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Résumé en Français

L’émission spontanée ou encore le transfert d’énergie par résonance de type Förster sont
des processus généralement attribués aux atomes et aux molécules. On sait maintenant
que dans le régime de couplage faible, la modification du taux d’émission spontanée,
caractérisée par le facteur de Purcell, est analogue à la modification de l’impédance
d’une antenne sub-longueur d’onde. Nous utilisons de telles analogies basées sur les
impédances d’antennes pour étudier le facteur de Purcell et le transfert d’énergie de
résonance théoriquement et expérimentalement, aux fréquences micro-ondes.

L’avantage de l’utilisation d’antennes est qu’elles permettent naturellement un con-
trôle précis de la localisation de l’émetteur et de l’orientation de son moment dipolaire.
De ce point de vue, les expériences micro-ondes possèdent un atout important par rap-
port aux expériences optiques. De plus, pour les longueurs d’onde optiques, les expéri-
ences sont généralement réalisées en utilisant un ensemble de molécules fluorescentes,
qui offrent un contrôle limité sur la position et l’orientation du moment dipolaire des
émetteurs.

Figure A: Le métamatériau utilisé pour l'étude est composée de 4 couches de grilles de
cuivre de 0,1 mm d'épaisseur dans le plan empilé dans la direction ẑ. (Encart) Cellule
unitaire du métamatériau.

Dans la première partie de la thèse, nous nous concentrons sur l’émission spon-
tanée et le facteur Purcell. Le taux d’émission spontanée est déterminé par la densité
locale des états, qui peut à son tour être exprimée en utilisant la fonction de Green qui
est une grandeur électromagnétique classique. L’impédance d’un dipôle ponctuel est



proportionnelle à la fonction de Green à son origine, ainsi celle d’une antenne dipôle
courte, permet d’accéder à l’étude de la modification de l’émission spontanée et donc
du facteur de Purcell.

Nous appliquons la méthode de mesure de l’impédance d’antenne pour étudier le
facteur Purcell électrique et magnétique dans un métamatériau hyperbolique, comme
le montre la figure A, dans la gamme de fréquences micro-ondes 5-15 GHz. Le mé-
tamatériau, en raison de sa dispersion hyperbolique dans la polarisation TM z, a une
densité d’états locale importante qui conduit à une augmentation du facteur Purcell.
Dans le même temps, l’absence de modes de propagation dans la polarisation TE z

diminue le facteur Purcell. Nous démontrons expérimentalement qu’il est possible de
mesurer ce facteur Purcell dépendant de la polarisation aux fréquences micro-ondes
en utilisant des antennes dipôles. En mesurant le facteur de Purcell pour différentes
orientations d’antennes, nous obtenons une compréhension du rôle des modes indi-
viduels de la structure et de leur contribution à la densité d’états. Nous montrons que
la méthode de mesure d’impédance pour déterminer le facteur Purcell magnétique avec
une antenne à boucle dipolaire magnétique doit être utilisée avec précaution. En effet,
la méthode n’est pas fiable près de la fréquence anti-résonance de l’antenne, et peut
conduire à une interprétation erronée des résultats.

Figure B: Comparaison de rel.DOS obtenu à partir de la méthode de mesure d'impédance
(blue) et de rel.DOS à partir des calculs de mode propre (en pointillés).

Afin de valider nos calculs et mesures, nous montrons également sur des résultats
numériques que la moyenne spatiale du calcul de la densité locale d’états obtenue ainsi
est identique au calcul de densité d’états pour une structure périodique (donc infinie)
obtenue grâce au calcul des modes de Bloch à condition de filtrer les résonances de
type Fabry-Perot (Fig. B).



Dans la seconde partie de la thèse, nous développons l’analogie d’impédance d’antenne
pour étudier le transfert d’énergie de résonance. Le transfert d’énergie de résonance
est le processus d’échange d’excitation d’un atome dans un état excité (donneur) à un
atome dans un état fondamental (accepteur). Ce régime d’interaction est particulière-
ment intéressant lorsque la distance de séparation donneur-accepteur est inférieure à
la longueur d’onde. À de telles distances, le transfert d’énergie est dû à des mécanismes
non radiatifs à champ proche. Un tel transfert d’excitation gouverne des phénomènes
importants tels que le transfert d’énergie par résonance de type Förster (FRET), respon-
sable du transfert d’énergie entre molécules à des distances nanométriques.

Alors que les méthodes basées sur l’impédance d’antenne ont été développées précédem-
ment pour la mesure du facteur Purcell, elles n’ont pas été appliquées pour étudier le
transfert d’énergie par résonance. Nous développons donc dans un premier temps la
théorie puis comparons les prédictions théoriques avec des expériences. En étudiant
l’émission spontanée et la densité locale d’états, nous ne considérons par définition que
l’effet des modes qui rayonnent vers le champ lointain (pour un système sans perte).
Cependant, dans le transfert d’énergie de résonance, en fonction de la distance de sépa-
ration rDA entre le dipôle donneur et accepteur, les modes champ proche, non radiatif,
participent également à l’échange de l’énergie.

Nous mesurons le transfert d’énergie par résonance avec deux antennes de taille
finie tout en faisant varier la distance de séparation rDA entre les deux antennes. Les
expériences sont réalisées dans l’orientation transversale et longitudinale des antennes
à 1 GHz (Fig. C). La puissance transférée entre les antennes, s’échelonne comme r−6

DA

dans le champ proche, ce qui est caractéristique de FRET.

Figure C: Mesures (points) de |S21|2 en fonction de la séparation rDA entre les antennes,
par rapport à la fonction théorique Green (tirets) dans le vide. Pour l'orientation transver-
sale (rouge) et l'orientation longitudinale (bleu) à la fréquence 1 GHz (λ = 300 mm).

Nous mesurons ensuite la modification du transfert d’énergie par résonance dans
une cavité plane constituée de deux plaques parallèles métalliques (Fig. D). Dans ce cas,



les positions relatives des antennes donneur et accepteur sont fixes, et les modes sont
changés en faisant varier l’écart L entre les plaques de la cavité. Nous montrons que
les résultats de mesure sont en bon accord avec ceux prédits par la théorie analytique
et avec les simulations FDTD.

Figure D: Comparaison du taux de transfert d'énergie par résonance entre deux dipôles
à l'intérieur d'un guide d'onde à plaques parallèles en fonction de la largeur de la cavité
(L). (Bleu, solide) à partir de la fonction théorique de Green, (rouge) des mesures de
l'impédance d'antenne et des simulations FDTD (vertes). La longueur de l'antenne est
de 10 mm avec lambda = 33, 33 cm, d = 1, 8 cm.

Pour le transfert d’énergie par résonance, les mesures micro-ondes présentent un
avantage fondamental par rapport aux techniques de mesure optique. Dans les expéri-
ences FRET à des longueurs d’onde optiques faites avec des molécules fluorescentes,
l’énergie transférée du donneur à l’accepteur est déterminée par des mesures indirectes
de changements d’intensité ou de durée de vie des molécules fluorescentes. Aucune
des techniques aux longueurs d’onde optiques ne peut mesurer directement le transfert
d’énergie car le FRET est un processus « sombre » faisant intervenir le champ proche,
médié par des photons virtuels. En revanche, dans les expériences micro-ondes comme
les antennes sont alimentées par des câbles coaxiaux, une mesure directe du transfert
d’énergie est possible.

Nous montrons, le facteur le plus crucial dans les expériences de transfert d’énergie
de résonance avec des antennes est leur taille. Comme la puissance transférée entre les
dipôles s’échelonne comme r−6

DA dans le champ proche, il est essentiel que les longueurs
d’antenne soient de dimension fortement sous-longueur d’onde, pour éviter les effets
de longueur finie. Cependant, diminuer la taille des antennes diminue la quantité
de puissance qu’elles peuvent émettre et absorber. Par conséquent, il est important
de choisir judicieusement une longueur d’antenne appropriée qui concilie la demande
pour le niveau de précision souhaité avec la capacité de mesure des expériences.

Cette thèse présente un cadre simple pour caractériser l’influence de l’environnement
électromagnétique sur l’émission spontanée et le transfert d’énergie de résonance, avec
des antennes. Il contribuera à développer une compréhension cohérente de l’effet de
l’environnement électromagnétique sur les processus induits par les interactions dipo-
laires atome-champ.



Résumé

L’émission spontanée est due à l’interaction entre un atome et un champ électromagné-
tique. Ainsi, cet effet n’est pas une caractéristique intrinsèque des atomes et l’émission
spontanée est fortement dépendante de l’environnement électromagnétique dans lequel
ils évoluent. Par conséquent, en contrôlant la densité locale d’états électromagnétiques
(LDOS), il est possible d’augmenter ou de diminuer le taux d’émission spontanée. Le
facteur de Purcell mesure l’augmentation ou la diminution du taux d’émission spon-
tanée. Le but de cette thèse est d’analyser l’effet des modes électromagnétiques sur le ce
facteur. Le plus souvent, la mesure du facteur Purcell se fait via la variation des taux de
décroissance des atomes ou des molécules fluorescentes. Récemment, il a été démontré
que dans un régime de couplage faible, le facteur Purcell est analogue à la modification
de l’impédance d’entrée d’une antenne radiofréquence. Cette démonstration a permis
d’étendre la quantification du facteur de Purcell au domaine des hyperfréquences.

Dans cette thèse, nous avons utilisé cette approche de mesure de l’impédance d’antenne
afin de déterminer le facteur de Purcell électrique et magnétique dans un métamatériau
fonctionnant entre 5-15 GHz. Le métamatériau, en raison de sa dispersion hyper-
bolique en polarisation transverse magnétique a une densité d’états locale importante
qui se traduit par une augmentation du facteur Purcell. En même temps, l’absence
de modes de propagation dans la polarisation transverse électrique annule le facteur
Purcell. Nous avons démontré expérimentalement, il est possible d’étudier cette dépen-
dance en polarisation en utilisant de simples antennes radiofréquences.

Dans la deuxième partie de la thèse, j’ai étendu ce modèle à la caractérisation de
la modification du transfert d’énergie dans les interactions dipôle-dipôle (DDI) par
l’environnement électromagnétique. Le transfert d’énergie par résonance (Förster res-
onance energy transfer, FRET) est le processus d’échange d’excitation entre un atome
dans un état excité (donneur) et un atome dans un état fondamental (accepteur). Ces
interactions sont particulièrement intéressantes lorsque la distance séparant le don-
neur et l’accepteur est inférieure à la longueur d’onde. À de telles distances, le trans-
fert d’énergie est dû à des mécanismes non radiatifs en champ proche. Un tel trans-
fert d’excitation gouverne des phénomènes importants tels que le transfert d’énergie
par résonance, responsable du transfert d’énergie entre les molécules à des distances
nanométriques (nm).

Dans le manuscrit, je montre que pour l’émission spontanée, on peut formuler un
transfert d’énergie classique avec des antennes radiofréquences. Le transfert d’énergie
par résonance peut être ainsi étudié à travers l’impédance mutuelle (Z21) de deux cir-
cuits linéaires couplés à des antennes de dimensions sub-longueur d’onde. Je développe
ainsi des analogies classiques afin de caractériser l’influence des modes électromagné-
tiques sur les processus par DDI tel que le FRET en termes d’impédance mutuelle (Z21)
d’un réseau micro-ondes à deux ports. Je présente ensuite les mesures du transfert
d’énergie de résonance dans le vide à la fréquence 1 GHz où la dépendance caractéris-
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tique du FRET comme r−6
DA est rapportée, rDA étant la distance de séparation donneur-

accepteur. Je présente aussi des résultats expérimentaux montrant le changement de
transfert d’énergie de résonance à l’intérieur d’un guide d’onde à plaques parallèles et
je le compare avec les modèles théoriques. Ainsi, ce travail contribue à développer une
compréhension cohérente de l’effet de l’environnement électromagnétique sur proces-
sus induits par les interactions dipolaires atome-champ.
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Abstract

Spontaneous emission arises due to the interaction of the atom with the electromag-
netic field. Hence, it is not completely intrinsic to the atom, but also depends on its
electromagnetic environment. By controlling the local density of states (LDOS) it is
possible to enhance or decrease the rate of spontaneous emission. The figure of merit
for enhancement or decrease in the spontaneous emission rate is the Purcell factor.
In this thesis we analyze the effect of the electromagnetic modes on the Purcell fac-
tor. Conventional experiments to measure the Purcell factor involve characterizing the
change in decay rates of atoms or fluorescent molecules. Recent research has shown
that in the weak-coupling regime, Purcell factor is analogous to the modification of
antenna impedance. The ability to probe the Purcell factor with antennas, expands the
scope of measurements from optical frequencies to microwave frequencies.

In this thesis we have used this antenna impedance approach to measure the electric
and magnetic Purcell factor for a fishnet metamaterial structure designed for operation
in the microwave frequency range 5-15 GHz. The metamaterial, due to its hyperbolic
dispersion in the TMz polarization, has a large local density of states which enhances
the Purcell factor. At the same time, lack of propagating modes in the TEz polariza-
tion suppresses the Purcell factor. We demonstrate experimentally, that it is possible
to resolve this polarization dependent Purcell factor at microwave frequencies using
antennas.

In the second part of the thesis, we focus on how the electromagnetic modes mod-
ify resonance energy transfer mediated by dipole-dipole interactions (DDI). Resonance
energy transfer is the process of exchange of excitation from an atom in an excited
state (donor) to an atom in a ground state (acceptor). Of particular interest is the
regime when the donor-acceptor separation distance is subwavelength. At such dis-
tances the energy transfer is due to near-field, non-radiative mechanisms. Such transfer
of excitation governs important phenomena such as Förster resonance energy transfer
(FRET), responsible for energy transfer between molecules at nanometer distances.

We show that, as for spontaneous emission, a classical analogue to resonance en-
ergy transfer with antennas can be formulated. We demonstrate that resonance energy
transfer can be studied through the mutual impedance (Z21) of two linear circuits cou-
pled with subwavelength antennas. We develop classical analogues to characterize the
influence of electromagnetic modes on processes mediated by DDI like FRET in terms
of the mutual impedance (Z21) of a two-port microwave network. I measure resonance
energy transfer in vacuum at the frequency 1 GHz where the characteristic FRET like
r−6
DA dependence is reported, rDA being the donor-acceptor separation distance. We

measure the change in resonance energy transfer inside a parallel plate waveguide and
compare with theoretical predictions. This work will contribute towards developing
a coherent understanding the effect of the electromagnetic environment on processes
mediated by dipolar atom-field interactions.
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signals in Fig. 3.7. Solid curves are calculated from time signals up to 30

ns; dashed curves give the corresponding results after time windowing to

eliminate the e�ect of the re�ections from the boundaries. . . . . . . . . 72

3.8 Real (red) and imaginary (blue) parts of scattering coe�cient S11 from

simulations (solid) and measurements (dashed), (a) in free space, (b) in

metamaterial with magnetic loop dipole antenna oriented along ẑ. . . . . 73
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Chapter 1

Introduction

This thesis is about examining how the electromagnetic environment influences two

processes, spontaneous emission and resonance energy transfer. Spontaneous emission

is responsible for the majority of radiation we experience in day-to-day life. It is re-

sponsible for the light from the sun, the heat from a fire, and the display of a screen.

Spontaneous emission is the process through which an atom in a high energy excited

state, spontaneously de-excites to a lower energy ground state while emitting a pho-

ton. The energy of the emitted photon is determined by the separation between the

two energy levels.

While in spontaneous emission the energy is emitted into the environment, in reso-

nance energy transfer the energy is transferred from one atom to another. Resonance

energy transfer is the exchange of excitation between two atoms or molecules. During

the process the excited state atom (donor), transfers its energy to the atom that is ini-

tially in the ground state (acceptor). The donor atom relaxes to its ground state, while

the acceptor gains energy into its excited state.

For a long time it was assumed that spontaneous emission is an inherent property of

the emitter. It was discovered later that although some aspects of spontaneous emission

depend upon the emitter, spontaneous emission is also modified by the environment in

which the emitter is located [1]. Similarly, it is now understood that resonance energy

transfer is also affected by the environment of the participating donor-acceptor pair [2].

Instead of focusing directly on quantum mechanical emitters such as atoms or flu-

orescent molecules, we shall use classical analogues to spontaneous emission and res-

onance energy transfer to characterize the effect of the environment. In the semi-

classical approximation, the effect on the spontaneous emission rate of an atom is sim-
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ilar to the effect on the power radiated by a classical dipoles (infinitesimally small,

harmonically oscillating dipole). Similarly the effect on the resonance energy trans-

fer is similar to the effect on the power transferred between two classical dipoles. This

analogy is developed further and allows measurements of the influence on spontaneous

emission and resonance energy transfer using finite dipole antennas at microwave fre-

quencies.

The aim of this chapter is to introduce the concept of modifying the spontaneous

emission and resonance energy transfer. We shall summarize the key historical devel-

opments and the current research efforts. The rest of the chapter is divided into four

parts. Starting in Sec. 1.1, we briefly summarize the concept of modification of sponta-

neous emission and local density of states. We shall review the seminal experiments and

current efforts to modify spontaneous emission. We then outline the classical analogy

to spontaneous emission and local density of states with finite sized antennas, where

we emphasize the advantages of the classical approach. Next in Sec. 1.2 we introduce

resonance energy transfer. Particular emphasis is given to the near-field transfer and

its relevance to Förster resonance energy transfer. We sketch the key concepts in res-

onance energy transfer and motivate the development of its equivalent semi-classical

analogue. In the third part Sec. 1.3 we shift the focus to hyperbolic metamaterials.

The field of metamaterials has completely transformed the way we think about electro-

magnetism. It has opened up new and interesting ways to manipulate electromagnetic

waves. Hyperbolic metamaterials are a class of metamaterials that have offered new

possibilities to control the rate of spontaneous emission in recent times. We present

the essential theory behind hyperbolic metamaterials and contrast their properties with

conventional materials. We demonstrate how hyperbolic metamaterials enhance the

spontaneous emission rates. These concepts will be useful for later chapters when we

make measurements in such a metamaterial. Finally, in Sec. 1.4 we end with an outline

of the rest of the thesis.

1.1 Spontaneous emission

The spontaneous emission rate (γ) of an atom, is influenced by the local electromag-

netic environment of the atom. Calculation of spontaneous emission rate of an atom,

denoted by a two level quantum mechanical system requires a full quantum electrody-
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namical (QED) treatment as first pointed out by Wigner and Weiskopf [3]. The concept

of local density of states (LDOS) was introduced [4] to characterize the influence of the

environment on the decay rate. The spontaneous emission rate of an atom located at

r0 is [5]

γ =
πω0

3~ε0

|µ|2ρ(r0, ω0) (1.1)

where ω0 is the transition frequency, ε0 is the permittivity of free space, ~ is the Planck

constant, and µ = |µ|n̂µ is the transition dipole moment matrix element between

the two levels pointing in direction n̂µ. In Eq. (1.1) ρ(r0, ω0) is the local density of

states (LDOS), the factor of 3 in the denominator of Eq. (1.1) is due to the orientational

averaging of the dipole moment [6]. In Eq. (1.1) the presence of other energy levels is

neglected and the atom field coupling is assumed to be electric dipolar in nature, which

is justified because the size of the atom is much smaller than the wavelength of emis-

sion. In this work we limit ourselves to the weak coupling regime, it is assumed that the

dipole moment µ and transition frequency ω0 is unaffected by the environment. In this

approximation, the influence of the environment on decay rate is contained entirely in

the LDOS. Thus, spontaneous emission rate is partly an intrinsic quantity, the dipole

moment µ, transition frequency ω0 are intrinsic to the type of the emitter, while the

LDOS ρ(r0, ω0) depends upon the environment.

For the particular case of vacuum the local density of states is given by [5]

ρ0 =
ω2

0

π2c3
, (1.2)

where c is the speed of light in vacuum. Substituting Eq. (1.2) in Eq. (1.1) we obtain

the well known decay rate for an atom in vacuum,

γ0 =
ω3

0|µ|2

3πε0~c3
. (1.3)

The concept that electromagnetic environment can modify spontaneous emission

was first proposed by Purcell [1]. The figure of merit which is the ratio of the rate of

spontaneous emission in the electromagnetic medium (γ) to that in vacuum (γ0) is the

Purcell factor (F ). Purcell showed that when an atom is placed inside a single mode

cavity, with a mode frequency which is resonant with the transition frequency of the

atom, the rate of spontaneous emission of the atom is modified and the Purcell factor

is

F ≡ γ

γ0

=
3Qλ3

4π2V
(1.4)
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where Q is the quality factor of the cavity mode, λ is the wavelength, and V is the mode

volume.

The first experimental observation of decay rate modification in fluorescence molecules

was reported by Drexhage [7, 8]. By precisely controlling the separation between the

fluorescent dye molecules and of the silver mirror using a dielectric spacer layer, Drex-

hage was able to characterize the influence on the decay rate. Another seminal experi-

ment which elucidates role of LDOS on spontaneous emission was performed by Hulet

et al [9]. If an atom is placed inside a cavity such that the cavity dimensions are small

compared to the wavelength of emission λ, then spontaneous emission is inhibited. For

example, this is the case if an atom is inside a parallel plate cavity such that the wave-

length of emission of atom λ is larger than the cut-off, that is, λ/2d > 1, d being the

separation between the plates. In the cut-off regime of the waveguide, the density of

states vanishes, and so does the LDOS that is, ρ = 0. Thus, the spontaneous emission

of atoms is inhibited, due to the lack of available modes for the emitted photon couple

into.

Figure 1.1: Number of atoms in the excited state, also exiting the cavity in
their excited state, inside and outside the cut-o� regime of a parallel plate waveg-
uide. (Source: Hulet et al [9])

In Hulet’s experiment [9], (Fig. 1.1) Cesium atoms in an excited state were passed

through a parallel plate cavity with spacing d such that the wavelength emission of the

atom is close to the cut-off, d ≈ λ/2. Then, by applying a corresponding low frequency
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electric field, the transition frequency λ of the atoms was changed through the Stark

effect. Exiting the cavity, the number of atoms in the excited state and the ground state

were ascertained inside (λ/2d > 1) and outside (λ/2d < 1) the cut-off regime of the

waveguide. In Fig. 1.1 the vertical axes is related to the number of atoms in the excited

state exiting the cavity. The number of atoms in the excited state is higher in the cut-off

region (λ/2d > 1) as the LDOS ρ = 0, and spontaneous emission is suppressed. This

experiment clearly indicates how the electromagnetic modes and LDOS can be used to

control spontaneous emission.

With the evolution of photonics and advances in fabrication techniques which now

enable us to pattern materials at scales smaller than the optical wavelengths, the Pur-

cell factor has now been studied in a variety of structures. Modifying spontaneous

emission has been studied in spherical resonators [10], nano-antennas [11, 12], and

photonic crystals. [13–16]. While photonic crystals can effectively control the Purcell

factor, a drawback generally associated with photonic crystals is the narrow opera-

tional bandwidth. An intriguing proposal to overcome narrow operational bandwidth

and achieve broadband enhancement of the Purcell factor is to use hyperbolic metama-

terials (HMM) [17]. Hyperbolic metamaterials and their salient features which make

it amenable to engineering the Purcell factor are discussed in greater detail in Sec. 1.3.

