(G− e,s,t,π);
7 return;

8 if G− e[s, t] = ∅ then
9 PATHs(G− e,r,t,π ∪ {s});

10 return;

11 PATHs(G− s,r,t,π);
12 PATHs(G− e,s,t,π);

Reverse Search

This method, introduced by an article of Avis et al. [2], requires to turn the set S of
elements to be enumerated into the nodes set of a tree by introducing a father-children
relation so as to have a DAG. To enumerate all the solutions it is then enough to perform
a Depth First Search where in each iteration it will be output a solution. If there is
a procedure to pass from one solution to the next one then there is no need to store
O(tree_height) solutions, as it is for the Backtracking method, to perform a Depth First
Search of the tree.

With this method it is possible, for instance, to enumerate all the maximal cliques of
a given graph G(V,E) as done by Tsukiyama et al. [85] and Johnson et al. [52] and then
later reviewed by Makino et al. [57]. We present here under this last revision of Makino
after few preliminaries.

Impose a fixed but arbitrary total order on the nodes of V , say V = {v1, . . . , vn}
with vi < vj iff i < j. Then we can induce an order among induced subgraphs of
G by defining C
 D, for C,D ⊆ G, if the smallest node in V (C) � V (D) belongs
to C (where with � we mean the symmetric difference between sets, i.e. in our case
(V (C) \ V (D)) ∪ (V (D) \ V (C))).

For a clique K ⊆ G let us define C(K) to be the
-greater clique among all the
maximal cliques extension of K. For a subgraph C of G and for 1 ≤ i ≤ n, let us define

0.1 Enumeration algorithms 15

the graph Ci defined as the subgraph of C induced by the nodes V (C)∩ {v1, . . . , vi}. Let
R be the
-greater maximal clique. A parent-child relation among maximal cliques can
be given then defining the father P (K) of a maximal clique K �= R to be the maximal
clique C(Ki) such that i is the largest index for which C(Ki) �= K.

Observe that in this way P (K) is
-greater than K, hence the induced direct graph
in S is acyclic. Furthermore, since only R has no father according to this definition, it is
a tree rooted at R which can be explored by implementing a procedure to compute the
i-th children of a maximal clique as in [57].

For sake of completeness, observe that the reverse search approach actually is just a
particular application of a general view said transition graphs or super-graph [60]. This
more general approach aims at traverse a graph whose nodes are the element of S to
list and the edges are defined by some neighbourhood function; in our example we are
traversing a tree with a DFS. In the general case where the graph may have cycles, to
avoid redundancy we can construct, for instance, a spanning forest of the graph, or a
spanning tree.

This method has been employed implicitly in all the methods which slightly modify a
solution to obtain another [52, 85] and in a explicit way in [10, 43, 45].

16

Cytoplasmic Incompatibility and Chain
Graphs

1.1 Introduction and Motivations

Cytoplasmic Incompatibility (CI) refers to one solution adopted by intracellular parasites
such as Wolbachia or Cardinium hertigii [47, 51] to spread themselves among the hosts
they infect by interfering with the breeding process, preventing the formation of a healthy
offspring with the uninfected host. The phenomenon has been noticed by Marshall [59]
in the late 30’s who observed that some male mosquito strains of Culex pipiens failed to
accomplish a breeding with females of another strain, while the breeding between females
of the first strain and males of the second one was successful.

We will take as example of this phenomenon the bacterium Wolbachia and describe
some characteristics, aspects and models related to CI. Wolbachia is an endosymbiont
(i.e. an organism that lives within the cells of another) which lives in the gametes of
many insects which act as their hosts [50]. To underline the extent of interest in this
phenomenon and in Wolbachia, observe that it is believed Wolbachia has an incidence of
infection of 67% among all the insect species [50] with a slightly higher prevalence among
arthropods [77]. These data are interesting for their prospective applications as insect
pest control or gene spreading among the population. One of the main scientific interests
of Cytoplasmic Incompatibility is the possibility to reduce the population size of the hosts
or employ the parasite as a vector to spread some genes among the population. Indeed,
as done in experiments with Culex pipiens [56] and the medfly Ceratitis capitata [56], by
releasing in the population a huge quantity of infected males it is possible to reduce the
size of the next generation population.

Different approaches to reduce the size of the population are obtained by employing
CI-inducing bacteria which may reduce the lifespan of the infected host as experimentally
done for the mosquito A. aegypti [61].

Finally, another source of interest is the presumed capability of CI to induce a speci-
ation in the host population [88]. Indeed, the impossibility to breed between two popula-
tions with incompatible infections may promote a higher genetic variation between them
than within each population. Speciation events and the phenomenom of coevolution are
also in the center of our interest in Chapter 2.

18

Fem wHa Fem wNo Fem wRi Fem (uninfected)
Male wHa 1 0 0 0
Male wNo 0 1 0 0
Male wRi 0 0 1 0

Male (uninfected) 1 1 1 1

Table 1.1: Bidirectional CI in Drosophilia simulans

Furthermore, Wolbachia may provide a positive effect on the fitness of infected ele-
ments in the population for instance immunological capacity to resist to some viruses as
for the fruit fly Drosophila simulans [69]. This grants stable infection of the bacteria in
the population [3] and makes it a good CI vector.

The bacterium Wolbachia spreads mostly through the maternal cytoplasm and the
phenomenon observed by Marshall is due to the crossing of infected males and uninfected
females. The males are in principle seen by the bacterium as dead ends because the male
parent does not share its cytoplasm with the offspring and the bacteria cannot spread in
the cytoplasm of the children. In turn, the males are useful in promoting the diffusion
of the bacterium by preventing the breeding with uninfected females. In this way, the
infected females become fitter in the population as they are able to accomplish a successful
breading with infected and uninfected males. An uninfected male can successfully breed
with both infected and uninfected females as, intuitively, infected females should spread
the bacterium as much as possible.

In the literature, this asymmetry between the failure to breed of an infected male
with an uninfected female on one hand, and the successful breeding of an uninfected male
with an infected female on the other hand is called unidirectional CI. There are also cases
where crossings of males and females infected with different strains of Wolbachia are not
possible. A classical example is the one of the fruit fly Drosophila simulans [62] presented
here in Table 1.1 where a 1 (resp. a 0) indicates a successful (resp. unsuccessful) breeding
between a male and a female of the fly infected by three different strains of Wolbachia,
(denoted as wHa, wNo, wRi). The last column and row are control groups of uninfected
individuals.

This impossibility to successfully breed for a host infected by different strains is referred
to in literature as bidirectional CI.

The exact biological mechanism behind the CI phenomenon remains unknown, al-
though there are studies which support the hypothesis that the development of the em-
bryos is disturbed or interrupted as the paternal genetic information results damaged
[13, 18, 87].

The population structure, i.e. the geographical and physical properties of the popu-
lation, is another factor which may influence the phenomenon of Cytoplasmic Incompati-
bility, the diffusion of the CI-inducing bacterium and the co-existence of different strains
of bacteria. In [31], according to the different mathematical models employed (which vary
on different descriptions of the geographical distribution of the population and different

1.2 Models for the Cytoplasmic Incompatibilty 19

diffusion rules), the authors suggest interesting and various aspects involved in the CI
diffusion such as invasion threshold for a stable and successful infection or phenomena
of bidirectional CI and coexistence of incompatible CI-inducing bacteria in situation of
geographically sparse populations.

In this part of my thesis, we will present our scientific contribute to the understanding
of the mechanism behind CI starting from the model described in [65] with some excursions
on related topics in computer science regarding graph covers and poset dimension theory.
More specifically, the following of this chapter is structured as follows: in Section 1.2 we
present an overview on the Toxin and Antitoxin Model, which is the CI model we adopt.

In Section 1.3 we introduce the required notation and graph theoretical objects such
as Chain Graphs and Interval Orders.

In Section 1.4 we show how the computation of optimal solutions for the Toxin and
Antitoxin Model is equivalent to the graph theoretical Minimum Chain Subgraph Covers
Problem.

Section 1.5.1 provides a new polynomial delay algorithm to enumerate all maximal
chain subgraphs of a bipartite graph, and an upper bound on their maximum number. We
use the latter result to further establish the input-sensitive complexity of the enumeration
algorithm.

In Section 1.5.2 we detail the exact algorithm for finding the minimum size of a min-
imum chain cover in bipartite graphs, and in Section 1.5.3 we exploit the connection of
this problem with the minimal set cover of a hypergraph to show that it is possible to
enumerate in quasi-polynomial time all minimal covers by maximal chain subgraphs of a
bipartite graph.

Section 1.6 deals with the relation of the results in Sections 1.5.1 and 1.5.2 with some
classical problems of partial order theory.

1.2 Models for the Cytoplasmic Incompatibilty

Regarding the mechanism of CI, we know that the host nuclear variation is not responsible
for the success of a breeding (just to cite two of many evidences on this, see [29, 44]). We
know also that in some species, for instance the parasitic wasp Nasoni vitripennis [14]
and the fly Drosophila simulans [18], the breeding between infected males and uninfected
females is jammed by the delay of the paternal chromosome in joining the maternal one
and proceed with the development of the embryo.

In general the mechanism behind the phenomenon of CI is not completely clear for
some difficulties in terms of genetic tools. For instance, in the case of Wolbachia, there
are difficulties in identifying involved genes [65]. However, there are methods involving
phenotypic data only (i.e. which symbiont infects which host) that can give a satisfying
primary idea on the number of genes involved (see under the Lock and Key Model and
the Toxin and Antitoxin Model for further details). My research in the area is based

20

on this phenotypic approach employing the Toxin and Antitoxin Model presented here
under. We developed an algorithm which can help to cast light on the number of involved
genetic factors starting from the observation of the patterns of successful breeds.

In the rest of this section, we present some of the models used in the past and the
current state of the art concerning the genetic and molecular mechanism behind CI.

The Modification and Rescue Model

A first widely known explanation of CI is the modification/rescue model [88]. This model
describes the phenomenon of CI as a "modification" of the male sperm by means of
some function Mod acting on an infected male. Subsequently, the modified sperm is
rescued in an infected female by some Resc function. This model was employed for a
long time as it has the merit of being simple, although paying the price of the inability
of explaining bidirectional CI (if not assuming the independence of the Mod and Resc
functions, hypothesis supported in [75], or assuming some hypotheses on the population
structure as in [31]). In this model, the Mod and Resc mechanisms are assumed to be
deeply related and they follow the same evolution, i.e. the presence in the population of
some elements carrying a Mod function suggests the existence in the same population of
a carrier of the corresponding Resc function as both are supposed to depend on the same
genes and hence to diffuse at a same time in the population.

The hypothesis of the independence of the Mod and Resc functions is, on the contrary,
a cornerstone in the Lock and Key Model and the Toxin and Antitoxin Model both
presented here under. On the other hand, there are other evolutions of the Mod and
Resc Model towards models closer to experimental observations such as the Mistiming
and Goal Keeper models which both still support the dependence of the functions Mod
and Resc. These two other models are presented after for sake of completeness but are
less flexible in terms of representative capabilities than the Toxin and Antitoxin Model
which we are using.

The Lock and Key Model

The Lock and Key Model [65] gives a description of these Mod and Resc functions in
terms of independent molecules present in sperm and eggs that are called Lock and Key,
respectively. These molecules act, as the name itself suggests, as a lock put on the sperm
which is successively unlocked by the proper key retained in the egg. Compared to the
Mod and Resc model, the Lock and Key one has the positive aspect of describing Mod
and Resc functions in terms of biological proteins, and has also the capability to explain
bidirectional CI supposing that each strain of the bacterium carries its own Lock and Key
pair. In this way we can easily explain, for instance, the observations made for the fruit
fly Drosophila simulans [62] in Table 1.1 by assuming that each strain of bacterium has
its own specific Lock/Key pair. However, assuming just two single loci, i.e. the locations

1.2 Models for the Cytoplasmic Incompatibilty 21

Figure 1.1: Culex pipiens compatibility matrix. The yellow cells are an example of dif-
ferent strains mutually compatible explainable with a single Lock/Key pair. Although
the introduction of the third strain, the blue cell, claims the existence of other Lock/Key
pairs, more specifically: a second Lock for the strain B whose Key is possessed by the
strain A,B but not by the strain C.

of the genetic rules governing the formation of the molecules Lock or Key, is not enough.
We should assume the existence of multiple loci (hence different types of Lock and Keys
molecules) to explain more complex patterns such as the ones observed for the mosquito
Culex pipiens that was presented in earlier studies of Duron et al. [29]. In the matrix
of Figure 1.1 where rows represent the male and columns the female strains. In order
to explain the values of the yellow and blue colored cells, it is necessary to assume a
multiple loci model which may express different Lock and different Key molecules at the
same time (idea supported by a probable duplication and subsequent modification of the
original genetic information, see [65] and under).

In [65], this model is tested on the dataset in Figure 1.1. The results were satisfactory
displaying on average a situation where multiple Key loci are required in the females and
in a higher number with respect to the fewer Lock loci required for the males as shown
in Figure 1.2 where an 1 is placed if the Lock/Key corresponding to the given column is
present in the strain identified by the given row.

The multiple loci hypothesis is also in line with current theories on the evolution of CI
[20, 21, 32, 65] which claims that females with many Keys are more fit in the population.
Indeed they can be fertile with many more partners than uninfected females, fact that
gives them an evolutionary advantage; on the contrary for the male host it is convenient
not to have a symbiont which imposes many bounds or it will augment the risk of both
host and symbiont becoming extinct.

22

Figure 1.2: Figure 4 in [65], which reports: "Best confidence solution of the binary model.
The value in each cell indicates whether we infer presence (1) or absence (empty cell) of
this factor in this particular Wolbachia strain. Gray cells contain a value inferred in at
least 90% of the solutions of minimum size"

Figure 1.3: Figure 2 in [66], a bipartite graph on the left, and a biclique cover of size 3
on the right.

Computing the number of Lock/Key pairs necessary to explain a given patterns of
(successful or failed) breedings can be done by employing some heuristics and algorithms
related to biclique covers of bipartite graphs [66]. A bipartite graph is a graph G =

(U ∪V,E) whose node set can be partitioned into two independent sets U, V . If G is such
that (u, v) ∈ E for all u ∈ U, v ∈ V G then it is called a biclique. A biclique cover is an
edge cover of a bipartite graph made of biclique subgraphs (Figure 1.3).

In the case of the Lock and Key Model, the pattern of successful breedings (for instance
the one in Figure 1.1) is reduced to a bipartite graph with two sets of nodes, the males
and females infected with different strains of bacteria, and where the edges between a pair
of nodes represent a successful breeding. A biclique subgraph coincides with a Lock/Key
pair of this model. There is an interest in finding minimum biclique covers (the so-

1.2 Models for the Cytoplasmic Incompatibilty 23

called bipartite dimension) which coincide with the minimum number of Lock/Key pairs
necessary to explain the breeding pattern.

The Bipartite Dimension or Biclique cover number consists exactly in finding the size
of a minimum edge cover of a bipartite graph by means of bicliques. The decision problem
associated to it is known to be NP-complete [68] (see for instance [1] for a list of equivalent
reformulations) while in [66] it has been proved to be in FPT. Deciding if there exists a
bipartite cover of size k can thus be done in time O(2k2

k−1+3k + max(m,n)3) where n is
the number of nodes and m the number of edges of the bipartite graph in input.

There is also an interest in the enumeration of all the covers of minimum size for
the relation they have with the number of Lock/Key loci as each element of the cover
corresponds in the model to a Lock/Key pair.

The Toxin and Antitoxin Model

The Toxin and Antitoxin Model can be seen as a quantitative version of the Lock and
Key model [65]: the Toxin is identified as the Lock put on the sperm and the Key now
is the Antitoxin in the egg which can neutralize the Toxin if it is present at least in the
same quantity as the corresponding Antitoxin. Indeed, if in the binary version it was
only possible to note the presence or absence of a given Lock or Key, in this model we
are able to express a quantity of its presence as a non-negative integer. A breeding is
successful if in the egg are present all the Antitoxins for all the Toxins and in enough
quantity. In particular in this model, the symbiont strains vary also on the quantity of
Lock/Key produced.

In this model, as in the Lock and Key Model, the genetic factors responsible for the
Toxins and the Antitoxins are independent, i.e. the Keys are encoded by different genes
and alleles than the Locks.

Being an extension of the Lock and Key model, each solution within that model
can directly beinterpreted as a solution to this one. The implication is that the mini-
mum number of Lock/Key pairs is always an upperbound for the minimum number of
Toxin/Antitoxin pairs.

Two More Concrete Model Yet Less Powerful: The Mistiming Model and The
Goalkeeper Model

Another extension of the Modification and Rescue Model is the Mistiming Model. This
model has a quantitative representation of the Mod and Resc functions and supports the
experimental evidence [14, 18] of the difficulties encountered by the male chromosome to
participate in the formation of embryonic cell hindered by the symbiont. In this model,
the breeding is successful only if the female chromosome has also a time delay greater
than the one of the paternal chromosome.

On the contrary, the successful breeding between infected females and uninfected males

24

Figure 1.4: Visual example for the Goalkeeper Model: The top right breeding is the only one not
successful as the Mod point falls outside the Rescue area.

is justified arguing that the chromosome from uninfected males does not suffer the delay
related to the infected female but it will suffer just a slowed cell cycle.

This model is then further extended to the Goalkeeper Model, which describes each
symbiont strain by means of two positive values which were interpreted by Bossan et al.
as the time delay induced and another not well defined factor. Both factors are present
in the same quantity in the sperm and the egg implying then a dependence of Mod and
Resc functions. Furthermore, the model claims for the female a contribution to these
two factors which is independent on the infecting symbiont strain and is hence constant
among bacterial strains.

The name Goalkeeper Model comes from the visual interpretation of these two factors
as in this model, the rescue of the offspring is performed (see Figure 1.2) if the point
identified on the Cartesian plane by the two factors of the male given only by the symbiont
strain, say (x, y), falls within a rescue area. This rescue area is a rectangle which is the
convex-hull of the points (0, 0), (x+xf , 0), (0, y+yf), (x+xa, y+ya) where xa, ya represent
the female host contribution.

The two factors per symbiont strain of this model have the power to explain bidirec-
tional CI, which was not possible with only one factor as in the Mistiming model.

According to the authors in [11], in the Lock and Key Model (and the Toxin and
Antitoxin Model we add), it is left unexplained how it is possible to match in a population
the independently evolved modifications of Lock and Keys functions when this traits

1.3 Preliminary Notation 25

should be soon extinct if not supported by other evolutionary forces which would make
more fit these modified versions. On the contrary, the assumption of the correlation
between Mod and Resc functions in the Goalkeeper Model, prevents the arising of this
theoretical problem.

Observe that we can interpret the two quantitative factors of this model as two
Toxin/Antitoxin pairs of the Toxin and Antitoxin. In this way it is clear that the Goal-
keeper Model results in a special case of the Toxin and Antitoxin Model.

In the following, we introduce the mathematical formulation of the Toxin and Antitoxin
Model after some theoretical preliminaries necessary also to prove the relation of this
model with the Chain Subgraphs Cover Problem.

1.3 Preliminary Notation

In this section, we introduce the notation we use and we assume that the reader is fa-
miliar with the standard graph terminology, as contained for instance in [8]. We consider
finite undirected bipartite graphs without loops or multiple edges. Bipartite graphs arise
naturally in many other applications besides the ones addressed in this thesis since they
enable to model the relations between two different classes of objects. For each of the
graph problems in this thesis, we denote by n the number of nodes and by m the number
of edges of the input graph.

Given a bipartite graph G = (U ∪W,E) and a node u ∈ U , we denote by NG(u) the
set of nodes adjacent to u in G, u excluded, and by EG(u) the set of edges incident to u

in G. When it is clear the graph G in which the neighbourhood is taken, we may omit it
from the notation simply writing N(u) or E(u) respectively. Moreover, given U ′ ⊆ U and
W ′ ⊆ W , we denote by G[U ′,W ′] the subgraph of G induced by U ′ ∪W ′. A node u ∈ U

such that NG(u) = W is called a universal node.

Chain Graphs

A central role in this part of the thesis is played by chain graphs (also called difference
graphs).
As we prove in Section 1.4, they are related to the graph interpretation of the quan-
titative model Toxin and Antitoxin (presented in Section 1.2). Although chain graphs
are interesting in themselves as graph theoretical objects, they appear in many other
applications. Indeed, not only are they related to other important graph classes such as
threshold graphs [49] and interval graphs [91], but they can also be directly interpreted
as the comparability graph of height one partial orders.

Hereafter, we introduce chain graphs and some of their properties that will be used in
this thesis.

26

Definition 6. A bipartite graph is a chain graph, or also said difference graph, if it does
not contain a 2K2 as an induced subgraph.

There are several equivalent definitions of chain graphs as shown by the next theorem.
For further equivalent characterizations and the omitted proofs, we refer to [49]:

Theorem 1. [49] The following conditions are equivalent for a bipartite graph G = (U ∪
V,E):

1. G is a chain graph,

2. For each two nodes u1, u2 ∈ U (or equivalently V) either NG(u1) ⊆ NG(u2) or
NG(u1) ⊆ NG(u2), i.e. there exist a total order for the elements of U (equivalently
V) given by neighbourhood inclusion,

3. We can partition the set U in the sets U0, . . . , Uk, the set V in V0, . . . , Vk for a
positive integer k and such that for each u ∈ Ui, v ∈ Vj we have that (u, v) ∈ E iff
i+ j > k, the sets U1, . . . , Uk, V1, . . . , Vk are said a degree partition of G.

4. G can be constructed from the empty graph by repeatedly adding an isolated node or
a node adjacent to all previous ones,

5. there exists a function w : V (G) → R bounded by a positive integer T > 0 such that
for all u ∈ U ,v ∈ V it holds (u, v) ∈ E(G) iff |w(u)− w(v)| ≥ T .

In the following we heavily employ item 2. of Theorem 1, and for this reason we
introduce the following definition:

Definition 7. Given a chain subgraph C = (X ∪ Y, F) of G, we say that a permutation
π of the nodes of U is a neighbourhood ordering of C if NC(uπ(1)) ⊆ NC(uπ(2)) ⊆ . . . ⊆
NC(uπ(|U |)).

Observe that if X ⊂ U , the sets NC(uπ(1)), . . . , NC(uπ(l)) for some integer l ≤ |U |,
may be empty and, if C is connected, l = |U | − |X|. By largest neighbourhood of C we
mean the neighbourhood of a node x in X for which the set NC(x) ⊆ Y has maximum
cardinality. A set Y ′ ⊆ Y is a maximal neighbourhood of G if there exists x ∈ X such
that NG(x) = Y ′ and no node x′ ∈ X is such that NG(x) ⊂ NG(x

′). Two nodes x, x′ such
that NC(x) = NC(x

′) are called twins.

In this chapter, we always consider edge induced chain subgraphs of a graph G. Hence,
in the following we consider a chain subgraph C of G to be identified by its edges E(C) ⊆
E(G) and in that case its set of nodes will be constituted by all the nodes of G incident
to at least one edge in C. With this interpretation, a chain graph is characterized by the
set of its edges; for this reason we sometimes abuse the notation e.g.: C \E(D), with D a
subgraph of G, to denote the chain subgraph induced by edges E(C) \ E(D), C ⊆ E(D)

or equivalently C ⊆ D to say that C is an edge-induced subgraph of D and e ∈ C means
that e ∈ E(C).

1.4 Toxin and Antitoxin: The graph theoretic interpretation 27

Definition 8. A maximal chain subgraph C of a given bipartite graph G is a connected
chain subgraph such that it is not a connected chain subgraph for any other subgraph of G
than itself. We denote by C(G) the set of all maximal chain subgraphs in G.

Definition 9. A set of chain subgraphs C1, . . . , Ck is a cover for G if ∪1≤i≤kE(Ci) =

E(G). We denote by S(G) the set of all minimal chain covers of a bipartite graph G.

Observe that, given any cover of G by chain subgraphs C = {C1, . . . Ck}, there exists
another cover of same size C ′ = {C ′

1, . . . C
′
k} whose chain subgraphs are all maximal; more

precisely, for each i = 1, . . . , k, C ′
i is a maximal chain subgraph of G and C ′

i admits Ci as
subgraph.

On n bipartite nodes, the number of different unlabeled chain graphs is 2n and the
number of labeled chain graphs dn is:

d0 := 1, dn = 2
n∑

k=0

k!S(n, k), n ≥ 1,

where S(n, k) are the Stirling numbers of second kind. Both these results were ob-
tained by Peleg and Sun in [74]. In the same paper, an asymptotic evaluation for dn

of O(n!/(ln 2)n+1) can be found.

On the other hand, as we observe also in Section 11, a tight upper bound on the
number of maximal chain subgraphs in a connected graph with n nodes is O((n/2)!).
This bound comes from the branching tree of the algorithm to enumerate all maximal
chain subgraphs of a given bipartite graph and is described in Section 11. It also provides
an upper bound in terms of edges, so a connected bipartite graph with m edges can have
O(m32

√
mlog(m)) maximal chain subgraphs.

To the best of our knowledge we do not know any other results of this kind.

1.4 Toxin and Antitoxin: The graph theoretic interpre-
tation

The Toxin and Antitoxin model claims that a breeding in presence of CI is successful if
the egg contains all the antitoxins to all the toxins present in the sperm of the infected
male [65]. We can model this by introducing the following operation between positive
integer-valued vectors:

Definition 10. The quantitative ⊗ vector multiplication is a binary external anti-symmetrical
operation between two vectors U, V ∈ Nk, for a strictly positive integer k, defined as fol-
lows:

U ⊗ V :=

⎧⎨⎩1 if U [i] > V [i] for some i ∈ {1, 2, . . . , k},
0 otherwise

28

Interpreting vectors in Nk as matrices with a single row in N1×k, we can directly extend
this operation to a matrix multiplication operation as follows:

Definition 11. The quantitative row-by-row matrix multiplication ⊗ is defined as fol-
lows: given two matrices M ∈ Nm×k and R ∈ Nr×k with m, r, k positive integers, then
M⊗R := C ∈ {0, 1}m×r where Ci,j = Mi,·⊗Rj,· for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , r}.

