Thèse soutenue

Structure interne et minéralogie des exoplanètes terrestres de faible masse

FR  |  
EN
Auteur / Autrice : Bastien Brugger
Direction : Olivier MousisMagali Deleuil
Type : Thèse de doctorat
Discipline(s) : Astrophysique et Cosmologie
Date : Soutenance le 24/09/2018
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole Doctorale Physique et Sciences de la Matière (Marseille)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Astrophysique de Marseille (LAM)
Jury : Président / Présidente : Jean-Luc Beuzit
Examinateurs / Examinatrices : Tristan Guillot, Jonathan Irving Lunine
Rapporteurs / Rapporteuses : Didier Queloz, Christophe Sotin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La modélisation d'intérieurs exoplanétaires fait le lien entre deux domaines : la détection et caractérisation d'exoplanètes, en plein essor avec le lancement de nouvelles missions telles que PLATO ou CHEOPS, et la géophysique, permettant l'étude des corps du système solaire à travers missions spatiales et expériences en laboratoire. Nous avons développé un modèle de structure interne dédié aux planètes telluriques décrites par un noyau métallique, un manteau rocheux, et une enveloppe d'eau, permettant ainsi de considérer un grand nombre de compositions planétaires. En appliquant ce modèle à des exoplanètes validées nous confirmons que, au-delà d'une meilleure précision sur les paramètres fondamentaux de ces corps (masse et rayon), la composition de l'étoile hôte est utile pour contraindre celle de la planète, et ainsi progresser vers une caractérisation complète de cette dernière. L'amélioration du modèle se concentre sur plusieurs aspects, tout d'abord par la sélection de la meilleure équation d'état permettant d'extrapoler les données terrestres au domaine des super-Terres. Une modélisation détaillée des matériaux planétaires est implémentée, permettant de reproduire la chimie complexe du manteau, et de prendre en compte la présence d'éléments légers dans le noyau. Ces améliorations permettent au modèle d'avoir la précision nécessaire pour dériver des contraintes sur l'intérieur de planètes du système solaire, qui peuvent ensuite être reportées sur les familles d'exoplanètes correspondantes. L'objectif de ce travail est ainsi d'améliorer notre compréhension de l'importante diversité des mondes extrasolaires, au niveau de leur dynamique, formation, et composition