Later, in Chapter 3 we shall also provide measurement results for the Purcell factor in

a microwave hyperbolic metamaterial.

1.1.1 Applications of engineering LDOS

Modifying decay rates has applications in improving the performance of a variety of

devices. Here we briefly describe three areas: light emitting diodes, single photon

emitters, and thermophotovoltaics where the ability to enhance the Purcell factor may

potentially prove decisive in future.

Light emitting diodes

Achieving a high Purcell factor initially attracted interest for improving the efficiency

of light emitting diodes (LED), leading to an investigation into increasing the Purcell

factor for LEDs by using micro-cavities [18] and plasmonic coatings [19]. Metal based

plasmonic systems have a broadband response, but Ohmic losses in the metals curtail
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the gains in enhancement of emission rates [20]. An application of this approach is the

ability to achieve high modulation frequencies in telecommunication systems. While

conventional LED sources can be modulated in the range 25-50 GHz, by enhancing the

Purcell factor using nano-cubes [21] modulation frequencies up to 90 GHz have been

achieved. Faster LEDs can drastically reduce the latency in data transfer at short ranges,

for example between two processors.

Single photon sources

Single photon sources are required for integrated optics and quantum computation.

The challenge is to achieve a source with high modulation speed, capable of coupling

into a single mode, with high efficiency. Gap plasmonic antennas have been successful

in reducing the lifetimes of emitters from the order of ∼ 100 ps to ∼ 10 ps [22]. Other

proposals include coupling single quantum dots to photonic crystal waveguides [23]

and micro-cavities [24]. In photonic crystals, as in other structured materials, the

LDOS is highly sensitive to the location, hence precise positioning of quantum dots is a

technical challenge [25].

1.1.2 Classical analogue to modi�cation of spontaneous emission

Although a full treatment of spontaneous emission requires the use of a QED formula-

tion, within the semi-classical approximation [26], the spontaneous emission rate γ of

an atom is linearly related to the power emitted by a classical dipole P as γ = P/~ω0.

Later in Chap. 2 we discuss in greater detail, that if an atom is replaced with a classical

dipole, the power emitted by the classical dipole would be modified in the same way

as the spontaneous emission rate of an atom. The Purcell factor (Eq. (1.4)) can thus

be expressed classically with dipoles, as F = P/P0 where P0 is the power emitted by

the dipole in vacuum. The theory of emission by classical dipoles does not require QED

or the concept of vacuum fluctuations, thus simplifying the problem considerably while

preserving the essential underlying mechanism.

The first experimental proof of concept results (Fig. 1.2) were reported by Dowl-

ing [27] in 1991. He showed that the power at 1 GHz emitted by a classical dipole

antenna placed inside a parallel plate cavity depends on the ratio λ/L, L being the sep-

aration between the plates, in direct analogy with the work of Hulet [9] (Fig. 1.1). Both
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Figure 1.2: Power emitted by dipole antenna in a parallel plate cavity (dots) compared
with the LDOS (solid) at 1 GHz as a function of the separation between plates. (Source:
Dowling [27])

experiments aim to probe the LDOS across the cut-off regime in a parallel plate cavity.

The measurement of the power emitted by a dipole antenna is in excellent agreement

with the theoretical LDOS calculated inside the cavity. In Fig. 1.2 which applies to a fre-

quency 1 GHz, the cut-off regime of parallel plate waveguide is below L < λ/2 = 15 cm.

Below the cut-off there are no modes and LDOS is zero thus the dipole cannot emit.

The conclusion is similar to Hulet’s experiment where below the cutoff, the atom could

not decay to the ground state, increasing its lifetime.

The experiments in Fig. 1.2 were performed at λ = 30 cm, and while quantum

mechanical effects can occur at such microwave wavelengths, with its study being a

popular field of research [28–30]. In conventional radio-frequency engineering such

effects can be safely ignored, hence the modification of emission of the antenna in

Fig. 1.2 is a truly classical effect [27, 31].

The area gained renewed attention following the work of Greffet [32] who estab-

lished the link between the impedance of an antenna to the LDOS and the Purcell fac-

tor. Impedance is a well studied quantity in antenna theory, and it allows the concept of
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LDOS to be extended from optical frequencies to microwave frequencies and beyond.

Following the development of circuit models [33], the Purcell factor was measured near

a conducting interface at microwave frequencies, similar to Drexhage’s experiment.

Studying the LDOS at longer wavelengths has advantages which go beyond the ob-

vious ease of experimentation, fabrication, and accurate positioning of emitters. The

most striking advantage is that antennas have a naturally defined and controllable

dipole moment. Even in the seminal experiments of Drexhage [7], an orientational

average of the dipole moments of the collection of fluorescent molecules had to be

performed, so as to compare the experimental results with theory. However with an-

tennas the orientational dependence of the Purcell factor is naturally resolved [33].

Another advantage is the ability to measure the magnetic Purcell factor. The strongest

atomic transitions are electric dipolar in nature but magnetic dipolar transitions also

exist, though they are much weaker. The modification of decay rates where the atom

field coupling is magnetic dipolar, and the magnetic Purcell factor, have not been stud-

ied extensively. The magnetic Purcell factor can be straightforwardly measured with

antennas [34] by replacing an electric dipole antenna with a magnetic loop antenna.

These experiments of magnetic Purcell factor have been performed in microwaves. The

modification magnetic Purcell factor with nanophotonic structures is now attracting

more attention [35].

In this section we discussed the role of environment on spontaneous emission. In

the next section we turn our attention to another important process: resonance energy

transfer. Resonance energy transfer is the process of transfer of excitation from an atom

in an excited state to an atom in a ground state. We shall discuss how the environment

influences resonance energy transfer between two atoms and its corresponding classical

analogue.

1.2 Resonance energy transfer.

In the second part of the thesis we analyze the effect of the environment on the reso-

nance energy transfer between two atoms. Resonance energy transfer (Fig. 1.3) is the

exchange of excitation between two atoms or molecules. In the initial state the system

comprises of two atoms, each denoted by individual two level systems, one of which is

in the excited state while the other is in the ground state. During the process of reso-
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nance energy transfer the excited state atom (donor), transfers its energy to the atom

in the ground state (acceptor). The donor atom relaxes to its ground state, while the

acceptor gains energy into its excited state [5].

Figure 1.3: Schematic of resonance energy transfer in a donor acceptor system. Left:
classical; right: quantum mechanical manifestation. (Source: Novotny and Hecht [5]).

Resonance energy transfer was first observed in a mixture of mercury and thallium

vapor. Even when the mixture was only excited at the transition frequency of mer-

cury, emission was reported from thallium [36]. It was initially thought that energy

was transferred from mercury atoms to thallium atoms due to mechanical collisions

between atoms, but calculations showed that energy was being transferred at distances

greater than collision radii of atoms. Subsequent experiments [37] showed that the

intensity of emission increased with decreasing difference of the transition frequencies

of the participating donor acceptor atoms. Demonstrating that resonance of the energy

levels between the donor and acceptor plays a significant role in energy transfer.

1.2.1 Förster resonance energy transfer

One of the early quantitative descriptions to explain transfer of excitation between

atoms at distances beyond the collision radii (assuming atoms to be hard spheres with

a fixed radius) was given by J. Perrin [38, 39]. He assumed that semi-classically the

energy transfer between two atoms was like energy transfer between two classical point

dipoles in the near field (k0rDA < 1, where k0 = 2π/λ , and λ is the wavelength) and,

considered the particular case where the resonance frequency of the donor and acceptor

were almost identical. Subsequently, a quantum mechanical theory was formulated by

F. Perrin [40–42] which also took into account the spectral broadening of the energy

levels.
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Förster’s breakthrough was to express the energy transfer in terms of the overlap of

the emission and absorption cross sections of the molecules, which allowed comparison

with experiments. Förster’s theory was able to correctly deduce the r−6
DA dependence of

energy transfer rate, rDA being the distance between donor and acceptor. The energy

transfer when the donor and acceptor separation is subwavelength is due to a near

field, non-radiative mechanism which is referred to as Förster resonance energy transfer

(FRET).

Once the donor molecule is in its excited state, it can decay through several com-

peting radiative and non-radiative mechanisms. The presence of the acceptor molecule

in close proximity provides an additional pathway for the donor to de-excite. Hence,

the donor fluorescence lifetime is decreased compared to the case without the acceptor

(τDA ≤ τD). The decay rate is inversely proportional to the lifetime of the emitter. The

difference in the decay rates of the donor with and without the acceptor is the FRET

rate [5] γF = γDA − γD. The other useful quantity is the FRET efficiency ηF defined

as [5]

ηF = 1− τDA
τD

. (1.5)

If ηF = 1 all energy lost by donor is absorbed by acceptor. On the other hand if ηF = 0

no energy is transferred from donor to acceptor, but lost through other channels, for

example radiation. As the energy transfer in the near field scales as r−6
DA it is conve-

nient to define a distance called Förster radius R0, such that when rDA = R0 the FRET

efficiency ηF is 0.5,

ηF =
R6

0

r6
DA +R6

0

. (1.6)

In a homogeneous medium with refractive index n, the Förster radius can be expressed

as [43]

R6
0 =

(
9000 (ln 10)

128π5NA

)
n−4QDκ

2M (1.7)

where NA is the Avogadro number, QD is the quantum yield of the donor, κ2 accounts

for the relative orientations of the donor and acceptor dipole moments, and the overlap

integral

M =

∫
σD(λ) · σA(λ) · λ4dλ

/∫
σD(λ)dλ . (1.8)

σD(λ) is the fluorescence emission of the donor, σA(λ) is the absorption of acceptor, and

λ is the wavelength.
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The fast scaling of FRET with distance (r−6
DA) cause FRET effects in optical (400 nm<

λ < 700 nm) experiments to be significant only at distances up to rDA ∼ 10 nm [43].

In FRET experiments, the greatest challenge is the precise positioning of the donor-

acceptor molecules at nanometer scale. Development of better dyes and optical instru-

mentation [44] have increased the sensitivity of experiments. For controlling donor

acceptor distance, it is now possible to attach dyes based on Green fluorescent proteins

at specific locations in protein molecules [45]. Another approach which has been gain-

ing popularity is to attach donor-acceptor molecules at predetermined sites on a DNA

molecule [46]. Over small scales the DNA molecule is rigid in nature and thus the

donor acceptor pair are held in place with known, accurate spacing.

There are two commonly used techniques to measure FRET. First, intensity mea-

surements: In early experiments, comparison of intensities of the donor was the pre-

ferred method [47, 48]. It involves measuring the donor intensity when donor-acceptor

are both present and comparing it with the case when only the donor is present: The

challenge here is to get a good reference measurement. The concentrations of both

solutions have to be equal, which can be challenging. Second, lifetime measurements:

With the development of fast and sensitive detectors based on charged coupled devices

(CCD), it is now easier to measure directly the change in lifetime of the dyes. Lifetime

measurements have the advantage over intensity measurements that they are concen-

tration independent [44].

With the development of pulsed lasers the technique of fluorescence lifetime imag-

ing microscopy (FLIM) [49] has emerged. An ultra short excitation pulse of the or-

der of the lifetime of the donor is used to excite the dye molecules. A time resolved

fluorescence intensity measurement can then be used to obtain the decay rate of the

donor. FRET-FLIM techniques require the use of confocal microscopy which in turn

requires complex optics. An innovative way to bypass the limitation is to use photo-

bleaching [50] to measure the FRET rate. Photobleaching-based FRET experiments

can be performed on conventional wide-field microscopy setups. Photobleaching is the

process in which the donor molecule in the excited state goes through an irreversible

photochemical change which makes the molecule unable to fluoresce. The rate of pho-

tobleaching is proportional to the time the molecule spends in its excited state. FRET

causes the lifetime of the donor in the excited state to decrease, as the FRET rate in-
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creases, the donor spends less time in the excited state and the rate of photobleaching

reduces. Thus the amount of photobleaching can be used to deduce the FRET rate.

In this approach a continuous laser is used and the intensity of the donor is measured

over a time which is typically of the order of ∼ 1 s. Compared with nanosecond scale

lifetime measurements, 1 s measurements do not require sophisticated detectors.

The LDOS is related to the influence of the environment on the decay rate of the

emitters, the relation of LDOS to the FRET rate has been a controversial topic in liter-

ature. With the early experiments, reporting that LDOS is directly correlated to FRET

rate [51, 52]. While others found no correlation between LDOS and the FRET rate [53].

In order to precisely control the separations, in Ref. [54] experiments were performed

by attaching donor and acceptor molecules at different locations on a DNA molecule,

and found that FRET rate is independent of LDOS. A subsequent theory was also devel-

oped [2], showing that the rate of energy transfer depends on the LDOS, but averaged

over a wide frequency range, from zero frequency to ultraviolet frequencies. How-

ever, the average of LDOS, over a large frequency range, for most environments, is

unchanged. Hence, the FRET rate does not depend on the LDOS.

1.2.2 Applications of FRET

Resonance energy transfer mediated by dipole-dipole interactions is a well studied

problem by physicists, chemists, and biologists. Though an old problem, its impor-

tance has steadily grown with time. Like spontaneous emission, where the electromag-

netic modes influence the rate of decay, the electromagnetic modes can also modify the

resonance energy transfer between two molecules. There have been recent studies to

modify FRET using nano-antennas [55], cavities [2], and hyperbolic metamaterials [56,

57].

Photosynthesis

Perhaps the most vital phenomena which involves FRET is photosynthesis in plants. In

photosynthesis, light is absorbed by certain dyes (chromophores) and the energy needs

to be rapidly transported to photosynthetic reaction sites. Oppenheimer [58] pointed

out that this process is highly efficient and cannot be due to emission and re-absorption

of the photon. It is now understood that FRET plays a vital role in the energy transport
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mechanism in photosynthesis [59, 60].

Photovoltaics

An application of FRET is in development of efficient light harvesting devices for solar

energy. The near-field, non-radiative transfer of energy across short distances using

FRET has been applied to solar cells [61]. Donor-acceptor dye based solar cells [62–

65] are more efficient than conventional organo-metallic dye based system.

Metrology

One of the first proposed applications for FRET was its use as a spectroscopic ruler at

the nanometer scale [66]. Although, the range of FRET is not significant for distances

larger than 10 nm, its extreme sensitivity to donor-acceptor distance at that length

scale makes it a viable choice to measure nm scale distances. The technique has been

successfully applied in mapping the structure of proteins [67]. Apart from the distance,

the relative orientation of the dipole moments of the donor and acceptor also have to be

accounted for [68]. Since the orientation of the dipole moment of molecules is harder

to control than distances, FRET is better for measuring change in distance between

donor and acceptor, rather than absolute distances [46, 69].

1.2.3 Classical analogue to resonance energy transfer

As the atom-field coupling is dipolar in nature it is not surprising that in the semi

classical approximation the rate of resonance energy transfer from the donor to the

acceptor ΓD→A is related to the power transferred between two classical dipoles PD→A

as [5]

ΓD→A =
PD→A
~ω

(1.9)

In this thesis the aim is to characterize the influence of the environment on resonance

energy transfer. Later in Chap. 4 we show that influence of the environment on reso-

nance energy transfer between two atoms is equivalent to the influence on the energy

transfer between two classical dipoles. We demonstrate that this concept can be devel-

oped to perform measurements with finite sized antennas to characterize the influence

of electromagnetic modes on resonance energy transfer at microwave frequencies.
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Unlike spontaneous emission where antenna based methods have become a popular

tool to measure the Purcell factor at longer wavelengths, antenna based circuit models

have not been explored in great detail for FRET like energy transfer. In Chapter 4

we work out the theory underlying the antenna based formalism to study resonance

energy transfer. We present experiments for resonance energy transfer in vacuum at

microwave frequencies with antennas, where in the near field regime the characteristic

r−6
DA dependence is measured. We then measure the modification in resonance energy

transfer in a parallel plate cavity and compare it with theoretical results in the literature.

It is the first time an antenna based formalism has been applied to study FRET at

microwaves.

1.2.4 Advantages of studying resonance energy transfer with an-
tennas

FRET experiments in optics as described previously (Sec. 1.2.1), are intricate as they

require accurate attachment of molecules at nanometer scale distances. In addition,

lifetime measurements need pulsed lasers and sophisticated detectors. Interestingly,

even with all the sophisticated and innovative ways to characterize FRET, none of the

optical measurement techniques can measure directly the energy transferred from the

donor to the acceptor. This is because FRET is a dark-process, mediated by virtual

photons. All techniques mentioned depend on measuring the changes in intensities

and lifetimes, and are basically indirect ways of obtaining the FRET energy transfer.

However, unlike optical measurements, at microwave frequencies it is possible to mea-

sure the power transfer from donor to acceptor antennas directly with conventional

techniques. This is the main motivation behind the development of antenna models to

study resonance energy transfer at longer wavelengths. At the same time, increasing

the wavelength can simplify experiments while preserving the physics, thus making it

easier to investigate the role of the environment on resonance energy transfer.

In this section we described the essential concepts of resonance energy transfer. We

now introduce hyperbolic metamaterials. Hyperbolic metamaterials have attracted a

lot of attention because of their ability to influence the decay rates of emitters. Later

in Chap. 3 we shall also be studying the Purcell factor in a microwave hyperbolic meta-

material.
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1.3 Hyperbolic metamaterials

1.3.1 Introduction to hyperbolic metamaterials

Hyperbolic metamaterials are a class of metamaterials that acquire their name from

their dispersion relations, which are hyperbolic in nature. These materials have an

indefinite anisotropic permittivity tensor [70]. They were studied by Narimanov and

coworkers [17, 71] to engineer photonic density of states. They have been shown to en-

hance the LDOS [72], resonance energy transfer [56], and they can be used to engineer

blackbody radiation[73]. Wire media based hyperbolic metamaterials have also been

used for imaging because of their ability to resolve beyond the diffraction limit [74,

75]. During the course of the PhD, the candidate also worked on developing hyperbolic

metamaterials, to mimic electromagnetic response of tokamak plasmas. The work can

be found in Appendix. C, though it will not be discussed further in this manuscript. In

this section we shall introduce the theory behind the LDOS and Purcell factor in hy-

perbolic metamaterials, and discuss the advantages and limitations of using hyperbolic

metamaterials to enhance local density of states.

Consider a material with a uniaxial anisotropic permittivity such that the permit-

tivity in the xy plane is negative Re{ε//} < 0 and permittivity along ẑ is positive,

Re{εz} > 0. In literature these are referred to as type II hyperbolic metamaterial [76].

A similar treatment can also be developed for type I hyperbolic metamaterials for which

Re{ε//} > 0 and Re{εz} < 0. The diagonal permittivity tensor is expressed as

[ε̄] =

ε// 0 0
0 ε// 0
0 0 εz

 (1.10)

For a material with such a uniaxial anisotropic permittivity tensor, the propagating elec-

tromagnetic waves in the structure can be split into transverse electric (TEz) polariza-

tion for which the electric field E lies completely in the x− y plane (Ez = 0) and trans-

verse magnetic (TMz) polarization where the magnetic field H lies completely in the

x−y plane (Hz = 0). The dispersion relations between the wave-vector k = (kx, ky, kz)
T

and frequency ω, for such a uniaxial anisotropic media were derived in Ref. [77]. The

dispersion relations in such a hyperbolic medium for the TEz and TMz polarizations

are [72, 76]

TEz :
k2
x + k2

y + k2
z

ε//
=
ω2

c2
, (1.11)
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TMz :
k2
x + k2

y

εzz
− k2

z

| ε// |
=
ω2

c2
. (1.12)

For the TMz polarization, the isofrequency dispersion is hyperbolic which is the reason

why such materials are called hyperbolic metamaterials.

Fabrication

The indefinite permittivity tensor of the hyperbolic metamaterial (Re{ε//} ·Re{εz} < 0)

implies that a hyperbolic metamaterial behaves like a metal in one direction and as a

dielectric material in the other direction. The two common ways to realise the required

dielectric response are by using a) wire medium and b) alternating metal dielectric

layers.

a) Wire medium

It is possible to achieve an indefinite effective permittivity required for hyperbolic meta-

materials by embedding an array of thin metallic wires with subwavelength periodicity

in a dielectric matrix. Wire medium based metamaterials for optical wavelengths are

usually fabricated by growing gold or silver wires in a porous alumina template [78,

79]. For bulk fabrication of metamaterials working at longer wavelengths, fibre draw-

ing techniques have also been developed [80]. These wire-based metamaterials find

extensive use in sub-diffraction imaging [81–85]. Wire media have been extensively

studied at optical [83], terahertz [74] and microwave frequencies [84] as imaging de-

vices. At long wavelengths wire media act as type I hyperbolic metamaterial. Wire

media has strong spatial dispersion [85] which curtails their hyperbolic behavior, but

is useful for imaging applications.

b) Metal dielectric layers

The second popular approach for fabricating metamaterials with effective hyperbolic

permittivity tensors is to deposit alternating metal and dielectric layers [71, 86]. While

layered metamaterials can exhibit both type I and type II characteristics depending

upon the frequency of operation, it is easier to obtain type II behavior [76]. Layered

media also pose a fabrication challenge as it can be difficult to deposit a large number

of thin layers.
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1.3.2 LDOS in hyperbolic metamaterials

Figure 1.4: Iso-frequency surfaces for two close frequencies in a hyperbolic metamaterial
(blue) compared with iso-frequency surfaces of an isotropic medium (red).

The most noticeable consequence of the hyperbolic dispersion relations is that the

medium can support propagation of waves with large wavevectors. This is why they

are sometimes referred to as indefinite materials [70]. In vacuum, such waves cannot

propagate and decay exponentially. In principle hyperbolic metamaterials can support

infinitely large propagation vectors due to the open form of the isofrequency surface

obtained from the hyperbolic dispersion relation, but in practise is limited due to losses.

If an emitter is placed inside or close to a hyperbolic metamaterial, the decay rate

of the emitter is determined by the density of available electromagnetic states. The

density of states, represents the volume enclosed between two isofrequency surfaces

formed by frequencies ω and ω + dω. In sharp contrast to an ellipsoid or sphere, a

hyperbola is an open structure. Hence, in principle, the density of states which is the

volume between two isofrequency surfaces can diverge. In practice however, the DOS

is finite due to and due to finite dimensions of the constituents.

The photonic density of states has been studied experimentally in hyperbolic meta-

materials [87, 88]. When fluorescent molecules or quantum dots are placed in vicinity

of a hyperbolic metamaterial, radiation from the emitters couple into the modes with
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the highest density of states. In a hyperbolic metamaterial the large density of states

decreases the lifetime of the emitters. It is important to discern the radiative and non-

radiative contribution to the decay rate, as non-radiative dissipation into heat in metals

is significant at optical frequencies [89].

