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RÉSUMÉ

Les récents progrès en matière de fréquences d’excitation au-delà du gigahertz
offrent aujourd’hui la possibilité de sonder la réponse interne d’un système quan-
tique. Résoudre le fonctionnement en temps des futurs composants de la nanoélec-
tronique apparaît aujourd’hui comme le défi majeur de la prochaine avancée
en matière de modélisation/simulation. Des tensions de grilles oscillantes, le
régime transitoire de l’application d’une tension de polarisation, mais également
des pulses d’illumination appliqués, sont des exemples de problématiques essen-
tielles en simulation du transport quantique dans l’urgence de nouvels angles
d’approche autant que de méthodes numériques performantes. C’est le con-
texte de cette thèse, qui se concentre sur trois axes. Une première partie sur
la méthodologie. Nous avons proposé une technique adaptée à la simulation du
transport dépendant du temps dans les nanosystèmes interagissant avec un ray-
onnement lumineux, en nous appuyant sur l’état de l’art des méthodologies de
statistiques quantiques avec une attention particulière au formalisme des fonc-
tions de Green hors-équilibre. La deuxième partie de la thèse est consacrée
au développement et à la mise en œuvre d’algorithmes efficaces pour simuler
des fonctionnement résolus en temps de nanodispositifs optoélectroniques quan-
tiques. Enfin, cette nouvelle méthode et les algorithmes développés nous ont
permis d’étudier les processus de transfert de porteurs dans des nanojunctions
moléculaires. Cette étude nous a conduit à l’élucidation d’effets physiques in-
soupçonnés et à des propositions expérimentales captivantes pour la détermina-
tion de caractéristiques quantiques internes de ces nanodispositifs. Ce travail
nous fournit un outil précieux pour la simulation du transport quantique ultrara-
pide. Il donne également un aperçu de la pertinence de la dynamique transitoire
dans la compréhension du fonctionnement des nanodispositifs optoélectroniques
résolu en temps, et ouvre la voie vers la conception de l’optoélectronique ultra-
rapide.
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ABSTRACT

Recent advances in excitation frequencies beyond gigahertz now offer the abil-
ity to probe the internal response of a quantum system. Time dependence in
future nanoelectronics has arisen as the major challenge of next advances in de-
vice modeling and simulations. Oscillating gate voltages, time-dependent bias
but also applied illumination pulses, all are examples of key issues in quantum
transport simulations which require novel approaches as well as efficient numer-
ical methods. This is the context of this thesis, which focuses on three areas. A
first part concerns the methodology. We proposed a suitable technique to the
simulation of time-dependent transport in nano-systems interacting with light
radiation, relying on the state of the art in quantum statistical methodologies,
with a special attention to the formalism of non-equilibrium Green’s functions.
The second part of the thesis is devoted to the development and implementation
of efficient algorithms to simulate time-resolved quantities for quantum opto-
electronic nanodevices. Finally, this new method and the developed algorithms
have enabled us to investigate carrier transfer processes in molecular nanojunc-
tions. This study led us to the elucidation of unsuspected physical effects and
captivating experimental proposals for the determination of internal quantum
characteristics of these nanodevices. This work provides us with a valuable tool
for ultrafast quantum transport simulation. It also gives indeed an insight on
the relevance of transient dynamics in the understanding of time-resolved opto-
electronic nanodevice operations and open avenues towards the design of future
ultrafast optoelectronics.
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CHAPTER

ONE

INTRODUCTION

1.1. Motivation

The motivation of this work lies in the possibility of controlling electronic, ionic,
spin and orbital degrees of freedom of electrons at sub-picosecond time scales
for application in ultrafast optoelectronics, and quantum computation and infor-
mation. The underlying question is how to understand and control the intricate
properties of matter, molecules and finally nanodevices that emerge from com-
plex correlations in their internal structure and on their internal time scales?
And how could we characterize and control these nanosystems, especially when
they are far from equilibrium, where high performances are expected?

Recent striking theoretical and experimental advances in the understanding
of nanosystems interacting with light such as carbon nanotubes, organic and/or
inorganic hybrid, biological light conversion systems together with the progress
in cryogenic technology and ultrafast transient absorption, have generated con-
siderable interest for high-frequency quantum transport in the perspective of
ultrafast optoelectronic nanodevices [1–4].

Due to their ultrafast response time, low cost, efficiency, and flexible nature,
molecular electronics form a promising alternative for the design of such nan-
odevices.

1.2. Ultrafast molecular optoelectronics

One of the earlier proposals in the ac field was a single-molecule rectifying diode
in 1974 by Ratner and Aviram [5]. Since then the field has attracted continued
interest from scientists. The first coherent theory of charge transfer in molecular
systems was formulated by R. A. Marcus [6], which led to his Nobel prize in
1992. This accomplishment opens the pathway to various experiment and real-
ization made in order to probe the response of electronic devices driven by an
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external time-dependent field, such as charge transfer processes in general. Few
realizations are the controllable single-molecule junction [7, 8], the coherent
single electron source [9, 10] and laser-driven electronic dynamics on a time
scale of ∼ 1 fs experimentally observed, establishing the possibility to control
charge dynamics in nanodevices on their internal time scale.

In single-molecule devices such as switches, pumps, and rectifiers, where
charge and energy transfer processes are driven by an external time-dependent
radiation field, several complex phenomena are involved: molecular orbital re-
organization, destruction of molecule-lead and donor-acceptor tunnel coupling
[11–13]. It has been recently found that the initial charge transfer process is ul-
trafast, on the timescale of tens of femtoseconds [14], or at least ranging from a
few femtoseconds to hundreds of picoseconds for photoinduced interfacial elec-
tron transfer processes [15].

Intramolecular transfer processes remain a hot debate among the existing
open questions of the field, schematically illustrated in Figure 1.1.

Figure 1.1.: Donor-acceptor molecular junction, and exciton versus charge trans-
fer dynamics. HOMO= The highest occupied molecular orbital and
LUMO=the lowest energy unoccupied molecular orbital.

The commonly accepted picture is the following. After a photon energy is ab-
sorbed in the material or molecule, usually the donor, a bound electron-hole pair,
here regarded as an exciton (EX), is created, due to the low dielectric constant
in a molecule, there is a weak dielectric screening of the Coulombic attraction
of electrons in the LUMO and holes in the HOMO. The photoinduced exciton mi-
grates to the donor-acceptor interface, where the electron could be transferred
to the acceptor and then the reservoirs if the ionization potential of the donor is
smaller compared to the electron affinity of the acceptor. In the former config-
uration with the electron and hole still bounded by the Coulomb potential, the
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electron-hole pair is considered to be a charge transfer (CT) state. The interface
charge transfer and separation process is still not well understood in the commu-
nity of organic and molecular device. And it is a really important step towards
the improvement of the efficiency of organic solar cells.

Efficient time-resolved numerical simulations are thus required, as perhaps the
most powerful tool to understand, predict and conquer the basics of electron-
hole pair generation and charge transport on the relevant time scales for an
efficiency improvement of these THz and ultrafast nanodevices.

1.3. Time-dependent many-body methods

Indeed, time-dependent numerical investigations may offer a flexibility to pro-
mote the realization of nanodevices. Various temporal dependence of interact-
ing potentials as oscillating gate voltages and time-dependent coupling modula-
tions could be included into nanodevice simulations [16, 17]. This allows the
description of time-resolved physical quantities; transient currents, the local den-
sity of states, structural and vibrational dynamics, and the investigation of the
nanosystem internal quantum properties, hence the optimization and design of
a novel type of nanodevices. One can deal with time-dependent external fields,
like light pulse effects on the transport characteristics, and thus investigate ul-
trafast photo-induced and photo-assisted transport mechanisms [18, 19]. Time-
dependent quantum transport simulations requires novel techniques as well as
efficient numerical methods.

These last decades have seen the achievement of theories that account for
mesoscopic quantum transport in the presence of a time-dependent field-induced
perturbation [20, 21]. From Floquet theory for periodically (often monochro-
matic) driven systems [22, 23] to rigorous quantum-based non-equilibrium Green’s
functions [24, 25], a wide range of theories have been proposed. Scattering
theory [26, 27], reduced density matrix approach [28, 29] and more gener-
ally ab initio methods are also used. The main theoretical approaches used to
tackle time-dependent many-body problems are: Ehrenfest molecular-dynamics
(MD), time-dependent density functional theory (TDDFT ) [30], path integral for
quantum transport [31], master equation approaches [32], and non-equilibrium
Green’s functions in time domain [33–35].

Ab initio methods like density functional theory (DFT and TDDFT) [36–39]
even though offer a potential computational scheme, are not appropriate for
the treatment of time-dependent field-induced polarization effects like Coulomb
blockades [40] or dynamical energy level renormalization [41].

The Non-equilibrium Green’s function formalism (NEGF), on which relies this
thesis, represents one of the most exact approaches to quantum transport [42],
as recently shown in the study of pump-probe shot noise spectroscopy [43] and
the treatment of plasmon-exciton coupling [44]. One strong property of NEGF
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formalism is indeed to treat exactly the coupling to the reservoirs, in contrast
with master equations, which is an essential property in order to study quantum
transport. It nonetheless suffers from the heavy computational cost for realis-
tic simulations of time-dependent problems. Derived from NEGF formalism, the
wave function technique, referred as NEGF-WF in this thesis, was recently pro-
posed as an efficient algorithm to numerically simulate time-resolved quantum
transport in inorganic, organic and hybrid nanodevices [45].

1.4. Photocurrent spectroscopy

Finally, time-dependent numerical investigations also afford the possibility to
develop highly resolved ultrafast scanning probes, designed to explore ultra-
fast electron dynamics of solids and organic semiconductors [46–49]. Among
them, one of the most recently developed techniques, the photocurrent pump-

probe spectroscopy, lies at the meeting point of two research fields: nonlinear
optical spectroscopy and quantum transport. Indeed, this hybrid spectroscopy
combines ultrafast optical and electronic techniques to probe carrier dynamics
and interactions in optoelectronic devices [50]. The idea of measuring the in-
ternal ultrafast dynamics of molecular junctions through photocurrent, instead
of emission [51], has shown to reveal underlying physics of molecular junctions,
as the key process of charge transfer and separation at interfaces [52, 53] also
involved in energy conversion. Indeed, time-dependent investigations bring new
perspectives for high conversion efficiency for solar cells with molecular blends,
as suggested by numerical simulations using quantum dots or bulk heterojunc-
tions as models [54, 55]. Further issues to be handled in this direction will be
energy transfer and entropy production [56], molecular vibrations, and electron-
hole interactions [57, 58].

1.5. Thesis overview

In this overarching context, the present thesis addresses several questions. the
clarification of the charge transfer at metal-molecule and molecule-molecule in-
terface, the correlation of the photocurrent directionality [59] to the field shape
and the internal molecular structure and the intimate nature of such quantum
systems, provided features of their electronic structure [60, 61], and energy level
dynamics [62].

This thesis work has required to set up a suitable approach to the quantum sim-
ulation of time-resolved transport in interacting nanosystems under an externally
applied time-dependent field radiation. The theory relies on the state of the art
in quantum statistical methodologies with a special attention to the formalism
of non-equilibrium Green’s functions [33] widely used for the stationary quan-
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tum device simulation [63, 64]. Electron-electron and electron-hole correlations
have been introduced as an improvement of the existing nanoelectronics simula-
tion tools in the time domain. This theoretical-numerical simulation should be
valuable for deeply understanding charge transport through molecular junctions,
and hence, for conducting relevant device design and future directions of molec-
ular electronics [65, 66]. Our investigations focus on donor-acceptor organic
semiconducting nanodevices, but discussions open wider on molecular junctions
and nanosystems in general.

This manuscript is thus organized as follows:

• In Chapter 2, we focus on the theoretical background of the NEGF based
Wave Function technique employed in this thesis. The WF technique in its
original form as proposed in reference [45] does not include any kind of
interaction. An extension of the WF technique to interacting systems is pro-
posed here, especially the treatment of electron-electron and electron-hole
correlation at Hartree-Fock level. Chapter 2 ended up with few algorithms
for the numerical implementation of the WF technique and it extended
form.

• In Chapter 3, we present an example of an application of the methodology
to a non-interacting a molecular junction under femtosecond laser pulse il-
lumination. Several physical effects are studied and experimental proposals
are made for the measurement of donor-acceptor bridge strength.

• In Chapter 4, we analyze the additional effect of an exciton generated in
the donor and charge transfer state at the donor-acceptor interface on the
driving energy and their competition in the nanosystem. Finally, the first
results on two-pulse photocurrent spectroscopy are proposed.
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CHAPTER

TWO

TRANSPORT EQUATIONS AND ALGORITHMS

This chapter is devoted to the theoretical technique used in this thesis. Charge
transfer through nanoscale junctions and interfaces are complex dynamical pro-
cesses. Accurate description relies on simultaneously accounting for multiple
effects on ultrafast time scales that take into account internal time scales of the
system. In molecular junctions, for instance, the complexity is led by the contacts
to the electrodes, as well as the simultaneous interplay of Coulomb electron-
electron repulsion, electron-hole attraction or exciton and lattice vibration ef-
fects, which makes molecular electronics field an interdisciplinary research. The-
oretical and numerical treatment of all these correlation effects [67] based on
mean field approximation gives good physical models.

Let us recall the idea of the standard mean-field approximation, on which our
theory is based. Interacting particles physics is very complicated because of the
correlated motions of the individual particles that depend on each other. How-
ever, there are several rough approximations, where not full correlations are
included, but which gives a good physical result. For instance, when correla-
tions are included not by accounting for individual particle correlation but the

average correlation of all particles, in such a way that the density, for instance,
is included as mean density, it raises the idea of mean field approximation used
here. Mean field approximation reduces a many-body problem to a one body
problem. This approximation gives the overall framework of how we treat the
light-matter interaction (laser-donor for instance) in this work. Then we have to
choose a method to handle the transport.

The commonly used master equations are limited to the weak system-lead
coupling regimes [16]. For weakly coupled molecule-electrode for instance, the
results obtained by the density matrix approach are often found to be in agree-
ment with the nonequilibrium Green’s functions formalism (NEGF) simulation
results.

There is also the time-dependent extension of density functional theory (DFT),
with its approximations based at present, like others ab initio methods, unrefined
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to capture some correlation effects like field-induced energy levels renormaliza-
tion. In fact even though DFT combined with NEGF (NEGF-DFT) is popular for
modeling and has shown successful result for metallic contacts and chemisorbed
molecules [68, 69], it does not only scale as the size of the system in the com-
putation, but also it overestimates the quantum conductance compared to ex-
periment in weakly coupled systems [70, 71]. The conflict might come from
the unsuitable choice of exchange-correlation functionals [72] or the not fully
justified application of ground state DFT to non-equilibrium transport [73].

One of the best promising alternatives is NEGF formalism that offers the pos-
sibility to treat previously mentioned correlations processes. NEGFs have shown
to be powerful and made its proof in transistors, solar cells, and switches sim-
ulation [74, 75]. Although NEGF approach is exact and allows to include most
of the needed correlation effects, it remains time and memory consuming for
direct integration of NEGF transport equation, especially in its time-dependent
extension. In the quest for alternatives, a proposal was made by B. Gaury [45].
The technique is called Wave Function (WF), but it is denoted nonequilibrium
Green’s functions formalism-Wave Function (NEGF-WF) in this manuscript to out-
line close connection to NEGF in the derivation.

The first part of the chapter is devoted to the description of nonequilibrium
Green’s functions formalism starting from the basis of quantum mechanics. The
second part revisits the NEGF wave function technique in its foundations for
ballistic quantum transport. The third part will focus on our proposal for the
treatment of electron-electron and electron-hole correlations with included effi-
cient algorithms for numerical implementation of the technique.