In the biological setting, we are given a matrix C ∈ {0, 1}m×r which has one row
assigned to each male host and one column assigned to each female host. The value
at the given row and column is a boolean value representing the success or the failure
to breed of the corresponding male and female. Our interest is exploring the set of the
inverse images of the defined quantitative row-by-row matrix multiplication with the aim
to solve the minimization problem:

Problem 2. Given a binary matrix C ∈ {0, 1}m×r where m, r are positive integers, de-
termine the minimum positive integer k such that there exists two matrices M ∈ Nm×k

and R ∈ Nr×k such that M ⊗R = C.

The columns of matrix M (resp. R) represent the different Toxin (resp. Antitoxin)
quantity present in the infected males (resp. females). The k value represents the mini-
mum number of Toxin/Antitoxin pairs necessary to explain pattern C.

Observe that for each bipartite graph G = (U ∪ W,E), we can associate a binary
matrix A(G), called the bi-adjacency matrix of G and defined by the following rule: let
U = {u1, . . . , um}, W = {w1, . . . , wr} then A(G)i,j = 1 iff (ui, wj) ∈ E(G).

It is clear that each bipartite graph has a bi-adjacency matrix and vice versa.
The following lemma sheds light on graph theoretic concepts related to the minimum

quantitative solution.

Lemma 1. G = (U ∪ W,E) is a chain graph if and only if there exists a quantitative
solution of size 1 in A(G).

Proof. Let G be a chain graph, then we can assume U = {u1, . . . , um} to be ordered
by neighbourhood inclusion, i.e. N(ui) ⊆ N(uj) if i ≤ j. Let us define B1, . . . , Bn as n

disjoint subsets of U as follows: ux ∈ Bi if and only if |N(ux)| = i for 1 ≤ x ≤ m. Observe
that B0 is the set of isolated nodes of U and it may be empty, in that case we exclude
it from the following reasoning. In general, as every node u in a set Bj has the same
neighbourhood (being G a chain graph) we can extend the notation of neighbourhood as
follows N(Bj) := N(u) for u any node in Bj and for any 0 ≤ j ≤ n.

We now construct two matrices M ∈ N|U |×1 and R ∈ N|W |×1 as follows: for ux ∈ Bi

define M [x][1] := i for 1 ≤ x ≤ m and define for wy ∈ N(Bj) \ ∩j−1
s=1N(Bs) and 1 ≤ y ≤ r

R[y][1] := j − 1.
The conclusion follows by this chain of implications: C[x][y] = 1 ⇔ ∃e = (ux, wy) ∈

E(G) ⇔ ux ∈ Bi and wy ∈ ∩i
s=1N(Bs) ⇔ M [x][1] = i and R[y][1] > i ⇔ M [x][1] ⊗

R[y][1] = 1.

1.4 Toxin and Antitoxin: The graph theoretic interpretation 29

Let us now assume that there exists a quantitative solution of size 1 for C ∈ {0, 1}m×r.
Then there exist M ∈ Nm×1 and R ∈ Nr×1 such that C = M ⊗ R. Let us define
the graph G = (U ∩ W,E) as follows: let U = {u1, . . . , um}, W = {w1, . . . , wr} be
two sets of respectively m and r distinct elements and let (ux, wy) ∈ E if and only if
M [x][1] ⊗ R[y][1] = 1. We will now prove that G is a chain graph as we can order the
neighbourhood of the nodes of U by neighbourhood inclusion as either N(ux) ⊆ N(uz) or
N(ux) ⊇ N(uz) (see point 2 of Theorem 1).

Suppose that N(ux) ⊆ N(uz) does not hold and let us show then that N(ux) ⊇ N(uz)

must hold. If N(ux) ⊆ N(uz) then there exists wy ∈ N(ux) \N(uz) such that M [x][1]⊗
R[y][1] = 1 while M [z][1]⊗R[y][1] = 0, this implies that M [x][1] > R[y][1] > M [z][1] and
it follows for all 1 ≤ l ≤ r that wl ∈ N(uz) ⇔ M [z][1] > R[l][1] ⇒ M [x][1] ⊗ R[l][1] =

1 ⇔ wl ∈ N(ux),i.e. N(ux) ⊇ N(uz).

From the next Theorem, we deduce that there exists a relation between the size of a
chain subgraph cover of a bipartite G and the number of columns of two matrices M,R

such that M ⊗R = A(G). We can then solve the Problem 2 by computing the minimum
size of a chain graph cover for A(G).

Theorem 2. Let G = (U ∪ W,E) be a bipartite graph. Then G has a chain subgraph
cover of size k if and only if there exist two matrices M ∈ Nm×k and R ∈ Nr×k for m, r

positive integers such that M ⊗R = A(G).

Proof. In all the proof let U = {u1, . . . , um}, W = {w1, . . . , wr} for m, r positive integers.
For the only if part of the theorem, let C1, . . . , Ck be a chain subgraph cover for G.
Without lack of generality (modulo a permutation of the nodes in U,W), we can assume
for 1 ≤ i ≤ k that Ci = (Ui ∪Wi, Ei) with Ui := {u1, . . . , um′}, Wi := {w1, . . . , wr′} for
m′ ≤ m, r′ ≤ r. By Lemma 1 there exist two matrices Mi ∈ Nm′×1 and Ri ∈ Nr′×1 for
m′, r′ positive integers such that Mi ⊗Ri = A(Ci). Then for 1 ≤ i ≤ k define column i of
matrices M ∈ Nm×k and R ∈ Nr×k as

M [x][i] :=

⎧⎨⎩Mi[x][1] if ux ∈ Ui

0 otherwise
R[y][i] :=

⎧⎨⎩Ri[y][1] if wy ∈ Vi

maxi:x∈Ui
Mi[x][1] otherwise

Observe that M [·][i] ∈ Nm×1 and R[·][i] ∈ Nr×1 and that for each chain subgraph Cj we
can analogously define M [·][j], R[·][j]. The conclusion follows being C1, . . . , Ck a chain
subgraph cover for G and observing that with this definition M [x][i]⊗ R[y][i] = 1 if and
only if for some chain Ci we have ux ∈ Ui, wy ∈ Vi and Mi[x][1] ⊗ Ri[y][1] = 1 i.e.
(ux, wy) ∈ E(Ci).

The if part of the theorem follows trivially. Assume than that M ⊗ R = A(G). Then
for each 1 ≤ i ≤ k, we define the subgraph Ci = (U ∪W,Ei) of G such that(ux, wy) ∈ Ei if
and only if M [x][i] > R[y][i] for 1 ≤ x ≤ m and 1 ≤ y ≤ r. Clearly with this construction
A(Ci) = M [·][i] ⊗ R[·][i] and by Lemma 1 it is hence a chain subgraph of G. The set

30

{C1, . . . , Ck} are an edge cover for G as we have that (ux, wy) ∈ E(G) if and only if
C[x][y] = 1 which occurs if and only if there exists 1 ≤ i ≤ k such that M [x][i] > R[y][i]

hence (ux, wy) ∈ Ei by construction of Ci.

As we are interested in chain subgraph covers of minimum size, in order to reduce
their number and to avoid unnecessary redundancies, from now on we will restrict our
attention to maximal chain subgraphs and covers of a bipartite graph by maximal chain
subgraphs.

1.5 Chian Graphs and Bipartite Edge Covers

In this section, we address the problem of enumerating without repetitions all maximal
edge induced chain subgraphs of a bipartite graph (Section 1.5.1). If there is no ambiguity,
from now on we will refer to them simply as chain subgraphs omitting the wording "edge
induced". We present, then, in Section 1.5.2 a polynomial space exact algorithm to
compute the size of a minimum chain subgraph cover of a bipartite graph and in Section
1.5.3 a quasi-polynomial algorithm to enumerate all the such minimal covers.

1.5.1 Enumerating Maximal Chain Subgraphs

The problem of enumerating in bipartite graphs all subgraphs with certain properties has
already been considered in the literature. These concern for instance maximal bicliques
for which polynomial delay enumeration algorithms in bipartite [24, 57] as well as in
general graphs [23, 57] were provided. In the case of maximal induced chain subgraphs,
their enumeration can be done in total polynomial time as it can be reduced to the
enumeration of a particular case of the minimal hitting set problem [30] (where the sets
in the family are of cardinality 4). However, the existence of a polynomial delay algorithm
for this problem remains open.

Regarding the problem of enumerating maximal edge induced chain subgraphs in bipar-
tite graphs, in [34] the authors deal with it in the form of enumerating minimal interval
order extensions of interval orders (see Section 1.6 for the relation between these two
problems).

We improve this result by proposing a polynomial space and polynomial delay algo-
rithm to enumerate all maximal chain subgraphs of a bipartite graph. We also provide
an analysis of the time complexity of this algorithm in terms of input size. In order to do
this, we prove some upper bounds on the maximum number of maximal chain subgraphs
of a bipartite graph. This is also of intrinsic interest as combinatorial bounds on the max-
imum number of specific subgraphs in a graph are difficult to obtain and have received a
lot of attention (see for e.g. [38, 64]).

We start by proving the following result:

1.5 Chian Graphs and Bipartite Edge Covers 31

Proposition 3. Let C = (X∪Y, F) be a chain subgraph of G = (U ∪W,E), with X ⊆ U ,
Y ⊆ W and F ⊆ E, and let x ∈ X be a node with largest neighbourhood in C. Then C is
a maximal chain subgraph of G if and only if both the following conditions hold:

(i) NC(x) = NG(x) is a maximal neighbourhood of G, i.e. there does not exist a node
x′ ∈ X such that NG(x) ⊂ NG(x

′);

(ii) C \ EG(x) is a maximal chain subgraph of G
[
U \ {x}, NG(x)

]
.

Proof. (⇒) Let C = (X∪Y, F) be a maximal chain subgraph of G = (U∪W,E). To prove
that (i) holds, suppose by contradiction that NC(x) is not a maximal neighbourhood of G,
i.e. there exists x′ ∈ U with NC(x) ⊂ NG(x

′) (possibly x′ = x). Since NC(x) is the largest
neighbourhood of C, for all z ∈ X, we have NC(z) ⊆ NC(x) ⊂ NG(x

′), so we can add to
C all the edges incident to x′ and still obtain a chain subgraph thereby contradicting the
maximality of C.

To prove that (ii) holds, first observe that NG(x) = Y (otherwise we would violate
(i) with x′ = x). By contradiction, assume that C \ EG(x) is not maximal in G

[
U \

{x}, NG(x)
]
. Then, there exists a chain subgraph C ′ such that C \ EG(x) ⊂ C ′ ⊆

G
[
U \ {x}, NG(x)

]
. By adding to each one of the previous graphs the edges in EG(x), we

have that the strict inclusion is preserved because the added edges were not present in
any one of the three graphs. Since C ′ with the addition of EG(x) is still a chain subgraph
with NG(x) as its largest neighbourhood, we reach a contradiction with the hypothesis
that C is maximal in G.

(⇐) We show that if both (i) and (ii) hold, then the chain subgraph C of G is maximal.
Suppose by contradiction that C is not maximal in G, and let C ′ be a chain subgraph of
G such that C ⊂ C ′. Let x be the node with the largest neighbourhood in C. It follows
that NC(x) ⊆ NC′(x). As (i) holds, we have that NG(x) = NC(x) ⊆ NC′(x) ⊆ NG(x)

from which we derive that NC′(x) = NG(x), and that C ′ ⊆ G
[
U,NG(x)

]
since NC′(x) is

a maximal neighbourhood of G, hence the largest neighbourhood of C ′ (and C by the
hypothesis). This implies also that C and C ′ differ in some node different from x, i.e.
C \ EG(x) ⊂ C ′ \ EG(x) ⊆ G

[
U \ {x}, NG(x)

]
. Notice that C ′ \ EG(x) is still a chain

subgraph because we simply removed node x and all its incident edges. We then get a
contradiction with (ii).

Proposition 3 leads us to design Algorithm 3 which efficiently enumerates all maximal
chain subgraphs of G. It exploits the fact that, in each maximal chain subgraph, a
node u whose neighbourhood is largest is also maximal in G (part (i) of Proposition
3) and this holds recursively in the chain subgraph obtained by removing node u and
restricting the graph to NC(u) (part (ii) of Proposition 3). To compute the maximal
neighbourhood nodes, the algorithm uses a function, computeCandidates, that, given
sets U and W , returns for each maximal neighbourhood Y ⊂ W , a unique node u, called

32

candidate, for which NG(u) = Y . This means that in case of twin nodes, the function
computeCandidates extracts only one representative node according to some fixed order
on the nodes (e.g. the node with the smallest label). If the graph has no edges, the
function returns the empty set.

Algorithm 3: Enumerate All Maximal Chain Subgraphs
Input: A bipartite graph G = (U ∪W,E)
Output: All maximal chain subgraphs of G

1 C ←− ∅ ; /* C = set of edges of the current chain subgraph */

2 enumerateMaximalChain(U,W,C)
3 Candidates ←− computeCandidates(U,W);

4 if Candidates == ∅ then
5 print(C);
6 return;

7 for u ∈ Candidates do
8 U ′ ←− U \ {u}; W ′ ←− W ∩NG(u); /* reduced graph */
9 F (u) ←− {edges of EG(u) incident to some node in W ′};

10 C ′ ←− C ∪ F (u);
11 enumerateMaximalChain(U ′,W ′, C ′);

Proposition 4 (Correctness). Algorithm 3 correctly enumerates all the maximal chain
subgraphs of the input graph G without repetitions.

Proof. Let G = (U ∪W,E) be a bipartite graph. We prove the correctness of Algorithm
3 by induction on |U |, i.e. we show that all the solutions are output, without repetitions.

When |U | = 1, let u be the only node in U . We have that NG(u) is the only neighbour-
hood in W , and line 3 returns {u} as unique candidate. In line 9, the algorithm reduces
the graph of interest. In line 10, the whole EG(u) is added to the current chain subgraph
C. Then the function is recursively recalled, with U ′ = ∅ so the condition at line 4 is true
and C is printed; it is in fact the only chain subgraph of G, it is trivially maximal and
there are no repetitions. Correctness then follows when |U | = 1.

Assume now that |U | = k with k > 1. As inductive hypothesis, let the algorithm work
correctly when |U | ≤ k − 1.

For each candidate u, the algorithm recursively recalls the same function on a reduced
subgraph and, by the inductive hypothesis, outputs all chain subgraphs of this reduced
subgraph without repetitions. By Proposition 3, if we add to each one of these chain sub-
graphs the node u and all the edges incident to u in G[U,W], we get a different maximal
chain subgraph of G since each maximal chain subgraph has one and only one maxi-
mal neighbourhood and the function computeCandidates returns only one representative
node. Recall that in the case of twin nodes the algorithm will always consider the nodes
in a precise order and so no repetition occurs. Moreover, iterating this process for all

1.5 Chian Graphs and Bipartite Edge Covers 33

candidates guarantees that all maximal chain subgraphs are enumerated and no one is
missed.

Let G = (U ∪W,E) be a bipartite graph, with n = |U | + |W | and m = |E|. Before
proving the time complexity of Algorithm 3, we observe that the running time of the
function ComputeCandidates is O(nm). Indeed, for each node ui ∈ U , it requires only
time proportional to

∑i−1
j=1

(
deg(uj) + deg(ui)

)
to check whether the neighbourhood of ui

either is included, or includes the neighbourhood of uj, for each j < i.

Proposition 5 (Time Complexity and Polynomial Delay). Let G = (U ∪ W,E) be a
bipartite graph. The total running time of Algorithm 3 is O(|C(G)|n2m) where |C(G)| is
the number of maximal chains subgraph of G. Moreover, the solutions are enumerated in
polynomial time delay O(n2m).

Proof. Represent the computation of Algorithm 3 as a tree of the recursion calls of
enumerateMaximalChain, each node of which stores the current graph on which the re-
cursion is called at line 12. Of course, the root stores G and on each leaf the condition
Candidates == ∅ is true and a new solution is output. Observe that each leaf contains
a feasible solution, and that no repetitions occur in view of Proposition 4, so the number
of leaves is exactly |C (G)|.

Since at each call the size of U is reduced by one, the tree height is necessarily bounded
by |U | = O(n); moreover, on each tree node, O(nm) time is spent for running function
ComputeCandidates.

It follows that, since the algorithm explores the tree in DFS fashion starting from the
root, between two solutions the running time is at most O(n2m) and the total running
time is O(|C(G)|n2m).

Upper bounds on the number of Maximal Chain Subgraphs

In this section, we give two upper bounds on the maximum number of maximal chain
subgraphs of a bipartite graph G with n nodes and m edges. The first bound is given in
terms of n while the second depends on m. These bounds are of independent interest,
however we will use them in two directions. First, they will allow us to determine a
(input-sensitive) time complexity of Algorithm 3. Indeed, in Proposition 5, we proved
that the total running time of Algorithm 3 is of the form O(D(n) · |C (G)|), where D(n)

is the delay of the algorithm and |C (G)| is the number of maximal chain subgraphs of G.
Thus, a bound on |C (G)| leads to a bound on the running time of Algorithm 3 depending
on the size of the input. Second, the bound on |C (G)| in terms of edges allows us to
compute the time complexity of an exact exponential algorithm for the minimum chain
subgraph cover problem in Section 1.5.2.

34

Bound in terms of nodes

The following lemma claims that a given permutation is the neighbourhood ordering of
at most one maximal chain subgraph.

Lemma 2. Let C1 and C2 be two maximal chain subgraphs of G = (U ∪W,E) and let π1

(resp. π2) be a neighbourhood ordering of C1 (resp. C2). Then, π1 = π2 =⇒ C1 = C2.

Proof. The proof proceeds by induction on the number of nodes of U .

If |U | = 1 then G has only one maximal chain subgraph and the result trivially holds.
Assume now that |U | > 1. By Proposition 3, we have that NC1(uπ(|U |)) = NG(uπ(|U |)) =

NC2(uπ(|U |)). Using again Proposition 3, we obtain that C ′
1 := C1[U \ {uπ(|U |)}, NG(uπ(|U |))]

and C ′
2 := C2[U \ {uπ(|U |)}, NG(uπ(|U |))] are maximal chain subgraphs of the graph defined

as G[U \ {uπ(|U |)}, NG(uπ(|U |))]. Applying the inductive hypothesis with the permutations
restricted to the |U | − 1 elements, we have that C ′

1 = C ′
2. Finally, since NC1(uπ(|U |)) =

NC2(uπ(|U |)), we conclude that C1 = C2.

As a corollary, the maximum number of chain subgraphs of a graph G = (U ∪W,E) is
bounded by |U |!. Since the same reasoning can be applied on W , we have that |C (G)| ≤
|W |! and hence:

|C (G)| ≤ min(|U |, |W |)! ≤ n

2
!

This bound is tight as shown by the following family of graphs that reaches it.

Consider the antimatching graph with n nodes An = (U ∪W,E) defined as the com-
plement of an n/2 edge perfect matching, i.e.:

U := {u1, . . . , un/2}, W := {w1, . . . , wn/2},
E := {(ui, wj) ∈ U ×W : i �= j}.

It is not difficult to convince oneself that the maximal chain subgraphs of An are exactly
(n/2)! and that a different permutation corresponds to each of them. In particular, for
each permutation π of the nodes of U , the corresponding maximal chain subgraph Cπ of
An can be defined by means of the set of neighbourhoods as follows:

NCπ(ui) := {wk s.t. π−1(k) < π−1(i)}.

The so-defined graph Cπ is a chain subgraph since all the neighbourhoods form a chain
of inclusions. Moreover, it is maximal since if we added to the neighbourhood of ui any
one of the missing edges (ui, wj) with π−1(j) ≥ π−1(i), we would introduce a 2K2 with
the existing edge (uj, wi) as (uj, wj) and (ui, wi) are not in E.

1.5 Chian Graphs and Bipartite Edge Covers 35

u1 u2 u3 u4

w1 w2 w3 w4

u1 u2 u3 u4

w1 w2 w3 w4

a b

Figure 1.5: a. The graph A8; b. A maximal chain of A8 corresponding to the permutation
π = (14)(23)

Bound in terms of edges

Let T (m) be the maximum number of maximal chain subgraphs over all bipartite graphs
with m edges. After two preliminary lemmas, we prove that T (m) ≤ 2

√
m log(m).

Lemma 3. Let G = (U ∪W,E) be a bipartite graph. Then |C (G)| ≤ |U | · T (m− |W |).

Proof. In view of how Algorithm 3 works and of Proposition 3, at the beginning, there
at most |U | candidates. For each candidate x, we can build as many chain subgraphs as
there are in G[U \{x}, NG(x)]. We claim that this latter graph has at most m−|W | edges.
Indeed, in order to construct G[U \ {x}, NG(x)], we remove from G exactly |EG(x)| edges
when deleting x from U , and |W |−|NG(x)| nodes (each one connected to at least a different
edge as G is connected) when reducing W to NG(x). Observing that |EG(x)| = |NG(x)|,
in total we remove at least |W | edges. It is not difficult to see that T (m) is increasing
with m. Hence, the proof follows from the fact that the number of chain subgraphs of
G[U \ {x}, NG(x)] is bounded by T (m− |W |).

By the next Lemma, we have that the maximum on n of the auxiliary function n
2
·

2
√

m−n
2
log(m−n

2
) is reached when n/2 is minimum (note that trivially for a bipartite graph

we have n/2 >
√
m).

Lemma 4. The real-valued function F (x) := x·2√m−x log(m−x) is decreasing in the interval
[
√
m,m− 1].

Proof. The derivative of F (x) is given by:

− x

(
log (m− x)

2
√
m− x

+
1√

m− x

)
2(

√
m−x log(m−x)) + 2(

√
m−x log(m−x))

=−
(
x log (m− x) + 2x− 2

√
m− x

)
2(

√
m−x log(m−x))

2
√
m− x

Then the derivative is negative whenever
(
x log (m− x) + 2x− 2

√
m− x

) ≥ 0.

36

Observe that log (m− x) ≥ 0 for x ≤ m− 1, while for x ≥ 0 we have:

2x− 2
√
m− x ≥ 0 ⇐⇒ x ≥ −1 +

√
1 + 4m

2
= −1

2
+

√
m+

1

4

and:
√
m ≥ −1

2
+

√
m+

1

4

We are now able to prove the main theorem of this subsection:

Theorem 3. Let G = (U ∪ W,E) be a bipartite graph with n nodes and m edges; then
|C (G)| ≤ 2

√
m logm, i.e. T (m) ≤ 2

√
m logm.

Proof. Assume w.l.o.g that |U | ≤ |W |. The proof is by induction on m. Note that for
m = 1 the theorem trivially holds.

Applying the inductive hypothesis and Lemma 3, we have:

|C (G)| ≤ |U |T (m− |W |) ≤ n

2
2

(√
m− 1

2
n log(m− 1

2
n)

)
.

Since the function F (x) := x2
√
m−x log(m−x) is decreasing in the interval [

√
m,m − 1],

the maximum of n
2
2
√

m−n
2
log(m−n

2
) is reached when n/2 is minimum. Note that trivially

for a bipartite graph we have n/2 >
√
m. Hence,

|C (G)| ≤ √
m 2

√
m−√

m log(m−√
m).

Let A :=
√
m−

√
m−√

m and B := m−√
m

m
. Then:

|C (G)| ≤ √
m 2(

√
m−A) log(mB)

= 2
√
m logm ×√

m 2logB(
√
m−A) − A logm.

Let us show that Z :=
√
m 2(

√
m−A) logB − A logm ≤ 1 by showing that logZ ≤ 0:

logZ = log(
√
m) + (

√
m− A) logB − A logm

= (1− 2A) log(
√
m) + (

√
m− A) logB

≤ 0

considering that B < 1 and 1/2 < A ≤ 1 since:

A =
1

1 +
√
B

=
1

1 +
√

1− 1√
m

By this bound on the number of maximal chain subgraphs we trivially obtain an
input-sensitive bound on the time complexity for Algorithm 3:

1.5 Chian Graphs and Bipartite Edge Covers 37

Corollary 1. The (input-sensitive) complexity of Algorithm 3 is bounded by O∗(2
√
mlog(m)).

1.5.2 Minimum Chain Subgraph Cover

In this section, we address the minimum chain subgraph cover problem. This asks to
determine, for a given graph G, the minimum number of chain subgraphs that cover all
the edges of G. This has already been investigated in the literature as it is related to
other well-known problems such as maximum induced matching (see e.g. [12, 19]). For
bipartite graphs, the problem was shown to be NP-hard [91].

Calling m the number of edges in the graph, we provide an exact exponential algorithm
which runs in time O∗((2+ε)m), for every ε > 0 (by O∗ we denote standard big O notation
but omitting polynomial factors). To obtain this result, we exploit Algorithm 3, the bound
obtained in Theorem 3 and the inclusion/exclusion method [7, 38] that has already been
successfully applied to exact exponential algorithms for many partitioning and covering
problems. Notice that, since a chain subgraph cover is a family of subsets of edges, the
existence of an algorithm whose complexity is close to 2m is not obvious. Indeed, the basic
search space would have size 22

m , which corresponds to all families of subsets of edges of
a graph on m edges.

Notice also that the minimum chain subgraph problem has already been investigated
in the literature as it is related to other well-known problems such as maximum induced
matching (see e.g. [12, 19]). For bipartite graphs, the problem was shown to be NP-hard
[91].

The first step consists in expressing the problem as an inclusion-exclusion formula over
the subsets of edges of G.

Proposition 6. [7] Let ck(G) be the number of chain subgraph covers of size k of a graph
G. We have that:

ck(G) =
∑
A⊆E

(−1)|A|a(A)k

where a(A) denotes the number of maximal chain subgraphs not intersecting A.