In addition to optical frequencies, LDOS and the Purcell factor have been exten-

sively studied in hyperbolic metamaterials at microwave frequencies using the analogy

between the impedance of an antenna and the LDOS [32]. However most of the studies

for LDOS at microwaves have been focused on enhancement of the Purcell factor for

wire medium (Type I) based metamaterials [90, 91]. The Purcell factor in a Type II

hyperbolic metamaterial has been relatively unexplored compared to Type I metamate-

rials at microwaves. A Type II hyperbolic metamaterial exhibits dramatically different

Purcell factor depending upon the polarization (transverse electric (TE) or transverse

magnetic (TM)) of the mode the emitter emits into. The novel aspect of this work is that

we exploit the fact that antennas can be oriented accordingly inside a Type II hyper-

bolic metamaterial structure, to select the polarization of the mode they emit into. This

enables us, for the first time to resolve the contribution of the individual modes to the

Purcell factor, and compare that with the Purcell factor obtained from band-structure

calculations [92].

1.4 Thesis outline

The rest of the thesis is organized as follows:

In Chapter 2, we summarize the theory in literature for modification of sponta-

neous emission and the Purcell factor. The relationship between LDOS and the classical

Green function is established. The semi-classical analogue of spontaneous emission

using dipoles as emitters is discussed. The classical treatment of the Purcell factor is

developed for measurements with using finite length antennas. For a sub-wavelength

antenna it is demonstrated that a measurement of the real part of the input impedance

of the antenna gives the Purcell factor. The ability to measure the Purcell factor from

antennas, extends the frequency range of measurement of the Purcell factor from opti-

cal to microwave frequencies.

In Chapter 3 we study the Purcell factor in periodic fishnet metamaterial designed

to operate at microwave frequencies. Numerical computations of density of states of
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the periodic unit cell of the metamaterial are carried out. The electric and magnetic

Purcell factor are measured with antennas in the metamaterial structure. The Purcell

factor was obtained by measuring the change in the impedance of an antenna in the

frequency range 5-15 GHz. Measurements were compared with finite difference time

domain simulations of the Purcell factor.

In Chapter 4 we develop the theory for measurement of resonance energy transfer

using antennas. It is the first time antenna based formalism has been applied to study

resonance energy transfer at microwave frequencies. Briefly summarizing the QED

results, the role of the Green function in resonance energy transfer is highlighted. The

classical antenna based analogue to resonance energy transfer is then established. We

derive that if a two-port network is linearly coupled with subwavelength antennas, then

the mutual impedance is proportional to the Green function. The mutual impedance

can be measured using conventional microwave measurement techniques which makes

it possible to study resonance energy transfer at longer wavelengths.

In Chapter 5 we present measurement results for resonance energy transfer vac-

uum where we measure the characteristic r−6
DA dependence of power transferred as well

as the orientational dependence. To elucidate the effect of modes on the resonance

energy transfer, we then perform measurements in cavities. We compare the measure-

ments with analytical results in literature for resonance energy transfer. Finally, the

conclusions of the work are presented in Chapter 6.
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Chapter 2

Spontaneous emission

The aim of the chapter is to describe the theoretical framework to study the influence

of the electromagnetic environment on the spontaneous emission rate of a two level

quantum mechanical system. Emphasis is placed upon the role of the Green function

and its relation to the local density of states (LDOS). Next we study the influence of the

electromagnetic environment on the power emitted by a classical point dipole. In the

semi-classical approximation, the influence of the electromagnetic modes on the rate of

spontaneous emission is the same as that on the power radiated by a classical dipole.

Usually the LDOS and spontaneous emission rates are studied through measurements

of changes in decay rates of fluorescent molecules [7, 93]. The classical treatment,

while simplifying the problem, preserves the underlying physics. We go on to show

that the impedance of a classical dipole antenna is a classical analogue to LDOS. For

sub-wavelength, finite-sized antennas, the input impedance and hence the LDOS can

be measured experimentally at longer wavelengths. This chapter lays the theoretical

groundwork for experimental studies in the rest of the thesis.

Starting with the Maxwell equations in Sec. 2.1, the Green function formalism to

solve the wave equation is developed in Sec. 2.2. The modal approach is presented

in Sec. 2.3 and its relation to the Green function is established. The quantum me-

chanical approach for spontaneous emission in the Wigner-Weiskopf approximation is

developed in Sec. 2.4 where the influence of the electromagnetic modes on the decay

rate is characterized. The Purcell factor is introduced in Sec. 2.5. The influence of

the environment on the radiation by classical dipole studied in Sec. 2.6. Antennas are

introduced in Sec. 2.7 and a classical analogue to the Purcell factor is derived from the

antenna impedance. An equivalent lumped circuit based model for the Purcell factor
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is also discussed (Sec. 2.8). Extension of the concept to the magnetic Purcell factor is

discussed in Sec. 2.9. In Sec. 2.10 the basics of microwave measurements are discussed

and simple one-port and two-port microwave networks are analyzed. In Sec. 2.11, as

a demonstration of the effectiveness of the formalism developed, we take the exam-

ple of the Purcell factor near a perfectly conducting interface, where measurements

of the Purcell factor in literature at optical frequencies with fluorescent molecules are

compared with microwave measurements with antennas.

2.1 Maxwell's equations

All classical electromagnetic phenomena can be described by the Maxwell equations [94].

In a region without free charges (ρe = 0) the Maxwell equations are

∇× E(r;ω) = iωB(r;ω), (2.1)

∇×H(r;ω) = −iωD(r;ω) + j, (2.2)

∇ ·D(r;ω) = 0, (2.3)

∇ ·B(r;ω) = 0, (2.4)

where E is the electric field, H is the magnetic field, D is the electric displacement, B is

the magnetic induction, j is the current density. The fields are assumed to have a e−iωt

time dependence of the form

E(r, t) = Re{E(r)e−iωt} (2.5)

where ω is the angular frequency. In a linear, non-magnetic medium with a relative

permittivity ε(r, ω) the constitutive relations between the electric field E, magnetic field

H, electric displacement D, and magnetic induction B are given by

D = ε0ε(r, ω)E,

B = µ0H,
(2.6)

where ε0 and µ0 denote permittivity of free space and permeability of free space respec-

tively. By applying the curl operator (∇×) on both sides of Eq. (2.1) and using Eq. (2.2)

a wave equation can be derived

∇×∇× E(r;ω)− ε(r, ω)

(
ω2

c2

)
E(r;ω) = iωµ0j. (2.7)
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where c = (µ0ε0)−1/2 is the speed of light in vacuum. Through an analogous proce-

dure, the wave equation for the magnetic field H can also be derived. Two common

approaches to solving the wave equation Eq. (2.7) are the Green function method and

expansion in orthogonal eigenmodes. Both approaches will be presented next and the

relation between the two will be established.

2.2 Green function for electromagnetic wave equation

The Green function is a tensor which denotes the fundamental solution of the wave

equation (Eq. (2.7)) at the location r, with a point dipole source located at r′. In

cartesian coordinates, the Green function
↔

G(r, r′;ω) cab be represented by a 3 × 3

matrix of the form
↔

G(r, r′;ω) =

Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

 . (2.8)

The Green function
↔

G(r, r′;ω) is the solution of

∇×∇×
↔

G(r, r′;ω)− ω2

c2
ε(r)

↔

G(r, r′;ω) =
←→
I δ(r− r′) (2.9)

satisfying outgoing Sommerfeld’s radiation condition in the limit k0|r− r′| → ∞, where

k0 = ω/c, and
←→
I is the identity tensor. Eq. (2.9) is general in nature and valid for any

arbitrary, homogeneous or inhomogeneous, open or closed systems, with or without

losses. Depending upon the requirements, analytical or numerical techniques can be

applied to obtain the Green function [95]. Once the Green function is obtained, the

fields due to any arbitrary current distribution j(r′) can be expressed through the Green

function by integrating over the volume of the source current distribution

E(r;ω) = iωµ0

∫
dr′

↔

G(r, r′;ω) · j(r′). (2.10)

For an (electric-) dipole source denoted by its dipole moment p, the current density is

j = −iωpδ(r− r′), (2.11)

δ(r−r′) denotes the three-dimensional Dirac delta function. For a time harmonic, point

electric dipolar source p, Eq. (2.10), is simplified to

E(r;ω) = µ0ω
2
↔

G(r, r′;ω) · p. (2.12)

Physically this means in any environment, the electric field of a dipole source by the

product of the Green function and the dipole moment.
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2.3 Orthogonal modes and Green function

Another approach to solving the wave equation Eq. (2.7) is by expanding the field using

eigenmodes. In a non-dispersive, non-absorbing medium in a closed cavity of volume

V , it is possible to express any electromagnetic field distribution of a system as a super-

position of discrete orthogonal eigenmodes uk(r, ωk), with ωk being the eigenfrequency

of the mode. These modes which form a complete orthonormal basis are solutions of

the source free (homogeneous) wave equation,

∇×∇× uk(r, ωk)− ε(r)ω
2
k

c2
uk(r, ωk) = 0 (2.13)

and satisfy the orthonormality condition,∫
u∗k(r, ωk)ε(r) · uk(r, ωk′)d

3r = δkk′ . (2.14)

Here we limit ourselves to closed systems following Ref. [96]. For open systems the

modal representation has been developed in Ref. [97]. It is assumed that the permit-

tivity ε(r) is real, and does not depend upon ω. The electric field can then expressed as

a superposition of the modes as

E(r;ω) =
∑
k

ckuk(r, ωk) (2.15)

where the coefficients ck are determined from the initial and boundary conditions.

The spectrum of modes uk is assumed to be discrete. For a continuous spectrum, the

summation in Eq. (2.15) has to be replaced by an integral.

The Green function as described in Sec. 2.2 and the modal representation are alter-

native formalisms of representing the solution of the same wave equation. The Green

function itself can be expanded as a superposition of the modes uk

↔

G(r, r′;ω) =
∑
k

Ak(r′, ω)uk(r, ωk′) (2.16)

with coefficients Ak(r′, ω) to be determined. Substituting Eq. (2.16) into Eq. (2.9)∑
k

Ak(r′, ω)(ω2
k − ω2)ε(r)uk(r) = c2δ(r− r′)

↔

I . (2.17)

Multiplying on both sides of Eq. (2.17), by u∗k(r), using the orthonormality condition

of the modes in Eq. (2.14), and integrating over the entire region r

(ω2
k − ω2)Ak(r′, ω) = c2u∗k(r′). (2.18)
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Using the mathematical identity [98]

lim
η→0+

1

x+ iη
= P

[
1

x

]
− iπδ(x), (2.19)

where P represents the principal value, the coefficients Ak(r′, ω) can now be expressed

as

Ak(r′, ω) = c2u∗k(r′)

{
P
[

1

ω2
k − ω2

]
+

iπ

2ωk

δ(ω − ωk)− iπ

2ωk

δ(ω + ωk)

}
. (2.20)

The contribution from the third term on the right hand side of Eq. (2.20) is neglected

as only positive frequencies are considered. Substituting Eq. (2.20) into Eq. (2.16) the

relationship between the Green function formalism and the eigenmodes formalism is

established,

↔

G(r, r′;ω) = c2
∑
k

u∗k(r′, ωk)uk(r, ωk)

{
P
[

1

ω2
k − ω2

]
+

iπ

2ωk

δ(ω − ωk)

}
, (2.21)

which is usually simplified to

↔

G(r, r′;ω) =
∑
k

u∗k(r′, ωk)uk(r, ωk)

(ω2
k − ω2)/c2

(2.22)

where u∗k(r′, ωk)uk(r, ωk) represents the direct product. Eq. (2.22) is important because

it allows us to express the Green function in terms of the modes of the structure.

2.4 Quantum mechanical theory of spontaneous emis-

sion.

Spontaneous emission is a quantum mechanical process, through which an atom spon-

taneously decays from its excited state to the ground state while emitting a photon.

Here, the aim is to study the dependence of the rate of spontaneous emission (γ) on

the electromagnetic environment of the atom. The atom is described by a two level

quantum mechanical system with the ground state |g〉 and the excited state |e〉 with en-

ergy difference (Ee − Eg) = ~ω0 where, ω0 is the transition frequency and ~ is Planck’s

constant. Only two levels are considered and the effect of the other energy levels is

neglected.

The Jaynes-Cummings Hamiltonian [99] of the atom + field system describes the

interaction of the atom with the electromagnetic field. For a two level atom, in the
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rotating wave approximation, the atom field interaction is described by the minimal

coupling Hamiltonian [6, 100, 101]

Ĥ = ĤAtom + ĤField + Ĥint (2.23)

where ĤAtom + ĤField is the unperturbed Hamiltonian of the atom + field, and the

interaction Hamiltonian is Ĥint. Only the weak coupling regime between the emitter

and the environment is considered, implying that the matrix elements of the interaction

Hamiltonian Ĥint are small compared to those of the unperturbed Hamiltonian. In the

(electric-) dipole approximation Ĥint = −µ̂ · Ê. The electric field operator Ê and the

dipole moment operator µ̂ are

Ê =
∑
k

√
~ωk

2ε0

[
uk(r)âk(t) + u∗k(r)â†k(t)

]
, (2.24)

µ̂ = µ
[
|e〉〈g|+ |g〉〈e|

]
. (2.25)

The summation is over all modes uk of the system as in Eqs. (2.13), (2.14). µ is the

transition dipole moment, r is the location of the emitter, âk(â†k) is the single photon

annihilation(creation) operator of the mode k with mode frequency ωk. In the rotating

wave approximation that is, neglecting the effect of other transitions and of counter

rotating terms, the full Hamiltonian is

Ĥ =
(
Eg|g〉〈g|+Ee|e〉〈e|

)
+
∑
k

~ωk

(
â†kâk +

1

2

)
+~
∑
k

(
gk(r)â†k|g〉〈e|+ g∗k(r)|e〉〈g|âk

)
.

(2.26)

with the dipolar atom-field coupling constant

gk = −iω0

~

√
~

2ε0ωk

µ · uk
∗(r). (2.27)

which depends upon the eigenmodes uk of the cavity, that is, on the environment.

We consider in the initial state the atom is its excited state with no photons present,

in the final state the atom decays to its ground state while emitting a photon into mode

uk. The initial state |i〉 and final state |f〉 of the atom and field are thus defined as

|i〉 = |e, {0}〉 = |e〉|{0}〉 (2.28)

|f〉 = |g, {1ωk′
}〉 = |g〉|{1ωk′

}〉 (2.29)

respectively, |{0}〉 is the zero-photon state, and |{1ωk′
}〉 is the one-photon state associ-

ated with the mode k′. The Hamiltonian in Eq. (2.26) along with the Schrödinger wave
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equation

i~
d

dt
|ψ〉 = Ĥ|ψ〉 (2.30)

can be used to describe the time evolution of the system. The wave function of the

system |ψ〉 can be written as a superposition of the initial state |i〉 and the final state

|f〉,

|ψ(t)〉 = Ce
0(r, t)|i〉+

∑
k

Cg
1k(r, t)e−iωkt|f〉. (2.31)

Ce
0(r, t), Cg

1k(r, t) are the associated amplitudes with initial conditions Ce
0(t) = 1 and

Cg
1k = 0. In the Wigner-Weiskopf approximation (WWA) [3] a solution of the form

Ce
0(r, t) = Ce

0(r, t)e−i
(
ω0+∆ω−i γ

2

)
t (2.32)

is found for Eq. (2.30) by inserting Eq. (2.31) into Eq. (2.30) where γ is the rate of

spontaneous emission and ∆ω is the Lamb shift which relates to the frequency shift

of the atom. In the WWA the frequencies are close to the atomic transition frequency

ω ≈ ω0 and the solution to the Schrödinger equation (Eq. (2.30)) is [102, 103],

∆ω(r, ω)− iγ
2

(r, ω) =
ω|µ|2

2~ε0

∑
k

[ ω
ωk

|µ · uk(r)|2

ω − ωk

− iπ|µ · uk(r)|2δ(ω − ωk)
]

(2.33)

Thus, it is found again that the spontaneous emission rate γ depends on the available

modes uk(r) at the location r of the emitter.

2.4.1 Local density of states and Green function

In order to relate the rate of spontaneous emission γ to the eigenmodes uk of the struc-

ture, the concept of partial local density of states (PLDOS) was introduced in Ref. [4].

If an emitter is located at r0 with a transition frequency ω0 then the rate of spontaneous

emission is expressed

γ =
πω0

3~ε0

|µ|2ρµ(r0, ω0) (2.34)

where ρµ(r, ω0) is the PLDOS and ω0 is the frequency of emission of the atom. The

PLDOS ρµ(r, ω0) is related to the modes uk as

ρµ(r0, ω0) = 3
∑
k

[nµ · uk(r0, ωk)u∗k(r0, ωk) · nµ]δ(ω0 − ωk) (2.35)

where nµ is the unit vector along the direction of the transition dipole moment. In

Eq. (2.35) the presence of the delta function restricts the mode frequencies close to the
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transition frequency ωk. In quantum mechanical systems usually the orientation of the

dipole moment nµ is not fixed and the PLDOS has to be averaged over the orientations

of the dipole. The orientational average of the PLDOS is referred to as the local density

of states (LDOS).

As shown previously in Eq. (2.22), the modal representation is related to the Green

function and hence the PLDOS (Eq. (2.35)) and the LDOS can also be expressed using

the Green function. There are two reasons to describe the LDOS and spontaneous

emission using the Green function formalism. First, the Green function formalism is

more versatile and valid for a open or closed systems, with losses. Although the modal

representation can be extended to open systems [97], the Green function approach does

not impose any conditions on the set of eigenmodes. Secondly, and more relevant to

this work, is that the Green function is the solution of a point dipole and later (Sec. 2.7)

is the natural way to study the LDOS with classical dipoles.

From Eq. (2.21) it can be shown that the imaginary part of the Green function is

Im
{↔
G(r0, r0;ω0)

}
=
πc2

2ω0

∑
k

u∗k(r0, ωk)uk(r0, ωk)δ(ω0 − ωk). (2.36)

This allows us to express the PLDOS (Eq. (2.34)) and the rate of spontaneous emission

in terms of the Green function

ρµ(r0, ω0) =
6ω0

πc2

[
nµ · Im

{↔
G(r0, r0;ω0)

}
· nµ

]
(2.37)

The LDOS is obtained by averaging PLDOS over the orientations of dipole moment nµ.

In terms of the Green function

ρ(r0, ω0) =
2ω0

πc2
Im
{

Tr[
↔

G(r0, r0;ω0)]
}

(2.38)

where Tr denotes the trace of the 3×3 Green tensor such as the one seen previously in

Eq. (2.8).

For vacuum, the Green function is [5]

↔

G(r, r′;ω) = P
[
k2
↔

I +∇∇
]exp(ikR)

4πε0R
−

↔

I

3ε0

δ(r− r′) (2.39)

where R = |r − r′|. As seen in Eq. (2.38), for LDOS calculation the imaginary part of

the Green function is required, with the source position also being observation that is
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r′ = r = r0. When r = r′, the real part of the Green function diverges, in the limit

R→ 0. However, the imaginary part remains finite [104]

lim
R→0

Im[
↔

G(r, r′;ω)] =
k

6π

↔

I . (2.40)

Substituting Eq. (2.40) into Eq. (2.38) the LDOS for vacuum ρ0 is

ρ0 =
ω2

0

π2c3
(2.41)

and the decay rate in vacuum is

γ0 =
ω3

0|µ|2

3πε0~c3
. (2.42)

From Eq. (2.38) in conjunction with Eq. (2.34), it is clear that the rate of spon-

taneous emission depends upon two factors: the magnitude and orientation of the

transition dipole moment µ and the imaginary part of the Green function. The transi-

tion dipole moment is assumed to be unaffected by the environment hence, the effect

of the electromagnetic environment on the rate of spontaneous emission is contained

within the Green function. A more detailed approach from the quantum electrody-

namical point of view on the role of Green function and decay rate can be found in

Refs. [105–107]. Having established that the spontaneous emission rate is affected by

the environment we can now proceed to define a figure of merit which allows us to

quantify the effect.

2.5 Purcell factor

In Sec. 2.4, it was discussed that the decay rate of an emitter depends upon the mode

structure. Consequently, the rate of spontaneous emission is modified upon modifica-

tion of the modes, as in a cavity. This modification of the rate of spontaneous emission

was first postulated by Purcell for a single mode cavity [1]. To characterize the change

in decay rate a figure of merit is defined, which is the ratio of the rate of spontaneous

emission in a structure (γ) to that in vacuum (γ0) and is called the Purcell factor (F )

F ≡ γ

γ0

. (2.43)

In the Green function representation the Purcell factor is

F ≡ γ

γ0

=
n̂µ · Im[

↔

G(r0, r0;ω0)] · n̂µ

n̂µ · Im[
↔

G
(0)

(r0, r0;ω0)] · n̂µ
(2.44)
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where γ, γ0 are the rates of spontaneous emission in the medium and vacuum respec-

tively,
↔

G(r0, r0;ω) is the Green function in the medium, and
↔

G
(0)

(r0, r0;ω) is the Green

function in vacuum. Without the loss of generality, if it is assumed that the dyadic

Green
↔

G function is expressed in the cartesian coordinates and the transition dipole

moment is oriented along ẑ, Eq. (2.44) is recast as

F =
Im{Gzz}
Im{G(0)

zz }
(2.45)

where Gzz represents the ẑẑ component of the dyad
↔

G(r0, r0;ω0).

Apart from losing energy through spontaneous emission, emitting a photon, a molecule

in an excited state can also lose energy non-radiatively for example, dissipating energy

into heat. In a realistic system the decay rate γ of a fluorescent molecule would be

influenced by both radiative and non-radiative decay channels. The apparent quantum

yield η is then,

η =
γR

γNR + γR
(2.46)

where γR is the radiative decay rate, γNR is the non-radiative decay rate which con-

tains the internal losses within the emitter and the losses in the environment. The

Purcell factor Eq. (2.43) can also be decomposed into its radiative and non-radiative

components

F ≡ γ

γ0

=
γR + γNR

γ0

= FR + FNR (2.47)

where FR is the radiative Purcell factor, while FNR is the non radiative Purcell fac-

tor. A similar decomposition of the radiative and non-radiative LDOS can also be ob-

tained [108].

2.6 Classical theory of radiation

Expressing the LDOS and Purcell factor in terms of the Green function, becomes useful

when we study the radiation by a classical dipole. Let a harmonically oscillating, classi-

cal, electric dipole, with a classical dipole moment p, be located at the position r0. The

power radiated P by the dipole to its environment. For a dipolar current source the

power radiated is [5],

P =
ω

2
Im{p∗ · E(r0)}, (2.48)
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where E(r0) is the electric field evaluated at the position of the dipole. The classical

Green formulation (Eq. (2.12)) can be used to compute the electric field E(r0) and

obtain

P =
ω3µ0|p|2

2

[
n̂p · Im{

↔

G(r0, r0;ω)} · n̂p
]

(2.49)

where n̂p is the unit vector in the direction of the dipole moment of p. For vacuum, the

imaginary part of the Green function can be substituted from Eq. (2.40) into Eq. (2.49)

to obtain the well known expression for the power emitted by a dipole emitter in vac-

uum

P0 =
ω4

12πε0c3
|p|2. (2.50)

In the semi-classical approximation [26] the decay rate γ can be obtained by divid-

ing the average power emitted by a classical dipole P by the energy of one photon,

γ = P/~ω0. The classical dipole moment p and the quantum mechanical dipole mo-

ment µ are linearly related as p = 2µ [109]. In Eq. (2.50), substituting p by µ and

replacing ω by the transition frequency ω0, and dividing the power by the energy of

one photon ~ω0, the exact expression for the decay rate in Eq. (2.42) is recovered. The

Purcell factor expressed using the modification of the decay rate (γ/γ0) or the power

emitted by a dipole (P/P0) is identical

F ≡ γ

γ0

=
P

P0

=
6πc

ω0

[
n̂p · Im{

↔

G(r0, r0;ω0)} · n̂p
]
. (2.51)

Changing the electromagnetic environment modifies the rate of spontaneous emission

the same way it modifies the power radiated by a classical point dipole. Thus, the

Purcell factor can also be seen as the normalized power radiated by a classical dipole

antenna.