2.1. Nonequilibrium Green’s function formalism

Briefly, Green’s functions are physical building blocks that are used to describe
particle transport in mesoscopic systems. Green’s functions are very useful in the
theory of ordinary and partial differential equations. In physics, Green’s func-
tions are particularly useful for problems involving perturbed systems. When
the problem under consideration is described by many-particles, whether elec-
tron, phonon, or spin interacting with a bath of other particles, its exact solution
is hard to find, especially when the whole system is out of equilibrium due to an
external field. NEGF formalism that originates from the seminal works of Martin
and Schwinger (1959), Kadanoff and Baym (1962), Keldysh (1965) [76], is one
of the most exact approaches to describe quantum transport in interacting and
non-interacting systems. Before the introduction of the many-body Green’s func-
tion in the next section, we first discuss the case of non-interacting particles with
and without time dependence in the case of one-particle Schrodinger equation.
Next, we introduce quantum mechanical concepts for Green’s functions descrip-
tion. Finally, we derive the equation of motion of Green’s functions, which are in
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fact the propagator of quantum states. Let us recall here that these derivations,
follows the usual ones in standard textbooks [33, 76].

2.1.1. Schrodinger’s wave and Green’s function

In this section, we give an overview of how to construct a Green function starting
from Schrödinger’s equation wave function while considering external perturba-
tions and scattering mechanisms in the stationary case. We will basically follow
the derivation from the various pedagogical textbooks in the field of mesoscopic
physics [77, 78]. Let us consider the time-independent Schrödinger’s equation
in matrix represntation, describing a given system,

HΨ = EΨ, (2.1)

where H is the Hamiltonian matrix which eigenvalues are the allowed energies
in the given system, and Ψ the wave function (corresponding eigenvector of
equation 2.1). The description of electronic devices can be treated within a
one-electron picture by connecting the given system described by Schrödinger
equation 2.1) to electrodes. The perturbation induced by these electrodes to the
system is taken into account by adding two terms to the Schrödinger equation,
accounting for the inflow and outflow from the electrodes [78]:

HΨ +

outflow
︷︸︸︷

ΣΨ +

inflow
︷︸︸︷

s = EΨ. (2.2)

ΣΨ and s are the source terms in the system and in the electrodes. Σ is called the
retarded self-energy of the reservoirs and also noted Σr. Solving this modified
Schrödinger equation gives wave function solutions of the form,

Ψ =
s

EI −H − Σr
, (2.3)

with I is the identity matrix.
Let us set from here on, an object that represents the building block of the

transport formalism, a Green’s function.

Gr = [EI −H − Σr]−1 ⇒ Ψ = Grs. (2.4)

Gr is called the retarded Green’s function. The real and imaginary parts of Σr

are respectively the energy level shift and the energy level broadening functions.
This last quantity Γ = i[Σ−Σ†] is usually considered to be the carrier tunnelling
rate (or the hopping parameter) from the lead to the nanojunction. Next step is
to construct the object ΨΨ†, that will give us information on wave function prob-
abilistic distribution and coherence. From ΨΨ† we can extract carrier density in
the device.
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We set here another Green’s function, that is also important for carrier density
measurement,

G< = ΨΨ+ and Σ< = ss†, (2.5)

where G< and Σ< are respectively the lesser Green’s function and the lesser self-
energy accounting for carrier distributions and inflow control. Since,

G< = Grss†Gr† ⇐⇒ G< = GrΣ<Ga. (2.6)

From the previouly defined Green’s functions, the density of states also called
the spectral function, A, could be built as follow.

A = i[Gr −Ga]. (2.7)

The deep nature of NEGF is contained in the equations 2.4 and 2.6. Solv-
ing these equations together allows getting carriers to transport pieces of in-
formation. However, the barrier to the implementation of these equations arises
when there are scattering mechanisms (electron-boson, Coulomb and vibrations)
in the system during carriers transport. In fact whenever there are scattering
mechanisms, the self-energies (Σ< and Σr) are modified and depend on the
Green’s functions (Gr and G<) in such a way that self-consistent approximations
(Self consistent Born approximation) are needed to solve equations 2.4 and 2.6.
Though these numerical implementation challenges are handled for stationary
transport in a certain limit [79], they are less evident for time-dependent cases.

For simplicity only the time-independent case is discussed here, however a
similar derivation could be used for the time-dependent version too, and further
development is given below.

In the next section, we will work out single-particle Green’s function for many
body systems. Let us start with the description of quantum mechanics operators
involved in the derivation of these Green’s functions.

2.1.2. Quantum mechanical operators and representations

Green’s function formalism is raised from the interaction representation of quan-
tum mechanics, described in the following. Relevant concepts of quantum me-
chanics are discussed: Schrödinger’s, Heisenberg’s and Interaction representa-
tion. We assume that the reader is familiar with quantum mechanics at least in
its basis [76, 77].

2.1.2.1. Schrödinger’s representation

The basis of quantum mechanics is taught in Schrödinger’s representation, in
which particles are described by wave function. The evolution of this wave func-
tion is given by the time-dependent Schrödinger’s equation given below (we
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assume here ~ = 1),

i
∂

∂t
Ψ(t) = HΨ(t), (2.8)

where Ψ(t) is the wave function of the given system. Solving the equation 2.8
gives solutions of the following nature:

Ψ(t) = e−iHtΨ(0). (2.9)

The characteristics of these solutions in equation 2.9 are that their time depen-
dency is encoded in the exponential factor (e−iHt), and all operators are time
independent.

2.1.2.2. Heisenberg’s representation

The Heisenberg’s representation of quantum mechanics requires that the wave
functions are time-independent and the operators time dependent. It operators
are expressed as follows:

O(t) = eiHtO(0)e−iHt. (2.10)

2.1.2.3. Interaction representation

In this representation, both operators and wave functions are time dependent.
The Hamiltonian of the system is written as follow:

H = H0 + V. (2.11)

The H0 stands for the solvable or unperturbed part of the Hamiltonian and V
the interactions part. Operators and wave functions are denoted by a hat in this
representation:

Ô(t) = eiH0tOe−iH0t, and Ψ̂(t) = eiH0te−iHtΨ(0). (2.12)

The need of many-body theories comes from the fact that H0 does not com-
mute with V as such the relation eAeB = eA+B for instance cannot be used.

One can prove that the three representations of quantum mechanics are equiv-
alent. For a system changing state from state 1 to state 2, the average value of a
physical observable has the same value in the three representations.
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2.1.2.4. Time evolution operator

Accessing the wave function Ψ̂(t) of a system from a given initial state Ψ̂(t0),
enables the computation of physical observables at each time t. The computation
of Ψ̂(t) can be done through the rate equation of the wave function within the
interaction representation:

∂

∂t
Ψ̂(t) = iH0Ψ̂(t)− ieiH0tHe−iHtΨ(0)

= iH0e
iH0te−iHtΨ(0)− ieiH0tHe−iHtΨ(0)

= ieiH0t(H0 −H)e−iHtΨ(0)

= −i eiH0tV e−H0t
︸ ︷︷ ︸

V̂ (t)

e−H0te−iHtΨ(0)
︸ ︷︷ ︸

Ψ̂(t)

∂

∂t
Ψ̂(t) = −iV̂ (t)Ψ̂(t). (2.13)

Setting U(t) = eiH0te−iHt as the evolution operator, such that the wave function
is obtained by Ψ̂(t) = U(t)Ψ(0) (with Ψ(0) the wave function at time t = 0 ) and
U(0) = 1, the evolution equation of U(t) could be derived from equation 2.13:

∂

∂t
U(t) = −iV̂ (t)U(t). (2.14)

One way of solving the equation 2.14, is to integrate both sides of the equation
with respect to time:

U(t)− 1 = −i
∫ t

0
dt1V̂ (t1)U(t1). (2.15)

By iterating over the right hand side of equation 2.15 an infinite number of time
one get for U(t):

U(t) =
∞∑

n=0

(−i)n
∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtnV̂ (t1)V̂ (t2) . . . V̂ (tn). (2.16)

Note that in the expansion of equation 2.16, the operators are time-ordered.
In their product the operators at earlier times are at the left of operators at later
times. We then define an operator T such that when applied to a product of two
operators it will return their time-ordered product:

T (A(t)B(t′)) =

{

A(t)B(t′) if t < t′,
B(t′)A(t) if t′ < t.

Now we can rewrite the expression of equation 2.16 in a more compact way.
We replace the limits of each interval so that they span the whole duration t
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and we divide by n! to take into account that we integrate over a larger interval.
Then we can write the products of integrals as powers and use the time-ordering
operator to take this change into account and recognize the expression for an
exponential as follows [76]:

U(t) = Texp



− i
∫ t

t′

dt1V̂ (t1)



 (2.17)

Another important operator to define before the introduction of Green’s func-
tion is the S-matrix.

2.1.2.5. S-matrix

The S-matrix is in some sense the object (operator) that connects two quantum
states picked at different times in the interaction representation. Let us consider
two quantum states Ψ̂(t) and Ψ̂(t′) at times t and t′:

Ψ̂(t) = S(t, t′)Ψ̂(t′) = S(t, t′)U(t′)Ψ̂(0). (2.18)

The previous equation 2.18 holds because of the relation of the S-matrix to
the U operator:

S(t, t′) = U(t)U †(t′). (2.19)

Given the S-matrix (equation 2.19), it obeys the following properties:

S(t, t) = U(t)U †(t), S†(t, t′) = S(t′, t), and S(t, t′)S(t′, t′′) = S(t, t′′).

The equation of evolution of the S-matrix could also be derived:

∂

∂t
S(t, t′) = −iV̂ (t)S(t, t′). (2.20)

Introducing the time ordering operator T ,

S(t, t′) = Texp



− i
∫ t

t′

dt1V̂ (t1)



. (2.21)

We are left with the extraction of the ground state of the system Ψ(0) (which
corresponds to the lowest eigenvalue ofH). For that, we refer to the work of Gell-
Mann and Low (1951) [80] where they have already established the relationship
between the Ψ(0) and ψ0 (ψ0 is the ground state of H0 the Hamiltonian of the
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unperturbed system at zero temperature):

Ψ(0) = S(0,−∞)ψ0. (2.22)

By the way, we can also convince ourselves from the discussion above that the
ground state Ψ(0) is the same in the three quantum representations.

2.1.3. Constructing Green’s functions

We can now define in a given λ basis, the Green’s functions G(λ, t, t′):

G(λ, t, t′) = −i〈|TCλ(t)C†
λ(t′)|〉, (2.23)

where |〉 is the ground state, Cλ (C†
λ) the particle annihilation (creation) oper-

ator of H in Heisenberg’s representation and T is the time ordering operator.
Reminding that the same operators with a hat denote there equivalent expres-
sion in the interaction representation. These functions are tools from which all
physical quantities are extracted in NEGF [76, 77].

From the relation of annihilation and creation operators to the S-matrix and
the evolution operator U(t),

Cλ(t) = eiHtCλe
−iHt = U †(t)Ĉλ(t)U(t) = S(0, t)Ĉλ(t)S(t, 0) (2.24)

assuming that t → ∞, we could write back the expression of the Green’s func-
tions as follows (details could be found in reference [76]):

G(λ, t, t′) = −i〈|TĈλ(t)Ĉ†
λ(t′)S(∞,−∞)|〉

〈|TS(∞,−∞)|〉 . (2.25)

From the definition of Green’s function in equation 2.25, we can introduce
here expressions of the four most used Green’s functions.

G>
λ,λ′(t, t′) = −i〈|Cλ(t)C†

λ′(t′)|〉 (2.26)

G<
λ,λ′(t, t′) = i〈|C†

λ′(t′)Cλ(t)|〉 (2.27)

Gr
λ,λ′(t, t′) = −iΘ(t− t′)〈|[Cλ(t), C†

λ′(t′)]b,f |〉 (2.28)

Ga
λ,λ′(t, t′) = iΘ(t′ − t)〈|[Cλ(t), C†

λ′(t′)]b,f |〉 (2.29)

Green’s functions defined in equations 2.26,2.27, 2.28 and 2.29 are respectively
called the greater (G>), lesser (G<), retarded (Gr) and advanced (Ga) Greens’functions.
Θ(t − t′) is the Heaviside function, which is null for t < t′, equal to 1 for t > t′

and 0 for t = t′. The indexes b and f stands for boson and fermions.
In the next paragraph, we discuss few examples of non-interacting (bosons

and fermions) and interacting (electron-photon) Green’s functions.
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2.1.3.1. Non-interacting Green’s functions

In the case of a non-interacting system, from equation 2.23, V = 0 and S(∞,−∞) =
1, so that the free propagators or the unperturbed Green’s functions are written:

G0(λ, t, t
′) = −i〈|TĈλ(t)Ĉ†

λ(t′)|〉 (2.30)

⊛ Fermionic Green’s function :

The free Hamiltonian of a non-interacting system of fermions is given as
follow,

H0 =
∑

λ

ελC
†
λCλ, (2.31)

where ελ is a single particle energy. The annihilation operator Cλ can be
expressed in Heisenberg representation as:

Cλ(t) = eiH0tCλe
−iH0t ⇒ i∂tCλ(t) = [Cλ(t), H0] = ελCλ(t). (2.32)

So we obtain:

Cλ(t) = e−iελtCλ and C†
λ(t) = e+iελt/~C†

λ (2.33)

The four free Green’s functions associated to these fermion operators are,

G<
0,λλ′(t, t′) = i〈C†

λ′(t′)Cλ(t)〉 = ie−iελ(t−t′)nλδλλ′ (2.34)

G>
0,λλ′(t, t′) = −i〈Cλ(t)C†

λ′(t′)〉 = −ie−iελ(t−t′)(1− nλ)δλλ′ (2.35)

Gr
0,λλ′(t, t′) = −iΘ(t− t′)e−iελ(t−t′)δλλ′ (2.36)

Ga
0,λλ′(t, t′) = iΘ(t− t′)e−iελ(t′−t)δλλ′ (2.37)

where nλ is the occupation in state λ. nλ obey the Fermi-Dirac distribution.
Let us recall that at equilibrium nλ = 〈b†

λbλ〉 is the Fermi-Dirac distribution
function,

ni =
1

eβ(Ei−EF ) + 1
. (2.38)

These Green’s functions provide information about the statistics, electron
and holes occupation ( ImG<,ImG> ). We can also extract spectral char-
acteristics of the system from Green’s function, the local density of states
(ImGr).

⊛ Bosonic Green’s function :

The free Hamiltonian of bosons (photons or phonons for instance) is de-
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fined as,

H0 =
∑

q,λ

ωq,λb
†
q,λbq,λ (2.39)

where ωq,λ is the energy of mode q with a polarization λ. b†
q,λ (bq,λ) are

boson creation (annihilation) operators given by,

bq,λ(t) = eiH0tbq,λe
−iH0t ⇒ i∂tbq,λ(t) = [bq,λ(t), H0] = ωq,λbq,λ(t). (2.40)

Hence we deduce their expressions,

bq,λ(t) = e−iωq,λtbq,λ and b†
q,λ(t) = e+iωq,λtb†

q,λ. (2.41)

The free bosonic lesser Green’s function associated to the Hamiltonian is,

D<
λ (q, t, q′, t′) = −i〈A†

q′,λ(t′)Aq,λ(t)〉, with A†
q,λ = bq,λ(t) + b†

−q,λ(t).

D<
λ (q, t, q′, t′) = −i[e−iωq,λ(t−t′)nq,λ + eiωq,λ(t−t′)(nq,λ + 1)]δqq′ (2.42)

Similarly, the other Green’s functions can be computed since the expres-
sions of the creation and annihilation operators are known.

One of the main interests of Green’s functions in transport theory is the pos-
sibility to include correlation effects. In general, each Green’s function provide
information needed to include phase correlation into theory. In the next para-
graph, we make a brief description of Green’s functions in open nanosystems.