Exploiting this result, we can design an exact algorithm which counts the number of
chain subgraph covers of size k with a time complexity given in the following theorem:

Theorem 4. Given a bipartite graph G with m edges, for all k ∈ N∗ and for all ε > 0,
the number of chain subgraph covers of size k, denoted with ck(G), can be computed in
time O∗((2 + ε)m).

Proof. Let G = (U ∪ W,E) be a bipartite graph, k ∈ N∗ and fix an ε > 0. Using the

formula of Proposition 6, ck can be computed in time
m∑
i=0

(
m
i

)
C(i), where C(i) is the time

complexity needed to compute a(A), |A| = i.
Notice that to compute a(A) for a given A ⊆ E, one can naively compute all maximal

chain subgraphs of G′ = (U ∪ W,E \ A) and, for each of them, check whether it is

38

maximal in G. Using this fact and Corollary 1, C(i) can be determined in time O(n2m ·
2
√
m−i log(m−i)).

Thus we have that ck(G) can be computed in time
m∑
i=0

(
m
i

)
n2m ·2

√
m−i log(m−i). Observe

now that since 2
√
m−i log(m−i) = o((1 + ε)m), there exists a constant nε such that for all

m > nε, 2
√
m−i log(m−i) < (1 + ε)m.

We have that:

m∑
i=0

(
m

i

)
n2m · 2

√
m−i log(m−i) =n2m ·

(
m−nε−1∑

i=0

(
m

i

)
2
√
m−i log(m−i) +

m∑
i=m−nε

(
m

i

)
2
√
m−i log(m−i)

)

≤ n2m ·
(

m−nε−1∑
i=0

(
m

i

)
(1 + ε)m−i + nεm

nε2
√
nε log(nε)

)

≤ n2m ·
(

m∑
i=0

(
m

i

)
(1 + ε)m−i + nεm

nε2
√
nε log(nε)

)
≤ n2m · (2 + ε)m + n2nεm

1+nε2
√
nε log(nε)

= O∗((2 + ε)m)

The last step follows by recalling that G is connected and thus n = O(m).

We conclude by observing that the size of a minimum chain cover is given by the
smallest value of k for which ck(G) �= 0.

1.5.3 Enumeration of Minimal Chain Subgraph Covers

In this section, we prove that the problem of enumerating all minimal chain subgraph
covers can be polynomially reduced to the problem of enumerating all the minimal set
covers of a hypergraph. This reduction implies that there is a quasi-polynomial time
algorithm to enumerate all minimal chain subgraph covers. Indeed, the result in [39]
implies that all the minimal set covers of a hypergraph can be enumerated in time N logN

where N is the sum of the input size (i.e. n+m) and of the output size (i.e. the number
of minimal set covers).

Let G = (U ∪W,E) be a bipartite graph, C = C(G) be the set of all maximal chain
subgraphs of G and S = S(G) be the set of minimal chain subgraph covers of G. Notice
that the minimal chain subgraph covers of G are the minimal set covers of the hypergraph
H := (V, E) where V = E and E = C . Unfortunately, the size of H might be exponential
in the size of G plus the size of S. Indeed not every maximal chain subgraph in C will
necessarily be part of some minimal chain subgraph cover. To obtain a quasi-polynomial
time algorithm to enumerate all minimal chain subgraph covers, we need to enumerate
only those maximal chain subgraphs that belong to a minimal chain subgraph cover.

Given an edge e ∈ E, let Ce be the set of all maximal chain subgraphs of G containing
e.

1.5 Chian Graphs and Bipartite Edge Covers 39

We call an edge e ∈ E non-essential if there exists another edge e′ ∈ E such that
Ce′ ⊂ Ce. An edge which is not non-essential is said to be essential. Note that for every
non-essential edge e, there exists an essential edge e1 such that Ce1 ⊂ Ce. Indeed, by
applying iteratively the definition of a non-essential edge, we obtain a list of inclusions
Ce ⊃ Ce1 ⊃ Ce2 . . ., where no Cei is repeated as the inclusions are strict. The last element
of the list will correspond to an essential edge.

The following lemma claims that if a maximal chain subgraph C contains at least one
essential edge, then it belongs to at least one minimal chain subgraph cover.

Lemma 5. Let C be a maximal chain subgraph of a bipartite graph G = (U∪W,E). Then
C belongs to a minimal chain subgraph cover of G if and only if C contains an essential
edge.

Proof. (⇒) Let C belong to a minimal chain subgraph cover M and assume that C

contains no essential edges. Given e ∈ C, e therefore being non-essential, there exists an
essential edge e′ such that Ce′ ⊂ Ce. Moreover, e′ �∈ C. As M is a cover, there exists
C ′ ∈ M such that e′ ∈ C ′. Thus, C ′ �= C, C ′ ∈ Ce′ ⊂ Ce, hence e ∈ C ′. Since for
every edge e ∈ C, there exists C ′ ∈ M containing it, we have that M \ {C} is a cover,
contradicting the minimality of M .

(⇐) Assume C contains an essential edge e. Let C ′ = {D ∈ C (G) : e �∈ D}. Note
that C ′ = C \Ce. We show that C ′ ∪ {C} is a cover. Suppose on the contrary that there
exists e′ ∈ E \E(C) and e′ is not covered by C ′ and thus Ce′ ∩C ′ = ∅. This implies that
Ce′ ⊆ C \ C ′ = Ce and as e is essential, we obtain Ce′ = Ce from which we deduce that
e′ ∈ C. Thus, M = C ′ ∪ {C} is a cover and clearly it contains a minimal one. Finally,
we conclude by observing that, since by construction C is the only chain subgraph of M
that contains e, it belongs to any minimal cover contained in M .

It follows that the set of maximal chain subgraphs that can contribute to a minimal
chain cover is C̃ = ∪Ce where the index e runs over all the essential edges of G. In the
following, we show how to detect essential edges. This problem then consists in detecting
all the couples e1, e2 such that Ce1 ⊆ Ce2 before enumerating all useful maximal chain
subgraphs.

Theorem 5 later in this section provides an efficient way to detect these couples. In
order to prove it we need first some preliminary results.

Let Me the set of all edges e′ ∈ E inducing a 2K2 in G together with e.

Fact 1. Let C = (X ∪ Y, F) be a maximal chain subgraph of a bipartite graph G =

(U ∪ W,E), and let z ∈ X, e = {u, w} ∈ E be such that for every e′ ∈ EC(z), we have
e �∈ Me′. Then at least one of the following holds:

a) w ∈ NG(z).

b) u ∈ ∩y∈NC(z)NG(y).

40

Proof. The proof follows directly by observing that for any e′ = {z, y} ∈ C then as
e �∈ Me′ , either {z, w} ∈ E(G) or {u, y} ∈ E(G).

Observe that in the previous claim, we can re-write (2) in the form:

b’) NC(z) ⊆ NG(u).

Lemma 6. Let C be a maximal chain subgraph of a bipartite graph G = (U ∪W,E) and
let e ∈ E be such that for all e′ ∈ E(C), it holds that e �∈ Me′. Then e ∈ C.

Proof. Let C = (X ∪ Y, F) be a maximal chain subgraph of G = (U ∪W,E) and w.l.o.g.,
let u1, . . . , u|X| ∈ X ⊆ U such that NC(u1) ⊆ NC(u2) ⊆ . . . ⊆ NC(u|X|). We can further-
more assume that C is connected.

From the hypothesis, let e = {u, w} in E be such that for all e′ ∈ E(C), it holds
e �∈ Me′ . Finally, assume e �∈ C.

The proof runs by contradiction: we will show that

w ∈ ∩x∈XNG(x) (1.1)

must hold. Although, this contraddicts the maximality of C as in this way we could add
e and all the other edges in EG(w) to C and still obtain a chain subgraph (with NG(w)

as the largest neighbourhood of C).

In order to prove (1.1), using Fact 1 with z = u|X|, we have that at least one among a)
and b) must hold. Observe that b) cannot hold as otherwise we have straight away (1.1)
(interchanging the roles of Y and X, and w and u) observing that NC(u|X|) = NG(u|X|) =

Y by point (i) of Proposition 3. Thus, a) must hold, i.e. w ∈ NG(u|X|).

If we now show that w ∈ ∩|X|
k=jNG(uk) ⇒ w ∈ NG(uj−1), we prove the claim since

together with the just proved w ∈ NG(u|X|) this leads to (1.1):

w ∈
|X|⋂
k=1

NG(uk) =
⋂
x∈X

NG(x)

We conclude the proof by showing the validity of w ∈ ∩|X|
k=jNG(uk) ⇒ w ∈ NG(uj−1).

Assume then that w ∈ ∩|X|
k=jNG(uk) and we deduce w ∈ NG(uj−1) applying again

Fact 1 with z = uj−1 and showing that b’), hence b), cannot hold.

Indeed, supposing by contradiction that b’) holds, it yields NC(uj−1) ⊆ NG(u). By
this assumption and using the maximality of C, we deduce that u ∈ X with the following
arguments: NC(u) has to contain at least NC(uj−1), and hence there exists k̃ ≥ j − 1 for
which u = uk̃ otherwise we could add the related edges.

1.5 Chian Graphs and Bipartite Edge Covers 41

Although u ∈ X implies that we could contradictorily extend C to C ′ by adding at least
e, were C ′ has the following list of neighbourhoods:

NC′(uk) := NC(uk) for k �= k̃

NC′(uk) := NC(uk) ∪ {w} for k = k̃

and C ′ is a chain graph since NC(uk̃) ∪ {w} ⊆ NC(uk) for all k > k̃ ≥ j − 1 by the fact
that w ∈ ∩|X|

k=jNG(uk) and by the maximality of C.

Using Lemma 6 we can now prove the following result.

Theorem 5. Given a bipartite graph G = (U∪W,E), for any two edges e, e′ ∈ E, Ce ⊆ Ce′
if and only if Me ⊇ Me′.

Proof. (⇒) Given two edges e, e′ ∈ E, suppose that Ce ⊆ Ce′ , and assume on the contrary
that there exists f ∈ Me′ and f �∈ Me. Then there exists a maximal chain subgraph
C ′ containing e and f (as they do not form a 2K2 in G) but not e′ (f ∈ Me′). Hence,
C ′ ∈ Ce but C ′ /∈ Ce′ , contradicting the assumption that Ce ⊆ Ce′ .

(⇐) Suppose now Me ⊇ Me′ . Let C ∈ Ce. By definition, none of the edges of Me

appears in C. Hence, e′ does not form a 2K2 with any edge in C in the graph G (as
Me ⊇ Me′). By Lemma 6 e′ ∈ C. Thus, Ce ⊆ Ce′ .

Notice that, given an edge e = (u, w) ∈ E, u ∈ U and w ∈ W , it is easy to determine
the set Me. We just need to start from E and delete all edges that are incident either to
u or to w, as well as all edges at distance 2 from e (that is all edges e′ = (u′, w′) such that
either u′ is adjacent to w or w′ is adjacent to u). Checking whether Me ⊇ Me′ is also
easy: it suffices to sort the edges in each set in lexicographic order, and then the inclusion
of each pair can be checked in linear time in their size, that is in O(m). It is thus possible
to enumerate in polynomial delay only those maximal chain subgraphs that contain at
least one essential edge by slightly modifying Algorithm 3 as shown in the pseudo-code

42

here after.
Algorithm 4: Enumerate All Maximal Chain Subgraphs with a not empty inter-
section with a given set of edges E ′

Input: A bipartite graph G = (U ∪W,E), a set of edges E ′ := {u1w1, ..., ukwk}
Output: All maximal chain subgraphs of G that intersect E ′

1 C ←− ∅
2 enumerateMaximalChain(U,W,C)
3 Candidates ←− computeCandidates(U,W)

4 if Candidates == ∅ then
5 print(C);
6 return;

7 if {u1, ..., uk} ⊆ U then
8 Candidates ←− Candidates \ {u ∈ U : NG(u) ∩ {w1, ..., wk} = ∅}
9 for u ∈ Candidates do

10 U ′ ←− U \ {u}; W ′ ←− W ∩NG(u); /* reduced graph */
11 F (u) ←− { edges of EG(u) incident to some node in W ′};
12 C ′ ←− C ∪ F (u);
13 enumerateMaximalChain(U ′,W ′, C ′);

Theorem 6. Given a bipartite graph G = (U ∪W,E), one can enumerate all its minimal
chain subgraph covers, i.e. all the elements in S, in time O([(m+ 1)|S|]log((m+1)|S|)).

Proof. We first construct the hypergraph H = (V, E) where V := E ′ is the set of essential
edges of G and E := Cess is the set of maximal chain subgraphs of G that contain at least
one essential edge. This takes time O(n2m|Cess|). Applying then the algorithm given
in [39], one can enumerate all minimal set covers of H (i.e. all minimal chain subgraph
covers) in time O((|H|+ |S|)log(|H|+|S|)) = O((|Cess|+ |S|)log(|Cess|+|S|)). The total running
time is thus O(n2m|Cess|+ (|Cess|+ |S|)log(|Cess|+|S|)). Notice now that since by Lemma 5,
every maximal chain subgraph in Cess belongs to at least one minimal chain subgraph
cover, we have that |Cess| ≤ m|S|. Finally, we obtain that the total running time is
O(n2m2|S|+ (m|S|+ |S|)log(m|S|+|S|)) = O([(m+ 1)|S|]log((m+1)|S|))

1.6 Chain Graphs and Interval Orders

There is an interesting connection between chain graphs and interval orders. In this
section, we look at the previously presented results under the light of this relation, and
show how we can computation the interval order dimension of a poset and how we can
enumerate minimal interval order extensions and maximal interval order reductions of a
bipartite poset. First, we will briefly recall these notions and this relation.

1.6 Chain Graphs and Interval Orders 43

1.6.1 Preliminaries on Poset Theory

A partially ordered set (or in short poset) is a pair (P,≤P) where P is a set, called the
ground set, and ≤P ⊆ P × P is a binary, reflexive, transitive and anti-symmetric relation
on P and referred as partial order on P . A partial order is an interval order on P if
there exist two functions l, r : P → R such that x ≤P y iff r(x) ≤ l(y), while P is said
a total or linear order iff either x ≤P y or y ≤P x for all x, y ∈ P . A partial order
Q = (Q,≤Q) is said to extend P or to be an extension of P if x ≤P y implies x ≤Q y. A
linear extension of P is an extension of P which is also a linear order. A bipartite poset
is a poset H = (U ∪ V,≤H) such that ≤H ⊆ U × V .

The interval order dimension of a bipartite poset H, denoted by Idim(H), is the
minimum number k of interval order extensions whose intersection gives H.

We can view H as a bipartite undirected graph, said the comparability graph G(H) of
H, with nodes U ∪ V and edges given by {(u, v) ∈ E(G(H)) : u ∈ U, v ∈ V and u ∼=H v}.
A bipartite poset is an interval order if and only if its comparability graph is a chain graph
[91]. Hence each interval extension of H can be viewed as a chain graph (edge) completion
of G(H), i.e. a chain graph with the same node set of G(H) which has G(H) as subgraph.
Thus Idim(H) coincides with the minimum number of chain graph completions of G(H)

whose intersection gives G(H).

The bipartite complement of a bipartite graph D = (U ∪ V,E)) is the graph B(D) :=

(U ∪ V,E ′) where E ′ are all the non-edges of D across the two partitions.

1.6.2 Computation of the Interval Order Dimension

If C is a chain subgraph of G(H), also its bipartite complement is a chain graph (as the
bipartite complement of a 2K2 is a 2K2), so we have that Idim(H) coincides with the
size of a minimum chain subgraph cover of the bipartite complement of G(H).

All this is contained in the following result of [91] where by abuse of notation the
bipartite complement of G(H) is denoted by B(H) (instead of B(G(H))) and the size of
a minimum chain subgraph cover of B(H) is denoted by ch(B(H)):

Proposition 7 ([91]). Let H be a bipartite poset. Then Idim(H) = ch(B(H)).

From this we have a straightforward interpretation of our results on the computation
of the size of a minimum chain subgraph cover (see Theorem 4):

Corollary 2. Given a bipartite poset H where B(H) has m edges, for all k ∈ N∗ and for
all ε > 0, we can compute Idim(H) in time O∗((2 + ε)m).

44

1.6.3 Enumeration of Minimal Extensions and Maximal Reduc-
tions of Interval Order

In the same way, enumerating all the maximal chain subgraphs of a bipartite graph G(H)

(i.e. our first problem) is equivalent to list all the maximal interval order reductions of
the bipartite order H and enumerating all maximal chain subgraphs of B(H) is equivalent
to list all minimal interval order extensions of the bipartite order H as minimal interval
order extensions of bipartite posets are still bipartite posets (substantially a proof of this
is present in the proof of Lemma 4 in [91]).

We can then interpret the results on the enumeration of maximal chain subgraphs
(Proposition 4 and Proposition 5) in this context as follows:

Corollary 3. Let H = (U∪V,≤H) be a bipartite poset with n = |U |+|V | and |R≤H
| − n = m.

Then:

1. We can enumerate its maximal interval order reductions in polynomial time delay
with a delay of O(min{|U |, |V |}2m).

2. We can enumerate its minimal interval order extensions in polynomial time delay
with a delay of O(min{|U |, |V |}3 ·max{|U |, |V |}).

Proof. The first result is a straightforward interpretation of Proposition 4 and Proposition
5 in this context, while the second result comes from having to run our algorithm on
B(H) instead of G(H) hence the number of edges pass from m to |U | · |V | − m hence
O(n2(|U | · |V | − m)}) = O(n2 · |U | · |V |). Finally in both the results we employ the
observation that we can run our algorithm on the smaller of the two partitions substituting
n2 with min{|U |, |V |}2.

Observe that it is not surprising that enumerating minimal extensions is more com-
plicated than enumerating maximal reductions as it happens in [34] for counting minimal
extensions and maximal reductions of N-free orders (i.e. the posets (P,≤P) such that
there are no x, y, z, w ∈ P with x ≤P y, x ≤P w and z ≤P w).

Furthermore, recall that for general posets P , in [34] it has already been proven that
the number of minimal interval order extensions and maximal reductions can be com-
puted polynomially in their number, but the proposed dynamic programming algorithm
implies the avoidance of repeated solutions by storing all the past solutions leading to an
incremental polynomial algorithm.

1.7 Computing the Poset Dimension

In this section we deal with the problem of computing the poset dimension of a poset
P = (X,≤P) adapting to this case the methods of our work on the interval poset dimension
and the relation with chain subgraph covers of bipartite graph (see Section 1.6).

1.7 Computing the Poset Dimension 45

The poset dimension, denoted by dim(P), is the minimum number of linear extensions
of P such that their intersection gives P . A family of linear extensions of P whose
intersection gives P is said a realizer of P . In the following, we write LinExt(P) for the
set of linear extensions of P . If for x, y ∈ X we have x �P y and y �P x then (x, y)

(hence (y, x)) is said an incomparable pair and we write x ‖ y. The set of all incomparable
pairs of P is denoted with the symbol Inc(P). A linear extension L ∈ LinExt(P) reverses
an incomparable pair (x, y) if x >L y and L reverses a subset of incomparable pairs in
W ⊆ Inc(P) if it reverses all the incoparable pairs in W .

The Naive Method

We want to compute the poset dimension of P with the aim of the inclusion/exclusion
formula with the same polinomial space approach used for the interval order dimension
whose bottleneck, on the other hand, is the time for listing all linear order extensions of
P (see Corollary 2 an Section 1.6 for the interval poset dimension case where we list all
the interval order extensions). Observe that:

Proposition 8. [35] Let R be a family of linear extensions of a poset P = (X,≤P). The
following statements are equivalent:

1. R is a realizer of P,

2. for every (x, y) ∈ Inc(P) there exists a linear extension L ∈ R which reverse (x, y),

We can then count the realizers of P of size k, denoted with rk(P) with the following
formula:

rk(P) =
∑

W⊆Inc(P)

(−1)|W |Ñ(W)

where Ñ(W) is the number of k-tuple linear extensions which do not reverse any incom-
parable pairs in W . Moreover:

Ñ(W) = |s̃(W)|k

where s̃(W) are the linear extensions of P which do not reverse any incomparable pair in
W .

Obseve now that if a linear extension L does not reverse a pair (x, y) then it holds
x ≤L y, it means:

s̃(W) := {L ∈ LinExt(P) : x ≤L y for all (x, y) ∈ W} = LinExt(poset(P ∪W))

where poset(P ∪W) denotes the poset, if it exists, Q = (X,≤Q) such that ≤P ∪W ⊆≤Q
and which minimize | ≤Q | (the existence and unicity of Q is granted by taking the intersec-
tion of all the posets which extend the relation ≤P ∪W , if there are any). For a simple con-
dition for its existence see Theorem 8. If it does not exists, we set LinExt(poset(P∪W)) =

∅.

46

To count the elements of s̃(W), as done for the interval order dimension, we can list
all linear extensions of poset(P ∪ W). Let us focus then on computing the number of
linear extensions of a general poset P = (X,≤P).

The problem of counting linear extensions of a poset is #P -complete [15]. We compute
|s(W)| directly enumerating all linear extension of P ; this enumeration can be done with
constant delay [67]. As the number of linear extension is trivially never greater than
2|Inc(Q)|/2 [33], then this enumeration can be done in time

√
2
p

with p the number of
incomparable pairs of P . The total running time T (p) to compute rk(P) is then:

T (p) =

p∑
j=0

(
n

j

)(√
2
)p−j

= (1 +
√
2)p ∼ 2.41p

In the next section we present a faster, but still employing polinomial space method.

The Split Method

Let us recall here that by the split operation defined by Trotter in [83, 84] we have that:

Theorem 7. Let P = (P,≤P) be a poset. Then dim(P) = Idim(split(P)).

where split(P) is the bipartite poset (P ×{0, 1},�) with (x, a) � (y, b) iff a = 0,b = 1

and x ≤P y.

Then, with our approach to compute interval dimension of bipartite posets, we can
actually compute the poset dimension of any poset. However observe that if we start
with a poset P whose comparability graph has m edges and n nodes, we must apply our
procedure to the bipartite complement of split(P) which has n2 −m edges. In this way
we obtain a procedure which runs in time O∗((2+ ε)n

2−m) = O∗((2+ ε)p/2) where p is the
number of incomparable pairs of P .

1.7.1 Reversing Critical Pairs

With the inclusion/exclusion approach and counting incomparable pairs we cannot hope
to perform better than O(

√
2
p
), i.e. the time to compute the formula running through all

the subset of incomparable pairs which do not contain both (x, y) and (y, x) for x �P y

(as in that case there are no linear extensions).

To this extent we present here the concept of critical pairs [35, 84] (see Figure 1.6 and
definition here under) which, intuitively, are the strictly necessary incomparable pairs to
be reversed by a realizer of P (see Proposition 9 here under).

Definition 12 ([35]). Let P = (X,≤P) be a partial order and let x, y ∈ X. The incom-
parable pair (x, y) is said a critical pair if for each u, w ∈ X it holds that:

1.7 Computing the Poset Dimension 47

x0

x1

y2

y0

y1

x2

•

•

•

•

•

•

Figure 1.6: (x0, y2) and (y0, x2) are critical pairs.

1. if u <P x then u <P y,

2. if y <P w then x <P w.

The set of all critical pairs of P is denoted by CP(P) or only CP when there is no
ambiguity.

Proposition 8 holds also if we restrict the incomparable pairs to only critical pairs:

Proposition 9. [35] Let R be a family of linear extensions of a poset P = (X,≤P). The
following statements are equivalent:

1. R is a realizer of P,

2. for every (x, y) ∈ CP(P) there exists a linear extension L ∈ R which reverses (x, y).

Writing CP = {cp1, cp2, . . . , cpq}, observe now that the inclusion/exclusion formula
give us:

rk(P) :=
∑

W⊆{cp1,...,cpq}
(−1)|W |N(W)

where N(W) is the number of k-tuple linear extensions which do not reverse any critical
pairs in W .

Furthermore we have that:
N(W) = |s(W)|k

where s(W) are the linear extensions of P which do not reverse any critical pair in W

which might be empty.

The inclusion/exclusion approach will lead us to check if rk(P) �= 0 to verify the
existence of a realizer of P of size k, we show here after how to speed this process.
Intuitively, the idea is passing from computing |s(W)|, by listing all linear extension of
P which do not reverse critical pairs in W , to listing only equivalence classes of them

48

Figure 1.7: (top): A poset P and its set of critical pairs CP . (bottom left): The set of its
critical pairs and the graph of critical pairs of P . (bottom right): Trotter’s (hyper)graph
.

(based on the exact set of critical pairs reversed) which do not reverse the critical pairs
in W . In this way we have less object to list. We extend then the equivalence relation
to realizers of P . Due to the difficulties in identifying these equivalence classes, we solve
the problem by introducing an auxiliary directed graph GCP(P) where we can "forget"
about the linear extension and work only with the set W . Realizers of P correspond to
acyclic covers of GCP(P). Denoting then with r̃k(P) the number of equivalence classes
of realizers of P of size k, clearly we end up verifying rk(P) �= 0 by verifying r̃k(P) �= 0

which require to list the acyclic covers of GCP .

We introduce now the graph GCP(P) and afterwards we justify its definition.

Definition 13 (Graph of Critical Pairs). We denote with GCP(P) or only GCP the graph
Graph of Critical Pairs of P, GCP = (CP , E), where ((x, y), (u, w)) ∈ E iff x ≤P w.

The concept of alternating cycle, here under, together with the following propositions
should shed light on the relation between linear extensions of P and directed acyclic
subgraphs of GCP(P):

Definition 14 ([35]). Let P = (X,P) be a poset. An alternating cycle in (X,P) is
a sequence {(xi, yi)|1 ≤ i ≤ k} of incomparable pairs with xi ≤ yi+1 (cyclically) for
i ∈ {1, . . . , k}. The integer k denotes the length of the cycle.

