Caractérisation des matériaux piézoélectriques dédiés à la génération des décharges plasmas pour applications biomédicales

par Mohamed Khaled Kahalerras

Thèse de doctorat en Genie electrique

Sous la direction de Jean-François Rouchon et de François Pigache.

Le président du jury était Christian Courtois.

Le jury était composé de François Pigache, Christian Courtois, Dejan Vasic, Laurent Lebrun, Claire Tendero.

Les rapporteurs étaient Dejan Vasic, Laurent Lebrun.


  • Résumé

    Les transformateurs piézoélectriques se positionnent aujourd'hui comme une alternative technologique séduisante face aux solutions classiquement utilisées pour la génération des plasmas froids. Leur haute permittivité, leur faible tension d’alimentation et leur capacité de miniaturisation en font une solution sérieuse et originale pour de nombreuses applications faibles puissances, notamment dans le domaine biomédical pour la stérilisation, le traitement de surface et la décontami-nation des instruments médicaux. Dans le cadre d'un fonctionnement en générateur plasma, la conversion électromécanique au sein du transformateur s’accompagne de pertes mécaniques et diélectriques, souvent converties en chaleur. À ces effets s'ajoute l’influence proprement dite de la décharge sur le comportement électrique du dispositif. L’évolution dynamique et fortement non-linéaire de la décharge entraine un comportement méconnu des grandeurs électriques. Par conséquent, l’étage d’alimentation du transformateur constitue un sujet d’étude au même titre que le transformateur lui-même. De plus, étant donné la configuration du processus de génération, qui positionne le matériau piézoélectrique comme source et siège de la décharge plasma, il devient nécessaire d’analyser la viabilité du dispositif. L’ionisation du milieu gazeux environnant le générateur provoque des effets électroniques complexes, susceptibles d’entrainer des dépôts de matière à la surface du matériau ou d’en éroder la surface. C’est dans ce cadre, à l’interface entre le génie électrique et la science des matériaux, que s’articule cette thèse. Une première partie est destinée au développement d’un outil de commande numérique du générateur par une boucle de verrouillage de phase, assurant sa continuité de fonctionnement face aux variations des conditions opératoires. Par la suite, une modélisation du générateur plasma dans des configurations proches des décharges à barrières diélectriques est effectuée ;des simulations permettent une estimation de la puissance de décharge à partir d’une identification expérimentale des paramètres du modèle. Dans un deuxième temps, nous cherchons à établir une corrélation entre la structure du matériau et ses propriétés électriques en s’appuyant sur une méthodologie de caractérisation multi-échelle, avant et après décharge plasma. L'étude se focalise principalement sur l'évolution en surface de la structure cristalline et la composition chimique, en liaison avec les propriétés fonctionnelles du transformateur après génération de la décharge. Enfin, une étude en température porte sur l’investigation des effets d’auto-échauffement du générateur dans ce mode de fonctionnement

  • Titre traduit

    Characterization of piezoelectric materials dedicated to plasma discharges generation for biomedical applications


  • Résumé

    Due to intensive development efforts during the past decade, piezoelectric transformers havebecome an attractive alternative solution compared to the con-ventionally used technologies forcold plasma generation. Their high efficiency, thin-shaped dimensions and low voltage supplymake them serious and original candidates for numerous low power applications, particularly inbiomedical field. Operating as a plasma generator, the electromechanical conversion within thetransformer is accompanied by mechanical and dielectric losses, often converted into heat. On topof these effects, the discharge is likely to influence the electrical behavior of the device. Thedynamic and highly non-linear evolution of the dis-charge leads to an unknown behavior ofelectrical properties. Consequently, the transformer supply stage is an active research subject inthe same way as the trans-former itself. Moreover, considering the configuration of the generationprocess, which positions the piezoelectric material as the source and the spot of the plasmadischarge, it becomes necessary to consider the viability of the device. The ioniza-tion of thegaseous environment surrounding the generator causes complex elec-tronic effects, which canlead to material deposition on the surface of the generator and thus modify or even degrade it. It iswithin this framework, at the interface between electrical engineering and material science, thatthis thesis is articulated. A first part is intended to develop a setup for numerical control of thedevice using a digital phase-locked loop to ensure its continuous operation in different operatingconditions. Subsequently, a model of the plasma generator in configurations close to dielectricbarrier discharges is proposed; Simulations allow an estimation of the discharge power from anexperimental identification of the model parameters. In a second part, we seek to establish acorrelation between the material structure and its electrical properties based on a multi-scalecharacterization methodology, before and after plasma discharge. The study focuses mainly onthe surface evolution in terms of the crystalline structure and the chemical composition, related tothe over-all properties of the piezoelectric transformer before and after discharge generation.Finally, a temperature study that concerns the investigation of the effects of self-heating of thegenerator in this operating mode is performed


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.