Thèse soutenue

Plastification interne et design de matériaux par oxydation périodate de cellulose

FR  |  
EN
Auteur / Autrice : Julien Leguy
Direction : Yoshiharu NishiyamaLaurent Heux
Type : Thèse de doctorat
Discipline(s) : Sciences des polymères
Date : Soutenance le 30/03/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale chimie et science du vivant (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Centre de recherches sur les macromolécules végétales (Grenoble ; 1966-....)
Jury : Président / Présidente : Naceur Belgacem
Examinateurs / Examinatrices : Emily Cranston
Rapporteurs / Rapporteuses : Gilles Sèbe, Wim Thielemans

Résumé

FR  |  
EN

La cellulose, abondante et renouvelable, offre une alternative biosourcée intéressante pour remplacer les thermoplastiques pétrosourcés très présents dans la vie courante. Cependant, elle ne peut être utilisée dans les procédés de thermoformage de l’industrie de la plasturgie car sa température de fusion est supérieure à sa température de dégradation. Des dérivés comme l’acétate de cellulose montrent un caractère thermoplastique plus affirmé, avec des températures de transition vitreuse et de fusion plus basses que celles de la cellulose, mais nécessitent néanmoins l’usage de plastifiants externes pour être mis en forme. Ces plastifiants peuvent à terme migrer en dehors des matériaux, provoquant une dégradation des propriétés et des problèmes environnementaux si ces molécules sont dangereuses.Le travail présenté ici propose de remplacer la plastification externe par une plastification interne qui consiste à greffer les plastifiants sur les macromolécules, évitant ainsi toute migration. Pour cela, une modification en deux étapes de la cellulose a été imaginée : une oxydation au périodate pour augmenter la flexibilité du squelette cellulosique et introduire des groupements aldéhyde donnant lieu à la dialdéhyde cellulose (DAC), suivie d’un greffage des molécules plastifiantes sur ces aldéhydes.Une étude complète de l’oxydation de la cellulose au périodate a d’abord été réalisée en faisant varier de nombreux paramètres tels que la quantité d’oxydant, le temps de réaction ou la température. Elle a permis de préciser les conditions optimales de contrôle du degré d’oxydation (DO) qui est un paramètre clé dans la compréhension des relations structure-propriétés au sein des matériaux réalisés à partir de DAC. En particulier, une méthode de caractérisation fiable et précise du DO par résonance magnétique nucléaire du solide (13C CP-MAS RMN) a été développée et comparée aux méthodes de la littérature. Une réduction de la DAC a ensuite permis de générer des nanobâtonnets colloïdaux chevelus, non chargés mais stables en suspension aqueuse, qui ont été caractérisés par une combinaison de techniques (diffusion de rayonnement, microscopie électronique en transmission et turbidimétrie). Par ailleurs, le séchage de ces suspensions produit des films thermoplastiques avec une structuration nanocomposite de type cœur-écorce. Enfin, grâce à des réactions d’amination réductrice avec différentes amines, de nouveaux matériaux thermoplastiques ont été obtenus. Les propriétés ultrastructurales et thermomécaniques de ces différents matériaux ont été caractérisées par des méthodes telles que la RMN, l’analyse mécanique dynamique, la calorimétrie différentielle à balayage ou l’analyse thermogravimétrique (ATG). Ces résultats montrent que les matériaux issus de ces modifications possèdent une Tg inversement proportionnelle au DO, comprise entre 122 et 65 °C selon le DO et le type de modification. Notre stratégie est donc prometteuse pour la fabrication de matériaux thermoplastiques transformables élaborés à partir de cellulose.