An alternating cycle is strict if xi ≤ yj iff j = i+ 1.

Theorem 8 ([35]). Let P = (P,X) be a poset and let S ⊆ Inc(P). Then the following
statements are equivalent:

1.7 Computing the Poset Dimension 49

1. There exists a linear extension L of P which reverse all the incomparable pairs in
S.

2. S does not contain an alternating cycle.

3. S does not contain a strict alternating cycle.

Lemma 7. A simple cycle in GCP corresponds to an alternating cycle in P.
A chordless cycle in GCP corresponds to a strict alternating cycle in P.

Proof. Let C = ((x1, y1), (x2, y2), . . . , (xk, yk), (x1, y1) be a simple cycle in GCP , then
we can define the sequence C ′ = ((x1, y1), . . . , (xk, yk)) and one can check that C ′ is
alternating cycle in P .
C is a chordless cycle in GCP if and only no two nodes of the cycle are connected by an
edge of GCP which does not belong to the cycle, hence if and only if xi ≤P yj holds only
for j = i+ 1.

It is clear that the structure of GCP can help us identifying linear extensions of P .
In particular, by Theorem 8 a linear extension which reverses all the critical pairs in W

exists if and only if GCP [W], i.e. the subgraph of GCP induced on the nodes in W , is a
directed acyclic subgraph of GCP .

Since there may be many linear extensions which reverse the same set of critical pairs
W , it is natural to introduce an equivalence classes on LinExt(P):

Definition 15. Let L,L′ ∈ LinExt(P), then L ∼ L′ iff they reverse exactly the same
subset of critical pairs. If this is the case, an equivalence class of linear extensions will
be denoted by [L] or [L′]. The set of equivalence classes of linear extension of P will be
denoted with [LinExt(P)].

By Definition 15 we can think of a linear extension as the set of critical pairs it reverses
and by Lemma 7, Theorem 8 and Proposition 9 we can interpret a realizer as a cover of
GCP by directed acyclic subgraphs.

Finally, observe that not all the directed acyclic subgraphs of GCP correspond to an
element of [LinExt(P)]; for instance, for the poset of Figure 1.8, the set {(z, y)} does
not corresponds to any equivalence class of linear extensions as we can reverse at the
same time (z, y) and (b, a) or (z, y) and (a, b)). However, to a maximal directed acyclic
subgraph corresponds surely a [L] ∈ [LinExt(P)] as in this case [L] reverses exactly the
corresponding set of critical pairs. We can than restrict to consider maximal directed
acyclic subgraphs of GCP and covers of maximal directed acyclic subgraphs (as if GCP
can be covered by k directed acyclic subgraphs it can be covered by k maximal ones).

All this reasoning is condensed in the following corollary: :

Corollary 4. P has a realizer of size k iff GCP can be covered by k maximal directed
acyclic subgraphs.

50

x

a

y

b z

•

•

•

• •

(a, b)

(b, a)

(x, z)

(z, y)

Figure 1.8: A poset P (left) and its graph of critical pairs GCP(P) (right). The set {(z, y)}
does not corresponds to any equivalence class of linear extensions as we can reverse at the
same time (z, y) and (b, a) or (z, y) and (a, b).

In the following section we show how we can compute the poset dimension of P employ
GCP .

1.7.2 Computing rk(P) Employing Critical Pairs

In this section we present two algorithms which determine the existence of a realizer of a
given size k for P .One algorithm employ exponential space in the number of critical pairs
and the other polynomial space.

Both algorithms employ implicitly or explicitly the results of Section 1.7.1 which led
us to see linear extensions of P by the set of critical pairs they reverse.

We start presenting the exponential space algorithm:

Exponential Space

If it is acceptable the employment of exponential space, we can compute the values for
s(W) (of the exclusion/inclusion formula in the previous section) by filling up a table
s : 2CP × {0, 1, 2, . . . , q} → N where after having imposed an arbitrary order on the
critical pairs CP = {cp1, cp2, . . . , cpq}, the value s(W, i) is the number of maximal directed
acyclic induced subgraphs of GCP which do not contain any node in W and all the nodes
in {cpi+1, cpi+2, . . . , cpq} \W .
The set {cpi+1, cpi+2, . . . , cpq} \W is considered empty for i = q.

Observe that s(W) = s(W, q) and we can recursively compute the values s(W, i) for
1 ≤ i ≤ q (see for instance Section 4.3.1 in [38]):

s(W, i) =

⎧⎨⎩s(W, i− 1) if cpi ∈ W

s(W, i− 1) + s
(
W ∪ {cpi}, i− 1

)
if cpi /∈ W

1.7 Computing the Poset Dimension 51

The basic values for i = 0 is given by:

s(W, 0) =

⎧⎨⎩1 if GCP [CP \W] is a maximal directed acyclic subgraph of GCP
0 otherwise

By using the inclusion/exclusion formula we can then compute the number of covers
of size k (made of maximal acyclic subgraphs) of GCP as:

r̃k(P) =
∑

W⊆{cp1,...,cpq}
(−1)|W ||s(W)|k

if r̃k(P) is strictly positive then there exists a k cover of maximal directed acyclic sub-
graphs of GCP , i.e. there exists a realizer of size k for P by Corollary 2. This procedure
results in a O(2q) = O(2|CP|) time algorithm.

Polynomial Space

We have seen in Section 1.7.1 that there exists a realizer of P of size k if there exists a
directed maximal acyclic cover of GCP of size k.

Observe that the complement of a maximal directed acyclic subgraph is a minimal
feedback vertex set and there exists a non trivial algorithm which can enumerate all min-
imal feedback vertex set in time O(1.9977q) [76]. Then with the same inclusion/exclusion
formula of the previous section, we can compute on the fly the value of |s(W)| simply by
listing all maximal directed acyclic induced subgraphs of GCP [CP \W] and check if they
are maximal in GCP in time O(1.9977q).

The total time for this algorithm is then given by:

T (q) =

q∑
j=0

(
n

j

)
(1.9977)q−j = (2.9977)q

We collect the results of both the algorithms in the following theorem:

Theorem 9. Let P be a poset and let q be the number of its critical pairs. Then we can
verify the existence of a realizer for P of size k in time O(2q) or employing polynomial
space in time O∗(2.9977q).

1.7.3 Not Reversing Some Critical Pairs

We have seen in Section 1.7.1 that there is a relation between maximal directed acyclic
induced subgraphs of GCP and linear extension of P based on the critical pairs they
reverse. In the same section we have introduced in Definition 15, an equivalence relation
on linear extension according to the set of critical pairs they reverse. The polynomial

52

space algorithm presented in Section 1.7.2, enumerate all the maximal directed acyclic
induced subgraphs of GCP [CP \W] for W ⊆ CP .

We want in this section to discuss the possibility of improving the polynomial space
algorithm by just enumerating all directed acyclic induced subgraphs whose node set cor-
responds exactly to the critical pairs reversed by all the linear extensions in an equivalence
class [L] ∈ [LinExt(P)].

Indeed, we have seen that not all the directed acyclic subgraph corresponds to equiv-
alence classes (see Figure 1.8).

For the inclusion/exclusion approach, in particular, we are interested in the enumera-
tion of all directed acyclic induced subgraphs in GCP [CP \W] which do not reverse any
of the critical pairs in W or better, we want to identify all the subsets S ⊆ CP \W which
corresponds to linear extensions of P that reverse all the critical pairs in S and none in
W .

The graph GCP is missing at least an information, indeed: if (a, b), (b, a) ∈ CP as
in Figure 1.8, we cannot at the same time have (a, b) ∈ CP \ (W ∪ S) and not reverse
(b, a) ∈ W or we cannot simultaneously have (a, b) and (b, a) in W and not reverse any
of them.

With this observation, we introduced the classes of twin nodes of P (Figure 1.9 shows
an example).

Definition 16. A twin element in a poset P = (X,P) is an element x ∈ X such that for
an element y ∈ X, y ‖ x it holds: z ≤P x iff z ≤P y and x ≤P z iff y ≤P z for all z ∈ X.
In particular x, y are indistinguishable as element of P.

Observe that for twin nodes it holds trivially:

Fact 2. x, y are twins in P if and only if (x, y), (y, x) ∈ CP(P).

In the inclusion/exclusion formula we have to compute the number of equivalence
classes of linear extension of P which do not reverse any critical pair in W ⊆ CP .

In the next proposition we see that the fact that not reversing a critical pair (x, y) force
another critical pair (u, w) to be reversed imply that x, y are twins and (u, w) = (y, x):

Lemma 8. Let (x, y), (u, w) ∈ CP(P). If there exists no L ∈ LinExt(P) such that x ≤L y

and u ≤L w then (u, w) = (y, x).

Proof. By the non existence of L and by Theorem 8 we have that {(y, x), (w, u)} contains
a strict alternating cycle and in particular y ≤P u and w ≤P x. By definition of critical
pair if it were y <P u then x <P u which is absurd since w ≤P x <P u against u ‖P w.
We have to conclude that y = u and with analogous reasoning that x = w.

Hence twin nodes can create problems as we cannot simply restrict to the subgraph
GCP [CP \ W] and compute all the directed acyclic graphs here or we might reverse
(x, y) ∈ W if the directed acyclic subgraph does not contain (y, x).

1.7 Computing the Poset Dimension 53

We can solve this problem by temporary removing the twins imposing an arbitrary but
fixed order among twin elements: First of all note that the twin status is an equivalence
relation among elements of X and for a twin element x let denote with [x]t its equivalence
class.

Let τ be the number of twin elements in an equivalence class. In this case imposing an
arbitrary but fixed linear order Q = ([x]t,≤Q) to the elements of [x]t and denoting with
PQ

= poset(P∪ ≤Q) (i.e. the poset P with all the twin elements ordered by an arbitrary
but fixed total order Q, see the right graph of Figure 1.9), we reduce the number of critical
pairs by τ(τ − 1).

We can then apply our algorithm to the graph GCP(PQ
) indeed: trivially there exist

a realizer of size k for P if and only if there exist a realizer of size k for PQ as either P
has dimension 1 (hence is a total order and has no twin nodes) or it has dimension at
least 2 so we can take a realizer of PQ with two linear extension L,L′ one that extends Q
and one that extends Qd (the total order on the same ground set of Q with order given
by x ≤Qd y iff x ≤Q y).

x1

z1

y3

x4

z2

x2

z3

y1

•

•

•

•

•

•

•

•

x1

z2

y3

x4

z1

x2

z3

y1

•

•

•

•

•

•

•

•

P PQ

Figure 1.9: (left): A poset P , z1, z2, z3 are twin elements. (right): The poset PQ where
Q is the linear order defined by z2 ≤Q z1 ≤Q z3.

This process can be done also when there is more than one equivalence class of twin
nodes hence, if τ1, . . . , τl are the size of all these different equivalence classes, the enumer-
ation of directed acyclic subgraphs will run on a GCP with q − ∑l

i=1 τi(τi − 1) critical
pairs.

Denoting with GCPQ the twin-free graph obtained in this way, we are left then with
the following problems:

Problem 3. Is there a bijection between equivalence classes in [LinExt(P)] and directed
acyclic induced subgraphs of GCPQ (where among them we count also the empty graph)
given by the exact set of critical pairs which are reversed by all the linear extensions of an
equivalence class?

54

Conjecture 1. Let S,W ⊆ CP(PQ
) and let S be alternating cycle-free. Then there exists

a linear extension L ∈ LinExt(PQ
) such that L reverses all the critical pairs in S and

none in W .

1.8 Conclusions and Open Problems

In this chapter, we studied different problems related to the Toxin and Antitoxin Model
for CI which lead us to the enumeration of maximal chain subgraphs and chain subgraph
covers in bipartite graphs, interval order dimension and to extend our results to poset
dimension. This work raises many questions:

Problem 4. Is it possible to enumerate the minimal chain covers of a graph in polynomial
delay?

Indeed, our problem is more constrained than an arbitrary instance of the set cover
of a hypergraph as we have solved it. A future goal is to better exploit the connections
between these two problems.

Secondly, the bound T (m) on the number of maximal chain subgraphs of a bipartite
graph with m edges is not tight. It would be interesting to determine the exact value of
T (m). We have the following conjecture:

Conjecture 2. Let G = (U ∪ W,E) be a bipartite graph with m edges; then T (m) ≤
1+

√
1+4m
2

!.

This bound would be reached in the case of the antimatching graph An (see figure
1.5).

Finally we recallthe two open question related to poset dimension and that we have
already presented at the end of the previous section. In particular in Problem 3, we
wonder if the equivalence classes of linear extensions of a poset P are in bijection with
directed acyclic subgraphs of the graph of critical pair GCP(P) (when P has no twin
elements, Definition 16).

We have then formalized in Conjecture 1 the possibility of enumerating in a faster
and more efficient way (with polynomial space) the direct acyclic induced subgraphs of
GCP(P) which corresponds to specific linear extensions of P . List these subgraphs is
necessary for the inclusion/exclusion formula we use.

Cophylogeny and Reconciliations

2.1 Introduction

It is rare to find in nature an organism which does not live in symbiosis, a greek word
which literally means "living together". We speak about symbiosis in any situation where
different organisms have a stable biological interaction during a period or possibly for
all their life. There are different kinds of symbiosis and so we speak about, for example,
mutualistic, commensalistic or parasitic symbiosis depending on the benefits or drawbacks
the single organisms have from the interaction.

Sometimes organisms in symbiosis may influence one the evolution of the other as for
instance the case of Wolbachia and the bidirectional Cytoplasmic Incompatibility that it
induce on its host and which may trigger an evolution of the host species (see [88] and
the introductive paragraph of Chapter 1); in this case we speak about coevolution. The
concept of coevolution has a long history: from Charles Darwin, who mentioned in its On
The Origin of Species an evolutionary interaction between flowering plants and insects,
it still attracts a wide interest [72, 79].

A phylogenetic tree T is a leaf-labelled rooted full binary tree that models the evolution
of a set of species from their most recent common ancestor (placed at the root) to the
current derived species (placed at the leaves). The internal nodes of the tree correspond
to speciation events (a speciation occurs when a species evolves in divergent ways to other
species). The tree is rooted so a partial order among its nodes is intrinsically assumed
and it corresponds to the ancestor and descendant relations.

A classical approach to study the coevolution of organisms is to consider their phy-
logenetic trees together trying to identify and model coevolutionary events that could
have possibly occurred. Without loss of generality and for sake of simplicity, from here
on we will set in the special relation of host/parasite. The evolutionary events can be
described and understood, for instance in the case of a parasite and its host, by mapping
the phylogenetic tree P of the parasite into the phylogenetic tree H of the host [89]. We
characterize then some evolutionary events according to this mapping.

The model of host-parasite evolution we rely on is based on the ones described in
[82] and [4] and it will be presented in Section 2.3 after few introductory notions on our
notation.

56

The rest of this chapter is organized as follows: in Section 2.2 we present the notation
we use, some definitions and some basic results which will be employed throughout the
rest of the chapter.
In Section 2.4 we present eucalypt, the algorithm we use and that we modified to
compute the experimental results of Section 2.9 which we also comment them suggesting
some interpretations and heuristics.
This results describes the potentialities of the two equivalence classes ∼1 and ∼2 among
reconciliations and presented in Section 2.6 and Section 2.7 respectively. We also present
some histograms and statistics on the distance DH between optimal reconciliations and
introduced in Section 2.8. We end up the chapter by a conclusive section where we pose
some open problems and conjectures.

2.2 Preliminaries and Notation

A binary rooted tree T is full if every node in the tree have either 2 or 0 children. We
denote by V (T) and E(T) the set of its nodes and edges, respectively, and with L(T) the
leaves set of T .

If v ∈ V (T) and v is not the root of T , then p(v) denotes its father and s(v) its sibling.

Given two nodes u, v ∈ V (T), u is said an ancestor of v, denoted by u �T v, if either
u ≡ v or v is contained in the subtree rooted at u. If either u �T v or v �T u, then we
call them comparable nodes and write u ∼=T v. We say that u and v are incomparable if
they are not comparable and write u �T v.

The least common ancestor lca(S) of a set of nodes S ⊆ V (T) is the �T -minimal node
u s.t. u �T s for all s ∈ S.

We denote by pathT (u, v) = (t1, . . . , tj) the (unique) ordered sequence of nodes of T
that must be traversed to reach v from u; of course t1 ≡ u and tj ≡ v. The length of
pathT (u, v) is j − 1 and it is denote as |pathT (u, v)|.

Let Tv be the subtree of T rooted at v and let e = (u, v) be an edge of T , we introduce
here the tree T e (see Figure 2.10) as the subtree of T obtained from T :

- eliminating all nodes and edges of Tv;
- if u is not the root of T , substituting edges (p(u), u) and (u, s(v)) with the single

edge (p(u), s(v)), otherwise simply eliminating edge (u, s(v)).
When there is ambiguity on the edge e = (u, v) we denote the tree T e as T u.

2.3 The Reconciliation Model

The model we use and that we present here under is the reconciliation model. This model
can be employed not only to study the coevolution of a host and a parasite, but also

2.3 The Reconciliation Model 57

T

u1 v1 v2 w1 w2

u

v

w

z

• ••

•

• •

• •

•

T u

u1 w1 w2

w

z

• • •

•

•

Figure 2.10: A tree T with an edge e = (u, v) (left) and the reduced tree T e (right).

for the evolution of a gene with respect to a species or the evolution of a species on a
geographical territory [4, 46, 82].

In this model four events can occur, and they can be informally described as follows:

cospeciation occurs when both the parasite and the host speciate,

duplication occurs when the parasite speciates but the host does not,

loss occurs when the host speciates but the parasite does not follows both the branches,

host switch occurs when the parasite speciates and one of its children "jumps" to an
incomparable host.

Figure 2.11: The nodes of the thinner parasite tree P are mapped to the nodes of the
"tubolar" host tree H. According to the mappings of these nodes, four types of events
are presented: cospeciation, duplication, loss and host switch.

This model requires a pair of full binary rooted trees, H and P , and a function

58

ϕ : L(P) → L(H), which maps every leaf of P to a leaf of H and which represents the
parasitic interaction between host and parasite species.

For sake of simplicity, in the rest of the chapter we consider H,P and ϕ fixed if not
differently specified.

Given H,P and ϕ, we can model co-evolutive events by extending ϕ from all the nodes
of P to all the nodes of H, under some constraints:

Definition 17 ([82]). Given two phylogenetic trees P,H and a leaf mapping function
ϕ : L(P) → L(H), the function � : V (P) → V (H) is said a reconciliation of the two
phylogenetic trees H and P with leaf mapping ϕ (or simply a reconciliation when H,P, ϕ

are clear) if � satisfies the following constraints:

1. For each leaf l ∈ L(P) it holds �(l) = ϕ(l),

2. For each node p ∈ V (P) \ L(P), if q, r ∈ V (P) are the children of p then �(p) is
not a proper descendant of �(q) or �(r) and at least one of them is a descendant of
�(p).

Given a reconciliation we can partition the set of internal nodes of P as follows:

Definition 18 ([82]). Let � : V (P) → V (H) be a reconciliation and let Δ,Θ,Σ ⊆ V (P) \
L(P) be defined by the following rules for a node p ∈ V (P) \ V (L) with children r, q:

p ∈ Σ if and only if �(p) = lca{�(q), �(r)} and �(q), �(r) are incomparable and we say
that p is assigned to a cospeciation event;

p ∈ Θ if and only if �(p) is incomparable with either �(q) or �(r) (called the jumping child
of p) and we say that p is assigned to an host-switch event ;

p ∈ Δ if and only if p /∈ Σ ∪Θ and we say that p is assigned to a duplication event.

So, every internal node is assigned an event among cospeciation, duplication or host
switch and the set V (P) \ L(P) results partitioned as Δ ∪Θ ∪ Σ.

Furthermore observe that we could have defined, by exclusion, the nodes in Δ also as:

p ∈ Δ if and only if �(p)
h lca{�(q), �(r)} or �(p) = lca{�(q), �(r)} and �(q), �(p) are
comparable.

We privileged the other form as we wanted to underline the fact that we are partitioning
the sets of internal nodes of P .

An edge of P in

Θ̃(�) := {(u, v) ∈ Θ× V (P) : p(v) = u and �(u), �(v) are incomparable},

2.3 The Reconciliation Model 59

is called host-switch edge of �.
We write Θ̃ instead of Θ̃(�) when there is no doubt about the reconciliation � involved.

We can then assign a number of events of type loss to the edges of P as follows:
for an edge e = (u, v) ∈ E(P) where u �P v we define preliminarily I�(e) := {x ∈ V (H) :

�(u) ≺H x ≺H �(v)}, then the number of losses associated to e is given by:

loss�(e) :=

⎧⎨⎩I�(e) + 1 if u /∈ Σ, �(u), �(v) are comparable and �(u) �= �(v),

I�(e) otherwise.

The number of losses of � is defined as |Λ| := ∑
e∈E(P) loss�(e).

This definition of losses is based on [82] and [4].

In literature the event-based models may vary in the number and type of event clas-
sifications (see [89] for a more complicated model in terms of events), and in consequence
this changes the size of the partition of the internal nodes of P according to the number
of event. However in general, independently of the refinement of the partition [89, 90],
it is usual to assign a cost for each of the possible events, to obtain a global cost for the
reconciliation summing up the costs for all the nodes:

cost(�) := cs|Σ|+ cd|Δ|+ ch|Θ|+ cl|Λ|

where C = (cs, cd, ch, cl) is a real valued quartuple which defines the cost assigned to each
event, called cost vector. For the rest of the chapter, we consider C to be a fixed vector.

We are now ready to present the following problem:

Definition 19. Given H,P and the leaf mapping ϕ, the reconciliation problem consist
in enumerating all the reconciliations � : V (P) → V (H) with minimum cost. Such
reconciliations are said most parsimonious reconciliations.

Definition 20. We denote with R(H,P, ϕ, C) the set of the most parsimonious reconcil-
iations � : V (P) → V (H), in which the costs of the events are given by C, and whose
leaves are connected through the mapping ϕ : L(P) → L(H).

Finally, it is also possible to associate to each reconciliation � a vector E� = (ec, ed, es, el) =

(|Σ|, |Δ|, |Θ|, |Λ|) [5], called event vector, where ec, ed, es and el denote the number of
cospeciations, duplications, host switches and losses, respectively, that are in �.

Extension of the Model and Alternative Models

Note that in the reconciliation model we have presented the parasite nodes are allowed
to be mapped only on host tree nodes, but there are other models [28, 89] where they are
allowed to be mapped also to edges of H or the host tree is extended to a tree H̃ with

60

some artificial nodes to create some temporal layers defined by the height of the nodes
and host switch are allowed only between contemporary nodes; this temporal information
sometimes is provided by a function V (P) → R which gives the time of speciation.

For sake of completeness, note that the reconciliation model is not the only possible
model to study coevolutions of organisms. There are also probabilistic models which
simulate the development of the parasite species within the host tree H by a birth-and-
death process and where the edged of H are provided with a length (representing their
time duration) and estimated duplication and loss rates [27].

Cyclic and Acyclic reconciliations

Passing from a model without host switches (for instance the reconciliation model where
the host-switch cost ch is infinite or extremely high), to a model where they are allowed,
we permit to the parasite lineage to jump to and fro the host lineage with the possibility
of creating some time inconsistencies and cycles as we do not have any time information
on the nodes if not the one given by the order of the tree.

For this reason, among the reconciliations, we need to distinguish between time feasible
and time unfeasible ones. They are also said acyclic and cyclic respectively as their
definition is given in terms of cyclic and acyclic graphs as follows:

Given a reconciliation � : V (P) → V (H), let G(�) = (V,E) be the digraph defined as
V = V (H) and E = E(H) ∪D where:

D :=
⋃

(u,v),(u′,v′)∈Θ
u�P u′

{p(�(u)), p(�(v))} × {�(u′), �(v′)}

Definition 21 ([80]). Let � : V (P) → V (H) be a reconciliation. Then � is said to be
a time feasible (or acyclic) reconciliation if the graph G(�) does not contain any direct
cycle.

� is said time unfeasible or cyclic if it is not time feasible.

When host switches are allowed, finding an optimal time feasible reconciliation is NP-
hard as proved in [70, 82] with a reduction from the Minimum Feedback Arc Set. However,
if we do not restrict to time feasible reconciliations, the problem becomes tractable and it is
possible to enumerate all the optimal reconciliations in polynomial time with a polynomial
space complexity algorithm as Eucalypt [25].

In the next section we present this algorithm that we modify to count the number of
equivalence classes ∼1 and ∼2 in Section 2.9. The equivalence classes are introduced in
Section 2.6 and Section 2.7.

2.4 Eucalypt 61

Figure 2.12: A time unfeasible reconciliation: the red node has to be mapped in H at
least to the father of the current node.

2.4 Eucalypt

The optimal solutions for the Reconciliation Model we presented in Section 2.3 can be
computed by a dynamic programmig approach.

In this section we present the specific optimal subproblems which are solved to obtain
the final solution, we present the data structures and peculiarities of the implementation of
Eucalypt [25], the algorithm we have employed to enumerate all the most parsimonious
reconciliation in R(H,P, ϕ, c) and to collect the experimental results of Section 2.9.

We start from the formulation of the subproblems:

Definition 22. Let h ∈ V (H). We denote with R(H,P, ϕ, C, h) the set of most parsimo-
nious reconciliations � : V (P) → V (H) with leaf mapping ϕ with the further condition of
mandatory mapping the root of P to node h.

With this definitions it is clear that, taken an optimal reconciliation � ∈ R(H,P, ϕ, c),
letting q, r be the children of the root node z of P , for the recoonciliations �q := �|Pq ,
�r = �|Pr we have that: �q ∈ R(H,Pq, ϕ, C, �(q)), �r ∈ R(H,Pr, ϕ, C, �(r)) and letting
e ∈ {c, d, h} we have that:

cost(�) = cost(�q) + cl · loss�((�(z), q)) + ce + cl · loss�(�(z), r)) + cost(�r).