2.1.3.2. Electron-photon interaction Green’s functions

The starting point here is the expression of the interacting potential. In the case
of electron-phonon or electron-photon, the interaction potential is defined as
[76],

V =
∑

qks

MqAqC
†
k+q,sCk,s, (2.43)

where Mq is the electron-photon coupling matrix. The challenge is to compute
Green’s function as defined in equation 2.25 in the interacting systems with the
given potential. This can be done by mean of Wick’s theorem and the use of
Feynman diagrams, a full development could be found here [76, 81]. By consid-
ering only connected diagrams, the expression of Green’s function in equation
2.25 is simplified too,

G(p, t, t′) =
∞∑

n=0

(−i)n
∫ ∞

−∞
dt1 . . .

∫ ∞

−∞
dtn〈|TĈpσ(t)Ĉ†

pσ(t′)V̂ (t1) . . . V̂ (tn)|〉 (2.44)
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We want to expand the equation 2.44 up to order n = 2.

• The n = 0 term correspond to the unperturbed Green’s function G(0).

• The n = 1 term is zero because, we have

〈|TÂq|〉 = 0. (2.45)

All terms with n odd vanish because their time-ordered bracket for photons
contains an odd number of Âq.

Only even n terms contribute to the S-matrix expansion for electron-photon in-
teraction. One could then write:

G(p, t− t′) = G(0)(p, t− t′) +
(−1)3

2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

∑

q1q2s

Mq1Mq2〈|TÂq1(t1)Âq2(t2)|〉

×
∑

k1k2ss′

〈|TĈpσ(t)Ĉ†
k1+q1,s

(t1)Ĉk1,sσ(t1)Ĉ
†
k2+q2,s

(t2)Ĉk2s′
(t2)Ĉ

†
pσ(t′)|〉

By considering the simple case of a single photon Green’s function

〈|TÂq1(t1)Âq2(t2)|〉 = iδq1+q2D
(0)(q1, t1 − t2), (2.46)

the electron Green’s functions described above and the Fourier transform of each
term in equation 2.46, one get the expression of the system Green’s function in
energy-momentum space,

G(p, E) = G(0)(p, E) +G(0)(p, E)Σ(1)(p, E)G(0)(p, E) (2.47)

where Σ(1)(p, E) is called the self-energy of electron due to electron-photon pro-
cesses.

Σ(1)(p, E) = i
∫ +∞

−∞

dω

2π

∑

q

MqD
(0)(q, ω)G(0)(p− q, E − ω)Mq (2.48)

In order to account for high order term, an approximation is needed. The most
used one is Born’s approximation. It consist of replacing the last G(0)(p, E) by
G(p, E) in equation 2.47 so that it reads,

G(p, E) =
G(0)(p, E)

1−G(0)(p, E)Σ(p, E)
, (2.49)

Equation 2.49 is well known as Dyson equation, with

Σ(p, E) =
∑

j

Σj(p, E) (2.50)
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the sum over all self-energies. The exact Green’s functions are obtained by com-
puting the self-energies. Green’s function describes the coherent evolution of
carriers from the time they are injected into the system until they lose coherence
either by flowing out into the connected reservoirs or by scattering into a dif-
ferent state. Self-energies describe the effect of the reservoirs and the different
scattering mechanisms on carrier dynamics. These self-energies are the starting
point for the Wave Function technique, discussed in the next sections. Before ex-
posure of the Wave Function technique, since we are interested in the dynamic
of carriers, we need first to derive the equation of motion of Green’s functions.

2.1.4. Equation of motion theory

In order to describe the evolution of systems, we need to derive the equation
of motion of Green’s functions. For a given basis λ, the total Hamiltonian of
the system is given by the sum of the free part H0 and an interaction part Vin

containing all the interactions,

H = H0 + Vin, and H0 =
∑

λλ′

ελλ′C†
λCλ

the one particle retarded Green’s function can be defined as

Gr
λλ′(t, t′) = −iΘ(t− t′)〈[Cλ(t), C†

λ(t′)]b,f〉, (2.51)

where the indexes b and f stand respectively for bosons and fermions anti-
commutation. Θ denote the Heaviside function. Then the equation of motion of
Gr for fermions, using the derivation property ∂Θ(t− t′)/∂t = δ(t− t′), is :

i∂tG
r
λλ′(t, t′) = δ(t− t′)δλλ′ − iΘ(t− t′)〈[−i∂tCλ(t), C†

λ(t′)]b,f〉
∑

λ′′

(i∂tG
r
λλ′(t, t′)− ελλ′′) = δ(t− t′)δλλ′ + Ir

λλ′(t, t′), (2.52)

where we have used the relation

− i∂tCλ(t) = −[H,Cλ(t)] =
∑

λ′′

ελλ′′Cλ − [Vin, Cλ(t)], (2.53)

and defined Ir
λλ′(t, t′) to be,

Ir
λλ′(t, t′) = −iδ(t− t′)〈[−[Vin, Cλ(t)]b,f , C

†
λ(t′)]b,f〉. (2.54)

In the equation 2.52, Ir
λλ′(t, t′) account for the modifications induced by the in-

teractions to the free Green’s function of the system. Whenever the Hamiltonian
of the system does not depend explicitly on time , Green’s function depends on
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time differences t − t′ and one can work their Fourier transform or steady state
stationary response.

Equation 2.52 could be writen in matrix form as,

i∂tG
r(t, t′) = δ(t− t′) +H(t)GR(t, t′) +

∫

dvΣ(t, v)GR(v, t′). (2.55)

The last term of equation 2.55 corresponds to the Ir
λλ′(t, t′) term of equation 2.52

accounting for the interaction induced change to the free Green’s function.

2.2. Wave function technique : ballistic transport

In mesoscopic transport, Green’s functions are powerful and efficient building
blocks to discuss stationary current and other properties in nanodevices [82].
This practical formalism originates from the theoretical framework developed
by Keldysh to approach many-body problems [83]. However, this formalism
has a huge computational cost in memory when used for time-dependent prob-
lems[84]. Recently, a technique which requires less memory has been proposed
by Gaury and co-authors [45] to obtain NEGFs, currents and other time-dependent
properties based on smaller-size building blocks, called wave functions (WFs)
due to the fact that they finally obey a Schrödinger-like equation (see equation
2.67). Indeed, for a given N -size problem, WFs are N -vectors while NEGFs
are N × N matrices. Switching from matrices to vectors relaxes the computa-
tional burden of time-dependent problems. Nonetheless, the so-called NEGF-WF
technique still has to be developed for treating scattering mechanisms beyond
mean-field approximations.

2.2.1. Schematic description

Figure 2.1 gives a schematic view of a general description of a device repre-
sented by its retarded Green’s function matrix elements and the leads incoming
modes. The computational drawback of Green’s functions calculation is matrix
inversion because of the scaling of computational time with the size of the sys-
tem. NEGF-WF proposal is to split the matrix into blocks and then compute each
block separately. One can after computation of each block reconstructs the whole
matrix schematically represented in Figure 2.1. In this case, each block is made
of a single column of the retarded Green’s function matrix, and blocks are called
wave functions.

Wave functions are the projection of the system Green’s function onto the
incoming modes weighted by their velocities vα(E) as shown in Figure 2.2. The
system can now be described by m wave functions of the same size as the system
N . This avoids the computation of unuseful matrix elements with the Green’s
function, and also reduces by N the size of the computation objects and their
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number by N − m (for the case where N > m). The size of the system, N ,
imposes the size of each wave function and the number of modes,m, considered
define the number of wave functions to compute. Actually, m represented the
number of tunneling paths from the reservoirs to the device region. Generally
m < N : m is related to the contact surface while N is related to the volume of
the system.

Figure 2.1.: System described by a Green function of size N ×N for m incoming
modes.

Figure 2.2.: System described by wave functions of size N × 1 for m incoming
modes.

The next section is dedicated to the technique of computation of these building
blocks without making use of Green’s function. Clearly the idea is to get rid of
matrices in the numerics and use vectors instead so that we gain in memory
consumption and CPU time.
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2.2.2. Constructing wave functions

Let us consider an open quantum system, S, connected to two semi-infinite leads
at left and right sides, L and R. This system is identified to be the heart of the
nanodevice, also called the active region, and the two reservoirs include the
electrical lines.We consider a tight binding type of Hamiltonian of a system S,
H tot, made of an active region with its Hamiltonian Hcen, connected to two leads
L and R represented by Hleads. The device region and the leads are connected
through the tunneling Hamiltonian Htun,

H tot(t) = Hcen(t) +Hleads +Htun. (2.56)

In explicit form it gives,

H tot(t) =
∑

i,j∈S

εij(t)d
†
idj +

∑

σσ′∈L,R

εσσ′c†
σcσ′

+
∑

i∈S,σ∈L,R

Vσ,ic
†
σdi + h.c. . (2.57)

In these expression, c†
i (ci) and d†

i (di) are the creation (annihilation) operators for
a single particle on site i in the leads and in the system respectively. Elements εij

(εσσ′), represent on-site energies for i = j (σ = σ′), and inter-site couplings for
i 6= j (σ 6= σ′) in the system S (leads L and R). Elements Vσ,i are system-lead
tunneling parameters from site i in S to site σ in L or R, Vσ,i 6= 0 if the two
sites i and σ are connected. In the following, we will use matrix notation in bold
style. Matrix elements εij of system S form H(t) which has a finite dimension, as
opposed to the total Hamiltonian that includes semi-infinite leads. In Keldysh’s
technique, the contact to the lead L or R is encoded in a function called self-
energy, ΣL,R, which is exactly derived contrary to the usual approximation with
master equation. Besides, all properties of the total out-of-equilibrium ground
state can be deduced from the lesser (<), greater (>), retarded (r) and advanced
(a) Green’s functions, and the corresponding self-energy components. All these
quantities are related to each other and shall obey Dyson’s equations [33]. As
usually assumed, these reservoirs are non-interacting and at-equilibrium and
their associated Green’s functions g are indeed well-known. In that framework,
the expression of Σ<

L,R is given by

Σ<
L,R(t, t′) =

∑

i∈S,σ∈L,R

|Vσ,i|2g<
σσ(t, t′) , (2.58)

where g<
σσ(t, t′) = i〈c†

σ(t′)cσ(t)〉 is the lesser Green’s function of reservoir L or R.
In the present framework, it is assumed that only system S experiences a time-
dependent perturbation. Contact self-energies are thus invariant by translation
in time.
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Self-energies depend on a single time argument, Σ<
L,R(t− t′), and their Fourier

transforms, Σ<
L,R(E), depend on a single energy argument, via

Σ<(t− t′) =
∑

α∈L,R

∫ dE

2π
ifα(E)e−i E

~
(t−t′)Γα(E) , (2.59)

where we use the fluctuation-dissipation relation [85]:

Σ<
L,R(E) = −2ifL,R(E)ℑmΣr(E)

with Σr
L,R(E) = − i

2
ΓL,R(E), and fα(E) is the Fermi-Dirac distribution function.

The real part of the self-energy, Σr
L,R(E), that usually account for energy level

shift is neglected in this work.
From NEGF formalism to NEGF-WF technique, the mathematical recipe is the

diagonalisation of the total contact self-energy Γ(E) = ΓL(E) + ΓR(E):

Γ(E) =
∑

α

vα(E)ξαEξ
†
αE , (2.60)

where ξαE and vα are respectively the eigenstates and eigenvalues of the con-
tact self-energy. Besides, ξαE are the transverse modes at energy E and velocity
vα flowing from the leads [45]. Vectors ξαE are in general energy dependent,
normalized but not necessarily orthogonal [45]. They can become energy inde-
pendent in specific cases of a wide band limit consideration [86]. The number
of propagating modes (vα 6= 0) is equal to the number of non-zero tunneling pa-
rameters Vσi. Here, α account for the different modes from all leads. Then, wave
functions are defined from the Dyson’s equation of G<(t, t′) as the projection of
Green’s functions onto the incoming transverse modes of the device, after diago-
nalization of the lead self-energies in the leads modes space. Wave functions are
defined as

ΨαE(t) =
√
vα

∫

due−iEu/~Gr(t, u)ξαE , (2.61)

details of this derivation can be found in reference [45]. A given WF represents
the projection of the Green’s function on one of the incoming modes propagating
from reservoirs to the system. However, as Gr is still unknown at this stage, WFs
are not calculated from equation 2.61 but from a differential equation which is
practically established from Dyson’s equation of Gr, as presented in the follow-
ing.
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i~∂tΨαE(t) =
√
vα

∫

du(i~∂tG
r(t, u))e−iEu/~ξαE

=
√
vα

∫

du[δ(t− u) + Htot(t)Gr(t, u) +
∫

dvΣ(t, v)Gr(v, u)]e−iEu/~ξαE

=
√
vα

∫

duδ(t− u)e−iEu/~ξαE +
√
vα

∫

duHtot(t)Gr(t, u)e−iEu/~ξαE

+
√
vα

∫

du
∫

dvΣ(t, v)Gr(v, u)e−iEu/~ξαE

=
√
vαe

−iEt/~ξαE + Htot(t)
√
vα

∫

duGr(t, u)e−iEu/~ξαE

+
∫

dvΣ(t, v)
√
vα

∫

duGr(v, u)e−iEu/~ξαE

=
√
vαe

−iEtξαE + Htot(t)ΨαE(t) +
∫

dvΣ(t, v)ΨαE(v) (2.62)

Finally, the equation of motion of Ψ is given by (~ = 1),

i∂tΨαE(t) = Htot(t)ΨαE(t) +
∫

dvΣ(t, v)ΨαE(v) +
√
vαe

−iEtξαE (2.63)

Actually, the problem is separated into a known stationary problem, H0, and
a time-dependent perturbation switched on at t = 0, Hp(t):

Htot(t) = H0 + Hp(t). (2.64)

As a consequence, ΨαE(t) also splits in

ΨαE(t) = Ψ
p
αE(t) + e−iEt/~Ψst

αE , (2.65)

where Ψst
αE is the stationary wave function related to H0, and Ψ

p
αE(t) is a wave

vector that measures the deviation from Ψst
αE due to the time-dependent pertur-

bation Hp(t). Each term of ΨαE(t) complies with the equation of motion of the
retarded Green’s function Gr. As a result, Ψst

αE is obtained from the stationary
transport equation:

[EI−H0 −Σr(E)]Ψst
αE =

√

vα(E)ξαE , (2.66)

with I the identity matrix, and Σr the retarded contact self-energy. From the
equation of motion of the retarded Green’s function [83], one can derive the
equation of motion of Ψ

p
αE(t) (see reference [45]):

i~∂tΨ
p
αE(t) = H(t)Ψp

αE(t) +
∫ t

0
duΣr(t− u)Ψp

αE(u)

+ Hp(t)e−iEt/~Ψst
αE . (2.67)
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Equation 2.67 is the corner stone of the technique and the numerical imple-
mentation. Finally, the obtained WFs are used to compute quantities of interest.
Lesser and greater Green’s functions of system S are given by

G<
ij(t, t

′) = i
∑

α

∫ dE

2π
fα(E)ΨαE(i, t)Ψ†

αE(j, t′) , (2.68)

G>
ij(t, t

′) = −i
∑

α

∫ dE

2π

(

1− fα(E)
)

ΨαE(i, t)Ψ†
αE(j, t′) ,

(2.69)

where ΨαE(i, t) is the ith component of ΨαE. In addition, Gr(t, t′) = Θ(t −
t′)

[

G≷(t, t′) − G≷(t, t′)
]

, with Θ(t − t′) the Heaviside’s function. The charge
current flowing from site i to site j reads:

Iij(t) = −2e

~
ℑm

[
∑

α

∫ dE

2π
fα(E)Ψ†

αE(i, t)Hij(t)ΨαE(j, t)
]

. (2.70)

We discretize equation 2.67 by finite differences and perform the integration
with standard integration methods: Euler and Runge-Kutta. The convergence
was checked against the number of discretization points along energy and time.
Numerical calculations were done on a cluster architecture.

In the present study, numerical calculations were done in the wide band limit
(WBL) approximation, which enables one to write Σr(t − u) = iΓδ(t − u), and
thus to simplify equation 2.67. This assumption is valid in mesoscopic systems
where energy scales remain smaller than that of the Fermi energy variation in
leads, like in the case of metallic electrodes.