2.7 Antenna impedance and Purcell factor.

In Sec. 2.6 it was demonstrated that the power radiated by a classical point dipole

is modified the same way as the rate of spontaneous emission by a two level system

(Eq. (2.51)). In principle it allows the characterization of the LDOS using classical

dipoles. However, a point dipole is a theoretical concept, implying a perfect electro-

magnetic source localized at a point in space and thus not feasible to realize experi-

mentally. Here we show that using finite, subwavelength antennas, the Purcell factor
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Figure 2.1: (a) Schematic of a dipole antenna, (b) equivalent circuit of dipole antenna
attached to a coaxial cable of impedance Zw.

can be measured experimentally. It is not a new idea and the first measurements were

performed by Dowling [27, 31]. In this section we lay the theoretical foundations for

measurement of the Purcell factor at microwave frequencies with antennas.

An antenna is a device which interacts with electromagnetic radiation, it can act as

a receiver, as well as an emitter of electromagnetic waves. In more general terms an

antenna is the interface which connects two volumes, V and V ′ as seen in Fig. 2.1(a).

An opening in the volume V , connects to the antenna in Fig. 2.1(a) via a transmission

line, usually a waveguide. The volume V is separated from volume V ′ via a perfectly

conducting boundary shielding an electronic system. The electronic system dissipates

incoming radiation through from V ′, and may contain the source that generates cur-

rents which are emitted to V ′ via the antenna.

The antenna system seen in Fig. 2.1(a) can be simplified into a lumped circuit model

as shown in Fig. 2.1(b)[110]. Where the source Vg is a voltage source, the transmission

line has an impedance Zw. The important quantity is the input impedance Zin of the

antenna, which is the impedance presented by the antenna at its terminals. From the

reciprocity principle, the circuit representation of the antenna is valid in the emitting

mode as well as receiving mode of the antenna.

The input impedance can be decomposed into its constituents Zin = (RNR +Rrad)− iX

where RNR is the non-radiative loss, Rrad is the radiative resistance, and X is the re-

actance. In this thesis the antennas considered are made of perfect electric conductors

(PEC) and hence non-radiative losses in the antenna are negligible, that is, RNR → 0.

The assumption is justified since the frequency of interest is in microwaves (5-15 GHz)

and the antenna is made of copper which has negligible losses at these frequencies. The
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radiative resistance Rrad can be thought of as the magnitude of a fictitious resistance,

when connected in series with an antenna, dissipates the same amount of power as

much as the antenna radiates. Rrad not only depends upon the characteristics of the

system, but also on the surrounding environment of the antenna, is well known in an-

tenna theory [111]. The input impedance of a short sub-wavelength dipole antenna is

analyzed next and its relation to the LDOS and the Purcell factor is presented.

2.7.1 Impedance of a subwavelength dipole antenna.

Figure 2.2: Schematic of a subwavelength dipole antenna with a load impedance ZL.

A short dipole antenna (Fig. 2.2) is considered to be composed of two thin perfectly

conducting wires along ẑ, with a small gap at the center and loaded by a impedance

ZL. The arm length is denoted by l, with l� λ, where λ is the wavelength of operation.

An electric field Ez ẑ is incident upon the antenna, which induces a current along the

length of the antenna. If the current at the center is denoted by I0 ≡ I(0) the current

at a location z along the antenna arm is denoted by I(z) = I0ft(z) where ft(z) is [112]

ft(z) =
sin k(l − |z|)

sin kl
, (2.52)

and k = 2π/λ. Thus the current vanishes at the ends of the antenna (ft(z = ±l) = 0).

In the long wavelength limit kl → 0, ft(z) takes the takes the triangular form,

ft(x) = 1− |z|
l
. (2.53)

If the volume charge density is expressed as ρq(z) then using the continuity condition,

∇ · j =
dI

dz
= −

∂ρ′q(z)e−iωt

∂t
= iωρ′q(z) (2.54)
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where ρ′q = ρq/dxdy. For such a thin wire system, the dipole moment can be expressed

as p = pz ẑ where,

pz =

∫ l

−l
xρ′q(z)dz = −I0l

iω
. (2.55)

Thus the dipole moment is proportional to the current I0.

If the voltage at the terminals is V0, the input impedance Zin is defined through a lin-

ear relationship between the voltage and the current V0 = ZinI0. The input impedance

is now calculated using Brillouin’s induced electromotive force (IEMF) method [111].

The voltage induced at the center of the antenna is

V0 =

∫ l

−l
dV =

1

I0

∫ l

−l
I(z′)Ez(z

′) dz′. (2.56)

and the input impedance is defined as,

Zin =
V0

I0

=
1

I2
0

∫ l

−l
I(z′)Ez(z

′) dz′. (2.57)

For a short sub-wavelength antenna, the electric field Ez(z
′) can be considered uni-

form over the length of the antenna and the current is assumed to be of the form in

Eq. (2.53). Then, Eq. (2.57) simplifies to,

Zin =
Ez(r0)l

2I0

(2.58)

where r0 is the location of the center of the antenna. Using the dipole moment obtained

in Eq. (2.55) the field Ez(r0) can be expressed using the Green function. Then from

Eq. (2.58) the relationship between the Green function and the input impedance is

Zin =
(µ0ω

2
↔

G(r0, r0;ω) · p)l

2I0

=
(µ0ω

2Gzz(r0, r0;ω))l

2I0

(
−I0l

iω

)
. (2.59)

Re-arranging Eq. (2.59),

Zin =
(µ0l

2)

2

[
(iω)Gzz(r0, r0;ω)

]
(2.60)

From the expression in Eq. (2.60) it is clear that the real part of the input impedance Zin

corresponds to the imaginary part of the impedance
↔

G(r0, r0;ω). Substituting Eq. (2.60)

into Eq. (2.45) the Purcell factor is obtained from the impedance [32]

F =
Re {Zin}
Re {Z(0)

in }
=

Im{Gzz}
Im{G(0)

zz }
. (2.61)
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where Z(0)
in is the input impedance of the antenna in free space. Eq. (2.61) is a central

result to this thesis. It shows that the real part of the input impedance of a short dipole

antenna corresponds to the imaginary part of the Green function. The representation of

the Purcell factor through the antenna impedance of an antenna is very useful because,

at microwave frequencies input impedance is a quantity that can be measured directly.

It allows us to measure the Purcell factor with an antenna, rather than measuring decay

rates of fluorescent emitters.

2.8 Equivalent circuit model for Purcell e�ect.

Figure 2.3: (a) Schematic of a dipole antenna near an object, (b) equivalent circuit model
of harmonic dipole in presence of an object.

The Purcell factor can also be analyzed using lumped circuit models. Recalling

the circuit representation of an antenna from Fig. 2.1(b), if the dissipative losses are

negligible RNR → 0 the radiative resistance can be approximated by the real part of the

input impedance Re{Zin} ≈ Rrad. From Kirchoff’s law the current flowing in the circuit

is

I = Vg/(Zw +Rrad − iXA). (2.62)

If in free space the input impedance is denoted by Z(0)
in and the radiative resistance as

R
(0)
rad with Re{Z(0)

in } = R
(0)
rad, the presence of another object can be seen as the addition of

a mutual impedance, which changes the input impedance to Zin = Z
(0)
in +Zm as seen in

Fig. 2.3. It is important to note that for a short dipole antenna the radiation resistance

is very small compared to the impedance of the transmission line, Rrad � Zw. It is a

very important concept for the development of antenna based models for Purcell factor.

To provide a rough estimate, assume a dipole antenna of length l = 0.1λ is attached to

a coaxial cable of impedance Zw=50 Ω. The radiation resistance of such a short dipole
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antenna is given by [111]

Rrad = 20π2

(
l

λ

)2

Ω, (2.63)

which yields a value of Rrad = 1.97 Ω, which is much smaller than the reference

impedance of the waveguide 50 Ω. Thus, the addition of the mutual impedance, of a

magnitude similar to Rrad, does not change the current flowing (Eq. (2.62)) in the cir-

cuit significantly. This allows us to express the Purcell factor using only the impedances

[33],

F =
Re{ Zin}
Re{Z(0)

in }
= 1 +

Re{Zm}
Re{Z(0)

in }
. (2.64)

The Purcell factor can increase or decrease, depending upon the nature of the mu-

tual impedance Zm. In this discussion, the mutual coupling Zm is not analyzed in any

specific details. Rather, the aim is to present a general approach for an arbitrary elec-

tromagnetic environment. The reader is referred to the Refs. [32, 33] for more details

on the role of mutual coupling and the Purcell factor.

2.9 Electric and magnetic Purcell factor.

The Green function
↔

G(r, r′;ω) used until now is the solution of wave equation for a

point electric dipole source, which relates the electric field to the electric dipole mo-

ment (Eq. (2.12)), leading to the expression of the Purcell factor (Eq. (2.45)). An

analogous concept of the magnetic Purcell factor can be derived using the magnetic

Green function [113, 114]. In the context of antennas a small magnetic loop antenna

can act as a magnetic dipole. The magnetic Purcell factor can similarly be obtained by

a measurement of the input impedance of a magnetic loop antenna [34, 92]

F e/m =
Im{Ge/m

zz }
Im{Ge/m,(0)

zz }
=

Re{Ze/m
in }

Re{Ze/m,(0)
in }

. (2.65)

where F e/m denotes the electric/magnetic Purcell factors obtained for an electric/magnetic

dipole. This concept has not been given much attention as the atom field coupling is

generally electric dipolar in nature and only recently the concept has gained recent

attention optics [35].
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2.10 Theory of microwave measurements.

As this thesis focuses on studying radiation dynamics at microwave frequencies with

antennas, in this section we describe the basic theory of microwave measurements.

The aim is to familiarize the reader with the basic concepts such as scattering parame-

ters (S-parameters) and impedance parameters (Z-parameters) to analyze microwave

networks.

Microwave networks have been studied extensively theoretically [115] and exper-

imentally [116]. A microwave network consists of a device under test (DUT) which

can have any number of “ports". Excitation and taking measurement of the DUT can

only occur through the ports. Usually the energy is fed through radio frequency (RF)

waves by a transmission line. There can be any number of ports, ranging from 1 to

N , with or without coupling between the ports. Here, we shall only consider linear

coupling between the ports and the DUT. The objective in microwave measurements is

to characterize the response of the DUT, through its response at the ports.

Here, we present two ways through which microwave networks can be described,

the impedance parameters (Z-parameters) and the scattering parameters (S-parameters).

They are equivalent representations and the preferred choice depends upon the type of

problem. We apply it to the two most widely studied microwave networks, the one-

port network and the two-port network. The one-port network is the simplest of all

cases, where the network has only one port. In this case the entire system is charac-

terised by measuring the reflection coefficient. We then outline how measurement of

the Purcell factor through using an antenna can be seen as measurement of one port

network. More generalized two-port networks are analyzed next. Two-port networks

are relevant for measurements of resonance energy transfer. This section will build the

requisite background to understand the experimental results in later Chapters 3, 5.

2.10.1 One port network

A one port network as the name suggests has only one port, as illustrated in Fig. 2.4.

Consider for example a transmission line with a reference impedance Zw terminated

by a load Z. For simplicity we assume that the transmission line is a coaxial waveg-

uide supporting a single transverse electric and magnetic (TEM) mode. The system is

completely described by the voltage between the conducting terminals and the current
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Figure 2.4: Schematic of a one port network.

flowing through the conductor in the transmission line. If the load Z is not perfectly

matched with the transmission line, then a component of the waves at the load would

be reflected. Hence we can decompose the current I and the voltage V as a superposi-

tion of the incident and reflected wave

V = Vi + Vr, (2.66)

where Vi is the amplitude of voltage of the incident wave, Vr is the amplitude of the

voltage of the reflected wave, the harmonic time dependence is implicit. The current I

can be similarly decomposed as

I = Ii − Ir, (2.67)

where Ii is the amplitude of current of the incident wave, Ir is the amplitude of the

current of the reflected wave. The negative sign for the reflected current denotes that

the current is reflected back from the load impedance Z. The reference impedance of

the transmission line is defined as,

Zw =
Vi
Ii

=
Vr
Ir
. (2.68)

Substituting Eq. (2.68) in Eq. (2.67) the current is

I =
1

Zw
(Vi − Vr). (2.69)

If the reference plane is set at the terminals of the load Z and assuming a linear rela-

tionship between the current and voltage, the impedance of the load Z is

Z =
V

I
. (2.70)
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Substituting Eqs. (2.66), (2.69) into Eq. (2.70),

Z = Zw
1− Γ

1 + Γ
(2.71)

where reflection coefficient Γ is defined as Γ = Vr/Vi. The reflection coefficient Γ is a

commonly measured quantity in microwave measurements. Eq. (2.71) shows that in a

one-port network the load impedance Z can be determined through a measurement of

the reflection coefficient Γ, provided the reference impedance Zw is known.

2.10.2 Antenna as a one-port network.

Consider the example of an antenna fed through a coaxial cable. We assume the coaxial

cable is attached to a vector network analyzer (VNA). The VNA houses the electronics

for the source, while at the same time it can measure the incoming and outgoing waves

through the coaxial cable.

In such a system the reference impedance Zw is determined by the type of waveg-

uide, the impedance Z is determined by the input impedance Zin of the antenna. The

current that feeds the antenna terminals causes the antenna to radiate electromag-

netic waves. Some of the waves would be reflected back at the antenna inducing

a current in the antenna and influence the input impedance Zin presented by the

antenna. The environment changes the impedance of the antenna through the re-

flected fields (Eq. (2.71)). Thus, in principle the environment can also be characterized

through the impedance. It is the measurement of the change in the impedance for a

subwavelength antenna that provides the Purcell factor F as mentioned in Sec. 2.7.1.

The reference impedance of a coaxial cable is generally 50 Ω. The VNA can directly

measure the impedance Z as the impedance parameter Z11, where the subscript 11

denotes a one-port network. Alternatively as described in detail later in Sec. 2.10.4,

the reflection coefficient Γ can be obtained as a measurement of scattering parameter

S11 and substituted in Eq. (2.71) to obtain the impedance.

2.10.3 Two port network

A two port network (Fig. 2.5) is more general than a one-port network. As the name

suggests the system consists of two input-output ports. A two-port network is the most

exhaustively studied system in microwave measurement theory. While in one-port net-

work the system could in principle be characterized using only one parameter: the
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reflection coefficient Γ (Eq. (2.71)), in a two port network the mutual coupling be-

tween the two ports has to be considered. That is, the current and voltage in port 1 can

influence the current and voltage in port 2 and vice-versa.

Figure 2.5: Schematic of a two port network in current and voltage representation.

Ports 1 and 2 have corresponding currents and voltages I1, V1, I2, and V2 associated

with them. It is assumed that coupling between voltage and current is linear

[V ] = [Z][I], (2.72)

where [V ] = [V1, V2]T , [I] = [I1, I2]T , and the impedance matrix

[Z] =

[
Z11 Z12

Z21 Z22

]
. (2.73)

The diagonal element Zii is the input impedance at port i if port j is open, that is no

current is flowing in port j

Zii =
Vi
Ii

∣∣∣∣
Ij=0

. (2.74)

The off diagonal elements Zij 6=i, determine the coupling between the two ports. The

impedance Zij is defined as the voltage induced at port i when port i is open [111],

Zij =
Vi
Ij

∣∣∣∣
Ii=0

(i 6= j). (2.75)

For a two-port network a knowledge of the elements of the impedance matrix [Z] along

with the reference impedances of the transmission lines characterize the entire system.

Though we consider a system with only two-ports, the procedure can be extended to

multi-port systems.
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2.10.4 Scattering parameters (S-parameters)

Previously we studied the one-port and two-port networks from the linear relationship

between the current and voltage obtained through the impedance parameters (Eq. (2.72)).

An equivalent description in terms of the input and output waves at the two ports can

also be formulated. It has to be pointed out that scattering parameters (S-parameters)

and impedance parameters (Z-parameters) are equivalent representations and it is pos-

sible to convert one into the other [117].

Figure 2.6: Two port network in S-parameter representation.

In the S-parameter representation, the input waves are denoted as a1 and a2 at ports

1 and 2 respectively. The output waves at ports 1 and 2 are denoted as b1, b2 respectively

(Fig. 2.6). The parameters (a1, a2, b1, b2) could denote either the amplitudes of the

current or the voltage of the waves. The input and output waves are linearly related as

[b] = [S][a], (2.76)

where [a] = [a1, a2]T , [b] = [b1, b2]T , and the scattering matrix is

[S] =

[
S11 S12

S21 S22

]
. (2.77)

The diagonal elements Sii, associated with the reflection coefficients are

Sii =
bi
ai

∣∣∣∣
aj=0

. (2.78)

The off diagonal elements are,

Sij =
bi
aj

∣∣∣∣
ai=0

(i 6= j). (2.79)

The one-port network can be seen as a special case with a2 = b2 = 0. From Eq. (2.78)

and Eq. (2.79) the physical meaning of the S-parameters can be inferred. S11 is the
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reflection coefficient at port 1 when port 2 is terminated by a matched load. S21 is the

transmission coefficient between ports 1 and 2 when port 2 is terminated in a perfectly

matched load. S21 quantifies the signal that is transmitted from port 1 to port 2. This

transmission property of scattering coefficient S21 will be useful for measurements of

resonance energy transfer in Chapter 4.

2.11 Example: Purcell factor near a conducting inter-

face

As an example to elucidate the effectiveness of using an antenna to probe the Purcell

factor, we consider how a perfectly conducting interface influences the decay rates

of emitters as the distance between the emitter and the interface is changed. While

this was the first experiment which demonstrated the modification of decay rates of

fluorescent emitters at optical frequencies [7], the same experiment was repeated at

microwave frequencies using antenna impedance measurements [33]. At the same

time in this simple geometry, analytical calculation of the Purcell factor is also possible.

The example also exhibits the advantages of measuring the Purcell factor with antennas

at microwave frequencies over conventional optics experiments.

Formulation of the problem.

Assuming a perfectly conducting plate in the x-y plane at z = 0 then, the problem is

to determine how the decay rate of emitters change as a function of the distance z

between the emitters and the conducting plate. The Purcell factor is proportional to

the imaginary part of the Green function. The Green function near such a conduct-

ing
↔

G(r, r′;ω) interface can be expressed as a superposition of the Green function in

vacuum
↔

G
(0)

(r, r′;ω) (Eq. (2.39)) [2]
↔

G(r, r′;ω) =
↔

G
(0)

(r, r′;ω)−
↔

G
(0)

(ρ, z + z′, ρ′, 0;ω) + 2
↔

G
(0)

zz (ρ, z + z′, ρ′, 0;ω)ẑẑ (2.80)

where r = (x, y, z), r′ = (x′, y′, z′), ρ = (x, y), ρ′ = (x′, y′),
↔

G
(0)

is the Green function

in vacuum (Eq. (2.39)), and
↔

G
(0)

zz is the ẑẑ component of this Green function. The

change in decay rate, which is the Purcell factor is proportional to the imaginary part

(Eq. (2.44)) of the Green function. In this geometry, the Purcell factor is [7, 33],

F⊥ = 1 + 3

(
sin(η)

η3
− cos(η)

η2

)
, (2.81)
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F // = 1− 3

2

(
cos(η)

η2
+

[
1

η
− 1

η3

]
sin(η)

η2

)
, (2.82)

where F⊥ denotes the Purcell factor when the dipole moment of the emitter is ori-

ented perpendicular to the conducting plane, F // is the Purcell factor when the dipole

moment of the emitter is parallel to the conducting plane, and η = 2kz.

Measurement of Purcell factor at optical frequencies

Figure 2.7: Modi�cation of lifetimes of �uorescent molecules near a conducting mirror.
(Source: Drexhage [7])

Change in decay rates of fluorescent molecules near a conducting interface at op-

tical frequencies was reported by Drexhage [7]. The experiment was performed by

characterizing the decay rates of Eu3+-ion based fluorescent dye molecules close to

a silver mirror. In order to precisely control the separation between the fluorescent

molecules and the silver mirror, a number of layers of a fatty acid were deposited on

top of the silver layer and then a monolayer of fluorescent molecules were deposited.

The measurements were performed at a wavelength of 612 nm.

The results are shown in Fig. 2.7 with experiments indicated by the dots, and theo-

retical results, which neglect the competing non radiative decay channels by the solid

curve. It is assumed that there is no preferred direction of the orientation of the

dipole moments of the fluorescent molecules in the monolayer and the distribution

of orientation of dipole moments is random. Hence the experiments are compared

to theory by averaging the Purcell factor in the parallel and perpendicular directions

(Eqs. (2.82), (2.81)),
1

3
(F⊥ + 2F //).
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Measurement of Purcell factor at microwave frequencies

Figure 2.8: Purcell factor near a conducting plate at microwave frequencies for perpen-
dicular (red) and parallel (blue) orientations of the antenna. (Source: Krasnok et al,
[33])

The experiments performed by Drexhage were repeated in the microwave frequency

range of 5-14 GHz which corresponds to a wavelength range 2.1 cm to 6.0 cm [33]. The

Purcell factor is proportional to the real part of the input impedance of a subwavelength

antenna (Eq. (2.61)). In this experiment, the impedance was obtained by measuring

the scattering coefficient (Sec. 2.10.2) of the antenna near a large copper plate. Cop-

per has negligible losses in the aforementioned frequency range hence non-radiative

quenching can be neglected.

The Purcell factor with an antenna was measured for the perpendicular and par-

allel orientations of the antenna and compared with theoretical Purcell factor from

Eqs. (2.82), (2.81). The results are shown in Fig. 2.8. Note that with an antenna it is

possible to resolve the orientational dependence of the Purcell factor in the parallel and

perpendicular directions of the dipole moment. It is an important advantage compared

to measurements with an ensemble of fluorescent molecules, such as the experiment by

Drexhage (Fig. 2.7), where the Purcell factor had to be averaged for comparison with

experiments.

The aim of this chapter was to show the equivalence between the Purcell factor and

the input impedance of an antenna. In the next chapter, we experimentally measure

the antenna impedance, to obtain the electric and magnetic Purcell factor in a fish-

60



net metamaterial at microwave frequencies. We show that we are able to discern the

contribution of individual modes to the density of states, and gain a comprehensive

understanding of the Purcell factor in the metamaterial.
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Chapter 3

Purcell factor in a microwave �shnet

hyperbolic metamaterial

In Chapter 2 we discussed that the Purcell factor is influenced by the electromagnetic

environment. We showed that in the semi-classical approximation, by measuring the

impedance of a subwavelength dipole antenna it is possible to find the Purcell factor.