Finally observe that � ∈ R(H,P, ϕ, C, �(root(p))) we can then compute with the dy-
namic programming paradigm the set of optimal reconciliations by storing and computing
the information contained in matrix D(p, h), which intuitively coincide with R(H,Pp, ϕ, C, h),
and whose row and columns are indexed by the nodes of the parasite tree V (P) and of
the host tree V (H) respectively.

This is precisely what Eucalypt [25] and similar approaches do (see also [4, 82, 89]).

62

Moreover, Eucalypt employs a second data structure, D̃(p, h) defined as the set of
optimal reconciliations in � ∈ R(H,Pp, ϕ, C, h

′) for h′ �H h which minimizes the cost:

cost(�) + cl · loss�((h, h′)).

With this second data structure we than have that the reconciliations � ∈ R(H,P, ϕ, C, h)

are the reconciliations which minimize the costs:

cost(�q)+ce+cost(�r) for �q ∈ R(H,Pq, ϕ, C, hq), �r ∈ R(H,Pr, ϕ, C, hr) and hq, hr �H h.

The Information in D(p, h) and D̃(p, h)

We have already mentioned that the information in D(p, h) are the necessary ones to
reconstruct all the reconciliations in R(H,Pp, ϕ, C, h) and that D̃(p, h) is computed once
filled the values for D(p, h′) with h′ �H h.
In Section 2.7, we describe the modifications done to the algorithm to compute the number
of ∼2-equivalence classes and in order to do so we need to specify better the structure of
D(p, h).

In fact, the values for D(p, h) and D̃(p, h) are filled with a post-order traversal of the
nodes of P and H and the optimal reconciliations which map p to h are computed starting
from the optimal mapping of the children p1, p2 of p as we have seen.

It suffice then to keep track of the mapping of the children p1, p2, say to the nodes
h1, h2 ∈ V (H) respectively, and to which of the matrices D D̃, to be able to reconstruct
the optimal reconciliation recursively by accessing the values of D(pi, hi) or D̃(pj, hj).

Finally for a given imposed mapping of p to h, there may be more than one optimal
pair of mappings for the children of p; then the value in D(p, h) (or D̃(p, h)) is either a
simple solution, i.e. a pair of pointers for example (D(p1, h1), D̃(p2, h2)) together with
the cost of this solution and the event associated or the values in D(p, h) (or D̃(p, h)) is
a list of pairs of pointers to simple solutions all with the same optimal cost and we call it
a multiple solution (see Figure 2.13).

Figure 2.13: Figure 2 in [25]: Schematic representation of a multiple solution cell in
D(p, h) (or D̃(p, h)) with three alternative mappings for the children p1, p2 of p.

2.4 Eucalypt 63

In practice Eucalypt computes the optimal reconciliations in D(p, h) after three
different branching done in a first step, selecting the best speciation, duplication and
host-switch solutions with the only imposition of mapping p to h and in a second step the
most parsimonius among them.

Here under we sketch these three selections as they are done in Eucalypt for the
value of D(p, h). In the following let p, p1, p2 ∈ V (P) be such that p(p1) = p = p(p2) and
h, h1, h2 ∈ V (H) such that p(h1) = h = p(h2).

The optimal mappings which associate a speciation event are the pairs (left, right)

which give the minimum cost for c(left) + cs + c(right) where the only possible pairs are
(D̃(p1, h1), D̃(p2, h2)), (D̃(p1, h2), D̃(p2, h1)), (i.e to induce a speciation event p1, p2 has to
be mapped to incomparable nodes and h has to be the least common ancestor of them,
see Definition 18).

For the duplication event, the optimal mappings are obtained by the left right pairs
(left, right) which minimize the cost c(left) + cd + c(right). A duplication event occurs
when either:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(D(p1, h), D(p2, h)), (D(p1, h), D̃(p2, h1)),

(D(p1, h), D̃(p2, h2)), the mapping of p1, p2 are comparable in H

(D̃(p1, h1), D(p2, h)),

(D̃(p1, h2), D(p2, h))

or

(D̃(p1, h1), D̃(p2, h2)), (D̃(p1, h2), D̃(p2, h1)) they are not comparable and h �= h1, h2

Eventually, the host-switch event is computed as mapping one of the two children to
the subtree rooted at h and the other to another node of H h′ � h keeping, among the
pairs (left, right), (D̃(p1, h), D(p2, h

′)), (D(p1, h
′), D̃(p2, h)) for h′ � h, the ones which

minimize the cost c(left) + ch + c(right).

The pairs stored in D(p, h) are then the optimal ones among these three pre-selections
event-based.

Complexities

We have already mentioned in the previous section that if host switches are allowed
computing an optimal acyclic reconciliation is NP-hard [82].

However, if we do not restrict to acyclic solutions the problem becomes tractable: a
solution can be computed in O(nm) time where m and n are the number of parasite and
host tree nodes, respectively.

64

While to enumerate all the optimal (not necessarily acyclic) reconciliations, Euca-
lypt takes O(n3m) time and space [4, 25] by performing for each optimal reconciliation
a DFS following the optimal children mapping in D(p, h) and D̃(p, h) keeping track in a
side list of the alternatives mappings for the children mapping so as to explore each time
a different combination until exhaustion.

2.5 Preliminary Lemmas

We prove in this section some useful properties and lemmas on reconciliations.
The following fact follows directly from the impossibility that all children of a parasite

node jump to incomparable host tree nodes.

Fact 3. Given any reconciliation � : V (P) → V (H), for each node u ∈ V (P):

a. there exists a leaf l ∈ V (P) such that l �P u (i.e. l ∈ Pu) and �(l) = ϕ(l) �H �(u)

(i.e. �(l) ∈ H�(u));

b. if edge (u, v) ∈ E(P) (where u is the parent of v) is a host switch (i.e. �(u) �H �(v))
then there exist a leaf l′ ∈ V (P) such that l′ �P u (i.e. l′ ∈ Pu) but �(l′) = ϕ(l′) �H

�(u) (i.e. �(l′) /∈ H�(u)).

The so-called lca mapping of a parasite node p ∈ P [46] is defined as lca(p) :=

lcaH(ϕ(L(Pp))), i.e the least common ancestor in H of all species which contain a parasite
descended from that parasite node. This function can be inductively computed with ϕ as
base of the induction [82]. It is known that the lca mapping induces a most parsimonious
reconciliation in a model without host switches [46, 48, 63, 71].

Theorem 10. Let (H,P, ϕ) be a scenario. In a model where the only allowed events are
cospeciation, duplication and loss, there exist only one optimal reconciliation given by the
lca mapping lca(p) := lcaH(ϕ(L(Pp))).

The function lca is monotonic, i.e. for all u, v ∈ V (P), if u �P v then lca(u) �H lca(v)

and it plays a central role in many of the lemmas of this section.
We continue with an observation on models were host switches are not allowed.

Fact 4. In a model where the only events allowed are cospeciation,duplication and loss,
any reconciliation � : V (P) → V (H) is such that for any u, v ∈ V (P) s.t. u �H v we
have �(u) �H �(v). Hence, for any u ∈ V (P), �(u) �H lca(u).

If host switches are allowed and we restrict to consider only optimal reconciliations,
the situation changes, as highlighted by the following result.

Lemma 9. Let be given an optimal reconciliation � ∈ R(H,P, ϕ, c). If cl > 0 and cd ≥ cc,
for any u ∈ V (P), we have �(u) �H lca(u).

2.5 Preliminary Lemmas 65

Proof. The case |V (P)| = |L(P)| = 1 is trivially true. Let us then assume that the tree P

has at least an internal node u. Preliminarily observe that it cannot be �(u) �H lca(u);
indeed, in view of part a. of Fact 3, there exists l ∈ L(Pu) such that �(u) � �(l). In view
of this and of the fact that lca(u) must lie in H on the path between �(l) and the root of
H, it follows that necessarily �(u) ∼=H lca(u).

Hence, suppose by contradiction that �(u)
H lca(u). In this case, node u cannot be
associated to a host-switch event; indeed, by part b. of Fact 3, it would exist l′ ∈ L(Pu)

such that �(l′) �H �(u), in contradiction with �(u)
H lca(u) �H ϕ(l′) = �(l′).
It follows that u is associated to an event mapping both the u’s children in H�(u).

Without loss of generality, let u be such that it is the lowest node for which the
absurd hypothesis �(u)
H lca(u) holds (i.e. no descendant node w ≺P u is such that
�(w)
H lca(w)) and let v, w be the children of u (observe that such children always exist
as at least for f ∈ L(P) we have �(f) = λ(f) = lca(f)). For v and w we have that
�(v) �H lca(v) and �(w) �H lca(w). Then we have �(w) �H lca(w) �H lca(u) ≺H �(u)

and the same holds for v.
Recalling that u is associated to either a duplication or a co-speciation, we then get a

reconciliation with smaller cost by moving �(u) to lca(u). Indeed in this way, we reduce
the costs of at least cl ∗ |pathH(lca(u), �(u))| (see Figure 2.14), reducing the losses along
the edges (u, v) and (u, w) but having to pay the cost of losses along the edge (p(u), u)

and possibly turning the event associated to u from duplication to co-speciation reducing
the cost of cd − cc ≥ 0.
This is in contradiction with the optimality of �.

Figure 2.14: Two reconciliation with the same event vector except for the number of
losses: the left one has 3 losses while the right one only 2.

66

Here after we present a result related to nodes adjacent to more than one host-switch
nodes; this result will be fundamental in Section 2.7:

Lemma 10. Let � ∈ R(H,S, ϕ, C) and let cl > 0. For each edge (u, v) associated by � to
a host switch s.t. (p(u), u) is also associated a host-switch event, it hold: �(u) = �(s(v)).

Proof. Suppose by absurd that �(s(v)) ≺H �(u). Then we can define a more parsimonious
reconciliation �′ which agrees with � on all the nodes but u which is mapped in �′ to
�(s(u)). In this way, the only events which may change are the ones associate to p(u)

and u. This is not the case as both the nodes remain associated to an host-switch event
as �′(p(u)) = rho(p(u)) �H �(u) �h �(s(v)) = �′(u) hence �′(p(u)) �H �′(u) and �′(v) =

�(v) �H �(u) �H �(s(v)) = �′(u) hence �′(u) �H �′(v).

However, �′ spare the cost of cl ∗ |pathH(�(u), �(s(v))| > 0 as �′(s(v)) = �′(u).

Projections of Reconciliations

Notice that, for each host switch (u, v) of a given reconciliation � in R(H,P, ϕ, C), two
reconciliations are naturally induced: �u := �|V (Pu) and �v := �|V (Pv). It is not difficult to
convince oneself that �u and �v are valid reconciliations. We now prove that the cost of
� can be expressed in terms of the costs of �u and �v, and that these two reconciliations
remain optimal.

Lemma 11. (Reconciliation Decomposition Lemma) Let (u, v) ∈ Θ̃(�) (with p(v) = u)
for � ∈ R(H,P, ϕ, C), and let cl > 0 and cc ≤ cd. Then we have that:

cost(�) = cost(�u) + cs + cost(�v).

Proof. Remind that the total cost of � is given by cost(�) =
∑

i∈{c,d,s,l} ei · ci. The
contribution to the cost of the nodes of Pv is unaltered both in cost(�) and in cost(�v)

and host-switch edge (u, v) contributes to cost(�) with exactly cs. So, we focus our
attention on P u, and show in the following that the costs of �|V (P)\(V (Pv)∪{u}) (referred
simply as � in the following) and of �u are exactly the same, so concluding the proof.

Notice that the removal of u (performed to obtain P u) may affect only the number
of loss events associated to new edge (p(u), s(v)) and the event associated to p(u) (while
all the events associated by �u to the other nodes of P u remain unaltered w.r.t. �). We
divide the rest of the proof into two cases, according to the fact that the event associated
to p(u) by � is a host-switch event or not.

Case 1. the event associated to p(u) by � is not a host-switch event.

The number of loss events of �u along edge (p(u), s(v)) are the sum of the loss events
of � along edge (p(u), u) and along edge (u, s(v)) plus 1 which is given by the lacking of
node u in the case �(p(u)) �= �(u) �= �(s(v)). On the other hand, for �, this plus 1 is

2.5 Preliminary Lemmas 67

Figure 2.15: The three situation that can occur during case 1. in the proof of Lemma 11
when the event associated to p(u) by � is not a host switch.

given only if �(u) �= �(s(v)) or by �(p(u)) �= �(u) in the cases when p(u) is associated
to a duplication event. It is not difficult to convince themselves that the three situations
of Figure 2.15 are all the possible situations of comparability between the mappings of
the nodes p(u), u, s(u), s(v), that the missing plus 1 is always balanced and that the
rightmost one is not parsimonious as by cc ≤ cd and cl > 0 we can decrease the cost of �
by cl mapping u to s(�(s(u))) (�(s(v)) in the picture).

Case 2. the event associated to p(u) by � is a host-switch event.
We must distinguish two situations: either the host-switch edge is (p(u), u) (left picture
in Fig. 2.16) or it is (p(u), s(u)) (right picture in Fig. 2.16).

Figure 2.16: The two situations that can occur during the proof of Lemma 11 when the
event associated to p(u) by � is a host switch.

In the first case the introduction in P u of edge (p(u), s(v)) does not affect the event
associated to p(u) by � as �(p(u)) �H �(u) and �u(p(u)) �H �u(s(v)).

The only loss events in this case are the ones associated to edge (u, s(v)), but �(u) =

�(s(v)) by Lemma 10.

In the second case, the event associated still does not change since it holds still
�(p(u)) �H �(s(v)). The plus 1 loss in �u due to the lack of u along the edge (�(p(u)), �(s(v)))

68

when �(p(u)) �= �(u) �= �(s(v)), is payed by the plus 1 loss for being u associated to an
host-switch event and �(u) �= �(s(v)).

In all cases, the claim follows.

We introduce now the following definition which we use in Lemma 12 to show how we
can decompose an optimal reconciliation.

Definition 23. Let � : V (P) → V (H) be a reconciliation. An edge (u, v) ∈ E(P)

associated to a host switch by � is said to be a lowest host switch if no other edge in Pu

is associated to a host switch by �.

Lemma 12. Assume that cl > 0 and cd ≥ cc. Let be given a lowest host switch
(u, v)(where u is the parent of v) in an optimal reconciliation � ∈ R(H,P, ϕ, C); then
�u ∈ R(H,P u, ϕ|V (Pu), C) and �v ∈ R(H,Pv, ϕ|V (Pv), C), i.e. �u and �v are optimal rec-
onciliations.

Proof. We have already mentioned that �v and �u are valid reconciliations. We will prove
now separately that they are both optimal.

Reconciliation �u is optimal.
Suppose by contradiction that there exists one reconciliation σ ∈ R(H,P u, ϕ|V (Pu), C)

such that cost(σ) < cost(�u).
We preliminarily show that it cannot be σ(s(v)) �H �(v). Indeed, assume instead

that σ(s(v)) �H �(v); then it is possible to construct a new reconciliation �′ mapping P

to H in the following way:
- �′(w) = �(w) for each w ∈ Pv;
- �′(w) = σ(w) for each w ∈ P u;
- �′(u) = σ(s(v)).

It is easy to see that �′ is a valid reconciliation from P to H, that �′ assigns a host-
switch event to u and that the event associated to p(u) does not change w.r.t. σ. By
Lemma 11 its total cost is:

cost(�′) = cost(σ) + cs + cost(�v) < cost(�u) + cs + cost(�v) = cost(�)

in contradiction with the optimality of �. Hence it should be σ(s(v)) ∼=H �(v). We
show in the following that also this case does not hold. If σ(s(v)) �H �(v) then, in
view of part a. of Fact 3 there exists a leaf l ∈ L(Ps(v)) such that ϕ(l) = σ(l) �H

σ(s(v)) �H �(v). Now, since (u, v) is a lowest host switch w.r.t. �, for Ps(v) Lemma 4
holds, and �(s(v)) �H lca(s(v))) = lca(ϕ(L(Ps(v)))), so in particular �(s(v)) �H ϕ(l).
We have reached a contradiction then reminding that (u, v) is a host switch in �, hence
�(v) �H �(s(v)), but �(v) �H ϕ(l) and �(s(v)) �H ϕ(l).

Assume now, vice-versa, that �(v) �H σ(s(v)); in view of Lemma 9, it holds that
σ(s(v)) �H lca(s(v)).

2.6 ∼1 Equivalence Class 69

then �(v) �H σ(s(v)) � lca(s(v)) �H �(s(v)) thanks to Lemma 9, Fact 4 and the
hypothesis that (u, v) is a lowest host switch for �; this is a contradiction since (u, v) is a
host switch in � and hence �(v) � �(s(v)).

Reconciliation �v is optimal.
Again, we proceed by contradiction assuming that there exists τ ∈ R(H,Pv, ϕ|V (Pv), C)

such that cost(τ) < cost(�v).
By Lemma 9, Fact 4 and that (u, v) is a lowest host switch we have τ(v) �H lca(v) =

�(v) � �(u) � �(s(v)), hence τ(v) �H �(s(v)) and then we can construct a more parsi-
monious �′ as:
- �′(w) = �(w) for each w ∈ P u;
- �′(w) = τ(w) for each w ∈ Pv;
- �′(u) = �(s(v)).

Hence �′(u) �H �′(v) and by Lemma 11 we have:

cost(�′) = cost(�u) + cs + cost(τ) < cost(�u) + cs + cost(�v) = cost(�)

against the optimalilty of �.

2.6 ∼1 Equivalence Class

Let � ∈ R(H,P, ϕ, C) and let u ∈ V (P) \ {root(P))} such that (u, v) ∈ Θ̃ (where
p(v) = u). Furthermore let us assume for the moment that p(u) /∈ Θ(�).

Consider the nodes in pathH(�(p(u)), �(s(v))), the node u could have been mapped
onto any of these nodes without changing the cost of the reconciliation, as proved by the
following result:

Lemma 13. Given two optimal reconciliations �, σ ∈ R(H,P, ϕ, C) with cl > 0 and
cc ≤ cd, such that:

• there exists an edge (u, v) ∈ Θ̃(�) ∩ Θ̃(σ) (where p(v) = u) and,

• �(w) = σ(w) for each w �= u, and

• p(u) is not associated to an host-switch event.

If � �= σ, i.e. �(u) and σ(u) are mapped onto two different nodes of pathH(�(p(u)), �(s(v)))),
the costs associated to � and σ are the same.

Proof. The hypotheses of Lemma 11 hold, so we can decompose the cost of � and σ as:

cost(�) = cost(�u) + ct + cost(�v) and cost(σ) = cost(σu) + ct + cost(σv).

70

In view of the hypothesis of equality between � and σ outside u, �u = σu and �v = σv.
Furthermore, the event associate to p(u) by � and σ is the same and observe that it could
have been the only one to change. This is enough to prove that cost(�) = cost(σ).

In the setting of previous lemma, observe that we can relax the assumptions letting
p(u) be associated with any event but, if it were (p(u), u) ∈ Θ̃ (hence p(u) ∈ Θ) then, by
Lemma 10, pathH(�(p(u)), �(s(v)))) = {�(s(v))} and the result may be trivial.

Hence, we assume, in this case, that it is (p(u), s(u)) the host-switch edge, i.e. we
should relax the assumption assuming �(u) ∼=H �(p(u)).

However p(u), which now is allowed to be a host-switch event, may play the role of u
in Lemma 13 as well.

We introduce the following definition:

Definition 24. Let � : V (P) → V (H) be a reconciliation and let u, v ∈ V (P) such that
p(v) = u and (u, v) ∈ Θ̃. We denote with α�(u) (or simply α(u) if � can be omitted)
the least ancestor of u not associated to a host-switch event such that �(α(u)) �H �(u).
Furthermore we denote with ω�(u) (or simply ω(u) if � can be omitted) the greatest
descendent of u not associated to a host switch such that �(ω(u)) �H �(u).

Then pathH (�(α(u)), �(ω(u))) is called the slide of u w.r.t. �. If the slide of w, for
w ∈ V (P), is the same of u, then we say that u and w share the same slide w.r.t �.

Figure 2.17: A node u, its slide determined by α(u) and ω(u).

Observe that while α(u) may not exist, ω(u) always exists as at least a leaf node of P
is not associated to a host-switch event (see Fact 3).
Trivial examples are when all the ancestors of u are associated to host-switch events up
to the root of P or when (p(u), u) ∈ Θ̃.

We can then extend Lemma 13 as follows:

2.6 ∼1 Equivalence Class 71

Proposition 10. Let �, σ ∈ R(H,P, ϕ, c) with cl > 0 and cc ≤ cd and let u ∈ V (P) be
such that α�(u) = ασ(u) exist and are both associated to the same event, ω�(u) = ωσ(u)

and �(w) = σ(w) for all the node w /∈ pathP (α(u), ω(u)) \ {α(u), ω(u)}.
Then the costs associated to � and σ are the same.

Proof. Primarily observe that � and σ differ only on the nodes in π = pathP (α(u), ω(u))\
{α(u), ω(u)} and that, by definition of α(·) and ω(·), for both the reconciliations these
nodes are all associated to host-switch events mapped into the nodes of
pathH(�(α(u)), �(ω(u))) = pathH(σ(α(u)), σ(ω(u))).

Let π = {p1, . . . , pn} with p1 �P · · · �P pn and, for any 1 ≤ i ≤ n, let us denote with
�i and σi the nodes �(pi) and σ(pi) respectively. Then from the definition of α(·) and ω(·)
we have that for any i ≤ j it holds �i �H �j and σi �H σj.

Without lack of generality let us assume that �1 �H σ1. Now let us identify � by the
tuple (�1, . . . , �n) and σ by the tuple (σ1, . . . , σn) which represent the different mapping
of the nodes (p1, . . . , pn) in H. In the same way we can define for 1 ≤ i < n the tuple
(�1, . . . , �i, σi+1, . . . , σn) and introduce the associated reconciliation τi. Letting τ0 := σ

and with τn := �, it is clear that by Lemma 11 and arguing as in the proof of Lemma 13
we obtain cost(τi) = cost(τi+1) for 1 ≤ i < n which conclude the proof.

The previous result leads us to consider as equivalent all the reconciliations that, for
each host switch (u, v), map u on a different node of the slide of u.

Definition 25. Two reconciliations �, σ : V (P) → V (H) are in the same ∼1-equivalence
class iff the following holds:

1. For each node in V (P) they assign the same event.

2. For each u ∈ V (P) not associated to an host-switch event or such that α(u) does
not exist, �(u) = σ(u).

3. For each u ∈ V (P) associated to an host-switch event such that α�(u), ασ(u) exists,
both �(u) and σ(u) lie on the slide of u w.r.t � (which coincide with the slide of u
w.r.t σ).

If these three conditions hold, then we write � ∼1 σ.

Intuitively, ∼1-equivalence class collects all the reconciliations which agree on all the
nodes of V (P) except the ones which have a slide of length grater than 1.

If there are more nodes sharing the same slide, then they can be mapped to any node
of the slide as far as their image respect their original order �P (so as to have a valid
reconciliation).

More specifically, for each reconciliation which has a slide of length l shared by n

nodes, there are at least
(
n−l−1
l−1

)
other reconcilations with the same cost and that differ

only on these n nodes.

72

Figure 2.18: Two reconciliations with the same event vector that nevertheless are rather
different.

Finally, taken a reconciliation with k slides each one of length lh and each one shared by
nk nodes, the number of reconciliation in its ∼1-equivalence class is

∏k
i=0

(
nk−lk−1

lk−1

)
.

The following fact claims an interesting property of equivalent reconciliations w.r.t.
relation ∼1 and the classification of an optimal reconciliation by its event vector E�:

Fact 5. Let � : V (P) → V (H) be a reconciliation. Then all the reconciliations in [�]∼1,
i.e. all the reconciliations in the ∼1-equivalence class of �, have the same cost and the
same event vector E�.

Observe that by ∼1-equivalence class the partition of R(H,P, λ, c) is finer than the
one induced by the event vector and now we may distinguish between reconciliations as
the two in Figure 2.18.

However we would like to know the size of this partition: here after and in Section 2.9
we explain how to compute this size and we show some experimental results.

Counting ∼1-Equivalence Classes

In this section we explain how to count the number of ∼1-equivalence classes by enumer-
ating one representative reconciliation for each of them. Observe that, by definition of
∼1, the only difference between reconciliations in the same class are the nodes u ∈ V (P)

for which α(u) exists and if we can impose a univoque mapping for them, we identify
a representative for each class. With the aid of the next Lemma we show that we can
enumerate all these representative reconciliations if they are characterize by the following
property:

If (u, v) ∈ Θ̃(�∗) with p(v) = u, then �∗(u) = �∗(s(v)).

This is how we collected the data obtained from the experimental results displayed in
Section 2.6.

Lemma 14. Given a reconciliation � ∈ R(H,S, ϕ, C) with cl > 0, let u0, u1, . . . , un be
host-switch nodes such that �(u0) �H �(u1) �H · · · �H �(un) �H �(u) where u is not a

2.6 ∼1 Equivalence Class 73

host-switch node. Furthermore let us assume that either (p(u0), u0) is a host-switch edge
or u0 be the root of P . Then �(ui) = �(u) for 0 ≤ i ≤ n.

Proof. Suppose by absurd that there exists a index j such that �(uj) ≺H �(u0). We can
then define a new reconciliation �′ which agrees on � on all the nodes but u0, u1, . . . , un

for which we define �′(ui) := �(u) for 0 ≤ i ≤ n. Observe that �′ and � induce the same
events on the nodes of P as we only change the mapping of ui from �(ui) to �(u) but
�(s(ui)) �H �(ui) � �(u) and so all the nodes ui preserve their host-switch event status
together with the node p(u0) which either do not exist or for it still holds (p(u0), (u0)) ∈
Θ̃(�′).

However, while in �, we pay the cost of at least cl, being �(uj) �= �(uj−i) = �(u0), in
�′ we do not. Then we reach a contradiction with the optimality of �.