2.3. Wave function technique : bound

electron-hole pair correlations

In this section of the chapter, we extend the NEGF-WF ballistic transport method-
ology to include electron-electron (ee) and electron-hole (eh) in the time-dependent
numerical simulation. Let us call it NEGF-WF(HF) for the sake of simplicity. Our
approach is not restricted to the wide-band limit, even though the presented nu-
merical results rely upon it. We consider a tight binding type of Hamiltonian of
a system S, H tot, made of an active region with its Hamiltonian Hcen, connected
to two leads L and R represented by Hleads. The device region and the leads are
connected through the tunneling Hamiltonian Htun. The electron-electron and
electron-hole correlation effects are included to H tot given equation 2.71. These
effects are represented respectively by Hamiltonians, Hee and Heh.
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Hee =
1

2

∑

i6=j

Uijd
†
idid

†
jdj, and Heh = −

∑

lk

χlkd
†
ldldkd

†
k, (2.71)

where Uij and χlk are the electron-electron and electron-hole coupling matrix
elements.

The expressions of the others parts of the Hamiltonian, H tot, are given below,

Hcen(t) =
∑

ij

εij(t)d
†
idj, Hleads =

∑

σ

εσσ′c†
σcσ′ , (2.72)

and Htun =
∑

σ,i

Vσ,ic
†
σdi + h.c. (2.73)

Let us come back to the expression of the two-particles electron-electron inter-
action term in its general form [87]:

Ĥee =
1

2

∑

ii′jj′

Uii′jj′d†
id

†
i′djdj′ . (2.74)

In this case Uii′jj′ is the two-particle coupling and i,i′, j and j′ are the site indexes
in the single particle basis. The explicit expression of the matrix element Uii′jj′

is,

Uii′jj′ =
∫ ∫

dx1dx2φ
†
i (x1)φ

†
i′(x2)

e2

|x1 − x2|
φj′(x1)φj(x2), (2.75)

φj is a localized basis function around site j. Since wave functions of two differ-
ent states, with the same spin are orthogonal in real space, their contribution
in the matrix element is zero. So that the maximum overlap corresponding
to the dominant terms in both x1 and x2 integrals are those with i = j′ and
i′ = j. Keeping only these terms we can write the electron-electron scattering as
a density-density interaction:

Ĥee =
1

2

∑

i6=j

Uijd
†
idid

†
jdj = Hee (2.76)

A similar reasoning can be done to find the expression of the Heh (see reference
[87] for more details).

The total Hamiltonian of the system is the sum of each subpart plus the corre-
lations:

H tot(t) = Hcen +Hleads +Htun +Hee +Heh. (2.77)

Once the Hamiltonian settled, we went through the technique of derivation of
the equation of motion of the retarded Green’s function. First from equation
2.72, one can show that,
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iḋi′ =
∑

j

εi′jdj +
∑

σ

V ∗
σ,i′cσ +

∑

j

Ui′jdi′d†
jdj

+
∑

l

χli′d†
ldldi′ −

∑

k

χi′kdi′dkd
†
k. (2.78)

Using equation 2.78, we obtain the equation of motion of Gr from its defini-
tion,

i∂tG
r
ij(t, t

′) = δ(t− t′)δij+
∑

γ

εiγ(t)Gr
γj(t, t

′) +
∑

σ

V ∗
σ,iG

r
σ,j(t, t

′)

+
∑

γ

UiγG
r(2)
iγ,j (t, t′)+

∑

l∈CB

χliG
r(2)
il,j (t, t′)

−
∑

k∈V B

χihG
r(2k)
ik,j (t, t′) (2.79)

where the four functions Gr(2)
ij,j , Gr(2)

ii,j , Gr(2)
il,j and G

r(2k)
ik,j defines unknown higher

order Green’s functions as :

G
r(2)
ij,j (t, t′) = −iΘ(t− t′)〈{did

†
jdj(t), d

†
j(t

′)}〉 (2.80)

G
r(2)
ii,j (t, t′) = −iΘ(t− t′)〈{d†

ididi(t), d
†
j(t

′)}〉 (2.81)

G
r(2)
ik,j (t, t′) = −iΘ(t− t′)〈{d†

ldldi(t), d
†
j(t

′)}〉 (2.82)

G
r(2k)
ik,j (t, t′) = −iΘ(t− t′)〈{didkd

†
k(t), d†

j(t
′)}〉 (2.83)

Equation 2.79 is not a closed set of equations for Gr
ij because of the presence

of the four unknown higher order Green’s functions Gr(2)
ij,j , Gr(2)

ii,j , Gr(2)
il,j and Gr(2k)

ik,j .
In order to get a closed set of equations, approximations regarding these last
Green’s functions are needed. There are several methods of approximations and
the one that will be used here is the Hartree-Fock approximation (HF).

Within the HF approximation, the following factorization is made [88, 89].

G
r(2)
ij,j (t, t′) = −iΘ(t− t′)〈d†

jdj〉〈{di(t), d
†
j(t

′)}〉 = nj(t)G
r
i,j(t, t

′) (2.84)

G
r(2)
ii,j (t, t′) = −iΘ(t− t′)〈d†

idi〉〈{di(t), d
†
j(t

′)}〉 = ni(t)G
r
i,j(t, t

′) (2.85)

G
r(2)
ik,j (t, t′) = −iΘ(t− t′)〈d†

ldl〉〈{di(t), d
†
j(t

′)}〉 = nl(t)G
r
i,j(t, t

′) (2.86)

G
r(2k)
ik,j (t, t′) = −iΘ(t− t′)〈dkd

†
k〉〈{di(t), d

†
j(t

′)}〉 = (1− nk(t))Gr
i,j(t, t

′)(2.87)

From the previous factorization, equation 2.79 can be rewritten in a simplified
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form,

[i∂t +
∑

k∈V B

χik(1− nk)−
∑

l∈CB

χlinl −
∑

γ

Uiγnγ(t)]Gr
ij(t, t

′)

−
∑

γ

εiγG
r
iγ(t, t′) = δ(t− t′)δij

+
∑

σ

V ∗
σ,iG

r
σ,j(t, t

′). (2.88)

Let us now implement these new interacting terms in the NEGF-WF formalism,
starting from equation 2.63.

H tot(t) = Hst +Hp(t) + Σc(t)− Σc,0 (2.89)

Hst = H0 + Σc,0 (2.90)

where we define the interacting Hartree-Fock self-energy as,

Σc(t) = −
∑

k∈V B

χik(1− nk(t)) +
∑

l∈CB

χlinl(t) +
∑

γ

Uiγnγ(t), (2.91)

and its stationary value Σc,0 = Σc(t = 0). We have added and subtracted Σc,0

from the expression of H tot(t) in order to fullfill the condition of cancellation,
H̃p(t = 0) = 0, with H̃p(t) defined as,

H̃p(t) = Hp(t) + Σc(t)− Σc,0(E) (2.92)

From the equation 2.63, we derive as previously the equation of motion of Ψp(t).

i∂tΨ
p(t) = H tot(t)Ψp(t) +

∫ t

0
duΣ(t− u)Ψp(u)

+

[

Hp(t) + Σc(t)− Σc,0(E)

]

e−iEtΨst (2.93)

Actually, equation 2.93 gives the equation of motion of Gr within the simple
framework we propose to handle electron-electron and electron-hole interaction
in nanodevices. This equation is similar to the one proposed for ballistic trans-
port but with a modified source term. From here, equation 2.93, has to be solved
self-consistently at every single time point in direct link with the values obtained
for the self-consistent stationary wave function Ψst,

[E −Hst − Σ(E)]Ψst =
√
vαξαE, (2.94)

where now Hst include Σc,0 term. The numerical implementation consist of two
self consistent schemes with the coupled equations 2.94 and 2.93.
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2.4. Algorithms and numerics

In this section, the numerical implementation algorithms are given. Depending
on the discretization method used, the computation can be faster. In our case
a simple Euler meshing with a refine slicing in time does the trick. A hundred
seconds is needed to get a full transient photocurrent data. So computing an
integrated photocurrent requires 100 × Nmesh seconds. With Nmesh the number
of meshing points. We recall that not all the algorithms used during this thesis
are given here. For instance, the algorithm for the integrated current and beyond
wide band limit is not given.

Algorithm 1 NEGF-WF ballistic calculation

Nt ← < the number of time points >
Ne ← < the number of energy points >
n← < the number of modes >
for i← 0 to Ne do

: Stationary calculation
Ψst

1,i ← [EI −H0 − Σr] Ψst
1,i =

√
v1ξ1

Ψst
2,i ← [EI −H − Σr] Ψst

2,i =
√
v2ξ2

... ← ...
Ψst

n,i ← [EI −H − Σr] Ψst
n,i =

√
vnξn

for j ← 0 to Nt do

: Time dependent calculation
Ψp

1,j ← i∂tΨ
p
1,j = [H(t) + Σr] Ψp

1,j +Hp(t)e−iEtj Ψst
1,i

Ψp
2,j ← i∂tΨ

p
2,j = [H(t) + Σr] Ψp

2,j +Hp(t)e−iEtj Ψst
2,i

... ← ...
Ψp

n,j ← i∂tΨ
p
n,j = [H(t) + Σr] Ψp

n,j +Hp(t)e−iEtj Ψst
n,i

: Constructing wave functions
Ψtot

1,j ← Ψp
1,j + e−iEtj Ψst

1,i

Ψtot
2,j ← Ψp

2,j + e−iEtj Ψst
2,i

... ← ...
Ψtot

n,j ← Ψp
n,j + e−iEtj Ψst

n,i

: Constructing Green′s functions and observable
G<(E, t)← ∑

k fk(E)Ψtot
k,jΨ

tot∗
k,j

I(E, t)← ∑

k fk(E)Ψtot
k,jH

totΨtot∗
k,j

end for

: Constructing integraded observables
end for
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Algorithm 2 NEGF-WF-HF Coulomb interactions

Nt ← < the number of time points >
Ne ← < the number of energy points >
n← < the number of modes >
k ← < the mode index >
while <convergence criteria> do

for i← 0 to Ne do

: Stationary self consistency
Ψst

k,i ← [EI −H0 − Σc,0 − Σr] Ψst
k,i =

√
vkξk

: Compute convergence observable
G<(E)← ∑

k fk(E)Ψst
k Ψst∗

k

: Store convergedwave functions
Mk(:, i)← Ψst

k (i)
end for

: Compute Hartree − Fock self energy
Σc,0(E)← Σc,0

i (E)
: Check convergence

end while

++++++++ Time self-consistency +++++++
for j ← 0 to Nt do

: Time dependent self consistency
while <convergence criteria > do

: Construct the Hamiltonian
H tot(tj)← H0 +Hp(tj) + Σc(tj)
for i← 0 to Ne do

: Collect back the stored stationary wave function
Ψst

k,i ←Mk(:, i)
: Time dependent calculation
Ψp

k,j ← i∂tΨ
p
k,j = [Hj + Σr] Ψp

k,j +
[

Hp,j + Σc
j − Σc,0

]

e−iEtj Ψst
k,i

: Contructing wave functions
Ψtot

k,j ← Ψp
k,j + e−iEtj Ψst

k,i

: Compute convergence observable
G<(E, t)← ∑

k fk(E)Ψtot
k,jΨ

tot∗
k,j

I(E, t)← ∑

k fk(E)Ψtot
k,jH

totΨtot∗
k,j

end for

: Compute Hartree − Fock self energy
Σc ← Σc

j

: Check convergence
end while

: Constructing integraded observables
end for
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Conclusion

In this chapter, we introduced the theoretical background as a foundation of the
NEGF-WF technique for ballistic transport and beyond for the case of electron-
hole pairs correlations. After review of the mathematical concept of Green’s
functions formalism through its quantum mechanical basis, we presented the
NEGF-WF technique for ballistic time-dependent numerical simulations, by show-
ing the switching key from Green’s functions to wave functions. The construction
of wave functions and the computation of commonly known observables like the
current and the time-resolved electron density in the proposed framework are
shown. Our main contribution to NEGF-WF is the proposed theoretical approach
to include electron-electron and electron-holes correlations at Hartree-Foch level
into the dynamical simulation. We have also proposed efficient algorithms for
numerical simulation implementation for both ballistic NEGF-WF and NEGF-WF
(HF). Briefly, we brought our touch to the technique by introducing a novel effi-
cient theoretical and numerical method to treat correlations at the Hartree-Fock
level for time-dependent quantum transport in optoelectronic devices. The next
stage of the theoretical and numerical development of this framework is the
treatment of the molecular vibrations and bosonic interaction. Including these
interactions will provide us with a powerful numerical tool for a more precise
description of ultrafast quantum transport phenomena in nanosystems.
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CHAPTER

THREE

DYNAMICAL LEVEL STRUCTURE AND
PHOTO-INDUCED CHARGE CURRENT IN ORGANIC

SEMICONDUCTOR DEVICES

Nanoscale molecular electronic devices and machines are emerging as promis-
ing functional elements for next-generation technologies since they are naturally
flexible, efficient and operate on subpicosecond time scales. A deeper under-
standing of electron transfer processes in molecular junctions is expected to
benefit many fields ranging from nanoelectronics to bio-engineering. Several
advances are registered in the field. From the intra-molecular coherence control
of molecular devices [90] to the generation of terahertz frequencies through a
UV light modulated photo-conducting graphene nano-ribbon [91], a lot is done
in molecular electronics development like the realization of interference-based
molecular transistors [92]. In fact, the control of quantum dynamics on sub-
picosecond time-scale is of high impact on compact terahertz-radiation devices
for organic compounds as well as observation of living matter. It has also been
recently shown that it is possible to reconstruct the absorption spectrum of a
molecular junction by mean of photocurrent pump push spectroscopy, which is
exactly the usual pump-probe spectroscopy where the probe is an infrared (IR)
light pulse and photocurrent measurement is performed (see Figure 3.1) [93].
In Figure 3.1, dJ

J
is the relative difference of the push induced photocurrent with

respect to the pump-induced photocurrent. These advances are the insight into
the field. The remaining questions are on what control charge, energy transfer
processes and transport mechanisms in such junctions on these timescales. The
answer might come from a step by step investigation of the optoelectronic prop-
erties of molecular junctions on a subpicosecond time scale. In this Chapter, we
investigate the dynamical optoelectronic properties of a donor-acceptor molec-
ular junction subject to an externally applied Gaussian laser field. The aim is
to extract the underlying physics, quantum properties and characteristics of the
nanojunction. The numerical simulations rely on the NEGF-WF framework pro-
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posed in Chapter 2 and ignoring the electron-electron and the electron-hole cor-
relations in this first part of the study of photoinduced charge transfer processes.
These correlation are treated in the next chapter. This ballistic study will provide
us with the basics but most important internal quantum properties of nanojunc-
tions. Such insights into the dynamical optoelectronic properties of molecular
junctions are of strong interest for ultrafast spectroscopy, and opens avenues
toward the possibility of analyzing and controlling switching mechanisms, pho-
tocatalytic processes and the internal properties of quantum nanodevices.

Figure 3.1.: Vibrational modulation effect. The vibrational part of the photocur-
rent pump push spectroscopy response, measured at negative delay
time from [93].

3.1. Device structure

We consider an unbiased molecular junction laterally connected to two metallic
electrodes, as schematically depicted in Figure 3.2. The molecular complex con-
sists of a donor (D)-bridge-acceptor (A) chain, which represents a key molecular
model for organic semiconductors and biological applications [16]. The numeri-
cal calculations are implemented by mean of the time-dependent NEGF base WF
technique presented in chapter 2. The notations in this chapter are the same as
in the previous one.

We model the overall device as a three-level system made of the highest oc-
cupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) of the donor, coupled to the LUMO of the acceptor through a coupling
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parameter β that globally describes the bridge effects. The molecular complex
forms system S. It is connected on the left and the right sides to metallic leads
through the same energy-independent contact self-energy ΣL,R = −iΓ.