In this chapter we apply the methods developed in the previous Chapter 2 to study

the Purcell factor numerically and experimentally in a microwave fishnet hyperbolic

metamaterial. This chapter is based on the work published in Ref [92].

The fishnet metamaterial was designed to operate in the frequency range 5-15 GHz.

The structure been previously proposed as a candidate for epsilon near zero (ENZ)

metamaterial [118]. Due to the anisotropy, the metamaterial has different disper-

sion relations in transverse magnetic (TMz) and transverse electric (TEz) polarizations,

which lead to distinct Purcell factors depending upon the polarization. The electro-

magnetic modes in the TMz polarization have hyperbolic dispersion, which lead to an

enhancement of the Purcell factor, while for the TEz polarization, there are no propa-

gating modes which reduces the Purcell factor. Thus, depending upon the orientation

of the dipole antenna, both enhancement and suppression of the Purcell factor can be

observed in the same structure.

The polarization dependence of the Purcell factor is confirmed when we analyze

the band structure of periodic unit cell and numerically compute the density of states

(DOS) of the available modes. The density of states is the spatial average of the LDOS

in the periodic unit cell of the structure. We experimentally measure the electric and

magnetic Purcell factor inside the structure, from impedance measurements antennas

using the formalism developed in previous sections. Measurements are compared with
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finite difference time domain (FDTD) simulation of the Purcell factor. The aim of this

chapter is to develop a coherent understanding of the electric and magnetic LDOS and

Purcell factor, theoretically and experimentally in the hyperbolic metamaterial.

In Sec. (3.1) we present our fishnet metamaterial structure and discuss its disper-

sion relations for TMz and TEz polarised fields in Sec. 3.1. In Sec. 3.2 we present the

details of the numerical modelling using finite difference time domain (FDTD) soft-

ware for simulations of the Purcell factor with finite size dipole antenna in a finite

metamaterial slab. Following that, eigenmode analysis of the unit cell of the infinite

metamaterial is performed in Sec. 3.3 where the band-structure is discussed and used

to calculate DOS. Section 3.4 presents the measurements of the Purcell factor using the

impedance method for electric and magnetic dipoles in the metamaterial and compar-

ison with FDTD simulations. We apply a method to filter out the reflections from the

boundaries of the finite structure, which enables comparison with infinite structure’s

DOS. In Sec. 3.5 we compare the DOS obtained by the impedance method with the

DOS obtained from eigenmode calculations.

3.1 Microwave �shnet metamaterial structure

Figure 3.1: Fishnet metamaterial structure used for study is composed of 4 layers of
0.1 mm thick copper grids in the plane stacked in ẑ direction. (Inset) Unit cell of the
metamaterial structure.

We now present the fishnet metamaterial structure used in this chapter. The struc-
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ture is composed of metal grids in the x-y plane stacked in the ẑ direction (Fig. 3.1).

The grids are separated in the ẑ-direction by expanded polystyrene which has a relative

permittivity close to unity and negligible losses in the frequency range 5-15 GHz used

in this study. Copper has negligible losses in the frequency range in our study; this

means that quenching, which is a consequence of ohmic losses in the metal, will not

have a significant effect on the Purcell factor. The structure was fabricated using copper

grids with the period in x and y directions px = py = 5.8 mm and spacing between the

grids pz = 7.0 mm. The length of the inner edge is 4.95 mm. The total length of the

structure in the x-y directions is 280 mm. The frequency range for the measurements is

5-15 GHz, which corresponds to a wavelength range of 20 - 60 mm, which is consistent

with the frequency range of our experimental apparatus (see Section 3.4.1).

The effective permittivity of this structure can be expressed by a uniaxial anisotropic

permittivity tensor [ε̄] = [ε//, ε//, εzz] where the anisotropy axis of the structure is the

ẑ-direction. In the simplest approximation, the effective permittivity of this structure

can be described by a local, lossless Drude model [119–121] with ε//(ω) = 1 − ω2
p/ω

2,

where ωp is the effective plasma frequency. For ω < ωp, ε// < 0 whereas for ω > ωp,

ε//(ω) > 0.

The thickness of the copper sheets is 0.1 mm, which is much smaller compared to the

wavelength. Hence, the structure has an effective electromagnetic response of dilute

thin metal layers in the ẑ direction. This leads to the effective permittivity along ẑ close

to unityεzz(ω) ' 1. Our 5 − 15 GHz frequency range includes the effective plasma

frequency which was reported to be around 14 GHz for such a structure [118], so as

to be able to observe the transition in the Purcell factor across the plasma frequency.

At frequencies below 5 GHz the wavelength becomes comparable to the size of the

structure so finite size effects become predominant, while above 15 GHz the effective

medium approximation starts to break down.

The structure has a permittivity tensor such that Re(ε//) · Re(εzz) < 0 below the

plasma frequency. These materials were introduced as hyperbolic metamaterials in

Sec. 1.3. For hyperbolic materials, the dispersion relation is different for TEz and TMz

polarizations [70]. For a structure with such an effective anisotropic permittivity tensor,

the electromagnetic waves can be split into transverse electric TEz and TMz polariza-

tions with isofrequency dispersion relations given by Eqs. (1.11), (1.12).
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The density of states is proportional to the infinitesimal volume between two closely

separated isofrequency surfaces Eqs. (1.11), (1.12) formed by frequencies ω and ω+δω.

If ε//(ω) < 0 then, in the TEz polarisation Eq. (1.11), there are no real propagating

solutions, whereas TMz polarisation Eq. (1.12) due to the hyperbolic nature of the dis-

persion relation can have a large Purcell factor [17, 71, 76, 122]. Hence, the TEz and

TMz polarisations have different Purcell factors. Since we shall study the Purcell factor

using the impedance of dipoles, we now discuss the effect of dispersion relations when

the dipoles, electric and magnetic, are embedded inside such a uniaxial anisotropic

structure.

In vacuum an electric dipole (along ẑ) emits completely in the TMz (Hz = 0) po-

larisation, similarly a magnetic dipole emits in the TEz (Ez = 0) polarisation. If the

dipole is embedded in a general anisotropic medium, the fields cannot be decomposed

simply into TE and TM polarisations. However, this decomposition becomes possible

again in the particular case of a uniaxial medium where the dipole is oriented along the

anisotropy axis ẑ. As shown by Clemmow [77], the electric and magnetic fields then

retain the property (Hz = 0) and (Ez = 0) for electric and magnetic dipoles respec-

tively. Hence, for our particular anisotropic structure we can use electric and magnetic

dipoles to observe the effect of dispersion relations in Eqs. (1.11), (1.12) on the Purcell

factor.

3.2 Numerical modelling for density of states calcula-

tion

For numerical calculations of the band structure and isofrequency dispersion relations,

the periodic unit cell of the structure as shown in Fig. 3.1 was modeled and its propa-

gating eigenmodes were calculated using the eigenmode solver in commercial software

CST Microwave Studio [123]. Periodic boundary conditions are applied on the sides of

the unit cell, which enforces that the structure is infinitely periodic in each direction.

Individual phase shifts ∆φx,∆φy,∆φz are applied on the boundaries, the phase shifts

corresponding to phase difference between the fields on the two boundaries and by

varying the phase between 0 to π the propagation vector (kx, ky, kz) can be fixed to any

location in the first Brillouin zone. The eigenfrequencies are then computed for the de-

sired propagation vectors for obtaining the band-diagram (Fig. 3.2) and isofrequency
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Figure 3.2: Band diagram of the metamaterial unit cell in (Fig. 3.1) along the path
Γ(kx = 0, kz = 0) −X(kx = π/px, kz = 0) −K(kx = π/px, kz = π/pz) −M(kx = 0, kz =
π/pz)− Γ(kx = 0, kz = 0).

dispersion relations (Fig. 3.3).

In the band-diagram (Fig. 3.2) the first three modes are marked and the isofre-

quency dispersion curves for the three modes are presented in Fig. (3.3). The first

mode starts from the Γ point (kx = 0, kz = 0) and has isofrequency curves resembling

hyperboloids, as shown in (Fig. 3.3(a)). The second mode starts from 13.6 GHz, which

also denotes the plasma frequency ωp. In the previous work of Enoch et al [118] only

the second mode was considered and the first mode was not excited.

From the hyperbolic isofrequency surfaces of mode 1 (Fig. 3.3(a)) we can confirm

that the material acts as a hyperbolic metamaterial. However, at low frequencies the

topology is more cylindrical than hyperbolic. The Poynting vector, which gives the

direction of power flow, is normal to the isofrequency surfaces, so at low frequencies

most power is confined in the x-y plane. It is consistent with the fact that at low

frequencies the structure behaves like a parallel plate waveguide and most of the power

is confined between two grids. Mode 2 (Fig. 3.3(b)) and mode 3 (Fig. 3.3(c)) start as

spheres of small radius at the plasma frequency (ωp) around 13.6 GHz. The radius of

these spheres can be expressed as k0n, where n is an effective refractive index and k0 =
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Figure 3.3: Isofrequency surfaces for the unit cell in (Fig. 3.1) (a), (b), (c) show isofre-
quency surfaces for modes 1, 2 and 3 respectively as marked in Fig. 3.2. The topology of
isofrequency surfaces for mode 1 (a) is hyperbolic and leads to a high density of states.
Mode 2 (b), mode 3 (c) begin at 13.6 GHz, at the plasma frequency ωp. The Brillouin
zone sectioned by the plane ky = 0.

ω/c is the wave number in free space. A small radius implies a small effective refractive

index n. Thus at frequencies slightly greater than the plasma frequency 13.6 GHz,

where the second and third mode in the band diagram (Fig. 3.2) originate, the material

acts as an epsilon-near-zero or index near zero medium [118].

3.3 Density of states calculation from iso-frequency sur-

faces

Having obtained the isofrequency surfaces, we now proceed to calculate the density of

states for our metamaterial unit cell from these isofrequency surfaces. The density of

states is defined as,

D(ω) =
∑
n

∫
BZ

dkδ(ω − ωn,k). (3.1)

Integration is performed over k where ωn,k are the eigenfrequencies corresponding to

the wave vectors k and mode number n. The DOS can also be expressed in terms of the

infinitesimal volume of the shell formed between two closely separated iso-frequency

surfaces of frequencies ω and ω + dω

D(ω)dω =
1

(2π)3

∫∫
δω

dk
//
1 dk

//
2

dω

|~∇ωk|
, (3.2)

where k1
// and k2

// are tangential to the iso-frequency surface and dk
//
1 dk

//
2 forms a

differential surface area element on the isofrequency surface ω(kx, ky, kz). The integral

in (3.2) can be evaluated by discretizing the isofrequency surface (Fig. 3.4) into N
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Figure 3.4: Illustration of the method used to compute the density of states. The isofre-
quency surface, ω(kx, ky, kz) is divided into N triangles; the gradient ~∇ωk is computed
at the centroids of the triangular patches and used in (Eq. 3.3) to compute the density
of states.

triangles and expressing Eq. (3.2) as a summation,

D(ω) =
1

(2π)3

N∑
i

∆i 1

|~∇ωik|
(3.3)

where, ∆i is the area of the ith triangular patch and |~∇ωik| is the magnitude of gradient

at the center of the triangle.

The density of states D(ω) calculated from the isofrequency surfaces shown in

Fig. 3.3 using equation Eq. (3.3) is shown in Fig.3.5. The density of states of indi-

vidual modes of the metamaterial unit cell is compared with the density of states for

vacuum for TM polarisation given by ω2

2π2c3
. We observe that the DOS for mode 1 is

large compared to vacuum which is expected due to the hyperbolic nature of the mode.

In contrast, for modes 2 and 3 D(ω) = 0 below ωp ≈ 13.6 GHz as TEz modes cannot

propagate at these frequencies.
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Figure 3.5: Density of states computed with the iso-frequency surfaces for mode 1 (blue),
mode 2 (red) and mode 3 (green) as shown in (Fig. 3.3) and compared with the theoretical
density of states for vacuum (dashed). The �rst mode due to hyperbolic isofrequency
surfaces has higher DOS than vacuum.

3.4 Experiments

3.4.1 Measurement of the Purcell factor with antenna impedance

We now outline our procedure for the measurement of the Purcell factor. For a weakly

lossy, subwavelength, dipole antenna the real part of the input impedance Re(Zin) is

proportional to the Purcell factor (Eq. (2.65)). As discussed in Sec. 2.10.2, the input

impedance can be obtained from the scattering coefficient S11 (Eq. (2.71)). The Purcell

factor is thus obtained from the reflection coefficient S11 [33]

F =
Re(Zin)

Re(Z
(0)
in )

=
Rin

R
(0)
in

, (3.4)

where,

Rin = Zw
1− Re(S11)2 − Im(S11)2

(1− Re(S11))2 + Im(S11)2
. (3.5)

Here S11 is the reflection coefficient and Zw = 50 Ω is the characteristic impedance and

the superscript (0) is the reference measurements in vacuum. We use this approach to

measure the Purcell factor of our metamaterial structure.
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The procedure for measurement of the Purcell factor is as follows. The dipole

(electric or magnetic) is attached to a coaxial cable and S11 is recorded in free space.

From S11 measurements, the reference input impedance for vacuum R
(0)
in is obtained via

Eq. (3.5). The dipole is then placed at the center of the structure between the second

and third copper grids. S11 is recorded and Rin is calculated again from Eq. (3.5). The

Purcell factor is then obtained from Eq. (3.4) as the ratio of Rin in the metamaterial

to the R(0)
in in vacuum. The electric and magnetic Purcell factors (F e/m) thus measured

experimentally are compared with the Purcell factor obtained using simulated S11 from

FDTD method.

In simulations and for the experiments, the sub-wavelength size electric dipole an-

tenna was made of thin conducting wires of total length 6.3 mm, while the magnetic

dipole was a wire loop antenna of radius 3.0 mm. Measurements were performed with

a vector network analyser (VNA) model Anritsu MS2027C for the frequency range 5-

15 GHz. At the high-frequency end this was limited by the VNA. The plasma frequency

(ωp = 13.6 GHz) of the structure lies in this frequency range which allows us to observe

the change in Purcell factor around this frequency.

Numerical simulations for calculations of the Purcell factor using the antenna impedance

method were performed using commercial finite difference time domain solver software

(CST Microwave Studio). Perfectly matched layers (PML) are used to truncate the com-

putational domain with space added near the structure. The total number of mesh cells

was approximately 109 for the entire structure. We checked numerically that the dipole

is sufficiently subwavelength in length and the Purcell factor does not depend signifi-

cantly on the dipole parameters. The available time domain solver in CST was used to

calculate the scattering coefficients (S-Parameters) in the frequency range 5-15 GHz.

When the electric dipole is oriented along ẑ, the Purcell factor (F ) is strongly af-

fected by the Fabry-Perot (FP) resonances. The effect of FP resonances on the Purcell

factor in metamaterials has been studied in the context of wire-medium hyperbolic

metamaterials [91] where it was argued that the Fabry-Perot resonances do not affect

the average value of the Purcell factor. It was numerically shown that the frequency av-

eraged Purcell factor in a finite structure agreed with the Purcell factor of an infinitely

periodic structure. While taking the average may seem heuristic, a similar signal pro-

cessing technique can be justified from the physics of the resonances: The Fabry-Perot
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resonances are caused by reflections from the boundaries of the finite structure; elimi-

nating these reflections by dismissing the time signal from the time during which reflec-

tions arrive should give a good approximation to the response of the infinite medium.

A similar technique was used to remove Fabry-Perot resonance artifacts in hyperlens

images [82].
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Figure 3.6: Input and output time signals from FDTD simulations for an electric dipole
along ẑ placed at the center of the structure. The �rst re�ection in the output signal
occurs around 0.9 ns which corresponds to the time taken by the wave to re�ect back
from the boundary of the structure.
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Figure 3.7: The Purcell factor for an electric dipole along ẑ computed from the time
signals in Fig. 3.7. Solid curves are calculated from time signals up to 30 ns; dashed
curves give the corresponding results after time windowing to eliminate the e�ect of the
re�ections from the boundaries.

The Purcell factor is calculated from the reflection coefficient S11 (Eq. (3.5)). In the

FDTD simulations S11 is calculated from the time signals as the ratio of the Fourier trans-

form (F) of the output (O(t)) and the input (I(t)) time signals, S11(ω) = F(O(t))/F(I(t)).

The dipole is placed at the center of the structure which has a lateral width of L =
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280 mm. The time for the wave to reflect back from the boundaries (tref) is thus

tref = L/c ' 0.9 ns where c is the speed of light in free space. We can observe the

reflections in the time signals at 0.9 ns in Fig. 3.6. By limiting our time signal to tref the

reflections are excluded and Fabry-Perot resonances are eliminated. In order to limit

the time signals to tref we multiply the input and output signals by a super gaussian

windowing function h(t) = e−(t/σ)4 with window length σ = 1 ns. Since we obtain

S11 in the frequency domain from the VNA, we convolve the measured S11 in frequency

domain by H(ω) where H(ω) = F(h(t)). Figure 3.7 shows that the truncation of the

time signal (Fig. 3.6) removes the effect of the Fabry-Perot resonances on the Purcell

factor (F ).

3.5 Results and discussion

Measurement results for the Purcell factor using antenna impedance inside the meta-

material structure is now presented. Three cases are considered: First, for a magnetic

loop dipole antenna oriented along ẑ. In this case the fields inside the metamaterial

are in TEz polarization. Second, for an electric dipole antenna oriented along ŷ. In this

case also the fields corresponds to the TEz polarization. Finally, for an electric dipole

antenna oriented along ẑ. In this case the fields correspond to the TMz polarization.

3.5.1 Purcell factor for magnetic dipole oriented along ẑ

Figure 3.8: Real (red) and imaginary (blue) parts of scattering coe�cient S11 from
simulations (solid) and measurements (dashed), (a) in free space, (b) in metamaterial
with magnetic loop dipole antenna oriented along ẑ.
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Figure 3.9: Measurement and simulation of magnetic Purcell factor for a magnetic dipole
oriented along ẑ, inside the metamaterial structure.

Fig. 3.8 (a) shows measurements and simulations of the real and imaginary parts of

scattering coefficient S11 for a magnetic dipole in vacuum. Fig. 3.8 (b) shows S11 for a

magnetic dipole oriented along ẑ inside the metamaterial structure. The measurement

in vacuum serves as the reference measurement. The scattering coefficient S11 is then

substituted in Eq. (3.5) to obtain the real part of the input impedance of the antenna.

Which in turn is used to obtain the Purcell factor using Eq. (3.4). Figure (3.9) shows

the magnetic Purcell factor for a magnetic dipole oriented along ẑ inside the structure.

A magnetic dipole embedded inside a uniaxial anisotropic medium oriented parallel

to the symmetry axis (ẑ) emits in the TEz polarization [77] which allows no propagating

solutions when ω < ωp ≈ 13.6 GHz where ε// < 0 (Eq. (1.11)). Indeed, we see

that below the plasma frequency the Purcell factor is close to zero because emission is

suppressed, and only takes significant values above the plasma frequency. This result is

analogous to the inhibition of spontaneous emission of atoms [9].

The enhancement in Purcell factor in Fig. 3.9 around 8.5 GHz is due to the anti-

resonance of the dipole which occurs when the circumference of the dipole loop C =

λ/2. This is illustrated in Fig. 3.10, which shows the impedance of a magnetic dipole

loop antenna with outer radius b = 3 mm and wire radius a = 1 mm, using a Fourier se-

ries expansion method [111, 124] (green curve) and an FDTD calculation (blue curve).

These confirm that the peak around 8.5 GHz corresponds to the first anti-resonance.

The Purcell factor is a property of the medium and cannot depend on the dipole.
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Figure 3.10: Comparison of FDTD simulations (blue) and theoretical calculations (black,
dashed) of input impedance Re(Zin) of a magnetic dipole antenna in vacuum with outer
radius b = 3 mm and wire radius a = 1 mm.

Hence the peak near 8.5 GHz in Fig. 3.9 does not correspond to an enhancement of the

Purcell factor. This is analogous to the strong coupling regime where the LDOS loses

its meaning. Strong coupling is discussed further in Appendix B. Hence, care must be

taken to avoid antenna-related artifacts when using the impedance method to measure

the Purcell factor.

3.5.2 Purcell factor for electric dipole oriented along ŷ

Figure 3.11: Real (red) and imaginary (blue) parts of scattering coe�cient S11 from
simulations (solid) and measurements (dashed), (a) in free space, (b) in metamaterial
with electric dipole antenna oriented along ŷ.

Fig. 3.11 (a) shows measurements and simulations of the real and imaginary parts

of scattering coefficient S11 for a electric dipole in vacuum. Fig. 3.11 (b) shows S11
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for the electric dipole oriented along ŷ inside the metamaterial structure. The scatter-

ing coefficient S11 is then substituted in Eq. (3.5) to obtain the real part of the input

impedance of the antenna. Which in turn is used to obtain the Purcell factor using

Eq. (3.4). Figure (3.9) shows the electric Purcell factor for an electric dipole oriented

along ŷ inside the structure.

Figure 3.12: Measurement and simulation of electric Purcell factor for an electric dipole
oriented along ŷ, inside the metamaterial structure.

In this particular orientation the field is a superposition of TEz and TMz polari-

sations. The Purcell factor is similar to that of the magnetic dipole parallel to the

anisotropy axis (pure TEz-polarisation) (Fig. 3.9), without the anti-resonance peak. The

similarity with the magnetic Purcell factor can be interpreted as follows. For a magnetic

dipole oriented along ẑ, the electric field is in the x-y plane (TEz-polarisation). For the

electric dipole along ŷ, perpendicular to the anisotropy axis ẑ most of the power is ra-

diated with the electric field along ŷ. However, the structure in which it is embedded

does not allow propagation with a component of the electric dipole along ŷ, below

the plasma frequency as the metallic grids are in the x-y plane similar to the magnetic

dipole. Hence we measure the same plasma frequency in both cases and also a similar

Purcell factor with the electric dipole perpendicular to the anisotropy axis.

We point out that there is no enhancement of the Purcell factor around 8.5 GHz for

this case, in contrast to what was observed for the magnetic dipole (Fig. 3.9). Indeed,

for an electric dipole of length l = 6 mm, the anti-resonance lies at the matching

frequency λ/2 = l, (that is, 25 GHz) which is outside the measurement range.
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3.5.3 Purcell factor for electric dipole oriented along ẑ

Figure 3.13: Real (red) and imaginary (blue) parts of scattering coe�cient S11 from
simulations (solid) and measurements (dashed), (a) in free space, (b) in metamaterial
with electric dipole antenna oriented along ẑ.

Fig. 3.13 (a) shows measurements and simulations of the real and imaginary parts

of scattering coefficient S11 for a electric dipole in vacuum. Fig. 3.13 (b) shows S11

for the electric dipole oriented along ẑ inside the metamaterial structure. The scatter-

ing coefficient S11 is then substituted in Eq. (3.5) to obtain the real part of the input

impedance of the antenna. Which in turn is used to obtain the Purcell factor using

Eq. (3.4). Figure (3.14) shows the Purcell factor for an electric dipole oriented along ẑ

inside the structure.