Since each reconciliation belongs to an equivalence class and each equivalence class
has an unique �∗ reconciliation, to count the equivalence classes we can simply enumerate
only these �∗ reconciliations which satisfy the mentioned property. In order to do so, we
can simply impose (in Eucalypt at time of filling the dynamic matrices D(p, h) and
D̃(p, h), see Section 2.4) that each node u ∈ Θ with (u, v) ∈ Θ̃ is mapped to the same
node �(s(v)) ∈ V (H) of its comparable child s(v) (i.e. we are actually mapping u to ω(u),
as this son can be associated to an host-switch event as well).

Observe that, for a node u ∈ Θ, (u, v) ∈ Θ̃, it may or may not exist the node α(u).
In the latter case, either all its ancestor are associated to host-switch events up to the
root of P (if there are any) or along this path from u to the root of P there is an edge
mapped to a host-switch edge. For these nodes Lemma 14 grants that there is no harm
in imposing that their mappings coincide with the ones of the comparable child in H. All
the other nodes are not affected by this imposition as by Proposition 10 the cost of �∗ is
the same of �.

We collect this reasoning in the following corollary:

Corollary 5. Let cl > 0 and cc ≤ cd. To count and enumerate one optimal reconciliation
in R(H,S, ϕ, C) for each ∼1-equivalence class it suffice to impose that the mappings of
any node u = p(v) such that (u, v) ∈ Θ̃ has to coincide with the mapping of s(v).

While the reconciliation �∗ is a good reconciliation to enumerate or count the number of
∼1-equivalence classes, it is not the best representative of the class. Indeed, we introduce
here after another property to identify a reconciliation � ∈ [�]∼1 whose knowledge permits
to reconstruct any reconciliation in the equivalence class:

Definition 26. Let � ∈ R(H,P, ϕ, c). We call �+ the canonical reconciliation in [�]∼1 if
it satisfies the following condition:

for each σ ∈ [�]∼1 and u ∈ V (P) it holds �+(u) �H σ(u).

74

The motivation for this definition is that, among all the reconciliations in [�]∼1 , the
nodes on which they may differ are the nodes u ∈ V (P) for which there exists a slide, i.e.
it is well defined pathH (�(α(u)), �(ω(u))). In this case, we know that it is always possible
to find a reconciliation �∗ ∈ [�]∼1 for which �∗(u) = �∗(ω(u)). On the other hand, it is
not always possible to find a reconciliation �+ ∈ [�]∼1 such that �+(u) = �+(α(u)). (for
instance when α(u) is associated to a cospeciation event and cc < cd).

In this sense, the canonical reconciliation permits to know, independently of the cost
vector, all the valid mappings of a node u along its slide which are pathH(�

+(u), �+(ω(u))).
We conclude this section by observing that a ∼1-equivalence class may contain both

cyclic and acyclic solutions as shown in Figure 2.19.

Figure 2.19: Four reconciliations in the same ∼1-equivalence class. The bottom right one
is cyclic and it is the reconciliation �∗ of the class.

2.7 ∼2 Equivalence Class

We now propose another equivalence relation between optimal reconciliations. This equiv-
alence class permits to the reconciliations in the same class to differ in some nodes asso-
ciated to host-switch events similarly to the previous ∼1 equivalence class but this time
we focus our attention to host-switch nodes for which α(·) is not defined.

Assume there are two siblings v and w in P that are mapped by ϕ on two incomparable
nodes ϕ(v) and ϕ(w) in H. If host switches are allowed, any reconciliation can equivalently
map p = p(v) = p(w) on a node that is either comparable with ϕ(v) and incomparable

2.7 ∼2 Equivalence Class 75

with ϕ(w) or vice-versa. All these solutions are equally feasible, and there is no reason to
distinguish them (see Figure 2.20).

Figure 2.20: Alternative mappings of the node u with same cost.

Inspired by Lemma 14, we introduce the following definitions to identify the nodes
which are allowed to differ in this new ∼2-equivalence class for optimal reconciliations.

Definition 27. Let � : V (P) → V (H) be a reconciliation and let u ∈ Θ. Let z ∈
Θ \ {root(P), u} be such that:

• all the nodes along the path between z and u are in Θ,

• all the edges between consecutive nodes in pathP (z, u) are mapped by � either to
reflexive edges or host-switch edges and, among these edges,

• the edge incident to z has to be mapped to a non-reflexive host-switch edge.

If z is the �P -greatest node in V (P) satisfying these conditions, we call it the head of u
in � and denote it with χ(u).

Observe that trivially not all the nodes in Θ have a head node, as for instance: a node
u for which α(u) exists (see Definition 24) or if all the ancestors of u up to the root of P
are in Θ, then by definition χ(h) does not exist.

Definition 28. Let � : V (P) → V (H) be a reconciliation. A bundle node u of � is a
node in V (P) \ {root(P)} such that:

1. u, p(u) ∈ Θ (i.e. � assign to u and to its father p(u) an host-switch event),

2. its mapping by � in H coincide with one of the mapping of its children,

3. there exists χ(u), the head of u in �(u).

Observe that Lemma 14 claims that under the setting cl > 0, we can drop point 2. in
the previous definition; in particular, if u is a bundle node, a node v, with p(v) = u, is a
bundle node if and only if v ∈ Θ.

Definition 29. Two reconciliations �, σ : V (P) → V (H) are in the same ∼2-equivalence
class iff the following holds:

76

1. They induce the same events on the nodes,

2. They have the same bundle nodes,

3. They agree on the nodes which are not associated to host-switch event and to non-
bundle nodes.

If these three conditions hold, then we write � ∼2 σ.

Directly from point 1. of the definition we have the following:

Fact 6. Let � : V (P) → V (H) be a reconciliation. Then all the reconciliations in [�]∼2

assign the same events to the nodes in V (P). In particular all the reconciliations have
the same cost and the same event vector E�.

Observe that for a bundle node u0 and under the hypothesis cl > 0, by Lemma 14 the
mapping of u must coincide with the one of ω(u):

Fact 7. Let � ∈ R(H,P,C, ϕ) and let cl > 0. For each bundle node u of � in V (P) it
holds �(u) = �(ω(u)).

In the following we employ this last fact to count all the different ∼2-equivalence classes
as the bundle nodes are the only one allowed to differ among ∼2-equivalent reconciliations.
The following concept describes an invariant of the reconciliations in the same class:

Definition 30. Let u be a bundle node of � (see Figure 2.21) and let f = ω�(u) (i.e the
oldest non-bundle node of � descendant of u).
Then f is said a frontier-node of u w.r.t. � and also a frontier-node of �.

Furthermore, the set of pairs (f, �(f)) of frontier-nodes f of u w.r.t. � is called the frontier
of � underneath u and denoted as Φ(u, �).

The set of all pairs (f, �(f)), for f a frontier-node of �, is said the frontier of � and
denoted as Φ(�).

We will denote the set of all these frontiers by Φ(R) :=
⋃

�∈R(H,P,ϕ,C) Φ(�).

Fact 7 implies that bundle nodes has to be mapped to a node of the frontier.

Computing ∼2-Equivalence Classes

In this section we explain how we can count the number of ∼2 equivalence classes of a set of
optimal reconciliations. We use this method to show (in Table 2.3-2.9.1) the potentialities
of enumerating only a representative for each ∼2-equivalence class. For simplicity reasons,
we consider only the counting of the number of these representatives, although the ideas
presented in this section may be applied also to enumerate them.

2.7 ∼2 Equivalence Class 77

Figure 2.21: A bundle node u of a reconciliation �, the frontier of � underneath u , χ(u)
(the head of u in �), a tree in the forest .

Let us start considering the forest ΓP (�) of subtrees of P induced by the bundle nodes
of � and let us denote with ΓP (R) the union of all these forests.
Furthermore, taken a tree T in the forest ΓP (�) and denoted with

Φ(�, T) := {(f, �(f)) ∈ Φ(�) : f ∈ V (T) is a frontier-node of �},

it holds trivially that:

Φ(�) =
⋃

T∈ΓP (�)

Φ(�, T)

It is clear that all the nodes in a tree T have the same head χ(T) ∈ V (P) and so we
call χ(T) the head of T in �. we extend the concept of frontier to the non-bundle node
χ(T) by calling it also the frontier underneath χ(T) in � and the frontier of T in �.

The following fact stems directly from the definition of ∼2 equivalence:

Fact 8. Let �, σ : V (P) → V (H) be two ∼2-equivalent reconciliations, then:

1. ΓP (�) = ΓP (σ),

2. �P\ΓP (�) = σP\ΓP (�),

3. if � �= σ then �ΓP (�) �= σΓP (�),

4. Φ(�, T) = Φ(σ, T) for each tree T in ΓP (�), in particular Φ(�) = Φ(σ).

We will prove here after how it is possible to compute the number of ∼2-equivalence
classes for a given set of optimal reconciliations R(H,P, ϕ, C) by exploiting point 3. of

78

Fact 8. Indeed, if identifies a bundle node and we impose only one mapping for it then
we will count only one optimal reconciliation in each equivalence class [�]∼2 .

It is clear, then, the importance of identifying all the trees in ΓP (R) and for each tree
T of these, it is important to identify all its possible frontiers Φ(�, T) and count just one
alternative mapping which realize that frontier.

We have seen in Section 2.4, that the partial solutions are build bottom up in Euca-
lypt by subsequent choices of the optimal mappings of the children of the current node.
Assume the notation D(p, h) of [25] and Section 2.4 to denote the information stored on
the most parsimonious mappings of the node p ∈ V (P) into the node h ∈ V (H). Recall
that this information always comes in pairs (possibly many and obviously with the same
cost, see Figure 2.13 and Figure2.22) of optimal mappings for the children p1, p2 of p.

Figure 2.22: Figure 3 in [25]: An example of two cells D(p, h) and D(p, h′) (or D̃(p, h)

and D̃(p, h′)).

To compute the number of ∼2-equivalence classes, we modify the code of Eucalypt
to perform two actions: firstly we enrich the content of D(p, h) and D̃(p, h) with the
information of the frontiers underneath p from the frontiers underneath p1, p2, in this
sense we "lift" the frontier. This information of the frontiers is stored in a dictionary
which associate to each frontier the number of ∼2-subsolutions at (p, h) with this frontier,
i.e. the ∼2-equivalence classes in R(H,Pp, ϕ, C, h). The computation is done recursively
for all the nodes of P correctly initializing the non host-switch nodes.

Secondly we modify Eucalypt to identify the head nodes χ(T) and correctly compute
the number of ∼2-equivalence classes in R(H,P, ϕ, C). Observe that, by Lemma 14 and
assuming cl > 0, in Definition 29 we may omit item 2. as it is implied by 1.
With this setting in mind, it is clear that the nodes feasible of being bundle nodes are all
the nodes u such that u, p(u) ∈ Θ and such that χ(u) exists.

2.7 ∼2 Equivalence Class 79

For the moment we postpone the identifications of the head of u (hence the identification
of the roots of the trees in ΓP (�)) and focus on "lifting" the information of the frontiers
(from the frontier nodes to the head of the bundle nodes).

Augmenting the Information in D(p, h) and D̃(p, h)

More precisely, to each data structure D(p, h) (or D̃(p, h)), we add a counter eqClasses for
the number of different ∼2-subsolutions. This counter is filled combining the information
on the frontiers and combining the counters for all the optima pairs of mapping of the
children stored in D(p1, h1), D(p2, h2) and their values in D̃, where p1, p2 are children
nodes of p and h1, h2 are some descendant nodes of h in H.
Just to give an example here and leave the full explanation to Lemma 15 and Lemma
16: if D(p, h) is a simple solution and the associated event is not an host switch, then
there is actually no frontier underneath p, but, for initialization purposes (in the case
p will a fronter node for p(p)) we assign to eqClasses the value D(p1, h1).eqClasses ·
D(p2, h2).eqClasses as every ∼2-subsolution is build by combining a ∼2-subsolution of
D(p1, h1) with one of D(p2, h2).

Furthermore, to each cell in D(p, h) (or D̃(p, h)), we add a dictionary with entries of
the type frontier : number_of_associated_ ∼2 _eq_classes with the double purpose
of lifting the information on the frontiers and, at the same time, computing the number
at (p, h) of ∼2-subsolutions (eqClasses in the pseudo-code) with the given frontier (see
item 4. of Fact 8).

Observe now that, while the verification of item 1. and 2. in Definition 28 can be
done while computing the current values for the cell D(p, h), item 3. would require at
least O(height(Pp)) time to recompute the values for D(p′, h′).eqClasses with p′ ≺P p

and h′ ∈ V (H) in the case p is a candidate head node for p′.
For this reason, we decide to lift the information of both the scenarios of the current

mapping: for the non-bundle scenario, eqClasses and frontier store the values under the
hypothesis that p is not a bundle node (i.e. we will not find an head node for it). For
the bundle scenario, eqClasses_b and frontiers_b store the corresponding values in the
case we will find an head for p, hence it will be a bundle node.
The two alternative scenarios and their values will be "lifted" and carried on together (in
the filling D(p, h) by post order transversals of the nodes of P and H) up to the time
we find a candidate head fulfilling item 3.c and Lemma 14. In that case we fall in the
"non-bundle" scenario finding that we lack item 3.a and so re-initializing the values of
eqClasses_b and frontiers_b to the same values of eqClasses and frontier respectively
for initialization purposes (see Algorithm 6). Notice that, at the end, if we do not confirm
that we are in a bundle node scenario we keep the non bundle one as we have failed to
find an head (we are in the case where all the ancestors are comparable nodes associated
to host switch).

80

Finally we extend D(p, h) (and D̃(p, h)) by adding another dictionary seenMappings

whose key set are still frontiers and whose values set are list of (h′, p′) pairs where p′ ∈
V (P) and h′ ∈ V (H). This dictionary is useful only when D(p, h) (or D̃(p, h)) is a
multiple solution to take notes of all the necessary information on the simple solutions
which lift a frontier to do not count them many times. In particular we are interested on
the simple solution not associated to an host-switch event and in particular to the node
h′ on which the parasite p is mapped and the non jumping child njc(D(p, h′)) = p′ in
that simple solution (see the proof of Lemma 16 to justify this choice).

Lifting the Frontier Φ(T, �) and Identifying the Head χ(T)

In the following we discuss only the filling of matrix D as the filling of matrix D̃ depends
on the ones of D (see Section 2.4) and it undergoes the same computations of multiple
solutions with just a wider list of optimal candidates (the ones coming from D(p, hi) for
hi �H h) than its corresponding D(p, h).

The only remark is on the lifting of the frontiers on a multiple solution where underline
that in D p is always mapped to the same node h in all the simple solutions while in D̃

do not. We will recall this fact when it is worthy.

At first we show how to compute the values eqClass, eqClasses_b, frontier and
frontiers_b and for D(p, h) by the function ComputeSimpleFrontiers(D(p, h)) in the
case D(p, h) is a simple solution. This function call the function ComputeEqClasses(D(p, h))

(Algorithm 5) which compute the initialization values for eqClasses and eqClasses_b, in
a simple solution, by multiplying the corresponding values for the left and right children
mapping and, in a multiple solution, summing up all the corresponding values of all the
pointed simple solutions.

Lemma 15. The function computeSimpleFrontiers(D(p, h)), computes correctly the
values D(p, h).eqClasses, D(p, h).frontiers and the corresponding values of the "bundle
scenario" D(p, h).eqClasses_b, D(p, h).frontiers_b for p, h leaves of P and H respec-
tively.
Assume furthermore that the values in D(p′, h′) are correctly computed in the case D(p′, h′)

is a multiple solution. Then the function computeSimpleFrontiers(D(p, h)), computes
correctly the value D(p, h).eqClasses and the D(p, h).frontierstogether with their corre-
sponding "bundle scenario" values D(p, h).eqClasses_b, D(p, h).frontiers_b when D(p, h)

is a simple solution.

Proof. Let us analyze case by case the switch statement assuming inductively that are
well computed the values eqClasses, frontiers, eqClasses_b, frontiers_b for D(p1, ·)
and D(p2, ·) where p1, p2 of p; the base of the induction is when D(p, h) with p, h are
leaves, but this is trivial as there is only one subsolution hence one ∼2-subsolution (lines
6,7 and lines 17-23). The frontier and frontier_b dictionaries are set for initialization

2.7 ∼2 Equivalence Class 81

Algorithm 5: Compute Equivalence Classes
1 Function computeEqClasses(D(p,h))
2 eqClasses ← 0;
3 eqClasses_b ← 0;
4 switch D(p.h).getType() do

5 case MULTIPLE_SUBSOLUTIONS:
6 for simple_solution in D(p, h).getChildrenOptimalMappings() do
7 eqClasses += simple_solution.getEqClasses();
8 eqClasses_b += simple_solution.getEqClassesB();

9 case SIMPLE_SUBSOLUTION:
10 if D(p, h).getEvent() ! = LEAF then

// p1, p2 are the children of p in P
11 {(p1, h1), (p2, h2)} ← D(p, h).getChildrenOptimalMappings();
12 eqClasses ← D(p1, h1).eqClasses ∗D(p2, h2).eqClasses;

13 if D(p, h).getEvent() == HOSTSWITCH then
14 eqClasses_b ← D(p1, h1).eqClasses_b ∗D(p2, h2).eqClasses_b;

15 else
16 eqClasses_b = eqClasses

17 D(p, h).eqClasses ← eqClasses;
18 D(p, h).eqClasses_b ← eqClasses_b;
19 return D(p, h).eqClasses;

82

Algorithm 6: Compute Simple Frontiers
1 Function computeSimpleFrontiers (D(p, h))
2 f ← ∅;
3 f_b ← ∅;
4 switch D(p, h).getEvent() do

5 case LEAF:
6 f.add({(p, h) : 1});
7 f_b.add({(p, h) : 1});

8 case HOSTSWITCH:
// Let p1 be the jumping child

9 Let h1 � h;
10 for frontier f1 of D(p1, h1) do
11 for frontier f2 of D(p2, h2) do
12 f.add({{f1 ∪ f2} : D(p1, h1).val_b(f1) ∗D(p2, h2).val(f2)});
13 f_b.add({{f1 ∪ f2} : D(p1, h1).val_b(f1) ∗D(p2, h2).val_b(f2)});

14 case DUPLICATION,COSPECIATION:
15 f.add({(p, h) : ComputeEqClasses(D(p, h))});
16 f_b.add({(p, h) : ComputeEqClasses(D(p, h))});

17 D(p, h).setFrontiers(f);
18 D(p, h).setFrontiersB(f_b);

19 D(p, h).eqClasses ← 0;
20 D(p, h).eqClasses_b ← 0;
21 for frontier x in f do

/* frontiers and frontiers_b contain the same set of keys but possibly
different values if D(p, h).getEvent() == HOSTSWITCH */

22 D(p, h).eqClasses += f.val(x);
23 D(p, h).eqClasses_b += f_b.val(x);

2.7 ∼2 Equivalence Class 83

purposes to {(p, h) : 1} which are required for the HOSTSWITCH case.

The HOSTSWITCH case: by inductive hypothesis the dictionary of frontiers and
relative subsolutions are well compute in D(pi, hi) for i = 1, 2 and for p1, p2 children
of p. The dictionary in D(p, h) will have a key for each possible unions of a key in
D(p1, h2).frontiers with a key in D(p2, h2).frontiers (recall that the keys are frontiers,
i.e. sets and so we can take their set union) and as value the product of left and right
values for the respective keys At this step of the computation there is no need to drop
frontiers or risk to double count them as all the frontiers arising from the cartesian product
are different by induction and by virtue of having stored also the parasite node in the
frontier pairs.

Furthermore, if p1 is the jumping child of p, now we know that p is a candidate for
χ(p1) (and perhaps some other descendants of p), i.e. the head of p1, if it is the �P

greater ancestor. This suffice to grant to p1 (and perhaps other descendants of p) the
status of bundle nodes. For this reason in lines 15-13 we use for p1 the bundle scenario
values (which coincide with the non-bundle scenario values in case of no doubt).

On the other hand, for the non jumping child p2, we are not sure yet if we are dealing
with a bundle node or not (or better we may know it if h �= h2) but we postpone this to
the multiple solution function in case of multiple alternatives subsolution of p2 stored in
D̃(p2, h) and in case of single solution we also postpone up to the time we find an head for
p. In both the cases by induction as we assume correct the values for both the children
and in both the scenario we correctly compute the values related to both the scenario for
D(p, h) (lines 12,13).

For the case COSPECIATION,DUPLICATION, it is the function computeEqClasses
to compute the value eqClasses and since we are dealing with a simple solution it will
be D(p1, h1).eqClasses ∗D(p2, h2).eqClasses i.e. all the possible combinations of picking
a ∼2 subsolutions equivalence classes for p1 and one for p2.We also assign this value to
the key {(p, h)} of the frontier dictionary at line 15 for initialization purposes as this
is the number of ∼2-subsolution which will be the left or right children ∼2-subsolutions
combined in the HOSTSWITCH case with the right or left children ones respectively.
The values eqClasses_b and frontiers_b coincides with the non-bundle scenario values
(eqClasses and frontiers) as at this point it is clear that what is underneath is not a
bundle node failing item 1. of Definition 28.

For all the three events the correct values of eqClasses is computed and set in lines
19-23.

Lemma 15 grant that computeSimpleFrontiers computes correctly the number of
∼2-subsolutions (stored in eqClasses_b and eqClasses for both the bundle and non-
bundle scenario respectively) for a simple solution in D(p, h) if p, h are leaves or if it is
correct the computation of this values for multiple solutions.

84

Observe and recall that in function computeSimpleFrontiers we simply lift the infor-
mation on the frontiers by looking at the event assign to it and we identify some bundle
nodes when we are dealing with jumping children in an host-switch event.

The identification of the heads and bundle nodes in the remaining cases (i.e. when
these are non jumping children) and the pruning of the non correct scenario,is due and
postponed to the function computeMultipleFrontiers.

In the next lemma we show the correctness of the function computeMultipleFrontiers
which computes the values eqClasses, frontiers and the bundle scenario values eqClasses_b

and frontiers_b, in the case D(p, h) it is a multiple solution and solve the remaining of
the bundle scenario alternatives and the identification of the heads.

Lemma 16. Let D(p, h) be a multiple solution and let cl > 0. Then the function
computeMultipleFrontiers (Algorithm 7) computes correctly the number of ∼2 sub-
equivalence classes and the frontiers underneath p.

Proof. Primarily observe that by cl > 0 and Lemma 14 to dermine if a node u associated
to an host-switch event is a bundle node, we need only to check that its head χ(u) exists.
Let us recall that Lemma 15 grants, for solution D(p′, h′) whose computation not depends
on multiple solutions, the correct computation of the dictionary of frontiers and the value
for eqClasses, also the corresponding bundle scenario, and in the case of p′, h′ being
leaves.

So we can assume, by induction, them to be correct also for the simple solution D(p, hi)

stored in D(p, h).
The function computeMultipleFrontiers consists mainly of a loop which pass through

all the frontiers of all the simple solutions and count each one just once as this is an in-
variant of reconciliations in the same ∼2-equivalence class (item 4. of Fact 8).

Let us analyze first the case where D(p, hi) is not associated to an host-switch event: in
this case there is only one frontier consisting of the pair (p, hi) and its values in the dictio-
nary is the number D(p, hi).getEqClasses of ∼2-equivalence classes in R(H,Pp, ϕ, C, hi)

(which coincide with the bundle scenario value as clearly a non host-switch node is not
a bundle node). It is not difficult to see in the pseudo-code that either if the frontier
{(p, hi)} has already been seen or not, at the end of the loop we have the number of ∼2

subsolution beared by D(p, hi) added to the number of all the possible ∼2 sub-solutions
with frontier {(p, hi)}. It is correct to sum up in the EqClass and EqClassb values all the
values related to the key {(p, hi)} as we do not drop any of the partial solutions having
the mapping �(p) = hi associated to a non host-switch event as each of them imply a
different mapping for the children of p and which are surely not bundle nodes by item 1.
of the definition.

We assume now then, for sake of simplicity, that all the D(p, hi) (in the list of simple
solutions in D(p, h)) are associated to host-switch events as we have just seen that the
other case is correctly counted and summed up in the final computation at lines 22-27.

2.7 ∼2 Equivalence Class 85

Algorithm 7: Compute Multiple Frontiers
1 Function computeMultipleFrontiers (D(p, h))
2 f ← ∅;
3 f_b ← ∅;

// seenMapping is a dictionary with values lists of (h′, p′) nodes.
4 // It helps identifying heads of bundles nodes and

// hence also the roots of trees in Φ(�)
5 seenMappings ← ∅;

// Run on all frontiers of all simple solutions and count just a
candidate for each of them

6 for simple_solution D(p, h′) in D(p, h) do
7 for frontier f ′ in D(p, h′) do

8 if not f.containsKey(f ′) then
9 f.add({f ′ : D(p, h′).val(f ′)});

10 f_b.add({f ′ : D(p, h′).val(f ′)});
11 if D(p, h′).event() == HOSTSWITCH then we keep trace of the

mapping of p in h′ as it may be an head and we do it frontier-wise as we
do not want

12 Let njc(D(p, h′)) ∈ V (P) be the non jumping child of D(p, h′);
13 seenMappings.add(f ′, newList(h′, njc(D(p, h′))));

14 else we have already seen this frontier

// we may have to update the frontier count if we are dealing
with a non host switch or a different head

15 if D(p, h′).event()! = HOSTSWITCH or not
seenMapping.val(f ′).contains(h′, njc(D(p, h′))) then

16 f.val(f ′)+= D(p, h′).val(f ′);
// We count this frontier also for the bundle scenario
// only minding at the mapping of p
// and not who is njc(D(p, h′))

17 if not seenMappings.val(f ′).getListHostTreeNodes().contains(h′)
then

18 f_b.val(f ′)+= D(p, h′).val_b(f ′);

// We update seenMappings if we are dealing with an host
switch

19 if D(p, h′).event() == HOSTSWITCH then
20 seenMappings.get(f ′).add_to_list(h′, njc(D(p, h′));

21 D(p, h).setFrontiers(f);
22 D(p, h).setFrontiersB(f_b);
23 D(p, h).eqClasses ← 0;
24 D(p, h).eqClasses_b ← 0;
25 for frontier x in f do
26 D(p, h).eqClasses += f.val(x);
27 D(p, h).eqClasses_b += f_b.val(x);

86

Let q, s(q) be the children of p in P and let us assume without lack of generality that
q is the jumping child.