In this model of the molecular junction, H0 and Hp(t) are 3× 3 matrices with
non-zero elements H0ii

= εi, H023 = H032 = β, and Hp12(t) = M(t) is the pulse-
induced light-donor coupling. The time-dependent electromagnetic field is in-
cluded in M(t) that couples the HOMO to the LUMO of the donor. The pulse-
induced light-donor coupling M(t) is defined as M(t) = Θ(t)A(t) cos(ωt) with
Θ(t) the Heaviside function and A(t) = A0 exp(−(t − tc)2/2τ 2), where A0 is the
maximum amplitude and g(t) = exp(−(t − tc)

2/2τ 2) the Gaussian envelope of
the pulse. The full width at half maximum is given by FWHM = 1.66τ and ω
is the central frequency of the pulse. In the present study, we fix ε1 = −0.7 eV,
ε2,3 = +0.7 eV, ~ω = ε2 − ε1 = 1.4 eV, and τ = 5.0 fs. The temperature is also
fixed to 10 K. The coupling M(t) is shown in Figure 3.3.

Figure 3.2.: Schematic representation of the molecular junction. Energies ε1 and
ε2 are the atomic orbitals of the donor and ε3 the LUMO orbital of
the acceptor.

The FWHM of the pulse irrandiance, ∆t in Figure 3.3 (A) and the width of its
Fourier transformed frequency ∆ν on Figure 3.3 (B), should obey Heisenberg’s
uncertainty principle,

∆t∆ν ≥ 1. (3.1)
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Figure 3.3.: Pulse-induced light-donor coupling, M(t), as a function of time (left
panel). Fast Fourier transformed signal of the pulse (right panel).

The aim is to understand carrier dynamics at the interface of a D-A molecule
sandwiched between two metallic electrodes, by analyzing the time-resolved
photocurrent flowing through the D-A junction when the donor is excited by a
femtosecond Gaussian-shape laser pulse. The time-dependent electromagnetic
field induces carrier absorption and emission from the LUMO and HOMO inside
the donor. The excited electrons and holes are transferred to electrodes, it re-
sults in a photocurrent through the molecular junction as a unique consequence
of electron excitation by ultrafast laser pulse radiation.

3.2. Population dynamics

We first analyze the dynamics of carriers inside the molecular complex. The in-
tramolecular orbital populations are numerically computed by integrating over
energy the time-resolved spectral lesser Green’s function associated to each molec-
ular level i:

ni(t) = Im
1

π

∫

G<
ii(E, t)dE , (3.2)

where G<
ii(E, t) =

∫

e
iE(u−t)

~ G<
ii(u, t)du.

Populations of Figure 3.4 point out carrier pathway just after the perturbation
is initiated. In the beginning, the pulse induces a HOMO-LUMO transition at the
donor (levels 1 to 2 of Figure 3.2), followed by intermolecular tunneling oscilla-
tions between donor and acceptor LUMOs (level 2 and 3 of Figure 3.2). Mean-
while, in the donor, there are noticeable interferences of propagating modes.

43



Therefore, the pulse field induces population oscillations with two characteristic
frequencies.

The first oscillation is only patterned during the light-donor interaction in pop-
ulations n1 and n2. Corresponding frequency is about ∼ 2ω (ω being the central
pulse frequency). This "on-pulse" oscillation is the result of absorption and wave
function interferences inside the donor. The second oscillation occurs at the end
of the pulse train: both populations n2 and n3 show damped oscillations of re-
laxation Figure 3.4. These oscillations, called here “off-pulse" oscillations for
simplicity, essentially involve the donor and acceptor LUMOs. These oscillation
frequencies are controlled by both the pulse amplitude A0 and the intramolecu-
lar donor-acceptor coupling β. However, their amplitude is proportional to the
β value for the case of the on-pulse oscillation and its inverse for the off-pulse
oscillations. These two characteristic frequencies represent important physical
effects in a driven nanodevice: induced interferences pattern and intramolecular
LUMOs tunneling oscillations.

The induced off-pulse oscillation fringes result from spectral interference of
two slightly different frequencies components of the wave function emitted at
two different times. The time at which the laser pulse have the same amplitude
on the leading and the trailing edges of the pulse envelope, these two excita-
tions generate waves of the same instantaneous frequency that may interfere
constructively or destructively depending on the phase difference. A predictive
study of the positions of the destructive or constructive interference pattern even
though interesting will not be discussed in this thesis. A sketch of an analytical
perturbative study to the first order, using a monochromatic field instead of a
laser pulse, by mean of the Rotating Wave Approximation (RWA), reveals that the
tunnel oscillating frequency is of order

ω′ =

√

4β2 + A2
0

2~
. (3.3)

This frequency depends on both the field parameter A and the intermolecular
coupling β. On the other hand, off-pulse oscillation have a characteristic fre-

quency depending on the whole junction since it is of order ∼ β

~
. The internal

quantum tunneling frequency of the device is accessible once the current is mea-
sured, implying that molecular coupling β can be measured from the current.
The discussion will be deepened in section 3.5.1.
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Figure 3.4.: Populations n1 of donor level 1, n2 of donor level 2, n3 of acceptor
level 3. Simulation parameters are β = 0.1 eV, Γ = 0.05 eV, and
A0 = 0.5eV .

3.3. Photocurrent generation

The dynamics of populations results in a transient photocurrent within the re-
laxation time set by the donor-acceptor and molecule-lead couplings. The time-
resolved photocurrent flowing from donor to acceptor IDA(t) reflects indeed this
dynamics of populations and their characteristics, as depicted in Figure 3.5(A).
Both on-pulse and off-pulse population oscillations are remarkably visible on the
photocurrent variation. In cases where on-pulse oscillations have been obtained
[45, 94], their low amplitude brought to the conclusion that they could not be
experimentally measurable due to capacitive effects [94]. However, beyond the
fact that this frequency is proportional to that of the field, its relative ampli-
tude depends on the donor-acceptor coupling strength β, as illustrated in Fig-
ure 3.5(B) where β is three times the value used in Figure 3.5(A). We thus infer
that it might be possible to detect this frequency in the case of strongly connected
donor-acceptor, with the right choice of bridge. In terms of charge transfer, the
off-pulse oscillation owns a characteristic frequency of forth and back-tunneling
between levels |2〉 and |3〉. This frequency is related to the intramolecular D-A
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coupling, as shown in Figure 3.5(B). However, it can also be seen that the am-
plitude of this off-pulse oscillations are reduced for a high β value in opposition
to the case of the on-pulse oscillation. It comes out that a high β value induces
high on-pulse oscillation amplitudes but low off-pulse oscillation amplitudes. An
intermediate value of β could collapse the on- and off-pulse so that observation
of oscillations could be critical. The previous discussion will lead the choice of
the bridge in building the donor-acceptor junction in molecular devices.
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Figure 3.5.: Time-resolved photocurrent expressed in ampere. Simulation parame-
ters are β = 0.1 eV, Γ = 0.05 eV, and A0 = 0.5eV . (A) with the same
parameters as in Figure 3.4, (B) except that β = 0.3 eV instead of
0.1 eV, (C) except that Γ = 0.2 eV instead of 0.05 eV, and (D) except
that A0 = 0.05 eV instead of 0.5 eV.

The off-pulse oscillation amplitude is also strongly damped due to the relax-
ation of the system to equilibrium induced by the molecule-lead coupling Γ (see
again Figure 3.2). In figure 3.5(C), Γ is increased compared to Figure 3.5(A):
one can no more observe the intramolecular oscillation neither in population
(not shown) nor in photocurrent. The off-pulse oscillations are progressively
damped as Γ increases and finally disappear at strong Γ. The intramolecular
dynamics only survives when carriers are long lived in the system, which means
for a sufficiently weak coupling to leads or whenever the characteristic time for
the proper dynamics of the molecule is smaller than the relaxation time of the
open system, τr = ~/Γ. Finally, the light-donor coupling amplitude A0 has been

46



divided by a factor ten in Figure 3.5(D). Compared to Figure 3.5(A), the pho-
tocurrent amplitude is also reduced by about the same factor. Moreover, the
negative oscillation within the on-pulse regime is amplified, which might affects
the directionality of the integraded current. We thus quantify this directionality
by defining the following ratio:

r =

∫

I(t)dt
∫

I(t)>0 I(t)dt− ∫

I(t)<0 I(t)dt
, (3.4)

whose sign indicates the current directionality: r = 1 if
∫

I(t)<0 I(t)dt = 0 so that
charges flow towards the right side of the junction, r = −1 if

∫

I(t)>0 I(t)dt = 0,
charges flow towards left, and r = 0 if

∫

I(t)>0 I(t)dt =
∫

I(t)<0 I(t)dt, there is no
charge transfer in average between the two metallic electrodes. Comparing the
four device configurations of Figure 3.5(A,B,C,D), we obtain r = 0.76 in Fig-
ure 3.5(A), 0.82 in Figure 3.5(B), r = 1.00 in Figure 3.5(C), and finally 0.58 in
Figure 3.5(D). Such a control over the inversion and suppression of current was
already pointed out in classical single level tunneling structure [59]. We here
confirm the crucial role of the field amplitude inside the light-donor coupling
M(t), as well as the D-A intermolecular coupling. For strong coupling to reser-
voir, the inversion of I(t) is suppressed. Electrons do not spend enough time
inside the molecule to oscillate between levels |2〉-|3〉 and experience strong in-
duced emission. This discussion on carrier dynamics and photocurrent suggests
that we can generate, shape and control signals of different frequency through
the design of molecular junctions.

The populations in Figure 3.4 and corresponding photocurrent in Figure 3.5(A)
are in agreement with the results obtained using density matrix approach in
Ref. [16], which is valid to second order in the molecule-leads coupling. Actu-
ally, off-pulse oscillations and damping are also present. The magnitude of these
two phenomena is stronger in the present work due to the fact that we explore
strong system-lead couplings, which permits NEGF formalism.

An extended view of what has been said so far on the β coupling and the field
amplitude A0 effect is shown by the mapping of the photocurrent in Figure 3.6.
In the left panel the photocurrent spectral view as a function of time and the
intramolecular coupling β, where the increase of the on-top oscillations and the
decrease of the off-pulse oscillations amplitudes with β is confirmed. In the right
panel, the photocurrent is represented as a function of time and pulse amplitude
A0. Additionally to the effects described in Figure 3.5, we notice that as A0

increases, the maximum of the transient photocurrent is reached faster. Meaning
that device responds faster with A0. This might be induced by the rising time of
the field envelope, that is reduced by the increase of A0. Further analysis is
possible in that direction for switching process applications.
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Figure 3.6.: Time-resolved photocurrents maps: as function of β (left panel), and
pulse amplitude A0 (right panel), with Γ = 0.05eV .

Finally, we propose an analytical model for photocurrent analysis. Let us sum-
marize the overall dynamics into three zones, as shown in Figure 3.7. In fact
there a first zone, Zone A , that is a mixte of stationary dynamics and the raising
dynamics of the system. The faster the raising time, the better the photodetec-
tion applications.
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Figure 3.7.: Photocurrent showing three dynamical regions: Raising dynamic
(Zone A), Forced dynamic (Zone B) and Damped oscillations dynam-
ics (Zone C).

The second zone, Zone B, is the forced dynamic zone, where the dynamic is
forced by an external impulse or field. Zone C shows the dynamic of the freed
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oscillations, will no external influence, but damp. This last regime is more inter-
esting due to the fact that it mostly depends on the system parameters and less
on the external ones. The photocurrent in Zone B and C could be approximated
with the following functions:

IB(t) = I0Be
(−ΛBt) cos(ωBt) + Is (3.5)

IC(t) = I0Ce
(−ΛCt) cos(ωCt), (3.6)

where, ΛB is the damping function that depends on Γ, β and the field amplitude,
A. Similarly, ΛC is a damping function in the off pulse photocurrent. As shown
in Figure 3.11a, in some cases ΛC can be approximated as ΛC~ ∼ Γ. ΛC weakly
depends on β and A. ωB and ωC are oscillating frequencies as defined previously
with the particularities that ωB is time-dependent and ωC is not and could be
approximated as ωC~ ∼ β. Finally Is is the source term induced current, the
forcing current. Is could be found by taking the average value of the Zone B

photocurrent.

3.4. Ultrafast electronic structure dynamics

In order to deepen the analysis, we define a time-resolved local density of states
(TRLDOS) at site i:

TRLDOSi(E, t) = Im
∑

α

[
i

2π
ΨαE(i, t)Ψ†

αE(i, t)
]

. (3.7)

This definition reduces to the standard one of LDOS(E) in the stationary case,
as demonstrated in the appendix A.

Such a time-, energy- and space-resolved quantity provides insights into the dy-
namical photoelectronic structure produced by the time-dependent electromag-
netic field, as shown in Figure 3.8.

Firstly we observe a time-dependent energy level shift, known as dynami-
cal Rabi shift. Indeed, in a quantum system driven by an external field of
time-dependent amplitude, the near-degenerated dressed states undergo time-
dependent splitting ω′(t) =

√

4β2 + ~2ω2
r(t)/2 where ωr(t) is the instantaneous

Rabi frequency given by ωr(t) = A(t)/~ . This dynamical Rabi shift generates
redshifted and blueshifted sidebands at instantaneous frequencies ω − ω′(t) and
ω + ω′(t) which are schematically drawn on Figure 3.9a. Actually, in Figure 3.8,
the TRLDOSD shows the three stationary molecular hybridized orbitals before
the pulse is set on, which takes about t = 10 fs. As soon as the pulse is set on,
the energy levels are no more constant over time but dynamically shifted with
respect to their stationary values. The shift results in dynamical Rabi sidebands:
the three initial stationary states dynamically shifted, plus a lower-energy level
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appearing after t = 10 fs, as illustrated in Figure 3.9a. This additional dynamical
level is generated due to the fact that the pulse replicates the two upper energy
levels inside the lower-energy part of the donor spectral function which then also
splits into two Rabi sidebands [61]. Along the time axis, oscillation generation is
also visible at almost all energies. After the pulse, for t = 40 fs to t = 100 fs, the
system relaxes back to its stationary configuration with the three atomic orbitals
surrounded by interference patterns damped due to the molecule-lead coupling.

Figure 3.8.: Time-resolved local (donor) density of states at the donor (in loga-
rithm scale). Simulation parameters are β = 0.1 eV, Γ = 0.05 eV, and
A0 = 0.5eV .

Additionally, we observe low-amplitude satellite maxima from a closer look
around ±2 eV of Figure 3.8, that we identified as Floquet-like states. In order
to examine these features of TRLDOS appearing in the system, we have numer-
ically extracted and plotted the energy and time coordinates of TRLDOS local
maxima which are represented in Figure 3.9b (this figure also remarkably shows
the dynamical Rabi shift).

We notice that these satellite states appear at energies of about Ei ± ~ω, and
we have checked that states follow this trend when we change ω. We thus infer
that these satellite states are Floquet-like states.

Let us make a brief recall here about Floquet-states. In fact, it has been
shown for a symmetric Hamiltonian under time translation H(t) = H(t + τ),
ac-bias application for instance, that the system splits into multiple states with
quasi-energies E ± ~ω [95]. For the one dimensional case, the time dependent
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(a) Dynamical Rabi sidebands. (b) Local maxima.

Figure 3.9.: (a) Sketch of the dynamical Rabi sidebands. (b) Traces of local max-
ima of time-resolved local density of states extracted from figure 3.8.

Schrödinger equation gives:

(H(t)− i~ ∂
∂t

)Ψ(t) = 0, and H(t) = H0 +Hex(t). (3.8)

H0 is assumed to have a complete orthogonal basis set of eigenfunctions ψn with
the corresponding eigenenergy En:

H0ψn = Enψn. (3.9)

According to Floquet theorem [18], there exists solutions to the time-dependent
equation 3.8, called Floquet states solution

Ψα(t) = exp(−iεαt/~)Φα(t), (3.10)

where Φα(t) is the periodic Floquet mode and εα is the quasi-energy unique up
to an integer multiple of ~ω (ω = 2π/τ is the Hex(t) frequency).