The electric dipole embedded inside a uniaxial anisotropic medium oriented parallel

to the anisotropy axis emits in the TMz polarization [77]. The Fabry-Perot resonances

are removed by applying a convolution which corresponds to a super gaussian window

in the time domain, with a window length of tref = 0.9 ns as mentioned in Sec. 3.4.

In the TMz polarization the dispersion relation for the uniaxial hyperbolic medium is

given by Eq. (1.12). The hyperbolic nature of the dispersion relation leads to a large

LDOS and a large Purcell factor.

The Purcell factor decreases with frequency, which can be interpreted as a conse-

quence of the periodicity of the structure limiting the maximum permitted value of kz.

In a medium where kz is bound by a maximum value kz,max the DOS of the structure is

linearly proportional to ω [73],

D(ω) =
ω

π2c2

εzz
2
kz,max, (3.6)
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Figure 3.14: Measurement and simulation of electric Purcell factor for an electric dipole
oriented along ẑ, inside the metamaterial structure.

whereas the DOS for vacuum is proportional to ω2. The Purcell factor is the ratio of

LDOS inside the structure to the LDOS in vacuum, and hence decreases with frequency

ω.

3.5.4 Comparison of the DOS from eigenmode calculations and
impedance of antennas

So far, we have calculated the DOS using eigenmode analysis (Sec. 3.3), and have

measured and calculated the LDOS using the impedance method (Sec. 3.4). The LDOS

can be computed from eigenmode calculations, as discussed in Ref. [125]. Conversely,

the DOS can be calculated from the LDOS quite readily, allowing us to compare both

results. We define the relative density of states (rel.DOS) as the ratio of the DOS of

the metamaterial unit cell to the theoretical DOS for vacuum. The DOS is the spatial

average of the LDOS over the unit cell. The Purcell factor depends on the location and

the orientation of the dipole inside the unit cell. Hence, an average of the Purcell factor

over the unit cell and the three orientations (x, y and z) is equivalent to rel.DOS.

For calculating the rel.DOS with the impedance method, an average of the Purcell

factor over a unit cell of the metamaterial is required. Numerical simulations of a dipole

antenna were performed at 27 locations in one-eighth of the unit cell along ẑ and ŷ

directions. By symmetry of the unit cell it is equivalent to 27 × 8 = 216 locations. The

impedance was obtained from reflection coefficient S11 and the average of the Purcell
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Figure 3.15: Comparison of the rel.DOS obtained from impedance method (blue) and
rel.DOS from eigenmode calculations (dashed) as shown in (Fig. 3.5).

factor was calculated. The length of the dipole antenna was chosen to be 1 mm. The

Purcell factor was numerically evaluated from the impedance method (Sec.3.4) at each

location and its average is denoted as 〈Fi〉, where i is the orientation of the dipole. The

simulation was limited to tref = 0.9 ns to remove reflections from the boundaries, as

discussed in Sec. 3.4.

Averaging the Purcell factor in the three directions we obtain rel.DOS = (〈Fx〉 +

〈Fy〉 + 〈Fz〉)/3 = (2〈F//〉 + 〈Fz〉)/3. For the eigenmode method, there are three modes

present between 5-15 GHz (Fig. 3.5) and they are summed to obtain rel.DOS that

is, rel.DOS = (DOSMeta)/DOSvac = (DOSMode 1 + DOSMode2 + DOSMode 3)/DOSvac.

Results of the comparison are presented in Fig. 3.15 and we find a good agreement

between the two methods.

This chapter concludes the first part of this thesis, wherein we studied the influence

of the environment on the Purcell factor using antennas. Though we focused on the

density of states of a hyperbolic fishnet metamaterial at microwave frequencies, our

method can be used to study the density of states for other periodic structures as well.

In the following Chapters 4, 5 we study resonance energy transfer. We shall show that

an antenna based formalism can also be developed to characterize the influence of the

environment on resonance energy transfer.
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Chapter 4

Resonance energy transfer

If two identical atoms are placed in proximity to each other, such that one of the atoms

(donor) is its excited state while the other (acceptor) is in its ground state, the donor

atom can transfer its excitation to the acceptor atom in the ground state and this pro-

cess is called resonance energy transfer. In this chapter the aim is to study the influence

of environment on resonance energy transfer. As the atom field coupling is dipolar in

nature, it belongs to the general class of problems mediated by dipole-dipole interac-

tions (DDI). In the previous chapter we studied the influence of environment on the

decay rate of an atom its relation to the impedance of an antenna. Here, we show that

similar antenna coupled circuit models can be developed to study DDI based resonance

energy transfer.

Of particular importance is the case when the energy transfer in the near field non-

radiative limit, that is krDA < 1 where rDA is the separation distance between the

molecules and k = 2π/λwith wavelength λ, is mainly due to virtual photons, in contrast

to far field (krDA > 1) where the energy exchange is due to real photons. This is

relevant to Förster’s resonance energy transfer (FRET) [126] and important to several

areas of biology, chemistry and quantum computation. The near field non-radiative

transfer and the far-field radiative transfer are the near-field and far-field limits of the

same process [127] and the analysis presented here is valid for near-field as well as far

field limits. Here, we develop a method to investigate DDI at microwave frequencies.

We treat it as the interaction of two circuits which are linearly coupled through sub-

wavelength antennas. We show that the impedance Z21 of such a two-port network is

related to the Green function
↔

G(rA, rD;ω) which determines the FRET rate, where rD

and rA are the locations of the donor and acceptor dipoles, respectively.
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Starting with briefly summarizing the QED based approach to study resonance en-

ergy transfer in Sec. 4.1 we highlight the role of the classical Green function in DDI. The

classical analogue to energy transfer between is discussed in Sec. 4.2, with particular

emphasis to the case when the separation between the two dipoles is sub-wavelength.

Then we develop the antenna coupled circuit model in Sec. 4.3 and define a figure of

merit to characterize the effect of environment on the DDI and discuss the similarities

and differences from studying the Purcell factor with antennas.

4.1 Quantum electrodynamical formulation of resonance

energy transfer

Dipole-dipole Interaction has been investigated extensively in quantum electrodynam-

ics [128–133] . Over here we shall briefly summarize the treatment as presented

in Ref. [132] to study DDI which stresses the role of the Green function. Consider

two identical quantum mechanical molecules denoted, donor (D) and acceptor (A)

at locations rD and rA respectively. The distance between the emitters is denoted as

rDA = |rA− rD|. Both donor and acceptor are described by identical two level quantum

mechanical systems, with a transition frequency ω which relates to the energy differ-

ence, Ee−Eg = ~ω between the excited state |e〉 and the ground state |g〉. The transition

dipole moment µ = −qe〈e|r̂|g〉, where qe is the magnitude of the charge of an electron.

In the weak coupling regime, the coupling is (electric) dipolar and the interaction is

equivalent to interaction between two classical dipoles.

The Hamiltonian of the system is given by Ĥ = Ĥ0 + Ĥint, where Ĥ0 is the unper-

turbed part and Ĥint is the interaction Hamiltonian. The interaction Hamiltonian of the

system in (electric-) dipole approximation is

Ĥint = −
∑
j=D,A

∫ ∞
0

dω
[
µ̂jÊ(rj, ω) + h.c.

]
. (4.1)

In a non-magnetic medium, the operator counterpart of the electric field is [132]

Ê(r, ω) = i

√
~
πε0

ω2

c2

∫
d3r′

√
Im[ε(r, ω)]

↔

G(r, r′, ω)

·̂f(r′, ω) + H.c.
(4.2)

where ε(r, ω) is the relative permittivity of the medium. f̂ †(f̂) is the raising (lower-

ing) operator which is responsible for the creation(annihilation) of photons or virtual

photons.
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We shall consider the initial state in which, the donor is in the excited state while

the acceptor is in the ground state, |i〉 = |D′, A〉 ⊗ |{0}〉, where the accent ′ denotes

the excited state of the molecule, |{0}〉 denotes vacuum. We want to investigate the

evolution to the final state |f〉 = |D,A′〉 ⊗ |{0}〉 where, the donor returns to the ground

state and the acceptor is in the excited state. Then Fermi’s golden rule [134], can be

used to calculate the rate of this resonance energy transfer from the initial state |i〉 to

the final state |f〉 as,

ΓDA =
2π

~
∑
i,f

|〈f |T̂ |i〉|2δ(Ef − Ei). (4.3)

where δ(Ef − Ei) is the joint density of states. The transition matrix element 〈f |T̂ |i〉

can be calculated as,

〈f |T̂ |i〉 = 〈f |Ĥint|i〉+ lim
ε→0

∑
I

〈f |Ĥint|I〉〈I|Ĥint|i〉
Ei − EI − iε

. (4.4)

where the summation is over |I〉, the possible intermediate states |D′, A′〉f̂ †|{1}〉 and

|D,A〉f̂ †|{1}〉 where |{1}〉 = |{1ω,k}〉 represents a single photon state with frequency

ω and wave vector k. The rate of energy transfer ΓDA is associated with FRET. The

transition rate (Eq. (4.3)) expressed using the classical Green function is [132],

ΓDA =
2π

~2

ω4

ε2
0c

4
|µA′A ·

↔

G(rA, rD;ω) · µDD′ |2δ(ωA′A − ωD′D). (4.5)

In terms of overlap integrals Eq. (4.5) is of the form [133],

ΓDA =

∫
Γ̃DA(ω)σemD (ω)σabsA (ω) dω (4.6)

with

Γ̃DA(ω) =
2π

~2

ω4

ε2
0c

4
|µA ·

↔

G(rA, rD;ω) · µD|2 (4.7)

and

σemD (ω) =
∑
D,D′

pD′ |vDD′ |2δ(ωD′D − ω) (4.8)

σabsA (ω) =
∑
A,A′

pA|vA′A|2δ(ωA′A − ω) (4.9)

where σabsA (ω), σemD (ω) are the single photon absorption spectrum of the acceptor and

the emission spectrum of the donor in free space, pD′(A) is the occupation probability of

the donor (acceptor) in the excited (ground) state, and vDD′(A′A) is the overlap integral

between the vibrational quantum states in the two electronic states of donor (acceptor).
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If the Green function varies slowly over the frequency range of the relevant overlap

spectrum then, Eq. (4.6) can be expressed as,

ΓDA(ω) = Γ̃DA(ω)σ (4.10)

where σ =
∫
σemD (ω)σabsA (ω) dω. Thus the rate of energy transfer is proportional to the

overlap of the two spectra, modulated by the square of the Green function. As we have

assumed that the transition dipole moments of the donor and acceptor, µD and µA are

unaffected by the change in the environment, then from Eq. (4.7), it is clear that the

influence of the electromagnetic environment on rate of energy transfer is contained

entirely within the classical Green function.

4.2 Classical dipole-dipole interaction.

Figure 4.1: Resonance energy transfer between a classical dipole donor acceptor pair.

The interaction between the atoms is predominantly dipolar, hence it is not sur-

prising that the resonant energy transfer can also be studied classically. Treating the

donor and acceptor as classical damped harmonic oscillators, with classical dipole mo-

ments pD and pA respectively as seen in Fig. 4.1. As mentioned previously (Sec. (2.6)),

in the semi-classical approximation, the quantum mechanical dipole matrix element

[135] µ is linearly related to the classical dipole moment as p = 2µ. If the electric field
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due to the donor at the location of the acceptor is ED(rA) and current density in the

acceptor is denoted by jA the power transferred from the donor to the acceptor PD→A

is [5]

PD→A = −1

2

∫
VA

Re {j∗A · ED(rA)} dV. (4.11)

For the acceptor dipole with a dipole moment pA Eq. (4.11) can be expressed as,

PD→A =
ω

2
Im {p∗A · ED(rA)} . (4.12)

Assuming that the donor dipole moment pD is constant and the dipole moment of the

acceptor pA is induced by the electric field due to the donor at the location of the

acceptor

pA =←→α A(ω)ED(rA) =
ω2

c2ε0

←→α A(ω) ·
↔

G(rA, rD;ω) · pD (4.13)

where ←→α A(ω) is the polarisability tensor of the acceptor dipole. Assuming the dipole

moment of acceptor points along direction n̂A, acceptor polarizability can be simplified

as←→α A(ω) = αA(ω)n̂An̂A. Substituting Eq. (4.13) into Eq. (4.12) the power transferred

from the donor to the acceptor is

PD→A =
ω5 | pD |2

2c4ε2
0

Im {αA(ω)} | n̂A ·
↔

G(rA, rD;ω) · n̂D |2 . (4.14)

In order to be consistent with FRET literature [5], we recast Eq. (4.14) using the

absorption cross section σabsA (ω) of the acceptor and the emission spectrum of the donor

f emD (ω) and normalize it by the power emitted by a single dipole in vacuum P0,

PD→A
P0

=
9c4

8πr6
DA

∫
f emD (ω)σabsA (ω)

ω4
T (ω) dω (4.15)

where σabsA (ω) = ωµ0c
3

Im [αA(ω)] and

T (ω) = 16π2k4r6
DA | n̂A ·

↔

G(rA, rD;ω) · n̂D |2 (4.16)

From Eq. (4.15) it can be seen that the power transferred from the donor to the acceptor

depends on the overlap between the spectra of the donor and acceptor modulated

by the Green function. The effect of the electromagnetic environment on the energy

transfer is contained within the Green function. The same conclusion is obtained from

the quantum mechanical treatment Eq. (4.7) and the classical treatment Eq. (4.15).
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The influence of the environment and the dipole orientations are embedded in T (ω).

In free space using the Green function as defined in Eq. (2.39)

T (ω) =(1− k2r2
DA + k4r4

DA)(n̂A · n̂D)2

+ (9 + 3k2r2
DA + k4r4

DA)(r̂DA · n̂D)2(r̂DA · n̂A)2

+ (−6 + 2k2r2
DA − 2k4r4

DA)(n̂A · n̂D)(r̂DA · n̂D)(r̂DA · n̂A)

(4.17)

where r̂DA is the unit vector pointing from donor to the acceptor along rA−rD. For short

distances in the near field krDA < 1 , T (ω) is almost constant and the energy transfer

Eq. (4.15) decays as r−6
DA. It is the reason behind the well known distance dependence of

FRET, the power transferred decays rapidly as r−6
DA with the donor-acceptor separation.

In the far field depending upon the orientation of the dipoles the power transfer may

decay as r−4
DA for longitudinal orientation of dipoles and r−2

DA for transverse orientation

of dipoles.

4.3 Antenna model for resonance energy transfer

In circuit theory the most basic donor-acceptor system is a two-port network. The

two port network was analysed previously in Sec. 2.10.3. We now demonstrate that

it is possible to study the energy transfer between two dipoles, by modeling it as two

circuits linearly coupled through subwavelength antennas. We show that resonance

energy transfer can be obtained through the mutual impedance of the two circuits.

Figure 4.2: The two port network demonstrating a donor and an acceptor system

The two-port network which models the donor-acceptor system is shown in Fig. 4.2.

Port 1 is labeled as donor and port 2 as acceptor. Donor and acceptor circuits have a

purely dissipative, real resistance, R1 and R2 respectively, commonly referred to as
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reference impedances. Each port has a corresponding voltage and a current associated

with it, namely V1, I1, V2, and I2. The driving current I1 in donor port 1 can be assumed

to be constant. Port 2 has no active source and acts as the acceptor thus, the whole

system is driven by the source in the donor circuit. In acceptor circuit, the current I2

and voltage V2 are induced because of its coupling with port 1.

We assume that the coupling between the circuits is linear. Then, the currents and

voltages in the two ports are then related through the complex impedance matrix [Zij](
V1

V2

)
=

(
Z11 Z12

Z21 Z22

) (
I1

I2

)
. (4.18)

The diagonal elements Zii are generally associated with the reflection, while off di-

agonal elements Zij 6=i, determine the coupling between the two circuits. The voltage

induced in acceptor port 2 due to its coupling with donor port 1 is I1Z21, highlighted

with a dashed red square in Fig. 4.2. In the absence of an active source this induced

voltage acts as the source for acceptor circuit 2. A relation can then be obtained be-

tween the current induced in acceptor circuit I2 and current in donor circuit I1 using

the Kirchoff’s law

I2 = −
(

Z21

R2 + Z22

)
I1. (4.19)

Having established the relationship between the currents (Eq. (4.19)), the power trans-

ferred from the donor to the acceptor circuit is now derived.

The average power dissipated in any element in the circuit, with a voltage say,

V across the element and a time harmonic current I flowing through it, is given by

P = (1/2)Re[V I∗]. As the voltage induced in port 2 due to its coupling with port 1

is Z21I1, the power transmitted from port 1 to port 2 is P1→2 = (1/2)Re[(Z21I1)I∗2 ].

Replacing I2 by I1, using Eq. (4.19) we obtain,

P1→2 =
1

2
|I1|2|Z21|2

Re[Z22 +R2]

|Z22 +R2|2

=
1

2
|I1|2|Z21|2

Re[Z22]

|Z22 +R2|2
+

1

2
|I1|2|Z21|2

R2

|Z22 +R2|2

(4.20)

Eq. (4.20) denotes the power transferred from the donor to the acceptor, it also provides

an insight into how the power is used. The first term on the right hand side in Eq. (4.20)

denotes the power radiated into the environment, while the second term denotes the

power dissipated resistively in the acceptor.
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Figure 4.3: Dipole dipole interaction with subwavelength antennas.

Now we show that when the coupling between the two circuits is through two fi-

nite length sub-wavelengths antennas, the impedance Z21 of such a two-port network

is related to the Green function
↔

G(rA, rD;ω). This allows us to investigate resonance

energy transfer, in the context of antenna theory. Consider the donor-acceptor circuit in

Fig. 4.2 coupled through two short electric dipole antennas such as shown in Fig. 4.3,

composed of perfectly conducting wires of length lD and lA for the donor and acceptor

respectively. For simplicity, in Fig. 4.3 we have illustrated both antennas to be pointing

along ẑ. The donor dipole antenna is attached to circuit 1 while the acceptor dipole an-

tenna is attached to circuit 2. The donor and acceptor dipole moments are, pD = pDn̂D

and pA = pAn̂A respectively. As pointed out in Eq. (2.55) for a short dipole antenna the

dipole moment and current are linearly related I1 = −iωpD/lD and I2 = −iωpA/lA thus

|I1(2)|2 =
ω2

l2D(A)

|pD(A)|2. (4.21)

It is assumed both dipoles are fed through coaxial cables of impedance 50 Ω. Thus the

antenna loads R1 = R2 = 50 Ω are the purely dissipative (real) and determined by the

reference impedance of the coaxial cables.

The impedance Z21 is defined as the voltage induced at port 2 when the current

flowing in port 2 is zero [111],

Z21 =
V2o

I1

∣∣∣∣
I2=0

, (4.22)

where V2o, is the voltage induced across port 2 if no current flows through port 2,

which means that the reference impedance R2 (load) is infinite and the dipole does
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not radiate. When the acceptor dipole antenna length lA � λ then, the electric field is

linearly related to the voltage and we can express Z21

Z21 =
n̂A · ED(rA)lA

I1

=
k2lAlD
ε0

[
n̂A ·

↔

G(rA, rD;ω)

−iω
· n̂D

]
, (4.23)

using the relationship between the currents and the dipole moments in Eq. (4.21)

Z21 =
k2lAlD
ε0

[
n̂A ·

↔

G(rA, rD;ω)

−iω
· n̂D

]
. (4.24)

Eq. (4.24) is a central result which relates the “two point" Green function
↔

G(rA, rD;ω)

to the impedance Z21, in a coupled circuit network system with realistic finite length

dipole antennas. A similar relation between Green function and impedance was ob-

tained in Ref. [33] but for studying LDOS.

Once the relationship between the impedance Z21 of a two port network, with short

dipole antennas and the Green function is established (Eq. (4.24)), it is now possible

to define a figure of merit which characterises the influence of the environment on the

resonance energy transfer rate ΓDA (Eqs. (4.7),(4.14)) in terms of the impedance Z21

ΓDA

Γ
(0)
DA

=
|GDA|2

|G(0)
DA|2

=
|Z21|2

|Z(0)
21 |2

(4.25)

where, Γ
(0)
DA is the resonance energy transfer rate in vacuum, GDA = n̂A ·

↔

G(rA, rD;ω) · n̂D,

the subscript DA denotes the orientation of the dipole moments of the donor and accep-

tor, and G(0)
DA is the Green function in vacuum. A similar figure of merit was recently

used for studying FRET enhancement across a hyperbolic medium [57].

It is also instructive to derive the power transferred in a donor-acceptor antenna

system. The polarizability α(ω) of such a short dipole antenna of length l is of the same

form as a small lossy scatterer [112],[136]

1

α(ω)
=

1

l2
[−iω(Zin +RL)] (4.26)

where Zin is the input impedance, RL is the load. Using Eq.(4.26) we can find the

relation between the imaginary part of the polarizability αA(ω) of the acceptor and the

impedances which we express in a convenient form as,

Re[Z22] +R2

|Z22 +R2|2
=
ω

l2A
Im[αA(ω)]. (4.27)

If we substitute Eqs. (4.27) and (4.24) into Eq. (4.20) we recover the exact form of

power transferred between dipoles as seen Eq. (4.14).
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4.4 Resonance energy transfer measurement at microwave

frequencies

Figure 4.4: Setup for measurement of energy transfer between two dipoles at microwave
frequencies with antennas.

At microwave frequencies it is possible to measure the power transferred between

two antennas using a vector network analyser (VNA) as seen in Fig. 4.4. It is a more

direct approach than conventional FRET experiments where the FRET rate is measured

as the difference in the decay rates of the donor with and without an acceptor [5]. The

impedances [Zij] (i=1,2) can be measured directly through VNA, but its more common

to measure the scattering parameters (S-Parameters) which relates the amplitudes of

the incoming and outgoing waves through the coaxial cable. The impedances [Zij]

(i=1,2) can be completely known from S-Parameters and vice-versa [117].

The scattering coefficient S21 is the measure of the power dissipated in the resistance

R2 in the acceptor circuit as seen in Fig.4.2.

|S21|2 =
1

2
|I1|2|Z21|2

R2

|Z22 +R2|2
(4.28)

For a short dipole, as discussed previously Re(Z22) � R2 [33] and most of the power

which is transferred into the acceptor circuit 4.20 is dissipated in R2. Hence a measure-

ment of |S21|2 in the near field is analogous to measuring FRET.

4.4.1 Di�erence from antenna based Purcell factor measurements

We wish to clearly point out the differences between Purcell factor measurements

(Sec. 2.7) and resonance energy transfer measurements with antennas. The Purcell
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factor is the ratio of the change in the rate of spontaneous emission in the medium to

vacuum F = γ/γ0 and can be understood as the modification the radiative resistance

of a subwavelength antenna F = Rrad/R
(0)
rad. For a small sub-wavelength antenna the

radiative resistance is given by the real part of input impedance which corresponds to

Re{Zin} = Re{Z11} [33, 111]. The impedance Z11 is thus related to the “one point"

Green function
↔

G(r0, r0;ω) where r0 is the location of the emitting dipole (Eq. (2.65)).