If one of the frontiers listed in D(p, hi) is not already seen, then we add it to the keys
of the dictionary of D(p, h) with its value, finally we took notes that this frontier as been
already seen in a solution which map p to hi and its non jumping child is njc(D(p, hi))

(lines 8-13).

These information are necessary to distinguish between frontiers and eventually ex-
clude already seen.

Indeed, if a frontier has already been seen, then another simple solution D(p, hj) has
the same frontier where recall that h �P hi, hj. Now, the differences between D(p, hi) and
D(p, hi) which lead to lift the same frontier are in one or more of the followings points
considering that they may differ only on the mapping of p, q or s(q):

1. hj = hi and q is the jumping child for both the solutions but its mapping differs,

2. hi �= hj, i.e. the mapping of p in H for these subsolutions differ,

3. For both the solutions s(q) is the non-jumping child, its mapping differs in these
solutions but being associated to an host-switch event it lifts the same frontier,

4. q is not the jumping child for both the solutions, although in these solutions the
pointer in D of the optimal mapping of q and s(q) are to sub-solutions which asso-
ciate them to host-switch event (because they lift the same frontier).

The first case, together with the fact of having the same frontier, imply that q and
possibly its descendant are bundle nodes and p may be the head of a tree in ΓP (·) (if it is
the oldest ancestor with this property); having seen already one such frontier we do not
add its count to the dictionary count as they will alternative mappign that will fall in the
same equivalence class.

In the second case, the node p will not be associated to a bundle node as observe that
for at least one of the two nodes hi, hj, say hj it holds h
H hj (this case holds only in
the D̃ matrix), we could then improve the cost of the solution mapping p (and all the
bundle nodes between him and its head) to hj (preserving their state of being associated
to host-switch event) sparing the loss cost as in Lemma 14.
So p is not a bundle nodes, but it can still be an head, this is the reason to update the
count for this frontier and the number of subsolutions with this frontier saving also in
seenMapping the mapping of p to hi (if it was not present already) and the non jumping
child mapping, line 13 (a case where this information is required is when p has a slide,
see Figure 2.23).

The third case is solved by inductive hypothesis as the optimal mapping of the non
jumping child are saved in another solution in the matrix D̃, indeed: D(p, hi) is a simple

2.7 ∼2 Equivalence Class 87

Figure 2.23: Case 2 in the proof of Lemma 16: orange nodes are labels for the thick tree, the
green ones for the thinner black tree. The node p is not a bundle node as α(p) exists. p can
be mapped both to hi and hj without changing the cost of the reconciliation leaving the other
mappings unchanged. We have then in Algorithm 7 at line 13 save in seenMappings, together
with p, the different mappings to hi and hj as they will lead to ∼2-different reconciliations. On
the other hand if it is only the mapping of q to change from a to b we obtain ∼2-equivalent
reconciliations, hence we should count only one of them.

solution associated to an host-switch whose mapping for the children are given by D(q, h∗)

for the jumping child and D̃(s(q), h′) for the non-jumping child; the third case is actually
then treated in the second case when we call the function computeMultipleFrontiers
on D̃(s(q), h′).

The forth case implies that both q and s(q) are associated to an host-switch event con-
temporary in the two different simple solutions, and these two alternate the non jumping
child (see Figure 2.24 for an example). If q, s(q) and p are bundle nodes, then we have
to drop the second time we see the frontier while. If, on the contrary, p is not a bundle
nodes (i.e. we will end up with no heads for p), we cannot discard (or not count) the
solutions beared by these frontiers and the alternating jumping child as p would be an
head for the jumping child but not for the non-jumping child. This mean that the two
alternatives will not have the same set of bundle nodes. We have to compute both the
scenarios and postpone the decision at the time we find an head for p (or keep the non
bundle scenario).

To conclude, only in the first case or in the forth case when we confirm the bundle
scenario we drop equivalent ∼2-subsolutions, i.e. when we have confirmed the nature of

88

Figure 2.24: A typical situation related to the fourth case of the proof of Lemma 16:
The yellow and red nodes plays alternatively the role of the jumping child of the green
node. These reconciliations are not ∼2-equivalent, hence the number of sub-equivalence
classes stored in D̃(green_node, h) is 2 for the non bundle scenario of the greennode (
stored in D̃(green_node, h).eqClasses), while it is 1 for the bundle scenarion (stored in
D̃(green_node, h).eqClasses_b).

bundle nodes for q or for the non-jumping child respectively. This is done in lines 15-18
where in particular lines 15,16 cover the cases of non-bundle scenario and lines 17-18 the
bundle one where it should do not mind the non jumping child when we are in the fourth
case, but still consider the mapping of h to avoid redundancy in the first case.

After the loop the correct values for eqClasses and the frontiers are set in D(p, h)

together with the bundle scenario ones.

From the previous two lemmas we derive directly the following result:

Theorem 11. Let cl > 0 and let D(root(P), hi) for 1 ≤ i ≤ k be the cells with lower
cost among all the costs for D(root(P), h) with h ∈ V (H). Then the number of number
of ∼2-equivalence relations in R(P,H, ϕ, c) is:

k∑
i=1

ComputeEqClasses(D(root(P), hi))

Proof. The values returned by ComputeEqClasses(D(root(P), hi)) is the value
D(root(P), hi).eqClasses (see Algorithm 5) which contains the correct number of ∼2-
equivalence classes of reconciliations in R(H,P, ϕ, C, hi) in virtue of Lemmas 16 and 15
and the fact that, reached root(P), we are in a non-bundle scenario by definition of head
of a bundle node.
The results follows as D(root(P), hi) has the lowest cost among D(root(P), h) for h ∈
V (H) hence R(H,P, ϕ, c) = ∪k

i=1R(H,P, ϕ, C, hi).

2.8 A New Distance Measure between Reconciliations

In this section we introduce a new distance on the space of optimal reconciliations
R(H,P, ϕ, c). This distance measures the similarities between reconciliations on the ba-

2.8 A New Distance Measure between Reconciliations 89

sis of the host-switch edge set Θ̃ considering that when we restrict the model to only
co-speciation, duplication and loss events, there is only one optimal reconciliation give
by the lca mapping [46, 48, 63, 71]. We prove in Theorem 12 in this section that the
knowledge of Θ̃ is sufficient to reconstruct a reconciliation.

Another motivation to introduce this host-switch-based distance is that even if working
with the equivalence classes introduced in Section 2.6, we drastically reduce the number
of objects to consider (see Section 2.9 for a discussion and experimental results), although
in some cases this number remains outside the possibilities of a direct inspection.

On the other hand, reconciliations in the same equivalence class differ only on host
switches hence, if we restrict our domain to only canonical representatives of equivalence
classes, intuitively we ends up to work in a smaller metric space.

To the best of our knowledge, only few measures of similarity between reconciliations
have been defined. One of them is based on the comparison of the event vector, i.e. a
four dimensional vector which collects the numbers of occurred events for each one of the
four allowed events. Then, a hierarchical cluster tree is constructed based on the event
vectors. Nevertheless, it is not difficult to find examples of very different reconciliations
having the same event vector. One of them is in Figure 2.18.

In the special case of a model where no host switches are allowed (i.e. only cospecia-
tion, duplication and loss events are permitted) the authors of [26] define two operators
which turn one reconciliation to another, and then they define a distance measure be-
tween two reconciliations as the smallest number of operations needed to pass from one
reconciliation to the other one. In [92] the definition of operators is extended to a more
general model in which host switches can appear and new operators are introduced.
With this definition, there are reconciliations that appear very similar and nevertheless
have a rather high distance, as shown for example in Figure 2.25.

Indeed, in the specific case of this figure, if we call u the only host-switch node and
�1, �2 the reconciliations, the distance coincide with the length of pathH(�1(u), �2(u)).
However, we can make this distance arbitrarily large by extending this path (which in
Figure 2.25 has length 4) branching the host tree along this path to have an arbitrary
number of intermediate nodes between �1(u) and �2(u).

In this section, we try to overcome all the problems highlighted in the other known
metrics and we present a distance based only on host switches.

Given a reconciliation � ∈ R(H,P, ϕ, C), preliminarily note that each one of its host
switches is univocally determined by an edge e = (u, v) of P and by its mapping on a
non-edge of H (�(u), �(v)), where �(u) and �(v) are incomparable. We introduce here an
host-switch set which collect all these informations:

90

Figure 2.25: Two reconciliations very similar with a possibly high distance based on
operators (by arbitrarily adding nodes on the right path from the root.

Definition 31. Let � : V (P) → V (H) be a reconciliation. The host-switch set of � is
defined as the set of quartuple :

Θ(�) :=
{
(u, �(u), v, �(v)) ⊆ VP × VH × VP × VH : (u, v) ∈ Θ̃(�)

}
.

The next theorem shows that the information in Θ(�) (together with the scenario
(H,P, ϕ)) is enough to reconstruct the reconciliation �.

Theorem 12. Under the hypothesis that cl > 0 and cd ≥ cc, let �, σ ∈ R(H,P, ϕ, C).
Then Θ(�) = Θ(σ) if and only if � = σ.

Proof. if part: This part is trivial, indeed if � = σ, then their host-switch sets must be
the same.

only if part: Let us prove the statement by induction on the number of host switches
of �.
If |Θ(�)| = |Θ(σ)| = 0 then from Theorem 10, we have that the only optimal reconciliation
is given by the lca mapping. Now, let |Θ(�)| = |Θ(σ)| = t > 0 and, by inductive
hypothesis, assume the lemma holds for any value strictly lower than t. Consider a lowest
host switch (u, �(u), v, �(v)) ∈ Θ(�) = Θ(σ) and the two trees Pv and P u. Reconciliations
�v and σv, �u and σu have all less than t switches (because at least (u, �(u), v, �(v)) is
not included) and they are optimal by Lemma 12, so �v = σv and �u = σu by inductive
hypothesis and both � and σ include the switch (u, �(u), v, �(v)).

It follows that � = σ.

Observe that we can put in relation the set of all possible host switches Θ(R) :=

∪�∈R(H,P,ϕ,c)Θ(�), with the first k integer numbers (for an opportune value of k). In this
way, each reconciliation � can be put in relation with the k long characteristic vector
representing Θ(�) in which a 1 appears in position i if host switch i belongs to Θ(�) while
all the other positions are set to 0. Theorem 12 guarantees that this relation is a one to
one function and in particular we can embed R(H,P, ϕ, c) into the k dimensional discrete
hypercube Hk := {0, 1}k. Let us denote with Θk : R(H,P, ϕ, c) → Hk this embedding.

2.9 Experimental Results 91

We can then define the distance between two reconciliations as:

Definition 32. Let �, σ ∈ R(H,P, ϕ, C). Then the Host-switch Distance between � and
σ is defined as:

DH(�, σ) :=
∣∣Θ(�)�Θ(σ)

∣∣ (
=

∣∣(Θ(�) \Θ(σ)
) ∪ (

Θ(σ) \Θ(�)
)∣∣),

where � denote the symmetric difference of two sets.

We can easily see that DH is a distance by observing that, for a sufficiently large
integer k, DH(�, σ) = Hamming_distance(Θk(�),Θk(σ)).

We want to conclude this section by commenting that the definition of the distance
DH, based on the host-switch set Θ(�) which characterize a reconciliation � (Theorem
12), may be improved by some extra biological knowledge, for instance: by introducing a
weight function w : Θ(R) → R so has to have:

D̃H(�, σ) :=
∑

s∈Θ(�)�Θ(σ)

w(s).

Then we can weight the host switch s = (u, �(u), v, �(v)) according to some properties
that we judge important as for instance the length of the jump so:

w(s) := distH(�(u), �(v)),

or if we consider that a lowest host switch s has a weaker impact on a reconciliation
structure compare to other host switches (as in a lowest host switch the mapping of the
nodes in Pu, Pv are determined by the lca mapping) we can try to catch this property
defining:

w(s) := 2 ∗ height(H)− height(�(u))− height(�(v)).

We ends up leaving these two examples as proof of concepts together with the visual
analysis made in Section 2.9.2 in which we present and comment some histograms of DH
distances based on classical datasets [25] together with some statistics on the number of
host switches and dimensions of the space Hk.

2.9 Experimental Results

In this section we show the results of some experiments performed on some real data sets.
We selected 13 datasets which correspond to those also used in [25] and that are

indicated in that paper as GL, RH, FD, COG2085, COG3715, COG4964, COG4965,
PP, SFC, EC, PMP, PML, and Wolbachia. The latter is a dataset of our own which
corresponds to arthropod hosts and a parasitic bacterium, Wolbachia, living inside the

92

cells of their hosts (for further details on Wolbachia see the introductory section of Chapter
1.

These datasets are listed in Table 2.2 where we report also the following information:

dataset |L(P)| |ϕ(L(P))| |V (P)| |�(V (P))| ≤
GL 10 8 19 15
RH 42 33 83 65
FD 51 20 101 39
COG2085 43 25 85 49
COG3715 50 15 99 29
COG4964 27 17 53 33
COG4965 30 19 59 37
PP 41 36 81 71
SFC 16 15 31 29
EC 10 7 19 13
PMP 18 18 35 35
PML 18 18 35 35
Wolbachia 387 387 773 773

Table 2.2: General information on datasets employed.

• the number of leaves of P (column |L(P)|),

• the number of leaves of H on which some leaf of P is mapped through ϕ (column
|ϕ(L(P))|),

• the number of nodes of P (column |V (P)|),

• the maximum number of nodes of H that can be the mapping of some parasite
node through a reconciliation; this value is derived by |ϕ(L(P))| by observing that
the largest number of interested nodes in H is obtained when they are organized
as a complete binary tree and it is hence min{|V (P)|, 2|ϕ(L(P))| − 1} (column
|�(V (P))| ≤)

2.9.1 Equivalence Classes

We present here the experimental results that we obtained applying the equivalence classes
described in Section 2.6 to the datasets of Table 2.2 taken from [25].
There are five tables, one for each of the cost vectors: (-1, 1, 1, 1), (0, 1, 1, 1), (0, 1, 2, 1), (0, 2,
3, 1) and (1, 1, 3, 1), which are some of the most common [25].

In all the tables, # solutions indicates the number of all optimal reconciliations, while # ∼1,
∼2 and # ∼2 + ∼1 indicate the number of equivalence classes when relations ∼1, ∼2 or
both are applied; the last column, called NMR, indicates the value of the Normalized Magnitude
Reduction, rounded to two digits after the decimal point, which is given by log(#sol)−log(#∼1+∼2))

log(#sol) .

Such value is 1 when all optimal solutions are reduced to a single parsimonious reconciliation

2.9 Experimental Results 93

when applying the two equivalences. Inversely, the closer this value is to 0, the less the two
equivalences were able to reduce by similarity the number of solutions.

Observe that for Wolbachia, the number of solutions is so huge that, for space reason, we
rounded the number to fit the table.

Regarding alternative choices to NMR for evaluating our results could have been a simple
proportion ∼2+∼1

#sol but just obtaining, for instance, 0.001% of (equivalence classes of) reconcilia-
tions it could be meaning less when facing huge numbers of solutions as in the Wolbachia case.
Indeed, we would have obtained, in this way, the score of score 0.001, where the optimum would
be reached at 1/#sol, passing from ∼ 1048 to ∼ 1047 objects which are actually. Hence we decide
to measure the exponents of the base 10 so in this way in this example it would be 47/48 ∼ 0.97.
Now halving the order of magnitude it could obtained both passing from 100 to 10 solutions and
passing from ∼ 1048 to ∼ 1024. Although having to treat 10 solutions and ∼ 1024 could not be
evaluated at the same way. We decide then to rapport the reduction of the magnitude w.r.t. the
overall magnitude (See Figure 2.26):

NMR = 1− log(a · 10x)
log(b · 10y) =

y + log(b)− x− log(a)

y + log(b)
�

ROUGH

y − x

y

When y ≥ x � 1 and assuming 0 ≤ a, b < 10 =⇒ 0 ≤ log(a), log(b) < 1.

Figure 2.26: green-to-red points: NMR(x = Index, y = 10000). Black line: rough super-
extimation of NMR obtained by approximating numbers involved in the computation as
a · 10x ∼ x; in particular the function is constant in the intervals of the form [10x, 10x+1).

From the previous tables we can deduce a number of observations.

94

Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR
GL 2 2 2 2 0
RH 1056 176 528 88 0,36
FD 944 368 50 18 0,58
COG2085 109056 7360 171 6 0,85
COG3715 63360 2520 1408 32 0,69
COG4964 36 4 9 1 1
COG4965 44800 23456 121 13 0,76
PP 144 144 72 72 0,14
SFC 40 16 10 4 0,62
EC 2 2 2 2 0
PMP 2 2 1 1 1
PML 2 2 1 1 1
Wolbachia ∼ 1.01 · 1047 ∼ 3.77 · 1044 ∼ 2.92 · 108 ∼ 2.42 · 104 0,91

Table 2.3: Results for cost vector (−1, 1, 1, 1).

Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR
GL 2 2 2 2 0
RH 42 42 8 8 0,44
FD 25184 22752 256 206 0,47
COG2085 44544 36224 11 4 0,87
COG3715 1172598 777030 2256 1112 0,50
COG4964 224 224 2 2 0,87
COG4965 17408 17408 4 4 0,86
PP 5120 4480 344 280 0,34
SFC 184 160 16 10 0,56
EC 16 16 13 13 0,07
PMP 2 2 1 1 1
PML 180 160 33 21 0,41
Wolbachia ∼ 3.19 · 1048 ∼ 5.72 · 1047 ∼ 9.33 · 105 ∼ 7.68 · 104 0,90

Table 2.4: Results for cost vector (0, 1, 1, 1).

Firstly, note that it is not surprising that in the case of the cost vector (0, 1, 1, 1),
there are on average more optimal solutions than with the other cost vectors. Since events
different from cospeciation are indistinguishable in terms of cost, there is a freedom in
terms of choices of the events keeping the overall cost constant.

Secondly, given that both equivalence relations are primarily based on host-switch
mappings, we would then expect that the higher is the number of host switches, the
greater would be the chance of having a lower number of equivalence classes w.r.t. the
total number of solutions. For both the equivalence class relations it is anyway different
how these host switches will be present inside the reconciliation depending on the existence
of not of the α(·) ancestor for them. For both of the relations, to benefit of an huger
number of reconciliations in the same class, hence a lower number of different equivalence
classes, it is desirable to have many adjacent nodes in P associated to host-switch event.

2.9 Experimental Results 95

Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR
GL 2 2 2 2 0
RH 2208 368 1608 268 0,27
FD 408 180 48 20 0,50
COG2085 37568 3200 226 14 0,75
COG3715 9 7 4 2 0,68
COG4964 36 4 9 1 1
COG4965 640 576 4 3 0,83
PP 72 72 36 36 0,16
SFC 40 16 10 4 0,62
EC 18 18 18 18 0
PMP 2 2 1 1 1
PML 2 2 1 1 1
Wolbachia ∼ 1.01 · 1047 ∼ 3.77 · 1044 ∼ 2.92 · 108 ∼ 2.42 · 104 0,91

Table 2.5: Results for cost vector (0, 1, 2, 1).

Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR
GL 2 2 2 2 0
RH 288 48 288 48 0,32
FD 80 16 10 2 0,84
COG2085 46656 1344 540 10 0,79
COG3715 33 2 33 2 0,80
COG4964 54 6 18 2 0,83
COG4965 6528 448 94 5 0,82
PP 72 72 36 36 0,16
SFC 40 16 10 4 0,62
EC 16 16 16 16 0
PMP 18 18 10 10 0,20
PML 11 6 7 4 0,42
Wolbachia ∼ 4.08 · 1042 ∼ 1.33 · 1036 ∼ 4.18 · 1010 ∼ 1.15 · 103 0,93

Table 2.6: Results for cost vector (0, 2, 3, 1).

In the case of ∼1, letting n be this adjacent nodes and letting l be the length of the
path in H between the associated α(·) and ω(·), we would obtain an higher value for(
n−l−1
l−1

)
i.e. a lower bound on the number of reconciliations in the same ∼1-class which

map these n nodes into the l nodes of the path.

For ∼2 an higher number of adjacent nodes associated to host-switch events leads to
a bigger tree T in ΓP (·), let say of size n, hence it is possible to roughly extimate with
log(2n−1/2)n the number of possible mappings of these n nodes on the frontier of T (See
Fact 7).

Thirdly, the presence of many host switches clearly deeply depends on the geometry
of the host tree H and the leaf mapping which, if intuitively is spread, i.e. it map nodes
that are closer in P to nodes that are far in H, then clearly promotes the existence of
host switches.

96

Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR
GL 9 9 9 9 0
RH 648 108 504 84 0,32
FD 36 12 14 5 0,55
COG2085 6208 1296 120 10 0,74
COG3715 36 28 16 8 0,42
COG4964 1056 72 264 18 0,59
COG4965 832 736 7 5 0,76
PP 84 72 54 45 0,14
SFC 42 18 11 5 0,57
EC 3 3 3 3 0
PMP 2 2 1 1 1
PML 2 2 1 1 1
Wolbachia ∼ 1.51 · 1047 ∼ 5.66 · 1044 ∼ 5.68 · 108 ∼ 4.32 · 104 0,90

Table 2.7: Results for cost vector (1, 1, 3, 1).

Fourtly, the cost vector C plays a role as well. We present here after an heuristic
related to C which has different consequences for ∼1 and ∼2.
Indeed observe that: when a long slide between α(s) and ω(s) occurs then there is a
parasite non-leaf node α(s) for which is convenient to speciate for example; while its
child assigned to host switch s, the sliding node, can scroll through the slide paying a
fix cost which is at least the cost of the length of the slide cl · slide_length. If it is
parsimonious this reconciliation it should be more convenient in term of cost w.r.t. the
alternative solution of mapping s to �(q) where q is the jumping child of s. In this second
case, we introduce two host-switch edge (�(α(s)), �(q)) and (�(q), �(ω(s))) (assuming that
�(α(s)) � �(q)) and removed the host-switch edge (�(s), �(q)).

Then we pass from a cospeciation of α(s) to an host-switch and we have to pay also
the loss for having �(s(s)) �= �(α(s)).
Comparing the differences in both the scenario,if it is preferable the slide scenario then:

cl · slide_length+ cs ≤ ch + cl,

From this intuitive reasoning follows:

slide_length ≤ 1 +
ch − cs

cl
,

that the greater the difference in cost of host switch and loss events the greater the length
l of the slide, hence the probably greater the reduction of the number of object to treat
for ∼1. On the contrary, if the second scenario is preferred, we would have that q is a
bundle node on behalf of ∼2.

With this heuristic in mind, let us focus on the columns ∼1 and #solutions. It is
not surprising that the worst results are obtained by the cost vectors (0, 1, 1, 1) where,

2.9 Experimental Results 97

intuitively, there cannot be slides of length more than 2, when in the other cases the
length can reach 3, 4.

2.9.2 Metric Space

From a pure computer science point of view and without any biological specific analysis
we do not know how to evaluate the goodness of the distance DH (defined in Section 2.8)
if not the fact that treats directly the minimal information necessary to reconstruct an
optimal reconciliation without knowing the original cost vector.

To supply to this lack of a formal evaluation and inspired by the paper of Robinson
and Foulds [78], we present in this section some histograms and statistics as a sound form
to evaluate this distance. In other words, the histogram somehow shows the empirical
probability for two different reconciliations to be at most a certain distance apart. For
space matters we will not display all the histograms for all the datasets and cost vectors
but just the ones we consider more meaningful or which show some interesting pattern.

On the other hand we present in tables 2.8-2.12 all the datasets and cost vectors the
maximum and minimum distances found for each dataset, together with a theoretical
upper bound.

We use the same datasets summerized in Table 2.2 to collect some statistics on the
distance DH between optimal reconciliations for the cost vectors: (-1, 1, 1, 1), (0, 1, 1, 1),
(0, 1, 2, 1), (0, 2, 3, 1) and (1, 1, 3, 1).

In the tables 2.8-2.12 (one for each cost vector) we present together with the number
of optimal reconciliations (column # solutions), the number of all different host switches
found among all the optimal reconciliations, i.e. the minimum dimension k to embed the
optimal reconciliation space into Hk (column dim(Hk)). We then present the maximum
number (column sM) and minimum number (column sm) of host switches found in a
optimal reconciliation. The column sa contain the average number of host switches among
all the optimal reconciliations.

In column DH ≤, we give an empirical overbound on the maximum distance assuming
that there exists at least 2 reconciliations with the maximum number of switches sM and
at least a reconciliation with x switches for sm ≤ x ≤ sM . Then either the maximum
theoretic distance is 2sM if 2sM ≤ dim(Hk) or it is dim(Hk) if sm + sM ≤ dim(Hk)

(supposing than that there exist two reconciliations complementary in terms of switches)
or the maximum distance is dim(Hk) − sM − sm (supposing that we can minimize the
overlaps of the vector representing the two reconciliations in Hk).

In tables 2.27-2.30, we present some histograms which show the empirical distribution
of the values DH(�, σ) for any pair of distinct reconciliations �, σ ∈ R(H,P, ϕ, c).