εα 7→ εα + n~ω.

In the case studied here, the electromagnetic field is not monochromatic, due
to its Gaussian shape, and hence, the Hamiltonian is not periodic, but we still
observe the presence of these states with almost similar quasi-energies. Never-
theless, the presence of these Floquet-like states might be due to a weak rate of
change of the field envelope with respect to its frequency. In fact, if the field
envelope varies slowly compared to the cosine period, the field can be approx-
imated by a monochromatic field. In such a case, the Hamiltonian should be
quasi-symmetric by time translation, then time modulated Floquet states might
appear.
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The Floquet like states appearance as explained above depends on the field
shape. In fact, Floquet states appear here in the approximation that the rate
of change in the field amplitude dg is smaller with respect to the central oscil-
lating laser field frequency ω. This is an approximated regime in between the
time-translational symmetric Hamiltonian and non-symmetric Hamiltonian. As
example for A = 0.5, the rate of change in the field envelope is dg ∼ 1

42
ω. Reduc-

ing the FWHM of the laser field will reduce the ratio dg
ω

and the system tends to
the translational symmetry breaking with an effect of cancellation of the Floquet
states.

Finally, we decipher the internal dynamics of this molecular system interacting
with a time-dependent electromagnetic field. Cuts at different times of TRLDOS
are represented in Figure 3.10.

Figure 3.10.: Instantaneous local (donor) density of states for different times (t0 =
10 fs, t1 = 25 fs, t2 = 30 fs, t3 = 35 fs and t4 = 60 fs), with the
same parameters as in figure 3.4.

These instantaneous densities of states as shown on Figure 3.10, indicate that
the external field applied to the system induces a coupling of the molecular levels
with the field modes, so that we not only have a rearrangement of the non-
equilibrium molecular orbitals but also pulse-induced secondary maxima in the
system spectral response due to the broad spectrum of the pulse. Due to the
hybridization with states of the leads, molecular levels broaden, which allows
us to regard the local molecular density of states as a sum of level Lorentzian
envelopes. We observe that the instantaneous LDOS for t1 , t2 , t3 have a different
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full width at half maximum compared to the LDOS at t0. Moreover, the energy
level spacing is changed as shown up with the dynamical Rabi shift. The pulse
tends to distort and reshape the Lorentzian envelopes, which originates from
field-induced coupling renormalization in the molecular device. These effects
of renormalization and rearrangement of molecular orbitals are suppressed for
strong coupling to leads due to state delocalization. This last point could be a
problem of experimental interpretation since the broadening could hide extra
molecular orbitals or even shifts.

3.5. Proposal of experimental measurement

3.5.1. Intramolecular couplings and terahertz frequencies

From an experimental point of view, it might be possible to directly measure the
contact coupling of metallic electrodes to the molecule Γ, and the intermolecular
coupling β at low temperatures, when molecular vibrations are weak and negli-
gible. Measuring the contact coupling consist of doing a fitting of the off-pulse
photocurrent with a decaying exponential exp(−ηt), where η ∼ Γ/~ (Figure
3.11a). One possible way to experimentally capture the value of the intermolec-
ular coupling is to perform a Fast Fourier Transform (FFT) of the off-pulse pho-
tocurrent signal since its oscillation frequency should be about ∼ β/~ (figure
3.11b). This last measure could also be possible with a two dimensional FFT of
the time-coupling photocurrent. From FFT of different cuts in Figure 3.6 (left
panel) at different values of β in the off-pulse regime (above 25fs), we estimate
the numerical values of β, given in Table 3.1.

β (input) in eV 0.1 0.2 0.3 0.35
β (FFT) in eV 0.08 ± 0.03 0.209 ± 0.04 0.24 ± 0.065 0.34 ± 0.05

Table 3.1.: Comparison of input value β to the numerical value extracted from
FFT.

The good agreement between the input values β and their output estimated
from the simulated experiment validate our proposal of experimental measure-
ment. For the measurement of Γ further investigations need to be pursued and
determine how to adjust the exponential fitting depending on the external field
shape and strength.

This analysis raises the question of "terahertz gap". The ‘terahertz gap’ has
a frequency ranges from ∼ 0.3 THz to ∼ 10 THz, this range is said to be non-
invasive, non-destructive, invisible, non-ionizing and biologically safe. Terahertz
frequencies thus find applications in ultrafast nanodevices (high-speed wireless
information transmission between electronic devices), biomedical imaging, can-
cer and pollutants detection and so on [96]. Our idea is that since we can
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(a) Exponential fit of the photocurrent decay.
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Figure 3.11.: Proposal of experimental measurement of Γ and β from off pulse
photocurrent (a) exponential fit: exp(−0.03 ∗ t/~) for Γ = 0.03eV ,
(b) FFT of the off pulse photocurrent for β = 0.1eV .

measure the intramolecular coupling from the photocurrent frequencies, we can
consider designing the nanojunction in such a way that the device produces a
desired frequency in the photocurrent. In that case, we propose to generate
on demand, shape, and control terahertz signals. This might be an impressive
advance regarding the expected applications with THz frequencies.

Finally, more realistic simulations including electron-electron scattering and
molecular vibrations might lead to stronger damping of the oscillations described
above. Electron-electron scattering nonetheless occurs on the timescale ranging
from sub-picoseconds to attoseconds [97, 98], while the electronic oscillations
have oscillation periods of tens of femtoseconds or less. Hence, if the ultimate
goal of molecular electronics is to achieve switching times on the electronic
timescale, the oscillations predicted here will be highly relevant in the limit of
sub-picoseconds scattering timescale.

3.5.2. Rabi dynamics and tunneling competition

Regarding the dynamical Rabi shift of the energy levels, there is a limit in the
ratio Γ/A, where the shift is no more visible. In fact whenever the dynamical en-
ergy level shift is smaller compared to the energy level broadening

√
4β2 + A2 <

2Γ, the shift will be hidden or will manifest itself in the loss of smoothness and or
symmetry of the Lorentzian shape of the local density of states. Weakly coupled
systems are likely to generate dynamical Rabi shifts. Figure 3.12 shows the en-
ergy level splitting as a function of time, and its maximum gives the limit value
of Γ, Γ0.
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Figure 3.12.: Energy level splitting. For values of Γ above the Γ0 line, the splitting
of the energy level is no more visible. Parameters are β = 0.1 eV and
A0 = 0.5 eV.

Figure 3.13.: Time-resolved local (donor) density of states. For values of Γ =
0.05eV (left panel) and Γ = 0.25eV (right panel).

Let us recall that the loss of energy splitting is characterized by the cancellation
of the tunneling oscillations in the photocurrent, Figure 3.5 (C). The TRLDOS at
strong broadening is represented on the right panel of Figure 3.13, where we
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can see the two upper levels of the junction are merged in comparison to weak
broadening shown in the left panel of Figure 3.13.

Let us get more insight into the global picture of the dynamics from Figure
3.14. Figure 3.14 represents limit values of Γ, Γ0 as function of β for two values
of the pulse amplitude. The upper and the lower regions of each curve plotted
in Figure 3.14 show two distinct regimes of transport. The upper region (Γ >
Γ0) correspond to the direct tunneling while the lower region correspond to the
oscillating tunneling regime. Every couple of parameters (β,Γ) chosen in any of
these regions determine a transport mechanism type for carriers. In fact couple
of parameters (β,Γ) chosen below the curves gives rise to the oscillating tunnel
transport otherwise it is a direct tunnel transport. Note that the two transport
regimes are directly scaled by the pulse amplitude strength towards high (β,Γ)
values, for increasing A value. This last comment is critical in the improvement
of the design and the efficiency of ultrafast optoelectronics.

Figure 3.14.: Limit values Γ0 as function of β for two values of the pulse amplitude.

The diagrammatic sum up of our interpretation of charge dynamics in this
simple D-A complex device is finally illustrated in Figure 3.15.
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Figure 3.15.: Diagrammatic picture of the internal electronic structure dynamics
inside the D-A molecular junction.

Figure 3.16.: Simulated infrared (IR) spectrum for the pentacene molecule (red)
and crystal (blue), superimposed on the experimental spectrum for
comparison from [93].

The overall point is that the experimental absorption spectrum of a molecule
will depend on the width and the strength of the pulse with respect to its cou-
pling to the reservoirs. As in Figure 3.16, where the simulated infrared spectra
for a single pentacene molecule and for a crystal is compared to the experimental
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infrared absorption, the discrepancy (∼ 10cm−1) might come from the numerical
model not taking into account the ultrafast band structure bending. We agree
with the authors on the argument that the intermolecular coupling is impor-
tant in the photocurrent enhancement, but one should also consider electrode-
molecule and intramolecular couplings renormalization.

3.6. Discussion

Regarding the dynamical Rabi shift and Floquet-like states generation, it has
been shown in the case of a single oscillating level that the interaction of a
molecular junction with an external time-dependent electromagnetic field leads
often to two phenomena that have been used to control the tunneling in semi-
conducting molecular optoelectronics [99–101].

The first one is the coherent destruction of tunneling (CDT) [102, 103]. The
dynamical Rabi shift induced by the fact that in the presence of a laser field,
a pair of the nearest neighbor sites shifts up and down in opposite direction
[104], could explain the CDT in semiconducting molecular devices. Meaning
that whenever the right dynamical shift induces an overall zero mean value for
the photocurrent, the integrated current will be null, so tunneling is destructed.

The second phenomenon is the photo-assisted tunneling (PAT) [95]. An ex-
ternal time translational symmetric field with frequency ω can induce inelastic
tunneling processes whenever electrons exchange a quantum of energy ~ω with
the radiation field in such a way that tunneling occurs through satellite states
at energies Ei ± n~ω, where n is an integer, positive for photon absorption and
negative for photon emission.

Finally, what could be inferred concerning the photocurrent pump-push spec-
troscopy (PPPS) experiment? As described above, the PPP is a promising al-
ternative to standard all optical spectroscopic methods as far as optoelectronic
nanodevices are concerned and a hybrid spectroscopic method with electrical de-
tection. It provides the possibility to access vibrational modes and their coupling
to electronic dynamics. But the experimental realization requires an IR push as
a probe, that could excite carriers in the two low-laying Rabi sidebands and not
in the high laying levels as desired by the experiment. In fact, depending on
the intermolecular coupling and the intensity of the external field, the generated
Rabi sidebands could have a splitting about the IR push pulse energy. One could
consider that PPPS experiments, regarding the efficiency of charge transfer in
molecular junctions (Figure 3.17) could be improved because of possible loss
mechanisms that could be induced by low-laying Rabi sidebands absorptions.
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Figure 3.17.: Results of pump-push photocurrent experiments on a set of organic
photovoltaic [105]. In this plot δPC/PC is the same as dJ/J in 3.1.

Conclusion

The present study attempts to establish the time-resolved response of a D-A
molecular complex to a femtosecond Gaussian-shape laser pulse within the pro-
posed Keldysh’s formalism based NEGF-WF technique. Definitely, applying an
ultrashort laser pulse induces a dynamical energy level shift and generation
of Rabi sidebands that induces Floquet-like states, both shown on Figure 3.9b.
These Floquet-like states could be the anomalous edge states observed in weakly
driven lattice systems [106]. The photocurrent is sensitive to the quasi-energy
spectrum of the transient Floquet states and the Rabi sidebands. The TRLDOS
shows a signature of oscillations similar to those in the photocurrent i.e. on-/off-
pulse oscillations. In the present study, Floquet-like states have a weak ampli-
tude in TRLDOS. However, these Floquet-like states could open new transport
channels to be taken into account for transport processes, that could also con-
trol the directionality and the optimization of the photocurrent in molecular
devices [59]. The dynamical Rabi shift and induced sidebands also manifest
variations of tunneling parameters, which provides a coherent control of the
field-induced photocurrent. An optical investigation could reveal the signature
of these Rabi sidebands as blueshifted and redshifted frequencies in the absorp-
tion spectrum of such devices. Moreover, one could capture, generate, shape and
control terahertz frequencies (even beyond) from external electromagnetic field
induced intramolecular dynamics. Even though the experimental measurement
of these transient photocurrents in the femtosecond time scale is not possible

59



up to date, the femtosecond carrier dynamics of the molecular junction could
be captured from the direct photocurrent by means of photocurrent pump-push
spectroscopy, where the delay between the pump and the push pulses allows to
control the time resolution.

The major points are the possibility to measure the internal quantum molec-
ular overlap strength and the transient dynamics of a junction while accessing
the photocurrent. Inversely connected molecular nanojunctions could be used to
generate terahertz frequencies and beyond on will just through the control of the
nanojunction bridging. This work opens indeed a discussion on the relevance of
transient dynamics in the understanding of time-resolved device operations and
avenues towards ultrafast device design for future technologies.
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CHAPTER

FOUR

DRIVING ENERGY AND ULTRAFAST BOUND
ELECTRON-HOLE PAIR DYNAMICS

Light-induced photoexcitations in organic semiconducting nanosystems generate
bound electron-hole pairs, called excitons, and their separation into free charge
carriers is a key cross-cutting issue for photovoltaics and molecular optoelec-
tronics. There are two identified types of bound electron-hole pairs that could
be generated in organic semiconducting devices such as photovoltaic solar cells
upon photoexcitation. The exciton, that is generated immediately after light ab-
sorption in the absorbing molecule (donor), and the charge-transfer (CT) state is
generated through the electron transfer from the absorber to the other molecule
(acceptor) while the hole remains in the absorber. It is commonly accepted that
reducing the binding energy of both the exciton and the CT state will improve
the efficiency of such devices [107] or abnormally reduce the efficiency [108].

In these nanodevice types, excitons and CT states often have an important
impact on transport properties. Exciton creation as described in Chapter 1 as
resulting from the interaction of a photon with the organic material. The delo-
calization and transfer of the created exciton from one side to the other of the
device is controlled by complex processes of charge and energy transfers. Key
parameters in the process are transfer time, exciton binding energy, LUMO-offset
energy in the case of a donor-acceptor junction. There are other parameters en-
tering the dynamical process that have not been taken into account in this work.
For instance, the exciton diffusion length that several techniques, from photolu-
minescence (PL) [109] to Forster resonance energy transfer theory [110], failed
to agree on, because the diffusion length in a given material varies depending
on the technique employed. The discrepancy might be due to the carrier mobil-
ity dependence on alternating field frequency in such a way that experimental
direct current measurement of the exciton mobility may not be justified [111].
This confirms again that time-resolved techniques are necessary for understand-
ing exciton dynamics in organic materials since these dynamics happen on time
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scales of sub-picoseconds. These limitations added to the fundamental historical
mismatch between the optical (about micrometer scale) and molecular-length
scales, are barriers to the experimental investigations. But then numerical time-
dependent simulation techniques could allow to break through these barriers
and to explore a wide range of parametric configurations, providing pathways to
experimental realizations. Describing the transport of excitons and CT states in
nanodevices requires approaches that correctly take into account the interplay
between the dynamical electronic structure and bound electron-hole dynamics.
In order to deepen the analysis of these complex processes, we use here the
extended Wave Function technique with electron-electron and electron-hole in-
teractions as we developed in Chapter 2, to analyze the quantum dynamics of
bound electron-hole pair in the same donor-acceptor molecular junction as the
one basically investigated in Chapter 3. We study the impact of electron-hole
interaction on the time-resolved local density of state, on the photocurrent, and
on the driving energy of the junction. We also make proposals of experimental
protocols of photocurrent spectroscopy, the measurement of the driving energy,
pump-push photocurrent spectroscopy and determination of transfer character-
istic timescales. The aim is to propose an efficient characterization of the elec-
tronic structure of molecular junctions, which offers control and shape of carrier
transport dynamics, opening the way to new physical properties and optoelec-
tronic nanodevices.

Let us recall here that a donor-acceptor junction can be built in planar or het-
erostructure configuration as shown on Figure 4.1 for the planar configuration.
We assume here a planar configuration where excitonic interactions are weaker,
but much more trackable [112]. Nonetheless, the methodology could be applied
to a non-planar configuration.