This differs from resonance energy transfer measurements where the impedance Z21

is required. For DDI mediated resonance energy transfer, the “two point" Green func-

tion
↔

G(rA, rD;ω) is the relevant quantity. Another difference is that for Purcell factor

measurements of the real part of impedance Z11 is required. Measuring the real part

requires phase measurements in addition to magnitude measurements. On the other

hand, for resonance energy transfer only measurements of magnitude of |Z21| suffice

(Eq. (4.25)). The difficulty in microwave resonance energy transfer experiments, as we

shall see in Chapter 5, is due to low signal to noise ratio. The highly sub-wavelength

donor and acceptor antennas are required for accurate measurements. These antennas

are poor emitters and receivers [111] which make the experiments challenging.

In this chapter we developed antenna models to investigate the energy transfer

between a donor-acceptor pair. In the next Chapter 5, we shall apply this to experimen-

tally measure resonance energy transfer with two antennas at microwave frequencies.

In addition to measurements of resonance energy in vacuum, we shall also show that

altering the modes of a cavity alters resonance energy transfer which can be measured

with antennas.
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Chapter 5

Resonance energy transfer

measurements at microwave frequencies

In Chapter 4 we developed a classical analogue to resonance energy transfer between

atoms using antennas. In a two-port network coupled with sub-wavelength dipole

antennas, the impedance Z21 is related to the Green function
↔

G(rA, rD;ω) (Eq. (4.24)).

It is thus possible to investigate resonance energy transfer by measuring the scattering

coefficient S21.

In this chapter we measure resonance energy transfer at microwave frequencies

with antennas in vacuum (free-space) and in a parallel plate waveguide. In Sec. 5.1 we

measure the resonance energy transfer between two antennas in vacuum, while chang-

ing the separation rDA between the two antennas. We compare the measurements with

analytical calculations. We demonstrate it is possible to recover both the near-field

FRET, as well as the far field characteristics. In Sec. 5.2 we examine how resonance

energy transfer is influenced in a parallel plate cavity. We demonstrate resonance en-

ergy transfer is modified by the electromagnetic mode structure of the cavity and the

change can be measured with antennas. We find that the measurement results are in

good agreement with analytical calculations.

5.1 Resonance energy transfer in vacuum

5.1.1 Experiments

We shall now apply our method, as developed in Chapter 4 to study resonance energy

transfer between two dipole antennas in vacuum, while varying the separation distance

rDA. The advantage of this is that we can compare it with analytical calculations, as
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Figure 5.1: Schematic of resonance energy transfer experimental setup, illustrating the
transverse and longitudinal orientation of dipole antennas.

the Green function is well known. We shall experimentally measure resonance energy

transfer in two orientations of the antennas: transverse orientation and longitudinal

orientation, as illustrated in Fig. 5.1. Even though vacuum is the simplest possible

environment, the dependence of resonance energy transfer on rDA differs in the near

field (k0rDA < 1) and far field (k0rDA > 1), depending upon the orientation of the

antennas have distinct characteristics. From the experiments with antennas we are

able to measure the predicted features including the well known r−6
DA dependence of

FRET energy transfer in near field.

5.1.2 Finite dipole antenna length

Figure 5.2: |S21|2 for a donor-acceptor antenna system in the transverse orientation (black,
dashed), obtained with FDTD simulations, for antenna lengths (a) 10 mm, (b) 20 mm,

and (c) 40 mm at 1 GHz, �tted with the theoretical Green function |n̂A ·
↔

G(rA, rD;ω)·n̂D|2
(blue, solid).
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In Fig. 5.2 we compare the |S21|2 at 1 GHz for donor-acceptor antennas, obtained

from FDTD simulations, with the Green function for antenna lengths of 10, 20 and

40 mm. For all three lengths, there is excellent agreement between theory and simula-

tions in the far-field regime k0rDA > 1.

In the near field, the validity condition for agreement between energy transfer from

the Green function calculations and finite antennas is 2l � rDA. Which is also the

validity condition for the energy transfer is described as interaction between two elec-

trostatic dipoles. This is indeed the case, as in the near-field, retardation is negligible

and the scalar potential is the electrostatic potential. Hence, the validity condition that

is applicable is the electrostatic validity condition. This is also consistent with FRET

literature [2], where it is known that the Green function can be decomposed into a

static part and a radiative part and, only the static part of the Green function is re-

sponsible for FRET. This helps us ascertain a suitable length of the dipole antenna for

our measurements and we choose an antenna length of 10 mm. The antenna length of

2l = 10 mm corresponds to 2l/λ ≈ 0.03 at 1 GHz.

The experimental setup for the measurement of resonance energy transfer for free

space in vacuum is shown in Fig. 5.3. Two copper dipole antennas, each of length

10 mm, are fed through coaxial cables of reference impedance 50 Ω each. The donor

dipole antenna is located at rD = (0, 0, 0) while the acceptor antenna is located at

rA = (0, 0, rDA). Thus the separation is rDA = rA − rD = rDAẑ. Measurements were

performed for two orientations of antennas, transverse and longitudinal. In the trans-

verse orientation the antennas are oriented perpendicular to rDA = rDAẑ, with both

donor and acceptor antennas oriented along x̂. In the longitudinal orientation the an-

tennas are oriented parallel to rDA along ẑ.

As shown in Eq. (4.28) the power transferred from the donor to the acceptor an-

tenna can be obtained through the scattering coefficient S21. The scattering coeffi-

cient S21 is measured with a vector network analyser at frequency 1 GHz while varying

the separation rDA between the antennas. rDA is varied in the range k0rmin = 0.2 to

k0rmax = 2 with a fixed value of k0 corresponding to frequency 1 GHz. The highly

subwavelength antennas, are poor emitters and receivers of radiation. Thus, the max-

imum measurement distance rmax was limited by the noise and measurement limit of

the VNA, while the minimum measurement distance rmin was limited by the size of the
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Figure 5.3: Experimental setup for resonance energy transfer measurement in free space,
showing the copper dipole antennas attached to coaxial cables, in the transverse orienta-
tion.

antennas itself. Measurements were performed in an anechoic chamber.

The measurement results for |S21|2 varying with the distance rDA between two an-

tennas is presented Fig. 5.4. Measurements are compared to the theoretical Green

function |n̂A ·
↔

G(rA, rD;ω) · n̂D|2. In free-space the Green function was expressed in

Eq. (2.39) with the real and imaginary parts [127], [106]

Re[
↔

G
(0)

(rA, rD;ω)] =
−k
4π

[
(δij − 3r̂ir̂j)

(
sin(krDA)

k2r2
DA

+
cos(krDA)

k3r3
DA

)

− (δij − r̂ir̂j)
cos(krDA)

krDA

]

Im[
↔

G
(0)

(rA, rD;ω)] =
k

4π

[
(δij − 3r̂ir̂j)

(
cos(krDA)

k2r2
DA

− sin(krDA)

k3r3
DA

)

+ (δij − r̂ir̂j)
sin(krDA)

krDA

]
(5.1)

where r̂i represents the ith component of the unit vector r̂DA = rDA/|rDA|.

Fig. 5.4 shows the measurement data for the transverse orientation fitted with the

transverse Green function A|x̂ ·
↔

G
(0)

(rDA + δr;ω) · x̂|2 as seen in Eq. (5.1) where A

and δr are obtained as fitting parameters. The fitting parameter A depends upon the

initial power injected into the donor (excited) dipole, or in other terms accounts for

the strength of the donor dipole moment |µD|. The distance correction distance δr is

required because when the antennas are attached to coaxial cables. The feeding mech-
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Figure 5.4: Measurements (dotted) of |S21|2 as a function of separation rDA between the
antennas, compared with theoretical Green function (dashed) in vacuum. For transverse
orientation (red) and longitudinal orientation (blue) at frequency 1 GHz (λ=300 mm).

anism alters the center to center distance of antennas. The feeding point corrections

were ascertained to be δr = 5 mm and δr = 8 mm for the transverse and longitudinal

orientation experiments respectively. Since there are two antennas, δr corresponds to a

corrections of δr/2 = 2.5 mm and δr/2 = 4 mm, at each antenna, for the transverse and

longitudinal orientations. This is a reasonably small correction when compared to the

wavelength λ = 300 mm. The feeding length correction δr would not be an issue for

conventional microwave measurements with resonant antennas, where the distances

are much larger compared to the antenna length. However, here antennas are sub-

wavelength, with subwavelength separation distance between them, and the feeding

correction is important.

We point out that in Fig. 5.4 the fit is only performed on the transverse data, to ob-

tain the theoretical curve for the longitudinal data A|ẑ ·
↔

G
(0)

(rDA + δr;ω) · ẑ|2 (dashed,

blue in Fig. 5.4), the parameter A is remains unchanged from the fit obtained for trans-

verse data. Fitting experimental data for only one orientation allows the comparison

with the theoretically predicted ratio between the resonance energy transfer in the

transverse and longitudinal orientations.

In the near field the k0rDA < 1 power transfer decays as r−6
DA for both transverse
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and longitudinal orientations. In the far field k0rDA > 1 the power transfer between

two dipoles decay as r−4
DA and r−2

DA for longitudinal and transverse orientations respec-

tively. These features predicted through the Green function are confirmed through

measurements. Thus, we can conclude that measurements of |S21|2 of a two port net-

work, coupled via subwavelength antennas can be used to measure FRET at microwave

frequencies.

5.2 Resonance energy transfer in parallel plate cavity

Now we investigate how resonance energy transfer depends upon the electromagnetic

modes. We analyze the modification of resonance energy transfer with antennas in a

parallel plate cavity with antennas. The effect of the modes on resonance energy trans-

fer is studied by keeping the relative separation distance between the donor-acceptor

antennas fixed while changing the separation L between the plates. The distance be-

tween the antennas is chosen such that measurements are performed the near-field

regime, k0rDA < 1. Through this experiment, we aim to measure the resonance energy

transfer with antennas, inside (L < λ/2) and outside (L < λ/2) the cut-off regime of

the waveguide. Studying FRET like near-field energy transfer between donor-acceptor

in the cut-off is interesting, because in the cut-off regime, the LDOS ρ = 0 which inhibits

spontaneous emission. The only channel (barring dissipation in heat) through which

the donor can lose energy is near field transfer to the acceptor through evanescent

waves. Here, measurements of |S21|2 are compared with the figure of merit for reso-

nance energy transfer |GDA|2/|G(0)
DA|2 defined in Eq. (4.25), where the Green function

is obtained analytically and also with FDTD simulations.

The setup as shown in Fig. 5.5, consists of two parallel, conducting plates in the x-y

plane located at z = 0 and z = L. The donor-acceptor antennas are located at (0, 0, L/2)

and (x, 0, L/2 + d) respectively. The dipole orientation of both antennas is along x̂. The

position of the donor antenna is always fixed at the center of the cavity (0, 0, L/2)

and we change the separation L between the plates. We point out that resonance

energy transfer in this configuration has been studied previously theoretically using

QED, where the real and imaginary parts of the Green function for this system were
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Figure 5.5: Schematic of setup to measure the in�uence of electromagnetic modes on
resonance energy transfer.

calculated to be [137, 138]
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(5.3)

where the subscript xx denotes that both donor and acceptor are along x̂, n∗ = b2L/λc

is the largest integer less than 2L/λ. Ym(z), Jm(z), and Km(z) are Bessel functions.

Of these Bessel functions Ym(z), Jm(z) represent propagating modes, whereas Km(z) is

responsible for evanescent modes. From the Green function, modification of resonance

energy transfer is then calculated by substituting Eqs (5.2), (5.3), (5.1) into Eq. (4.25)

to obtain the ratio |GDA|2/|G(0)
DA|2.

The cavity is formed of two square steel plates with sides of length 200 cm. Mea-

surements are performed at a frequency of 0.9 GHz, which corresponds to a wavelength

of λ = 33.33 cm. Antennas are separated by a fixed distance d = 1.8 cm with x = 0.1 cm.

The distance L between the plates is changed from L = 10 cm to L = 60 cm. The results
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are shown in Fig. 5.6. The variation in |S21|2/|S(0)
21 |2, where |S(0)

21 |2 is the reference in

vacuum, from measurements is compared with FDTD simulations and analytical Green

function calculations |GDA|2/|G(0)
DA|2.

Figure 5.6: Comparison of resonance energy transfer rate between two dipoles inside a
parallel plate waveguide as a function of the cavity width (L) as shown in Fig. 5.5. (Blue,
solid) from theoretical Green function, (red) from antenna measurements, and (green)
FDTD simulations. The antenna length is 10 mm with λ = 33.33 cm, d = 1.8 cm, and
x = 0.1 cm.

For this system, the cut-off length of the waveguide corresponds to Lc = λ/2 = 16.66 cm.

Thus, when L < 16.66 cm, the LDOS is zero (see Fig. A.1), however resonance energy

transfer can also occur due evanescent modes (Eq. (5.2)). While, below the cut-off

length L < Lc spontaneous emission is inhibited, resonance energy transfer Fig. 5.6 is

almost equal to that in vacuum as |S21|2/|S(0)
21 | ≈ 1.

In Fig. 5.6 resonance energy transfer is suppressed at L = 16.66 cm and L = 50 cm,

which correspond to λ/2 and 3λ/2 respectively. It can be numerically shown to be

caused by the destructive interference of large number of modes ranging up to n = 1500

(Eq. (5.2)) at L = λ/2 and n = 4000 at L = 3λ/2. We emphasize that the LDOS

inside a parallel plate waveguide also has discontinuities at L = λ/2 and L = 3λ/2

(Fig. A.1) however, resonance energy transfer has no correlation to the LDOS for this

system. In this system the separation d between the donor and acceptor causes the

modes to interfere destructively at L = λ/2, suppressing resonance energy transfer.
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Calculations of the Green function (Eqs. (5.2), (5.3)) show that for a different separation

distance d, the modes can also interfere constructively and enhance the resonant energy

transfer [137].

The discrepancy between analytical calculations and FDTD simulations is due to

finite size effect of the plates. The analytical Green function Eqs. (5.2), (5.3) is ob-

tained for infinitely large plates with point dipoles. For simulations and experiments

the plate edge length was 200 cm, which is approximately equal to 6.6λ at 1 GHz. We

checked numerically that edge length is sufficiently large to provide results similar to

the infinitely large case. Another source of discrepancy is that the FDTD method it-

self is not the most ideal method for simulations inside cavities because of the large

“ring-out” times. Achieving high accuracy with FDTD simulations requires long simula-

tions times. Better agreement between FDTD simulations and theory can be achieved

using shorter antennas, larger plates, and longer simulations times. In measurements

(Fig. 5.6) we could observe the suppression in resonance energy transfer at L = λ/2,

but not at L = 3λ/2, as predicted by analytical theory and FDTD simulations. Further

investigation is required to address this and experiments are underway.
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Chapter 6

Conclusion

Spontaneous emission and resonance energy transfer are processes that are generally

attributed to atoms and molecules. It is interesting, that these processes can be con-

trolled in a classical way. The spontaneous emission rate is determined by the local

density of states, which in turn can be expressed using the classical electromagnetic

Green function. As the impedance of a short dipole antenna is related to the Green

function, the impedance is thus the quantity that links the classical formalism to the

quantum mechanical formalism for studying the modification of spontaneous emission

that is, the Purcell factor.

This study was designed at microwave frequencies, because antenna and its impedance

at microwave frequencies, has been a well-researched topic in the field of electrical en-

gineering. Measurements of the Purcell factor, with antennas, are made with short,

subwavelength antennas, operating at frequencies far below their resonance frequen-

cies. Under these conditions, the antennas are poor emitters and receivers of radiation.

Hence, measurements involve extremely low powers. With the improvements in mi-

crowave measurement techniques, experiments are feasible at microwave frequencies.

The benefit of using antennas is that it naturally permits precise control of the loca-

tion of the emitter and the orientation of its dipole moment. In this aspect, microwave

experiments are preferable to optics experiments. As at optical wavelengths, the ex-

periments are generally performed using an ensemble of fluorescent molecules, which

offer limited control over the position and orientation of the dipole moment [139].

We applied the antenna impedance method to study the electric and magnetic Pur-

cell factor in a hyperbolic metamaterial in the microwave frequency range 5-15 GHz

(Chap. 3). Measuring the Purcell factor for different orientations of antennas, we ob-
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tained an understanding of the role of individual modes of the structure and their

contribution to the density of states.

While the impedance-based formalism has been extended to study strong coupling

phenomena [140], the scope of the thesis is limited only to the weak coupling regime.

One of the limitations of using the impedance method is when measuring the magnetic

Purcell factor with a magnetic dipole loop antenna, the method is unreliable near the

anti-resonance frequency of the antenna, and we must be careful so as not to misinter-

pret the results.

In the second part of the thesis, we developed the antenna impedance analogy to

study resonance energy transfer (Chap. 4). This is the first time such models have been

developed to characterize resonance energy transfer. We measure resonance energy

transfer in vacuum, and its modification inside a parallel plate waveguide at frequency

1 GHz. We demonstrate that resonance energy transfer can occur even in regimes

where the LDOS is zero (Chap. 5).

While antenna impedance based methods were developed previously for measure-

ment of the Purcell factor, they were not applied to study resonance energy transfer. By

developing the theory and validating the predictions with experiments, this thesis fills

that gap successfully. It is arguably the more interesting part of the thesis. It is also

more interesting from the physics point of view. While studying spontaneous emission

and LDOS, by definition we consider only the effect of modes which radiate to the far-

field. However, in resonance energy transfer, depending upon the separation distance

rDA between the donor and acceptor dipole, the near-field, non-radiative, modes also

participate in the exchange of the energy. It is this near-field, non-radiative, energy

transfer, which is responsible for FRET.

For resonance energy transfer, microwave measurements hold a fundamental ad-

vantage, over optical measurement techniques. In FRET experiments at optical wave-

lengths made with fluorescent molecules, the energy transferred from the donor to the

acceptor is ascertained through indirect measurements of changes in intensities or in

lifetimes of fluorescent molecules. None of the techniques at optical wavelengths can

directly measure the energy transfer because FRET is a near-field, dark process, medi-

ated by virtual photons. On the other hand, microwave experiments as the antennas

are attached to coaxial cables, a direct measurement of the energy transfer is possible.
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One of the limitations of this work is that while developing antenna based models

for resonance energy transfer, we considered the transition frequencies of the donor and

acceptor to be the same. Our model does not account for the overlap between the donor

emission spectrum and acceptor absorption spectrum as in actual FRET experiments,

performed with fluorescent molecules [55]. It would be interesting if antenna based

circuit models can be developed even further to provide an analogy to the role of the

overlap of the spectrums in resonance energy transfer.

Several interesting studies using this method are possible. For example, it can be

interesting to apply this method to study the modification of energy transfer in other

interesting structures such as metamaterials, spherical resonators, and photonic crys-

tals at microwave frequencies. In Chapter 4 only a single donor-acceptor pair was

considered, using a similar scheme, a generalization to multiple emitter systems is also

feasible.

The most crucial factor in resonance energy transfer experiments with antennas is

their size. As the power transferred between dipoles scales as r−6
DA in the near field,

it is essential that the antenna lengths be highly subwavelength, to avoid finite length

effects. We showed that (Fig. 5.2) in the near-field, even antennas as small as 40 mm

for λ = 300 mm (2l/λ ≈ 0.13) do not give accurate results. While an antenna of length

40 mm, would have been sufficiently subwavelength for measurement of the Purcell

factor, for an accurate measurement of resonance energy transfer, we had to use even

smaller antennas of length 10 mm (2l/λ ≈ 0.03). Using smaller antennas, the experi-

ments agree with theoretical predictions from the Green function. However, decreasing

the size of the antennas decreases the amount of power they emit and absorb. Hence,

it is important to judiciously choose an appropriate antenna length that reconciles the

demand for the desired level of accuracy to the measurement capability of the experi-

ments.

In this thesis, we have shown that antenna based methods successfully extend the

range of studying LDOS and FRET from optical to microwave frequencies. This work

provides a simple framework to characterize the influence of the electromagnetic envi-

ronment on spontaneous emission and resonance energy transfer, with antennas, con-

necting the electrical engineering and quantum mechanical points of view.
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Appendix A

LDOS in a parallel plate cavity.

The local density of states in a parallel plate waveguide has been studied previously in

Ref. [141]. In a parallel plate waveguide as seen in Fig. (5.5), if an emitter is located

at the center of the waveguide oriented along x̂ at z = L/2, the rate of spontaneous

emission (γxx) is given by [141]

γxx = γ0

(
3λ

4L

) b2L/λc∑
n=1

[
1 +

(
nλ

2L

)2
]

sin2
(nπz
L

)
, (A.1)

where γ0 is the rate of spontaneous emission of the same emitter in vacuum, the sub-

script xx denotes the emitter is along x̂.

Figure A.1: The spontaneous emission in a parallel plate waveguide as seen in Fig. (5.5)
normalised to vacuum as a function of the distance between the plates L. The emitter is
located at the center of the waveguide oriented along x̂ at z = L/2. The wavelength is
taken to be λ = 33.33 cm.
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The rate of spontaneous emission in a waveguide as a function of the separation

between the parallel plates (L) is shown in Fig. (A.1) at λ = 33.33 cm. As we can

see the LDOS enhanced, discontinuously at odd multiples of L = λ/2. The waveguide

cutoff lies at L < λ/2 = 16.66 cm, when the separation between the plates of the

waveguide L < λ/2 the emitter cannot emit because the local density of states (LDOS)

is zero.
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Appendix B

Strong coupling.

When we measured the magnetic Purcell factor in Sec. 3.5.1 we reported an anti-

resonance frequency of the magnetic loop antenna observed as a peak in Fig. 3.9. We

pointed out that this is analogous to the strong coupling regime. We wish to clarify at

the onset that, while have some indication that strong coupling can also be observed

with antennas, we have not performed a systematic study, which would be necessary

for drawing any concrete conclusions.

While, in the weak coupling regime, the decay rate is much less than the frequency

of the emitted photon γ � ω0. In the strong coupling regime, the emission rate of

the emitter becomes comparable to the frequency of the emitted photon γ ≈ ω0, the

scattering from the emitter dominates over its coupling to the structure. The antenna

impedance formalism is valid, and capable of quantitatively describing emission in the

strong coupling regime [140]. While there is a substantial body of literature, studying

the Purcell factor in the weak coupling regime, with antenna impedance, there are no

existing systematic studies, theoretical or experimental, applying antenna impedance

to study strong coupling.

The anti-resonance frequency of the antenna in the strong coupling regime depends

upon the characteristics of the emitter and also its coupling with the structure. Hence,

in principle, in the measurement of the magnetic Purcell factor, we should observe a

shift in the anti-resonance frequency of the antenna, when placed in the structure.