The area of the columns with respect to the all area of these histograms represent the
empirical probability of a randomly selected pair of reconciliations to be at that distance.
The area at the left of the column x (plus the column itself) with respect to the whole

98

dataset # solutions dim(Hk) sm sM sa DH ≤
GL 2 4 3 3 3.0 2
RH 1056 42 13 17 15.09 34
FD 944 73 20 24 21.95 48
COG2085 109056 145 25 27 26.01 54
COG3715 63360 91 25 28 27.16 56
COG4964 36 21 13 13 13.0 16
COG4965 44800 216 17 19 18.23 38
PP 144 25 12 13 12.66 25
SFC 40 27 10 10 10.0 20
EC 2 5 4 4 4.0 2
PMP 2 8 6 6 6.0 4
PML 2 10 8 8 8.0 4

Table 2.8: Vector (−1, 1, 1, 1).

dataset # solutions dim(Hk) sm sM sa DH ≤
GL 2 4 3 3 3.0 2
RH 42 41 18 20 18.90 40
FD 25184 132 23 27 25.74 54
COG2085 44544 186 27 28 27.71 56
COG3715 1172598 231 20 31 27.98 62
COG4964 224 43 15 16 15.85 32
COG4965 17408 157 18 19 18.97 38
PP 5120 134 17 20 18.5 40
SFC 184 55 10 11 10.78 22
EC 16 15 4 6 5.18 12
PMP 2 8 6 6 6.0 4
PML 180 60 8 11 10.54 22

Table 2.9: Vector (0, 1, 1, 1).

are, represent the probability that a randomly picked pair of reconciliations has distance
at most x.

In general almost all histograms (generate for all the dataset and vector costs as for
the tables) present a bell-shaped-like form as the ones of Figure. So intuitively we can
say that it is rare to find two reconciliations which are extremely far or extremely close
and to pass from a reconciliation to another on average a certain number of host switches
has to change.

From the histograms we can also deduce other characteristics of the reconciliations in
R(H,P, ϕ, c); indeed, the histograms in figure 2.27 and 2.28 have none or very few pairs
of reconciliations at odd distance. We may than think that there are no or almost none
alternative solutions to an host switch, i.e. either you took a subsolution with an host
switch or the alternative is taking another solution with another host switch which is then
at distance 2.

Typical situation like the described one are the reconciliations in a ∼1 equivalence

2.9 Experimental Results 99

dataset # solutions dim(Hk) sm sM sa DH ≤
GL 2 4 3 3 3,00 2
RH 2208 41 10 16 13,00 32
FD 408 61 18 21 20,05 42
COG2085 37568 107 23 25 24,49 50
COG3715 9 33 19 20 19,66 27
COG4964 36 21 13 13 13,00 16
COG4965 640 58 17 18 17,80 36
PP 72 22 11 12 11,66 21
SFC 40 27 10 10 10,00 20
EC 18 8 1 4 2,60 8
PMP 2 8 6 6 6,00 4
PML 2 10 8 8 8,00 4

Table 2.10: Vector (0, 1, 2, 1).

dataset # solutions dim(Hk) sm sM sa DH ≤
GL 2 4 3 3 3.0 2
RH 288 21 10 13 11.5 19
FD 80 32 19 20 19.5 25
COG2085 46656 82 23 25 24.0 50
COG3715 33 32 19 19 19.0 26
COG4964 54 22 12 13 12.66 19
COG4965 6528 95 16 17 16.98 34
PP 72 22 11 12 11.66 21
SFC 40 27 10 10 10.0 20
EC 16 5 1 4 2.5 5
PMP 18 14 5 6 5.11 12
PML 11 15 7 8 7.18 15

Table 2.11: Vector (0, 2, 3, 1).

class as for instance the ones in Figure 2.19 (which any pair of them has distance 2).
Another situation is represented in Figure 2.20 where the bundle node v (and u in

figure b.) change its mapping in the two figures a. and b. creating a distance equal to 2

times the number of host switch involved (2 host switches in figure a. and 3 in figure b.).

The presence in Figure 2.28 of some odd distance pairs may represent a situation where
it is alternatively possible having an host switch or a combination of loss and duplications
or cospeciations events.

In Figure 2.29 the histogram resemble a mixture of two Gaussian distributions and we
may think that the reconciliations space is split in two sets of close distance pairs hence
you find with either high probability a close distance pair or with high distance according
to the belonging or not of the two reconciliations to the same set.

The histogram of Figure 2.30 presents a situation where the more the distance grows

100

dataset # solutions dim(Hk) sm sM sa DH ≤
GL 9 6 1 3 2.33 6
RH 648 38 8 14 10.90 28
FD 36 31 18 19 18.77 25
COG2085 6208 65 22 25 22.96 50
COG3715 36 44 17 20 18.66 40
COG4964 1056 41 9 13 11.93 26
COG4965 832 77 17 18 17.76 36
PP 84 20 8 11 9.98 20
SFC 42 33 10 10 10.0 20
EC 3 2 0 1 0.66 2
PMP 2 8 6 6 6.0 4
PML 2 10 8 8 8.0 4

Table 2.12: Vector (1, 1, 3, 1).

the higher the number of pairs which have that distance is (distinguishing between odd
and even distances) with a drop of the number of pairs at the highest distance. In this
example the empirical probability of picking a pair at close distance is very low. We may
think that the dataset is sparse.

2.10 Conclusions and Open Problems

In this chapter we have presented and proved various lemmas and propositions (Section
2.5) related to the Reconciliation Model posing some conditions on the cost vector C.
Very often these conditions are that the cost of a cospeciation must not exceed the cost
of a duplication and that the cost of a loss must be strictly positive.
However it is fairly accepted to promote the coevolution w.r.t. the duplication (as we are
looking for this kind of event when it may happen) while assuming cl ≤ 0 may lead to
parsimonious reconciliations where the nodes of P tends to get closer to the root of H.
This is a way to avoid also expensive host switch events; recall our heuristic in Section
2.9:

cl · slide_length+ cs ≤ ch + cl.

It will be interesting to provide other heuristics or prove some results which connect costs
of the events to specific situations that can happen in a parsimonious reconciliation.

Problem 5. Is it true the conjecture on the length of the sliding path or in which cases
is it true? Can we deduce other similar results based on the costs of the events?

To the best of our knowledge we do not know about any other results or works on this
way.

In Theorem 12 we proved that in the host-switch set Θ(�) of a reconciliation � there
is enough information to reconstruct the whole reconciliation �. In Section 2.6 we define

2.10 Conclusions and Open Problems 101

Figure 2.27: Histogram of distances DH(�, σ) for each pair of optimal reconciliations � �= σ
of the dataset COG4964 with cost vector (0,1,2,1).

two equivalence relations ∼1 and ∼2 on R(H,P, ϕ, c) based on host switch and aimed
to reduce the number of reconciliations to treat. In Section 2.9 we showed that this
relations reduce drastically the number of object to treat although we can easily retrieve
any missing reconciliation. We have also seen that usually ∼2 performs better than ∼1

although in not all the cases and all cost vectors, finally, in some cases both are not
performing any substantial reduction. On the comments of the experimental results we
propose some explanation of this phenomenon basing on the cost of host switches and the
spread of the leaf mapping function. From all this the following problems arise:

Problem 6. Is there another equivalence class ∼3 which gives a better reduction on the
number of reconciliation to treat in the cases where ∼1 and ∼2 fail? Applying together
∼1 + ∼2 + ∼3 will it be enough to reduce R(H,P, ϕ, c) to a single reconciliation?

Problem 7. Given the leaf mapping ϕ and calling spread a quantity which can measure
the expected number of host switches (possibly employing the knowledge of the cost vector
) how can we define it? Basing on the intuition that mapping nodes that are closer in
P to nodes that are far in H should promote the existence of host switches, is it a good
definition the following one:

spread(ϕ) =
∑

p,q∈L(P)

distH(ϕ(p), ϕ(q))

distP (p, q)

102

Figure 2.28: Histogram of distances DH(�, σ) for each pair of optimal reconciliations � �= σ
of the dataset COG4965 with cost vector (0,2,3,1).

In section 2.8 we introduce the reconciliation distance DH, also based on host switches.
In section 2.9.2 we present some of its characteristics and, inspired by the approach of
Robinson and Foulds [78] for the phylogenetic tree distance, we evaluate its goodness by
observing its empirical distribution under many datasets and cost vector. We propose also
other alternative definitions of this distance. We show and discuss the positive aspects of
our distance w.r.t. to other already defined distances. However for a valuable evaluation

of all these distances we think that further biological knowledge is require to confirm
that the concept of close by reconciliations respect the biological perhaps still intuitive
meaning of close reconciliation.

Problem 8. Is DH catching the biological meaning of "close reconciliations" and is there
a more deterministic way to evaluate its goodness than the comparative and probabilistic
approach we used?

Finally, still in section 2.8, we showed that by a sufficiently large values of k, R(H,P, ϕ, c)

can be embedded into the k dimensional hypercube Hk; it would be interesting to apply
some dimension reduction techniques as correspondence analysis or some modification of
Principal Component Analysis techniques to actually see the distribution of point on this
space, with the hope to have a better insight.

2.10 Conclusions and Open Problems 103

Figure 2.29: Histogram of distances DH(�, σ) for each pair of optimal reconciliations � �= σ
of the dataset FD with cost vector (0,1,2,1).

Figure 2.30: Histogram of distances DH(�, σ) for each pair of optimal reconciliations � �= σ
of the dataset SFC with cost vector (0,1,1,1).

104

Figure 2.31: Histogram of distances DH(�, σ) for each pair of optimal reconciliations � �= σ
of the dataset FD with cost vector (0,1,1,1).

Bibliography

[1] Amilhastre, J., Vilarem, M., and Janssen, P. (1998). Complexity of minimum biclique
cover and minimum biclique decomposition for bipartite domino-free graphs. Discrete
Applied Mathematics, 86(2):125 – 144.

[2] Avis, D. and Fukuda, K. (1996). Reverse search for enumeration. Discrete Applied
Mathematics, 65(1):21–46. First International Colloquium on Graphs and Optimiza-
tion.

[3] Bandi, C., Dunn, A. M., Hurst, G. D., and Rigaud, T. (2001). Inherited microor-
ganisms, sex-specific virulence and reproductive parasitism. Trends in Parasitology,
17(2):88 – 94.

[4] Bansal, M., Alm, E., and Kellis, M. (2012). Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformatics, 28.

[5] Baudet, C., Donati, B., Sinaimeri, B., Crescenzi, P., Gautier, C., Matias, C., and
Sagot, M.-F. (2014). Cophylogeny reconstruction via an approximate bayesian compu-
tation. 64.

[6] Birmelé, E., Crescenzi, P., Ferreira, R., Grossi, R., Lacroix, V., Marino, A., Pisanti,
N., Sacomoto, G., and Sagot, M.-F. (2012). Efficient Bubble Enumeration in Directed
Graphs.

[7] Björklund, A., Husfeldt, T., and Koivisto, M. (2009). Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563.

[8] Bollobás, B. (1998). Modern graph theory, volume 184 of Graduate Texts in Mathe-
matics. Springer-Verlag, Berlin.

[9] Borassi, M., Crescenzi, P., Lacroix, V., Marino, A., Sagot, M.-F., and Milreu, P. V.
(2013). Telling Stories Fast, pages 200–211. Springer Berlin Heidelberg, Berlin, Hei-
delberg.

[10] Boros, E., Elbassioni, K., Gurvich, V., and Khachiyan, L. (2004). Generating Maxi-
mal Independent Sets for Hypergraphs with Bounded Edge-Intersections, pages 488–498.
Springer Berlin Heidelberg, Berlin, Heidelberg.

106 BIBLIOGRAPHY

[11] Bossan, B., Koehncke, A., and Hammerstein, P. (2011). A new model and method
for understanding wolbachia-induced cytoplasmic incompatibility. PLoS ONE, 6.

[12] Brandstädt, A., Eschen, E. M., and Sritharan, R. (2007). The induced matching
and chain subgraph cover problems for convex bipartite graphs. Theoretical computer
science, 381(1):260–265.

[13] Breeuwer, J. (1997). Wolbachia and cytoplasmic incompatibility in the spider mites
tetranychus urticae and t. turkestani. Heredity, 79.

[14] Breeuwer, J. and H. Werren, J. (1990). Microorganisms associated with chromosome
destruction and reproductive isolation between two insect species. 346:558–60.

[15] Brightwell, G. and Winkler, P. (1991). Counting linear extensions. Order, 8(3):225–
242.

[16] Calamoneri, T., Gastaldello, M., Mary, A., Sagot, M.-F., and Sinaimeri, B. (2016a).
Finding and enumerating chain subgraphs and covers of bipartite graphs. Theoretical
Computer Science (manuscript under review).

[17] Calamoneri, T., Gastaldello, M., Mary, A., Sagot, M.-F., and Sinaimeri, B. (2016b).
On Maximal Chain Subgraphs and Covers of Bipartite Graphs, pages 137–150. Springer
International Publishing, Cham.

[18] Callaini, G., Dallai, R., and Riparbelli, M. (1997). Wolbachia-induced delay of pa-
ternal chromatin condensation does not prevent maternal chromosomes from enter-
ing anaphase in incompatible crosses of drosophila simulans. Journal of Cell Science,
110(2):271–280.

[19] Chang-Wu, Y., Gen-Huey, C., and Tze-Heng, M. (1998). On the complexity of the
k-chain subgraph cover problem. Theoretical computer science, 205(1):85–98.

[20] Charlat, S., Calmet, C., Andrieu, O., and Merçot, H. (2005). Exploring the evolution
of wolbachia compatibility types: a simulation approach. Genetics, 170.

[21] Charlat, S., Calmet, C., and Merçot, H. (2001). On the mod resc model and the
evolution of wolbachia compatibility types. Genetics, 159.

[22] Charleston, M. (1998). Jungles: A new solution to the host/parasite phylogeny
reconciliation problem. 149:191–223.

[23] Dias, V., M. Herrera de Figueiredo, C., and Szwarcfiter, J. (2005). Generating
bicliques of a graph in lexicographic order. Theoretical Computer Science, 337(1-3):240
– 248.

[24] Dias, V. M., de Figueiredo, C. M., and Szwarcfiter, J. L. (2007). On the generation
of bicliques of a graph. Discrete Applied Mathematics, 155(14):1826 – 1832.

BIBLIOGRAPHY 107

[25] Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., and Sagot, M.-F. (2015). Euca-
lypt: efficient tree reconciliation enumerator. Algorithms for Molecular Biology, 10(1):3.

[26] Doyon, J., Chauve, C., and Hamel, S. (2009). Space of gene/species trees reconcilia-
tions and parsimonious models. Journal of Computational Biology, 16.

[27] Doyon, J.-P., Ranwez, V., Daubin, V., and Berry, V. (2011). Models, algorithms and
programs for phylogeny reconciliation. 12:392–400.

[28] Doyon, J.-P., Scornavacca, C., Gorbunov, K., Szollosi, G., Ranwez, V., and Berry, V.
(2010). An efficient algorithm for gene/species trees parsimonious reconciliation with
losses, duplications and transfers. 6398:93–108.

[29] Duron, O., Bernard, C., Unal, S., Berthomieu, A., Berticat, C., and Weill, M. (2006).
Tracking factors modulating cytoplasmic incompatibilities in the mosquito culex pipi-
ens. 15:3061–71.

[30] Eiter, T. and Gottlob, G. (1995). Identifying the minimal transversals of a hypergraph
and related problems. SIAM Journal on Computing, 24(6):1278–1304.

[31] Engelstadter, J. and Telschow, A. (2009). Cytoplasmic incompatibility and host
population structure. Heredity, 103.

[32] Engelstädter, J., Charlat, S., Pomiankowski, A., and D D Hurst, G. (2006). The
evolution of cytoplasmic incompatibility types: integrating segregation, inbreeding and
outbreeding. Genetics, 172.

[33] Ewacha, K., Rival, I., and Zaguia, N. (1997). Approximating the number of linear
extensions. Theoretical Computer Science, 175(2):271 – 282.

[34] Felsner, S., Gustedt, J., and Morvan, M. (1998). Interval reductions and extensions
of orders: Bijections to chains in lattices. Order, 15(3):221–246.

[35] Felsner, S. and Trotter, W. (2000). Dimension, graph and hypergraph coloring.
Order, 17(2):167–177.

[36] Ferreira, R., Grossi, R., Marino, A., Pisanti, N., Rizzi, R., and Sacomoto, G. (2012).
Optimal listing of cycles and st-paths in undirected graphs.

[37] Ferreira, R., Grossi, R., and Rizzi, R. (2011). Output-Sensitive Listing of Bounded-
Size Trees in Undirected Graphs, pages 275–286. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[38] Fomin, F. V. and Kratsch, D. (2010). Exact Exponential Algorithms. Springer-Verlag
New York, Inc., New York, NY, USA.

108 BIBLIOGRAPHY

[39] Fredman, M. L. and Khachiyan, L. (1996). On the complexity of dualization of
monotone disjunctive normal forms. Journal of Algorithms, 21(3):618–628.

[40] Gastaldello, M., Calamoneri, T., and Sagot, M.-F. (2017a). Characterize reconcil-
iation by host swithes: A new distance and two equivalence relations based on the
host-switch set of a reconciliation. manuscript.

[41] Gastaldello, M., Calamoneri, T., and Sagot, M.-F. (2017b). Extracting few repre-
sentative reconciliations with host switches (extended abstract). 14th International
Conference on Computational Intelligence Methods for Bioinformatics and Biostatis-
tics.

[42] Gastaldello, M., Limouzy, V., and Mary, A. (2017c). Computing the poset dimension
forgetting about linear extensions. manuscript.

[43] Gely, A., Nourine, L., and Sadi, B. (2009). Enumeration aspects of maximal cliques
and bicliques. 157:1447–1459.

[44] Ghelelovitch, S. (1952). Sur le determinisme genetique de la sterilite dans les croise-
ments entre differentes souches de culex autogenicus roubaud. Comptes Rendus Heb-
domadaires des Seances de l’Academie des Sciences, 234.

[45] Golovach, P. A., Heggernes, P., Kratsch, D., and Villanger, Y. (2015). An incre-
mental polynomial time algorithm to enumerate all minimal edge dominating sets.
Algorithmica, 72(3):836–859.

[46] Goodman, M., Czelusniak, J., William Moore, G., E. Romero-Herrera, A., and Mat-
suda, G. (1979). Fitting the gene lineage into its species lineage, a parsimony strategy
illustrated by cladograms constructed from globin sequences. 28:132.

[47] Gotoh T., Noda H., I. S. (2007). Cardinium symbionts cause cytoplasmic incompat-
ibility in spider mites. Heredity, 98.

[48] Guigo, R., Muchnik, I., and Smith, T. (1996). Reconstruction of ancient molecular
phylogeny. 6:189–213.

[49] Hammer, P. L., Peled, U. N., and Sun, X. (1990). Difference graphs. Discrete Applied
Mathematics, 28(1):35 – 44.

[50] Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., and Werren,
J. H. (2008). How many species are infected with wolbachia? a statistical analysis of
current data. FEMS Microbiol. Lett., 281.

[51] Hunter, M., Perlman, S., and Kelly, S. (2003). A bacterial symbiont in the bac-
teroidetes induces cytoplasmic incompatibility in the parasitoid wasp encarsia per-
gandiella. Philosophical transactions of the Royal Society of London. Series B: Bio-
logical sciences, 270(1529):2185–2190.

BIBLIOGRAPHY 109

[52] Johnson, D. S., Yannakakis, M., and Papadimitriou, C. H. (1988). On generating all
maximal independent sets. Information Processing Letters, 27:119–123.

[53] Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V., and Makino, K. (2005). On
the complexity of some enumeration problems for matroids. 19:966–984.

[54] Kiyomi, M. and Uno, T. (2006). Generating chordal graphs included in given graphs.
E89D:763–770.

[55] Koda, Y. and Ruskey, F. (1993). A gray code for the ideals of a forest poset. Journal
of Algorithms, 15(2):324 – 340.

[56] Laven, H. (1967). Eradication of culex pipiens fatigans through cytoplasmic incom-
patibility [27]. 216:383–4.

[57] Makino, K. and Uno, T. (2004). SWAT 2004, Lecture Notes in Computer Science,
chapter New Algorithms for Enumerating All Maximal Cliques, pages 260–272. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[58] Marino, A. (2015). Analysis and Enumeration: Algorithms for Biological Graphs.
Atlantis Studies in Computing. Atlantis Press.

[59] Marshall, J. F. (1938). The British Mosquitoes.

[60] Mary, A. (2013)). Énumération des Dominants Minimaux d’un graphe. PhD thesis.

[61] McMeniman, C. J., Lane, R. V., Cass, B. N., Fong, A. W., Sidhu, M., Wang, Y.-F.,
and O’Neill, S. L. (2009). Stable introduction of a life-shortening wolbachia infection
into the mosquito aedes aegypti. Science, 323(5910):141–144.

[62] Merçot, H. and Charlat, S. (2004). Wolbachia infections in drosophila melanogaster
and d. simulans: polymorphism and levels of cytoplasmic incompatibility. Genetica,
120.

[63] Mirkin, B., B. Muchnik, I., and Smith, T. (1995). A biologically consistent model
for comparing molecular phylogenies. 2:493–507.

[64] Moon, J. W. and Moser, L. (1965). On cliques in graphs. Israel Journal of Mathe-
matics, 3(1):23–28.

[65] Nor, I., Engelstädter, J., Duron, O., Reuter, M., Sagot, M.-F., and Charlat, S. (2013).
On the genetic architecture of cytoplasmic incompatibility: inference from phenotypic
data. The American Naturalist, 182(1):E15–E24.

[66] Nor, I., Hermelin, D., Charlat, S., Engelstädter, J., Reuter, M., Duron, O., and Sagot,
M.-F. (2010). Mod/resc parsimony inference: Theory and application. 213:23–32.

110 BIBLIOGRAPHY

[67] Ono, A. and Nakano, S.-i. (2005). Constant Time Generation of Linear Extensions,
pages 445–453. Springer Berlin Heidelberg, Berlin, Heidelberg.

[68] Orlin, J. (1977). Contentment in graph theory: Covering graphs with cliques. Inda-
gationes Mathematicae (Proceedings), 80(5):406 – 424.

[69] Osborne, S., San Leong, Y., O’Neill, S., and Johnson, K. (2009). Variation in antiviral
protection mediated by different wolbachia strains in drosophila simulans. 5:e1000656.

[70] Ovadia, Y., Fielder, D., Conow, C., and Libeskind-Hadas, R. (2011). The cophy-
logeny reconstruction problem is np-complete. 18:59–65.

[71] Page, R. (1994a). Maps between trees and cladistic analysis of historical associations
among genes, organisms, and areas. 43.

[72] Page, R. (1994b). Parallel phylogenies: Reconstructing the history of host-parasite
assemblages. Cladistics, 10.

[73] Page, R. D. and Charleston, M. A. (1998). Trees within trees: phylogeny and histor-
ical associations. Trends in Ecology & Evolution, 13(9):356 – 359.

[74] Peled, U. N. and Sun, F. (1995). Enumeration of difference graphs. Discrete Applied
Mathematics, 60(1):311 – 318.

[75] Poinsot, D., Charlat, S., and Merçot, H. (2003). On the mechanism of wolbachia-
induced cytoplasmic incompatibility: Confronting the models with the facts. 25:259–65.

[76] Razgon, I. (2011). Computing Minimum Directed Feedback Vertex Set in O∗(1.9977n),
pages 70–81.

[77] Rigaud, T. (1997). Inherited microoraganisms and sex determination of arthropod
hosts. in: Influential passengers: Inherited microorgan isms and arthropod reproduc-
tion. Oxfor University Press.

[78] Robinson, D. and Foulds, L. (1981). Comparison of phylogenetic trees. Mathematical
Biosciences, 53(1):131 – 147.

[79] S. Hafner, M. and A. Nadler, S. (1988). Phylogenetic trees support the coevolution
of parasites and their hosts. 332:258–9.

[80] Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., and Durand, D. (2012). In-
ferring duplications, losses, transfers and incomplete lineage sorting with nonbinary
species trees. 28:i409–i415.

[81] Strozecki, Y. (2010). Enumeration complexity and matroid decomposition.

BIBLIOGRAPHY 111

[82] Tofigh, A., Hallett, M., and Lagergren, J. (2011). Simultaneous identification of du-
plications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinformatics,
8(2):517–535.

[83] Trotter, W. (1981). Stacks and splits of partially ordered sets. 35:229–256.

[84] Trotter, W. (1992). Combinatorics and Partially Ordered Sets: Dimension Theory.

[85] Tsukiyama S., Ide M., A. H. and Y., S. (1977). A new algorithm for generating all
the maximal independent sets. SIAM J. on Computing, (6):505–517.

[86] Uno, T. (2001). A fast algorithm for enumerating bipartite perfect matchings. In Pro-
ceedings of the 12th International Symposium on Algorithms and Computation, ISAAC
’01, pages 367–379, London, UK, UK. Springer-Verlag.

[87] Vavre, F., Fleury, F., Varaldi, J., Fouillet, P., and Bouletreau, M. (2000). Evidence
for female mortality in wolbachia-mediated cytoplasmic incompatibility in haplodiploid
insects: epidemiologic and evolutionary consequences. Evolution, 54.

[88] Werren, J. H. (1997). Biology of Wolbachia. Annual Review of Entomology, 42.

[89] Wieseke, N., Bernt, M., and Middendorf, M. (2013). Unifying parsimonious tree
reconciliation. Lecture notes in Computer Science, 8126.

[90] Wieseke, N., Hartmann, T., Bernt, M., and Middendorf, M. (2015). Cophylogenetic
reconciliation with ilp. 12:1–1.

[91] Yannakakis, M. (1982). The complexity of the partial order dimension problem.
SIAM Journal on Algebraic Discrete Methods, 3(3):351–358.

[92] Yao-ban, C. Y., Ranwez, V., and Scornavacca, C. (2015). Exploring the space of
gene/species reconciliations with transfers. Journal of Mathematical Biology, 71.

112 BIBLIOGRAPHY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

