Thèse soutenue

Extension d'ordre élevée pour les méthodes Boltzmann sur réseau régularisées par récurrence
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Christophe Guy Coreixas
Direction : Guillaume PuigtJean-François Boussuge
Type : Thèse de doctorat
Discipline(s) : Dynamique des fluides
Date : Soutenance le 22/02/2018
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (Toulouse)
Jury : Président / Présidente : Nicolas Gourdain
Examinateurs / Examinatrices : Guillaume Puigt, François Dubois, Florian de Vuyst, Irina Ginzburg, Jonas Latt
Rapporteurs / Rapporteuses : François Dubois, Florian de Vuyst

Résumé

FR  |  
EN

Ce manuscrit est consacré au développement et à la validation d'un nouveau modèle de collision destiné à améliorer la stabilité des modèles lattice Boltzmann (LB) d'ordre élevés lors de la simulation d'écoulements : (1) isothermes et faiblement compressibles à nombre de Reynolds élevés, ou (2) compressibles et comprenant des discontinuités telles que des ondes de choc. Ce modèle de collision s'appuie sur une étape de régularisation améliorée. Cette dernière inclut désormais un calcul par récurrence des coefficients hors-équilibre du développement en polynômes d'Hermite. Ces formules de récurrence sont directement issues du développement de Chapman-Enskog, et permettent de correctement filtrer les contributions non-hydrodynamiques émergeant lors de l'utilisation de maillages sous-résolus. Cette approche est d'autant plus intéressante quelle est compatible avec un grand nombre de réseaux de vitesses discrètes. Ce modèle LB d'ordre élevé est validé tout d'abord pour des écoulements isothermes à nombre de Reynolds élevé. Un couplage avec une technique de capture de choc permet ensuite d'étendre son domaine de validité aux écoulements compressibles incluant des ondes de choc. Ce travail se conclut avec une étude de stabilité linéaire des modèles considérés, le tout dans le cas d'écoulements isothermes. Ceci permet de quantifier de manière distincte l'impact des discrétisations en vitesse et numérique, sur le comportement spéctrale du jeu d'équations associé. Cette étude permet au final de confirmer le gain en stabilité induit par le nouveau modèle de collision.