This chapter is organized as follow. A first part describes impacts of excitons
and CT states on the TRLDOS and their correlations to photocurrent. A second
part is dedicated to the interplay between exciton binding and offset energies.
Finally, the last part develops our proposals to identify characteristic time scales
and implement ultrafast spectroscopic methods.
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Figure 4.1.: Interactions that play a role in organic semiconducting junctions. Pen-
tacene donor and fullerene acceptor from [112].

4.1. Impacts of electron-hole Coulomb interaction

In this section, we essentially lay the foundations we need to discuss impacts of
excitonic effects on ultrafast dynamical process.

4.1.1. Model and method

The model used is the same as the one in chapter 3, except that electron-electron
and electron-hole interactions are included. The system is an unbiased molecular
junction, as schematically depicted in Figure 4.2. A molecular complex S, later-
ally connected on the left and the right sides to metallic leads through symmetric
energy-independent contact self-energies Γ.

For convenience, we recall the generic description we used. The donor molecule
is merely described by only two active orbitals, the HOMO and LUMO, denoted
here ε1 and ε2. Similarly, for the acceptor molecule, only the active LUMO is con-
sidered and denoted ε3. In this model as previously, H0 and Hp(t) are 3 × 3 ma-
trices with non-zero elements H0ii

= εi, H023 = H032 = β, and Hp12(t) = M(t) is
the pulse-induced light-donor coupling. The pulse-induced light-donor coupling
M(t) is defined as M(t) = Θ(t)A(t) cos(ωt), with Θ(t) the Heaviside function and
A(t) = A0 exp(−(t− tc)2/2τ 2). The following parameters are fixed all along this
study, ε1 = −0.7 eV, ε2,3 = +0.7 eV, ~ω = ε2 − ε1 = 1.4 eV, τ = 5.0 fs and the
temperature to 10 K.
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Figure 4.2.: Donor-acceptor junction including coulomb correlations; ε1 and ε2 are
the atomic HOMO and LUMO of the donor, and ε3 the LUMO orbital
of the acceptor.

The numerical technique is based on the extended Wave Function technique
and its corresponding algorithm (2) given in Chapter 2. Algorithm (2) con-
sists of computing self-consistently at each time point, including the stationary
time point zero, the Hartree-Fock correction term to the Hamiltonian of the sys-
tem. For the nanosystem considered here, the time-dependent Hartree-Fock self-
energy is given by the following expression according to equation 2.91,

Σc
11(t) = χexn2 + χctn3 (4.1)

Σc
22(t) = −(1− n1)χex (4.2)

Σc
33(t) = −(1− n1)χct. (4.3)

Parameters χct and χex are respectively the CT state and exciton couplings. Pop-
ulation ni = ℑmG<

ii(t, t) is the time-resolved carrier distribution on orbital i. In
the Hartree-Fock self-energy terms considered, the contributions due to electron-
electron type interactions are neglected. This simplification allows us to focus
only on excitonic effects, without mixture with e− e type interactions.

Several experimental and theoretical studies estimated that excitons binding
energy varies from 0.1 eV to 1.0 eV and CT binding energy is about∼ 0.1eV [113].
Despite the wide range of proposed mechanisms to explain charge generation
process in organic semiconducting devices, from hot charge transfer [105] to
exciton polarity [114], the generation of free charges in organic devices is still
not fully understood.
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4.1.2. Impact on time-resolved local density of states

The time-resolved local density of states on Figure 4.3a, shows the TRLDOS for
χct = 0.3 eV as compared to the reference χct = 0.0 eV in the left panel. A straight-
forward analysis of Figure 4.3b reveals, as expected, that the generation of CT
state induces a correction on the energy levels ε2 and ε3, which corresponds to a
gap correction in standard view. In fact, the presence of CT state corrects the hy-
bridized energy levels by changing their splitting, which weakens or supress the
hybridization between LUMOs: the density of states of the anti-bonding molec-
ular orbital is more high and its energy level is almost not affected with respect
to the bonding orbital that is downshifted and less pronounced. Let us recall
that the bonding and anti-bonding orbitals are formed from the hybridization of
donor LUMO, ε2, and acceptor LUMO, ε3.

(a) TRLDOS for χct = 0.0 eV (b) TRLDOS for χct = 0.3 eV

Figure 4.3.: Time-resolved local (donor) density of states: χct = 0 eV (a) and
χct = 0.3 eV (b) with χex = 0.0 eV.

On the other hand, the effects of exciton coupling χex in the donor seem to be
similar to that of the CT state, but the opposite. Meaning that the hybridization is
weakened and the molecular orbitals are localized on the donor and the acceptor
with the bonding orbital dense compared to the anti-bonding orbital, as shown
in Figure 4.4a. There is an overall downshift of the molecular orbitals induced by
the exciton formation. Since the CT state and the exciton effects on the TRLDOS
are opposite, they tend to compensate or compete when simultaneously present
in the system, which is the most realistic case. This is shown on Figure 4.4b,
where the symmetry is restored between the two peaks of the TRLDOS at the
two LUMO hybridized levels.
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(a) TRLDOS for χex = 0.3 eV and χct = 0.0 eV (b) TRLDOS for χex = 0.3 eV and χct = 0.3 eV

Figure 4.4.: Time-resolved local (donor) density of states.

4.1.3. Impact on the photocurrent

Now regarding the photocurrent represented in Figure 4.5, two effects occur
when χct increases. Firstly, the on-pulse photocurrent frequency increases, and
secondly, the photocurrent amplitude decreases. The increase in frequency de-
scribes the energy level adjustment due to CT state coupling. Since orbitals ε2

and ε3 of the molecular level spacing change with χct, there is a CT-induced
renormalization of β which is proportional to the dynamical Rabi frequency in
the rotating wave approximation limit. On the other hand, the decrease in the
amplitude is due to the carrier binding with Coulomb interaction. Due to CT
state, the rate of carrier flow is decreased, and hence the amplitude of photocur-
rent. One point to be noted in Figure 4.5 is the strong decrease in the peaks of the
photocurrent with χct. This is due to the loss of hybridization. Indeed, there is
an oscillating tunneling through both hybridized molecular orbitals (MO). When-
ever χct is switched on, hybridization is no longer maximal, so that the less dense
MO has a weaker tunneling rate compared to the most dense MO. The scenario
is confirmed by the observation of the effect of χex on the photocurrent, pictured
Figure 4.6. The increase of χex reduces the amplitude of the whole photocurrent
as the effect of Coulomb electron-hole pair binding, but specifically, the ampli-
tude of the second peak in the photocurrent is decreased or damped, and even
suppressed for a high value of χex. This matches well with the previous anal-
ysis of TRLDOS, where we have shown the effect of χex on the hybridization
strength, compared to the case of χct. The switch on of χex induces an increase
of the interferences at the donor level with the increase of the on-top oscillation
frequency.
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Figure 4.5.: Time-resolved photocurrent for χct = 0.0, 0.3 and 0.6 eV with exciton
coupling χex = 0 eV.

Figure 4.6.: Time-resolved photocurrent for χex = 0.0, 0.3 and 0.6 eV with CT
coupling χct = 0.0 eV.

There is also a strong damping of the off-pulse oscillation. The damping
mainly depends on the localization of the state on the donor or the acceptor.
The damping could raise a confusion about the suppression of the second peak
in the photocurrent. One can think that since the broadening induces a damping
of the off-pulse oscillation, it could also suppress the second peak in the pho-
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tocurrent. But if that was the case, we would have gotten a smaller or even tiny
peak, not totally suppressed.

In the realistic case where χct and χex are non-zero, all effects mix up, and
there happens a competitive behavior of exciton and CT state in the transport
mechanism. Figure 4.7 presents the time-resolved photocurrent for three config-
urations: χct < χex, χct = χex and χct > χex. Whenever χct < χex, the exciton-
induced effect takes over and vice versa, so in fact, there is a clear competitive
behavior in the transport mechanism that is reflected in the photocurrent shown
Figure 4.7. Especially, hybridization loss and resulting state localization is the
major effect. Binding and anti-binding hybridization occur again for χct = χex,
which is reflected in the photocurrent. Especially the molecular orbitals localiza-
tion and their dissymmetric amplitudes are the major effects. Since for χct < χex

there is a strong decrease in the second peak of the photocurrent as a conse-
quence of the reduction of amplitude of the anti-bonding MO with respect to the
bonding MO. The effect is reversed in the case χct > χex, where the bonding MO
is denser. The compensation between bonding and anti-bonding MO arise when
χct = χex, and is reflected in the photocurrent.

Figure 4.7.: Time-resolved photocurrent: exciton and CT state competition with
χex = 0.3 eV.

4.2. Analyzing charge transfer
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4.2.1. Positioning of the study

According to the experimental design of donor-acceptor junctions for solar device
applications, the practical case is χct < χex, because electron and hole are much
closer in the exciton configuration than CT one, so the attraction strength is
greater in the exciton than the CT state. Since the size of the donor and acceptor
materials defines the separation between the electron and hole in the donor, we
argue here that organic molecules or semiconducting materials with tiny donor
size (for short diffusion length exciton) will tend to bring the CT state in compe-
tition with the exciton such that the global effect of electron-hole bound pairs on
transport could be annihilated in such nanosystems. This observation resets the
question of driving energy and exciton binding energy in a molecular junction,
indeed the topic is actually a hot debate. Let us recall here that the driving en-

ergy is the energy offset of the donor and acceptor LUMOs, and that the Coulomb
attraction energy between electrons and holes is known as the exciton binding en-

ergy (EB ∼ χex). In inorganic semiconductors, dielectric constants, ǫ, are of the
order ≥ 10, and induce a binding energy of around 0.01eV . Such an exciton
binding energy is smaller compared to the thermal background energy kBT at
room temperature which is around 0.026eV , meaning that the electron and hole
are easily separated at these temperatures. The case of organic semiconductors
is radically different. Organic materials usually have smaller dielectric constants,
of about 2 − 4. As a result, exciton binding energies are typically much larger
∼ 0.3 − 0.5eV and require a so-called driving energy in addition to the thermal
energy to generate free charge carriers. This is why organic solar cells require an
heterojunction, an interface between two different types of materials (donor and
acceptor for instance). This heterojunction provides a difference in free energy
that can drive charge separation in order to work properly[115].

In fact, some studies suggest that the most promising strategy for the design of
efficient solar cells is to favor a low driving force for enhancing charge separation
rate from the relaxed CT state [116]. Such an approach includes optimizing
the parameters between acceptor and donor molecules, as inter-chromophore
coupling, charge delocalization, and charge mobility, as well as reducing the
reorganization energy [41, 117, 118]. Meanwhile, there are proposals for a
large driving energy with wide band gap donor and low gap non-fullerene type
acceptor [119]. Are these proposals in contradiction? Let us make a point on
the question and get close to a consensus.

4.2.2. Dynamical driving energy and exciton binding

In this section, we want to give a sketch of insight into the interplay between
exciton and CT state, and their contribution to charge in separation at D-A inter-
faces in nanoelectronics. There are several reviews in the literature with active
contribution and contradictory opinions. But one striking element is that de-
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pending on the material geometry, doping and gap, there is most of the time no
agreement on the value of the driving energy inside the device, and neither on
exciton binding. It is accepted in general that, whenever exciton binding energy
is smaller than driving energy, excitons dissociate into free carriers. And the
inverse will give an exciton dominated, free-carrier and exciton mixture [120].

The current contribution is to elucidate the effects of bound electron-hole pairs
at junction interfaces through the correlation between driving energy and exci-
ton binding energy, which will help to design efficient optoelectronics.

We introduce the Coulomb-induced shift of each energy level i defined from
the Hartree-Fock self energy as

∆εHF
i = Σc

ii = εHF
i − εi, (4.4)

where εHF
i is the energy level εi after correction, ∆εi gives the direction of the

shift induced by its sign and the amount of the shift.
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Figure 4.8.: CT state and exciton competition seen through energy level correc-
tions. The three left panels (εHF

1 ,εHF
2 and εHF

3 ) represent the time-
dependent corrected energy levels induced by e-h pair coupling on ε1,
ε2 and ε3 orbitals. The three right panels (∆εHF

1 ,∆εHF
2 and ∆εHF

3 )
are the corresponding energy corrections. We take χex = 0.3 eV.
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Figure 4.8 shows on its left panel the corrected energy levels of the D-A junc-
tion including excitonic effects with χex = 0.3 eV. The right panel of the same
figure shows the corresponding correction to each energy level. It is clear that as
χct increases, both levels ε2 and ε3 are shifted downward, and ε3 is more strongly
shifted as shown by the plot of εHF

3 and ∆εHF
3 as function of χct with respect to

∆εHF
2 . On another side, the effect of the exciton binding strength is enhanced

on level ε2, since the variation of εHF
2 and ∆εHF

2 as a function of time shows
that whenever χct < χex, they are strongly shifted. The exciton binding energy
as shown is a dynamical parameter, that varies as a function of time and pulse
intensity.

In order to discuss charge separation, the key parameter is the change of εHF
3

with respect to εHF
2 :

∆εHF
32 = εHF

3 − εHF
2 = −(1− n1)(χct − χex) . (4.5)

Such a quantity characterizes the dynamical energy shift between donor and
acceptor LUMOS induced by e-h correlations, it is represented in Figure 4.9. We
identify this shift as the dynamical driving energy governing how the junction
responds when excited by the laser pulse.

Figure 4.9 confirms the competitive nature of the exciton and CT states. There
are three distinct regimes for the device operation. For χct < χex, we have a
positive exciton driving energy, ∆εHF

32 > 0; for χct > χex, we have a negative
exciton driving energy, ∆εHF

32 < 0. The buffering regime is when exciton and
CT couplings compensate exactly, χct = χex, and the exciton induced driving
energy is exactly canceled ∆εHF

32 = 0. The most realistic configuration is the first
one, where we have a positive driving energy for χct < χex. It is also the most
commonly used in the literature.
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Figure 4.9.: Time-resolved driving energy ∆εHF
32 for χex = 0.3 eV.
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It shows once again the competitive nature of exciton and CT states in the
nanosystem. Also, we can notice that the correction induced by the bound e-h
pair interaction, under a time-dependent field applied, is time-dependent and
depends on the field parameters and the internal quantum dynamics of the car-
riers, namely the carriers distribution on each energy level. A reminder, all field
parameters are kept constants during this simulation. It could be interesting to
think of deepening the study on the dependence of the exciton driving energy,
∆εHF

32 , depending on the field parameters and the nanojunction geometry.
To further analyse the effect of different gaps in donor and acceptor, we intro-

duce an offset between the two LUMOs:

δDA = ε3 − ε2. (4.6)

We investigate the time-resolved photocurrent as a function of δDA for two χct

values, fixing χex = 0.3 eV, as shown Figure 4.10. For positive values of the δDA

the photocurrent amplitude is higher compared to the region of negative δDA, as
shown in Figure 4.10. The global behavior of the photocurrent is the same for
the two values of χct, but the whole response is shifted toward high δDA values
when χct increases.

Figure 4.10.: Time-resolved photocurrent as a function of LUMO energy offset,
δDA, for χct = 0.1 eV and 0.3 eV, with χex = 0.3 eV.

The global dynamics is depicted in the photocurrent integrated over time
shown Figure 4.11. It confirms that curves are shifted towards δDA positive
values as χct increases. There is almost a plateau around δDA = 0.0 eV where
the photocurrent amplitude is almost insensitive to CT state and exciton binding.
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Each curve also exhibits a peak inside the region of δDA positive values: at this
specific operating point, there is a compensation between the level offset and
bound electron-hole effects. This counter-intuitive behavior was also observed
in molecular photocells [108].

Figure 4.11.: Integrated photocurrent as a function of LUMO energy offset, δDA,
for χct = 0.1 eV and 0.3 eV with χex = 0.3 eV

4.2.3. Characteristic timescales of charge transfer

In this section, numerical simulations are deeper exploit to extract an “exciton
to CT state” characteristic time.