To study the shift in the resonance frequency, one can fit a Lorentzian function to

the impedance and obtain the frequency at which the anti-resonance occurs, as the

frequency at which the Lorentzian is centered. A simpler alternative is, through ob-

serving Eq. (3.5), that the anti-resonance frequency of the magnetic loop antenna

109



Figure B.1: Phase of scattering coe�cient S11 for the magnetic loop antenna used for
Purcell factor measurements in Sec. 3.5.1. In vacuum (orange) and in the metamaterial
(blue).

occurs when the denominator (1− Re(S11))2 + Im(S11)2 = 0, the anti-resonance fre-

quency corresponds to the frequency when the phase ∠S11 = 0. For the magnetic Pur-

cell factor configuration in Sec. 3.5.1, the shift in the anti-resonance frequency can be

seen in Fig. B.1. The inset, shows that the anti-resonance frequency (where ∠S11 = 0)

is 8.8 GHz in vacuum which shifts to 8.6 GHz when the antenna is in the metamaterial.

The shift in the anti-resonance frequency is not very large, but for future studies, it

would be worthwhile to systematically characterize this frequency shift. By optimiz-

ing the structure and the antenna, we could have larger shifts of resonance frequency

which could in principle be characterized and measured by the phase of S11 of the an-

tenna. For the magnetic Purcell factor measurement, as used in Sec. 3.5.1, while the

antenna is anti-resonant, the response of the structure is non-resonant. If the structure

also demonstrates resonant features in the vicinity of the anti-resonance frequency of

the antenna it could be interesting to explore if features analogous to Rabi splitting

could be observed.
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Appendix C

Mimicking electromagnetic wave

coupling in tokamak plasma with

�shnet metamaterials
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Introduction 

Tokamaks are expected to become the standard choice for magnetic confinement devices to produce 

nuclear fusion, an environmentally friendly solution for future large-scale energy supply. International 

projects such as ITER are leading the way in this field. To transfer energy into the plasma, dedicated radio 

frequency antennas are required. Their development and optimization requires the availability of a loading 

material that mimics the plasma. The electromagnetic properties of magnetically confined plasma are 

strongly anisotropic and different from any conventional material. We have designed and created a fishnet 

hyperbolic metamaterial that mimics these properties. This solution breaks a long-lasting bottleneck and will 

accelerate the development of high-frequency heating systems to be used in nuclear fusion.  

 

The starting point is the fact that there is no available load able to simulate tokamak plasma, and 

consequently no way to test the antennas that will be used for heating or for current drive applications. The 

problem is to transfer power from the antenna to the plasma, and test these antennas under relevant 

conditions. The power transfer is related to the characteristics of the plasma at the tokamak edge (location of 

the antenna's mouth). The idea is to design and build a metamaterial to mimic the plasma. It appears 

legitimate to simplify the characteristics of the edge plasma by tending towards hyperbolic materials. This 

allowed us to design a metamaterial while freeing ourselves from the problems of spatial dispersion. We 

carried out measurements, which confirm the validity of this concept and of the numerical simulations. As a 

result, we now have a way to characterize and test the antennas. One of the other advantages is that these 

tests can be done at low power, without the need for elaborate sources or cooling. It should be noted that we 

do not intend to model with our metamaterials actual tokamak plasma, but only simplified plasma from the 

tokamak edge that retains the essential properties related to the coupling of the waves launched by the 

antenna to the plasma. 

 

The coupling of LHRF waves to strongly magnetized plasmas is a critical issue for tokamaks as it often 

limits the RF power, which can be transferred from the antenna to the plasma. Development of new types of 

antennas to improve the ability of the antenna to handle large power in stationary conditions, as required on a 

fusion reactor, is hampered by the long and costly delay between the design and the feedback from 

experiments on large facilities such as tokamaks. Numerical codes that model both the plasma and the 

antenna are now available and provide an accurate characterization of the RF coupling. Before a full-scale 

test of the antenna on the plasma, the test of a mock-up with a load mimicking the plasma is believed to be a 

step forward by reducing the risks and accelerating the development process. 
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The magnetic configuration of a tokamak requires a strong DC current flowing along the plasma ring [1]. 

Generally, this current is inductively driven by the solenoid located on the tokamak axis. However, in order 

to achieve continuous operation of the reactor, an external source of current is needed. RF waves emitted 

from the plasma periphery are well fitted for this task when the wavevector spectrum is properly chosen in 

order to transfer the wave energy to the electrons of the plasma current (Fig. 1). Among these waves, lower 

hybrid range of frequency (LHRF) waves are a good candidate, thanks to their high current drive efficiency 

[2].  

 

 

 
 

 

 
 

 

Fig. 1, Top: sketch of an antenna made of 6 waveguides, heating tokamak plasma (not to scale). The 

yellow lines depict the plasma current. For a picture of an actual set of waveguides feeding a tokamak, see 

the supplementary material. 

Bottom: schematic view of the metamaterial fishnet load. 

 

The dielectric tensor of magnetized plasma in the cold plasma approximation can be written in the form [3]: 
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where the subscript // denotes the direction of the confinement magnetic field, i.e., the z-axis on Fig. 1. 

In the case of LHRF waves of frequency /2 in the 1-8 GHz range, the electron density in the vicinity of 

the antenna has to be optimized to minimize the RF power reflected towards the generator and the electric 

field in the waveguides. This is achieved when the density ne exceeds the cut-off density (ncut-off = 

(0 me /e2) 0
2 ) typically by a factor of 3. Under such conditions, the non-diagonal term A is small (A ~ 0.1) 

and differs from 1 by less than 1%. Consequently, can be simplified using  1 and A 0. The third 

parameter is approximatively reduced to a Drude model  = 1 – pe
2/

2 = 1-ne/ncut-off where pe/2 is the 

plasma frequency (pe
2 = ne e2/(0 me)).  

 

To achieve good coupling conditions of the wave to the plasma, the relative permittivity in the direction of 

the magnetic field is negative ( / / 0  ). The density of the plasma layer facing the antenna is far from being 

spatially homogeneous and constant with time. There is usually a strong radial density gradient in the 

vicinity of the antenna. However, the simplification of the dielectric tensor ( 1 and A 0) still holds for 

the plasma layer close to the antenna, which matters for the coupling of the wave. In high performance 

plasma, instabilities occur in the plasma; the density at the plasma edge varies periodically with time from a 

low value (~ -1) to a high value (~ -10) [4] and can depart from the optimal coupling conditions 

achieved for //3 2     If a medium mimicking a homogeneous plasma is well-suited to fully 

determining the properties of an RF antenna, a complete characterization would require several loads to 

cover the range of useful densities. We present here a metamaterial load that is close to optimal coupling 

conditions ( = -3) for LHRF waves. 

We are led to materials whose permittivity is diagonal, in the form 0 //diag(1,1, )  ε , where / / 0  . These 

materials are called hyperbolic materials, since waves polarized in the xy-plane (TE polarization) behave as 

in a vacuum, whereas TM waves obey a hyperbolic dispersion relation (their dispersion curve is a 

hyperboloid) [5, 6]. In our case the field entering into the plasma from the antenna propagates in the xz-

plane. See supplementary material for more details. 

One way to obtain a material with a diagonal permittivity 0 //diag(1,1, )     is to use an array of thin 

metallic wires that are parallel to the z-direction. Previous works [7, 8] have shown that / /  expresses using 

the Drude formula  = 1 – p
2/

2 with a plasma frequency p depending on the wire’s dimensions and 

spacing, at least when the wavelength is much greater than the wire’s spacing, when the wavevector has no 

component along the z-direction, and when the electric field is parallel to the z-direction. Wire metamaterials 

have a strong spatial dispersion, i.e., p (and consequently  and the response of the medium) depends on 

the wavevector component along the wire direction [9].  

Considering our case of LHRF waves, in order to emit waves propagating inside the plasma, the antennas 

must generate waves where the wavevector has a non-null component along the z-axis. To this end, we use 

a phased array of waveguides that emits waves where the wavevector spectrum has z-components 
that are centered on // 0 02 2 /zk k k c    , a typical value for current drive applications in a tokamak. 

In this configuration, to mimic the plasma we need to manage the spatial dispersion of the 

metamaterial. Several solutions have been proposed for this [10]. We use the method of connecting the 

conducting wires of our metamaterial, which has been shown to limit the spatial dispersion [9]. We designed 

and tested a fishnet load composed of stacked thin metallic grid layers. The fishnet structure has the 

important practical advantage that it can be built layer by layer. This kind of construction was previously 

used by some of the authors for very low // medium to propagate a very low divergence beam in a vacuum 

[11,12], and more recently to control the density of states in hyperbolic metamaterials [13].  
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The fishnet metamaterial load is depicted in Fig. 1. It is made of a stack of thin copper grids. Each grid is 

parallel to the yz-plane with the following dimensions 0.2 mm width of the conductors along y or z, 18 m 

thickness along x, periods yp  and zp . The grids are printed on a 50 m-thick polyimide film. They are 

spaced using Rohacell foam with low density (permittivity 1.04  ) that gives a period xp  along the x-axis. 

 

The electromagnetic properties of the structure strongly depend on these dimensions. To obtain a 

metamaterial with properties as close as possible to the expected hyperbolic material, we adjusted these 

parameters and tried to get dispersion curves as close as possible to those of a hyperbolic material with 

/ / 3   . Due to the symmetry of the excitation versus y, the set of phased waveguides generates waves in 

the plasma that have a yk  component centered in 0yk  ; the yk  bandwidth can be reduced by increasing 

the dimension of the antenna along y, or by piling up several rows of waveguides. For this reason, we assume 

in the following that the spectrum of waves launched into the plasma has a negligible yk  component. Since 

the excitation is at a given frequency, all the electromagnetic characteristics of the material related to wave 

propagation are contained in the equi-frequency dispersion curve for the components xk  and zk  of the 

wavevector. 

 

Fig. 2a shows the equi-frequency dispersion curves ( , )x zk k  for various dimensions of the fishnet cell. To get 

these curves, we enforced the electric field to have no component along the y-axis. This is consistent with the 

way the material is excited (TE10 mode inside the waveguides). The gray hyperbola is the dispersion curve of 

a homogeneous plasma with 1xx yy       and // 3zz     . Note that its equation is 

2 2 2
0xx x zz z xx zzk k k      , i.e., 2 2 2

03 3x zk k k   . The colored curves show the dispersion curves of the 

fishnet metamaterials for several values of the period yp . The two black vertical dashed lines are obtained 

when the wires along the y-direction are suppressed (the only wires are along the z-direction). As mentioned 

before, even if the effective parameters for a null z-component of the wavevector are correct, wire media fail 

to reproduce the dispersion relation of the homogeneous plasma for larger zk  values. For our application, 

we are interested in propagative waves with kz > k0, but no propagative waves exist inside the wire media for 

these wavevector values.  

As shown in Fig. 2, for a fishnet metamaterial, the dispersion relation is not a perfect hyperbola. Thus, we 

had to make some choices: either choose parameters that give a curve as close as possible to the desired 

hyperbola in the range of zk  or choose parameters that fulfill some other physical properties. We chose to 

build a metamaterial that will give a direction of energy propagation close to that of homogeneous plasma. 

Note that the direction of energy propagation is normal to the dispersion curve [14]. Since the phased 

waveguide antenna launches waves with // 0/ 2zn k k  , we retained the parameters associated with the 

green dispersion curve (Fig. 2b). This is a good compromise between a curve close to the hyperbola and one 

that gives for 0/ 2zk k   the same energy propagation direction as the homogeneous plasma (magenta 

arrows).  
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Fig. 2. Equi-frequency dispersion curves at 3.7 GHz. a) The gray hyperbola is the dispersion curve of a 

hyperbolic material with 1   and / / 3   . The colored curves are the dispersion curves of the grid-made 

metamaterial with periods 4 mmxp  , 5.1mmzp  , and yp  varying from 10 mm, 20 mm, 25 mm, 28 mm, 

35 mm for blue, yellow, red, green and magenta curves respectively. The dashed black vertical lines 

correspond to the wired media. b) Enlargement of the curve for 28 mmyp  . The arrows show the average 

direction of energy propagation for 02zk k .  

 

The configuration is shown in Fig. 1. The dimensions of the grid layers are 396 mm (along the z-direction) × 

168 mm (along the y-direction). To reduce the parasitic reflections of the electromagnetic field at the 

boundaries of the fishnet load, we surrounded the load by a 30-mm thick RF absorber foam on five of its 

faces, the sixth being the one where the waveguides feed the load. 

 

The antenna exciting the LHRF wave is composed of one input waveguide feeding 6 narrow phased 

waveguides stacked along the z-direction (see Fig. 3). This type of antenna, called a multi-junction antenna, 

allows reduction of the reflection coefficient in the input principal waveguide at the expense of an increase 

of the electric field in the narrow waveguides compared to a conventional antenna. The field emitted by this 

antenna has a spectrum centered on // 0/ 2zn k k  . Consequently, there is no propagation inside the 

vacuum, a high reflection coefficient, and a high standing-wave ratio (SWR) inside the antenna, as shown in 

Fig. 3 left. Propagation inside the plasma is allowed according to Fig. 2(b). In this case, the SWR inside the 

antenna is low (Fig. 3, middle). The modeling depicted in Fig. 3 (right) shows that the fishnet metamaterial 

load that we designed preserves these properties similar emitted field and low SWR. 
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Fig. 3. Numerical modeling of the modulus of the electric field at 3.7 GHz. The multi-junction antenna mouth 

is surrounded by a ground plane mimicking the tokamak vessel wall (horizontal line on these graphs). The 

field map is in the middle of the antenna (y = 0 according to Fig. 1). The multi-junction antenna is loaded 

with vacuum (left), an ideal plasma with 1   and / / 3    (middle), and the fishnet metamaterial (right). 

A high resolution version of this graph showing the entire multi-junction antenna is given in supplementary 

material.  

 

To quantify the ability of our structure to fit to the plasma behavior, we measured the reflection coefficient 

S11 of the multi-junction antenna, and compared it (Fig. 4) to simulations using both CST Microwave Studio 

and the open-source code ALOHA [15]. CST is a full-wave frequency solver while ALOHA is a mode-

matching code where the electromagnetic waves are fully absorbed in idealized semi-infinite plasma, which 

explains the small discrepancies between their results. We call dvac the gap distance between the antenna and 

the load. As expected S11 is low when the metamaterial is close to the antenna and increases with dvac. 

Considering that in this case the results given by ALOHA have an uncertainty of approximately ±2 dB, one 

can note that there is a good agreement between the measurements and the modeling.  

 

 

 
 

Fig. 4: Reflection coefficient as a function of the gap between the antenna and the metamaterial load dvac. 

We also give the value of S11 when the antenna radiates in a vacuum. 

 In the figure caption, "  " stands for the homogeneous load with    and = 1. 

 

The map of the magnetic field propagating from the antenna to the medium was constructed from the 

measurements (Fig. 5) and compared to the simulations. The main lobe of the launched spectrum (n// = 2) is 

propagating along an angle  with the parallel direction (z-axis). The angle is given by 
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   
  

 whereas the measurement gives  = 29 deg. The Fourier transform of 

the field emitted by the antenna leads to secondary n// lobes. The details are given in supplementary 

information. The highest amplitude secondary mode is for n// = -6. This mode can be seen on Fig. 5c, and it 

propagates towards increasing z. In the case of the metamaterial, we can see from Fig. 2 that for 

n// = kz / k0 = -6 there is no existing propagative mode, and consequently the field is evanescent and decays 

rapidly ~ -25 dB below the main lobe amplitude (Fig. 5a and 5b) whereas it is about -10 dB for a 

homogeneous plasma for which a propagative mode exists (Fig. 5c). 

 

 
 

Fig. 5: Magnetic field map with the metamaterial load: a) experiment, b) modeling. 

 The modeling of the equivalent plasma (// = -3) is shown in c).  

 

 

Discussion 

We numerically and experimentally show that the metamaterial load we designed matches well the 

properties of a homogeneous plasma with equivalent hyperbolic dielectric tensor, resulting in low reflection 

or low insertion losses for a typical LHRF antenna with n// = 2. Experimental measurements and numerical 

modeling of magnetic field maps show that waves propagate in the anisotropic medium (  = 1) 

along the expected directions. Thus, the metamaterial load will provide a drastic simplification for 

development of tokamak antennas and will help to make tokamak technology more efficient. 

We envision many different versions and improvements. In a next step, two loads at 5 GHz with 

  and -1 will be manufactured using the same scheme. These loads will be tested with a simple 4-

waveguide antenna.  

New concepts of antenna will also be tested with these loads. From a longer term perspective, several 

refinements can be proposed. For instance, a load mimicking a typical density gradient along the x-axis 

(radial) of a tokamak plasma near the antenna (///x ~ -10/5 cm) can be obtained by continuously varying 

the dimensions of the metallic grid across the 25 layers. Gyrotropic properties that we neglected, but could 

be important for some frequency ranges could also be simulated by specific metamaterials structures [16, 
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17]. Moreover, active metamaterials could reproduce the dynamics and instabilities of the plasma [18]. 

Finally, such anisotropic structures can be used in optical domain to enhance spontaneous emission, negative 

refraction and superlensing effects [5]. 

 

Methods  

The load is tested with a 6-waveguide multi-junction-type antenna module. The individual waveguides 

(dimensions 8 mm×72 mm) are phased with built-in phase shifters ( = 2) in order to launch a wave with 

a parallel wave index centered on / / 2.0n  . The height of the waveguides is such that all modes, except 

TE10, are evanescent. Due to the limited number of waveguides the / /n  spectrum is rather broad 

/ / mid-height 0 //,ant( ) / 1n L    . A detailed analysis of the emitted spectrum is presented in supplementary 

material and shows that in addition a secondary lobe exists for n// = -6. The distance between the antenna and 

the load, which is terminated by one half of a period / 2xp  of foam layer, needs to be accurately tuned as 

the wave ( // 1n  ) is evanescent in vacuum/air with an evanescent length in the mm range. However, because 

of the rather poor flatness and thickness accuracy of the layers of spacers and absorbers, the mean gap cannot 

be controlled with accuracy better than 0.5-1 mm.  

The RF field in the load was measured in a plane at mid-height of the waveguides (y = 0) where the 

amplitude of the TE10 mode is the highest. The field was measured with a magnetic loop ( = 3 mm) inserted 

inside the load through empty channels hollowed in the foam. 

The experimental results are compared to those obtained by full wave modeling, using either an open-source 

code ALOHA including a plasma module [15] or a commercial RF code CST Microwave Studio, which can 

also describe the wave propagation in homogeneous plasma.  
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SUPPLEMENTARY INFORMATION 

 

Propagation inside the plasma 

 

The axes x,y,z are those used in the previous part of the paper (see Fig. 1) and ( , , )x y ze e e  are the unit vectors 

along these axes. 

We consider, inside a medium with permittivity 

  

0 0

0 0

0 0

xx

yy

zz

 
 

   
  

  

the propagation of a plane wave with electric field (time dependence in exp( )i t  ) 

  0( , ) expx z iE E k r   

where 0( )x x z zk n n k e e . 

The wave equation  

    2
0k    k k E E   

leads to  

 

2

2 2

2

0

0 0 0
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xx z x z x
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zx z zz x

n n n E
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This equation splits into two separate equations: 

  2 2 0yy x z yn n E     (1.1) 

and 

 

2

2
0

xx z x z x

zx z zz x

n n n E

En n n

    
   

     

 (1.2) 

 

The solutions of the first equation (1.1) are plane waves with electric field parallel to ye  and their dispersion 

relation is that of a homogeneous media with permittivity yy : 

 
2 2
x z yyn n     

In our present problem, we can consider that these waves are not present, because the antenna generates 

almost no wave with this polarization. 

 

The second equation (1.2) admits solutions  ,0,x zE EE  polarized in the plane ( , )x ze e , provided that its 

determinant vanishes, which gives their dispersion equation: 

 2 2
xx x zz z xx zzn n        
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Spectrum generated by phased waveguides 

 

In this appendix, we give a rough description of the spectrum of the waves launched into the plasma by a set 

of phased waveguides. The waveguides are in the half space 0x  , their terminations are in the plane 0x  , 

and we assume that anywhere else in this plane 0x   there is a perfect conducting plate. The field emitted 

by these waveguides is launched in the half-space 0x  . We make some simplifying hypotheses; we assume 

that the waveguides apertures are infinitely extended along the y-axis. This means that the problem becomes 

y-independent, and the field emitted can be written as a plane wave packet 

  ( , ) ( )exp ( )z x z zx z k i k x k z dk



 E A   

We denote by b the waveguide aperture along the z-axis. We denote by z the distance between the centers 

of two adjacent waveguides along the z-axis. We denote by   the phase shift between the fields emitted by 

two adjacent waveguides. We denote by N the numbers of waveguides (N = 6 and / 2   in our practical 

case). 

We assume that the electric field in the waveguide termination has constant amplitude and a linear 

polarization along z.  

If we denote by ( )u  the rectangular function with width b, equal to 1 for / 2 / 2b u b    and vanishing 

anywhere else, the electric field in the plane 0x   where the waveguides end is the function  

 

1

( 0, ) exp( ) ( )
N

z

n

E x z in z n z


        

The spectrum ( )z zA k  emitted by the set of waveguides in the half-space 0x   is such that 

  (0, ) ( )expz z z zE z A k ik z dk



    

and consequently 

  
1

( ) (0, )exp
2

z z zA k E z ik z dz
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 
  

After some calculations, and putting  
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0

2
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we get 
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Finally, if we put  
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the spectral density of the waves launched by the set of waveguides is 
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The following figure gives the spectral density at 3.7 GHz in two cases: 

a) 6N   waveguides with width 8 mmb  , spacing 10 mmz  and phase shift / 2   

b) 1N   waveguide with width 8 mmb   
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The position of the peaks can be easily retrieved using well known diffraction gratings properties. When N 

tends to infinity, the set of phased waveguide apertures give birth to grating orders and the separation 

between the orders is 2 /zk z    , i.e., 02 / ( )zn k z    . The position of the first order ( 0m  ) is linked 

with the phase shift  : 0(0) / ( )z zn k   . Consequently, the positions of the peaks are given by  

 

0 0 0

2 2
( ) (0)z zn m n m m

k z k z k z

  
   

  
  

In our case, at a frequency of 3.7 GHz, 210 mz   , and / 2  , this formula gives the position of the 

two major peaks: (0) 2.03zn   and ( 1) 6.08zn    . 
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Picture of a real LHRF antenna 

This picture shows a LHRF antenna in the vessel of the Tore Supra tokamak. The dimensions of the array of 

6 × 48 waveguides are 580 mm ×580 mm.  

The multi-junction antenna that has been used for our measurements simulates one module of 6 waveguides. 

Both antenna provide an emitted spectrum centered on 02zk k . 
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Numerical modeling of the entire multi-junction antenna  

The picture below is the complete version of Fig. 3. It shows the entire multi-junction antenna. This antenna 

is fed from the top. The first section splits into three waveguides, then into six waveguides, with the required 

phase shifts between adjacent waveguides. The same color scale is used for the three graphs. The vacuum 

load generates high reflection coefficients and a high standing wave ratio inside the waveguides. The "ideal 

plasma" and the metamaterial load generate much less standing wave ratio. 

 

 
 

Numerical modeling of the modulus of the electric field at 3.7 GHz. The multi-junction antenna mouth is 

surrounded by a ground plane (horizontal line on these graphs). The field map is in the middle of the 

antenna (y = 0 according to figure 1). The multi-junction antenna is loaded with vacuum (left), an ideal 

plasma with 1   and / / 3    (middle), and the fishnet metamaterial (right).  
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