We use the distribution of carrier population on each state as a function of
time shown in Figure 4.12 (upper panel). We then form the product (1 − n1)ni

that represents the probability of formation of the exciton for i = 2 and of the
CT state for i = 3, these are plotted in Figure 4.12 (lower panel).

Using the bound e-h pair distributions, we propose to evaluate physical quan-
tities that could compare with experiments, as the photoinduced interfacial elec-
tron transfer time that may be interpreted as the time it takes to the exciton to
be transferred to the D-A junction interface up to the formation of the CT state.

Since carriers flow from the donor to the acceptor oscillating as shown Fig-
ure 4.12, we thus roughly define the two times at which one may consider that
exciton then CT state exist. The first time, τex, is the time at which the distri-
bution (1 − n1)n2(t) reaches, on the leading edge, half its maximum value, that
is closed to the average probability of exciton formation. The second time, τct,
is defined similarly on the leading edge of the distribution (1 − n1)n3(t) as the
average probability of CT state formation. The difference τtr = τct − τex could be
interpreted as the photoinduced interfacial electron transfer time.
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Figure 4.12.: Populations ni and product distribution (1 − n1)ni as a function of
time for three different values of χct. Parameter χex is set to 0.3 eV.

Figure 4.13 shows τtr as a function of χct. The transfer time varies very little
in the parameter range. The present investigation leads to an average value 〈τtr〉
of 3.5 fs. This value is in reasonable agreement with predictions for photoin-
duced charge transfer timescales. For some of them, the timescale was found
to vary from a few femtoseconds to hundreds of picoseconds, depending on the
sensitizer molecule [121], and others found that the initial stage to form the
CT excitation occur on a timescale of tens of femtoseconds [14]. Still, there is
an overlap in all predictions. However, the predictive value of τtr obtained here
might increased is nanosystems where vibrations could assist transport.

We finally propose to evaluate the lifetime of CT state, τlifetime, by taking the
width at half-maximum of the (1− n1)n3 distribution as a function of time from
Figure 4.12. The CT lifetime is shown Figure 4.14 as a function of χct, the CT
state binding strength. The CT state lifetime, τlifetime, is found to be of the order
of 18 − 20 fs. Figure 4.14 exhibits two regions: for χct < 0.3 eV where τlifetime

is smaller compared to the region for χct > 0.3 eV. Maximum is obtained for
χct > 0.3, and the two regions correspond respectively to χct < χex and χct > χex.
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Figure 4.13.: Evolution of the photoinduced interfacial electron transfer time, τtr,
as function of χct, with χex set to 0.3 eV.

Figure 4.14.: Lifetime of CT state, τlifetime, as function of χct, with χex = 0.3 eV.
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4.2.4. Proposal for measuring of the driving energy

We expose a simple method to track energy level corrections induced by electron-
hole correlations by means of photocurrent spectroscopy. In fact, the use of the
photocurrent response of the system to a range of optical pump frequencies is a
good way to track. It will provide us with information on the gap dynamics, and
gives an insight into carrier distribution. For such an experiment we also need to
consider the correction induced on the ε1 level, which is smaller but contribute to
the global gap shrinking in the case studied in this paragraph. The time-resolved
photocurrent of the molecular system as varying the laser frequency is shown on
Figure 4.15. The laser energies at which the photocurrent is optimized, around
±Eg ± εHF , are shifted, and spanned differently as χct increases with respect to
χex. The photocurrent integrated over time is maximal for a frequency equal to
the gap of the donor system, as shown in Figure 4.16.

Figure 4.15.: Time-resolved photocurrent distribution as function of the gaussian
pulse central energy, ~ω for different χct with χex = 0.3 eV.
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Figure 4.16.: Integraded photocurrent as function of the gaussian pulse central
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4.2.5. Conclusions for molecular junction design

Coming back to the initial question of what controls carrier separation at a D-A
nanojunction interface: two conclusions are clear, regarding the analysis in this
section. First, the excitonic driving energy is not a constant parameter during
carrier dynamics. We thus conclude that the notion of driving energy from the
standard view should be revised. Secondly, not only the excitonic driving energy
is an additional driving energy to HOMO-LUMO donor gap, and LUMOs energy-
offset built-in during the design, but also it depends on the strength of the CT
and exciton bindings and their competitive nature. We further infer from these
calculations that there exists, for each nanosystem, a limit of the ratio between
the CT and exciton binding strength, for which the excitonic induced driving
energy compensates the static driving energy (energy-offset). Below and above
that limit ratio, the nanosystem operates in two distinct and sometimes opposite
regimes. Since the excitonic driving energy is time-dependent, it implies that
the driving energy is not a known parameter to input during the design, but
an output parameter to be found from dynamical simulations. Of course, for
stationary transport applications, it is possible to take the static driving energy
as an input parameter. Similarly for ultrafast experiments, it might be possible
with the help of numerical simulations to predict the exact value of the driving
energy. This finding gives at least a point of clarification. In fact, it tells us that
depending on geometry and field parameters, some nanodevices might need the
introduction of a static driving energy (HOMO-LUMO offset), and others not. For
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example, there is a recent proposal to use non-fullerene acceptor materials and
a wide bandgap (WBG) donor in order to create a well-matched donor-acceptor
pair with a low band gap (LBG) non-fullerene small-molecule acceptor. This
proposal provides a great potential to realize high-performance non-fullerene
small-molecule organic solar cells [119]. Another study suggested that the strat-
egy for the design of efficient solar cells may be to accept a low driving force in
favor of optimizing the open-circuit voltage, and then to aim at enhancing the
subsequent charge separation rate from the relaxed CT state [116]. In fact, tak-
ing an WBG donor and an LBG acceptor means an increase in the driving energy.
Choosing low or high driving energy/force is considered regarding the geome-
try of the device, in order to have an excitonic binding energy smaller than the
driving energy. Such nanosystems are optimized if one considers the dynamical
nature of the excitonic induced driving energy and the two specific operating
regimes that occur since it has been shown that charge transfer dynamics takes
place on hundreds of femtosecond scale.

4.3. Two-pulse photocurrent simulations

In this section, we consider the optoelectronic response of the nanosystem to a
sequence of two sequential pulses. We expect from this investigation to extract
intramolecular dynamics understanding or parameters. The related method is
the standard pump-probe spectroscopy technique but in this case, we measure
the photocurrent instead of the absorption spectrum. This method also permits
to track photoinduced correlation effects during dynamics. Additionally, a focus
is made on how such dynamic is modified by bound electron-hole pair interac-
tions.

We investigate the photoresponse of the junction to a sequence of pulse pairs
as a function of the delay between the pump and the probe pulses, in order to
study the impact of exciton and CT state on the integrated photocurrent, Idc.
Indeed, as the transient photocurrent might be difficult to measure in the tera-
hertz regime, and even impossible with standard electronics on sub-picosecond
timescales, the commonly measured photocurrent is the integrated one. For sim-
plicity let us call the integrated photocurrent, the direct current, and define it as
follow:

Idc =
1

∆t

∫ ∆t

0
dt′IDA(t′), (4.7)

with ∆t the time integration window.
By considering a pair of two identical excitation pulses with a delay time τdel,

we monitor the photocurrent as shown on Figure 4.17.
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Figure 4.17.: Photocurrent response to a sequence of two pulses for different
delays, τdel, with χct = 0.1eV and χex = 0.3eV .

For small delays τdel < 23fs, there are interferences of the wave functions
inside the overlap of the two pulses. These interference effects induce the re-
duction of the current amplitude. But for larger delay, the nanosystem response
to the pulse sequence is divided into two separated parts that correspond to the
two separated nanosystem responses to each pulse. This is because the system
has the time to relax before the second pulse arrives. Thus, there is no longer
interference between the two signals. The map of the time-resolved photocur-
rent as a function of the delay shows these interference patterns in Figure 4.18.
These maps reveal that the interference amplitude is increased as the CT bind-
ing is increased. In fact, the system has it own relaxation time called here τrelax.
Whenever τdel < τrelax, there are interferences, and inversely when τdel > τrelax,
the two pulses give independent responses.
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Figure 4.18.: Maps of the time-resolved photocurrent as function of the delay, τdel,
for two values of χct, with χex = 0.3 eV.

The information on carrier dynamics induced by the pulse sequence is con-
tained in the limit τdel < τrelax, since physical information for τdel > τrelax could
be obtained from a single pulse dynamics, as discussed above and in Chapter 3.
By integrating over time the time-resolved photocurrent maps of Figure 4.18,
we get the direct current,Idc, as function of the delay, τdel, for three different
values of χct (χex fixed), as presented Figure 4.19. As expected, Idc amplitude is
reduced when χct increases.

All plots exhibit a similar dynamics. First, an oscillation with a global increas-
ing current, and next, a saturated regime with constant values for the direct
photocurrent. This oscillatory part is analyzed from Fast Fourrier Transform, as
depicted in Figure 4.20. The oscillation frequency is a kind of beating frequency,
and the drop of Idc as τdel tends to zero is the modification in the resulting wave
amplitude, thus the dynamical Rabi frequency. The different frequencies in Fig-
ure 4.20 correspond to the modification of the dynamical Rabi frequency, and
thus a characteristic of the intramolecular LUMO tunneling oscillations. The
oscillatory behavior corresponds in fact to interferences inside the donor materi-
al/molecule, which are clearly visible in Figure 4.18.

On the other hand, when the delay overrides the relaxation time, τdel > τrelax,
the effect of the second pulse is to double the single pulse induced direct current,
Idc

0 , and to reach an asymptotic value, Idc
sat ≃ 2Idc

0 . This value 2Idc
0 may be com-

pared to Idc(τdel = 0) that corresponds to the response of a single pulse but with
a doubled amplitude. On Figure 4.19, Idc(τdel = 0) < Idc

sat ∼ 2Idc
0 . This difference

is effective for ballistic and weakly interacting systems. For instance, CT effects
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are to considerably reduce the value of Idc
sat. However, if τdel is of the same order

of or smaller than τrelax, the current is different, but still smaller than 2Idc
0 .

Figure 4.19.: Direct current,Idc, for different χct values, with χex = 0.3eV .

Figure 4.20.: Fast Fourier Transform (FFT) of Idc oscillatory part.

4.4. Discussion

Additionally to what have been said so far, the integrated photocurrent, Idc, as
a function of the delay, shown on Figure 4.19, has a higher amplitude for the
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configuration where exciton interaction is stronger with respect to the CT state
interaction. Meaning that the transmission function of nanosystems in this con-
figuration is better optimized. This observation is in line with our analysis, and
corresponds to the most realistic situation in donor-acceptor nanojunction de-
sign, since usually, the exciton binding is greater than the CT state binding. So,
one should control the dimensions of the donor material to fulfill this previous
condition. Though one should consider the implication of this analysis regard-
ing the configuration of the donor-acceptor junction. For planar configuration
it might be easier to control the bound electron-hole pair separations, thus the
binding energy. It should not be the case for bulk type heterojunction donor-
acceptor blends since bound electron-hole pair separation varies a lot inside the
material. In such a case, only the average binding energy of the junction should
be considered and the donor-acceptor mixing ratio might be deterministic [122].

There are additional constraints to care about in the design of donor-acceptor
junctions which are beyond the framework of this thesis. Exciton diffusion
length, even not explicitly taking into account in this work, is an important pa-
rameter to consider. Indeed, depending on the exciton diffusion length, one
wants to match the donor material length in such a way that recombination
and other loss mechanisms can be avoided inside the donor material. In fact,
if the donor material length is greater than the exciton diffusion length, exciton
will not be able to reach the interface with the acceptor material, before it recom-
bines. Such a situation generates reduction of the nanojunction efficiency. Hence
globally, there is a compromise to find between the exciton diffusion length, the
exciton binding strength, the driving energy and the donor-acceptor mixing ra-
tio. This study shows that the main difficulty comes from the fact that a efficient
design shall rely on working conditions, whatever they are stationary or time-
dependent.

Conclusion

In this Chapter, we focus on the time-resolved excitonic effects on carrier dynam-
ics and on the internal nanojunction energy and time scales. We pointed out the
competitive nature of the CT and local exciton dynamics regarding the strength
of their binding and proposed a pathway for the choice of the LUMO energy
splitting in order to optimize nanosystem efficiency. Finally, two contributions
were also made towards experiments, using single and two pulse spectroscopic
techniques.
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CONCLUSION

This work has promoted advances on three main aspects: theoretical develop-
ment, numerical calculation, and applications to molecular optoelectronics. For
the theoretical development, we investigated the NEGF based Wave Function
technique and introduced its extended form (NEGF-WF) that accounts for an ef-
ficient treatment of bound electron-hole pair correlations in nanosystems. We
have shown how one can compute photocurrent and time-resolved electron den-
sity within the proposed framework. On the theoretical side, the added value to
the initial Wave Function technique is its extension to the treatment of Coulomb
correlations at the Hartree-Fock level. After theoretical development, we pro-
posed a non-exhaustive set of efficient and optimized algorithms for the numer-
ical simulations. Using these algorithms, we have shown that it is possible to
unravel some internal quantum properties of a nanojunction mainly through the
time-resolved local density of states and the photocurrent. For instance, the cou-
pling strength between the two molecules in a nanojunction could be measured
from their signature in the frequencies of the oscillating photocurrent signal.
Similarly, the coupling of the nanojunction to the contacts could be measured
from the photocurrent damping. Aside from these experimental proposals, inter-
esting physical effects have been revealed by the time-resolved density of states:
the Floquet-like state generation and the dynamical Rabi shift of the energy lev-
els. Finally, the effects of the electron-hole pair bonding to the dynamics is a mod-
ulation of interface driving energy, imposing operating regimes for charge trans-
fer at donor-acceptor junctions. It also reveals counter-intuitively that highly
efficient charge transfer bonding with respect to exciton bonding gives rise to
efficient nanodevice. Moreover, it might be possible to capture, generate, shape
and control terahertz frequencies from the intramolecular dynamics through an
externally applied electromagnetic field.

The theoretical-numerical framework globally proposed might be applicable
to ultrafast quantum transport in most nanosystems except when the molecular
vibrations and bosonic interactions are too high. A continued extension of NEGF-
WF methodology should include these interactions for a more precise description
and a wide range of applicability.
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The whole work provides us with a valuable tool for ultrafast quantum trans-
port simulation. It also gives indeed an insight into the relevance of transient
dynamics in the understanding of time-resolved optoelectronic nanodevice op-
erations and opens the pathway towards ultrafast nanodevice design for future
technologies.
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A. TRLDOS stationary limit

In this appendix, we demonstrate that Eq. (3.7) gives

TRLDOSi(E) = LDOSi(E) = − 1

π
ImGr

i (E)

in the stationary limit. For a time-independent problem, Eq. (2.65) reduces to
ΨαE(t) = e−iEt/~Ψst

αE and time translational invariance implies that two-time
statistical functions G(t, t′) only depends on the two-time difference (t− t′). We
thus develop

G<
i (E) =

∫

d(t− t′)e+iE(t−t′)G<
i (t− t′)

using Eq. (2.68), and we obtain

G<
i (E) =

∫ dE ′

2π

∑

α

ifα(E ′)
[

Ψst
αE′(i)Ψ

st†
αE′(i)

]

×
∫

d(t− t′)e+i(E−E′)(t−t′)

=
∑

α

ifα(E)
[

Ψst
αE(i)Ψst†

αE(i)
]

.

Similarly,

G>
i (E) = −

∑

α

i(1− fα(E))
[

Ψst
αE(i)Ψst†

αE(i)
]

.

From LDOS(E) = − 1
π

ImGr(E) = − 1
2π

Im
[

G>(E)−G<(E)
]

, we conclude

LDOSi(E) = Im
[
i

2π

∑

α

ΨαE(i, t)Ψ†
αE(i, t)

]

which does not depend on time, and coincides with the proposed definition of
TRLDOS.
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