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1. Literature Review 

1.1 Obesity 

1.1.1 Introduction 

 

Obesity is a worldwide, multifactorial medical condition associated with number of serious 

health complications. Obesity is predominantly a consequence of an imbalance between energy 

expenditure and intake which results in accumulation of body fat1. This medical condition is 

strongly associated with number of comorbidities, most significantly with type 2 diabetes 

mellitus (T2DM) where more than 80% of T2DM patients are considered obese or overweight2�4. 

Other health complication associated with obesity include metabolic syndrome5, dyslipidemia6, 

cardiovascular diseases7,8 respiratory complications9, otitis media10, Alzheimer�s disease 11,12, 

and many others. 

 

1.1.2 History 

 

 Throughout human history, good energy storage made an important evolutionary advantage 

during food scarcity. Thus, corpulence was considered as a sign of good health, social status and 

wealth13,14. For thousands of years, obesity has not been considered harmful. The ancient Greeks 

were the first who realized the danger of obesity. Greek physician Hippocrates (circa 460 � circa 

370 BC) noticed that obesity led to infertility and early dearth15. The term �obesity� had not been 

known in English language until the 17th century, when English physician Tobias Venner (1577�

1660) used this word in a medical context for the first time16. In the 18th century, impact of 

obesity on human health started to be appreciated13,17 but only in the middle of the 19th century 

obesity started to be considered as a possible cause of health complications17. First evidences 

showing increasing mortality caused by obesity were observe in the last century18. A rapid 

increase of the incidence of obesity in the second half of the 20th century led the World Health 

Organization (WHO) to an effort to raise awareness of this disease19. Nowadays, obesity is 

considered as one of the major health issues worldwide. 
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1.1.3 Socioeconomic Aspect 

 

There is a significant economic aspect of obesity. In 2008, the annual cost of obesity was almost 

$150 billion in USA alone. This is almost double than in 1998, when was the annual cost 

estimated at $74 billion20. The obesity is not just an economic burden, but also a burden for 

obese individuals. Finkelstein et al. showed that adult medical spending attributable to obesity 

is in obese individuals 41,5% greater than in normal-weight individuals20. Moreover, obese 

individual face social stigma and potential discrimination which put these individuals at a 

disadvantage in the labor market21.  

  

1.1.4 Epidemiology 

1.1.4.1 Prevalence 

 

In the 21st century, obesity has been considered as a worldwide pandemic. In 2013, Ng et al. 

published a vast epidemiological study showed the rapid increase of obesity and overweight 

worldwide. Between 1980 and 2013, a worldwide percentage of obese and overweight adults 

rose from 28,8% to 36,9% and from 29,8% to 38,0% in men and women, respectively22. World 

Health Organization currently indicates, using data from 2014, that the obesity affects globally 

over 600 million adults. This is more than double since 1980. According to WHO, the obesity is 

more abundant in women than in men (15% and 11% percent of the world�s adult population, 

respectively). Obesity rate in not a problem only in the adult population. It is estimated that 41 

million children under the age of 5 years suffer from overweight or obesity. This problem is most 

significant in Asia and Africa. In Asia, nearly half of the children under the age of 5 years were 

overweight and obese in 2014. In Africa, the prevalence of children overweight and obesity 

almost doubled from 5,4 to 10,6 between 1990 and 20141. 
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Figure 1: The prevalence of obesity (BMI � 30 kg/m2) in Europe and North Africa, ages � 20 years. 

The prevalence of obese men (A) is lower than obese women (B) (adapted from22). 

 

1.1.4.2 Mortality 

 

Obesity greatly increase relative mortality risk23. Regardless the gender, adult obesity is 

associated with reduced life expectancy. Individuals who were obese at the age of 40 years died 

around 6 years earlier than normal-weight individuals24. Diminished life expectancy has been 

also observed in overweight persons where the overweight persons exhibited 3 years shorter 

life expectancy than normal-weight persons24. Severely obese subjects die even 8 to 10 years 

earlier than controls25. Prospective Studies Collaboration analysis showed that every 5 kg/m2 

increase in BMI was associated with a 30% increase in all-cause mortality25. Recent European 

multicohort study confirmed this trend showing that excess BMI significantly shortens disease-

free life expectancy26. 
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1.1.5 Obesity Description 

1.1.5.1 BMI 

 

To understand and classify obesity, number of somatotypes indicators has been suggested. Out 

of used indicators, body mass index (BMI) is currently the most commonly used measure for 

assessing obesity in adults. BMI was developed by Belgian astronomer and statistician Alphonse 

Quetelet (1795-1844)13. Therefore, BMI is also known as �Quetelet Index�.  It is calculated as 

weight in kilograms divided by the square of height in meters13. According to the BMI, we can 

classify whether is a certain person overweight (BMI ! 25 kg/m2), or obese (BMI ! 30 kg/m2)27. 

BMI values are widely used to assess adiposity status in white, African American and Hispanic 

populations28. This traditional classification is not, however, applicable in Asian populations 

where subjects with BMI ! 23 kg/m2 are characterized as overweight and subjects with BMI ! 25 

kg/m2 are characterized as obese29. 

 

Table 1: The International Classification of adult underweight, overweight and obesity according 

to BMI27. 

Classification BMI (kg/m2) 

Underweight  < 18,50 

Normal range  18,50 � 24,99 

Overweight  25,00 � 29,99 

Obese  !3 0,00 

 Obese class I 30,00 � 34,99 

Obese class II 35,00 � 39,99 

Obese class III !4 0,00 

 

Although, BMI is not a perfect tool. It does not distinguish whether is the increase weight caused 

by the excess of muscles or lipid tissue30. Nevertheless, it remains the most commonly used 

measure for assessing obesity in adults. 
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1.1.5.2 BMI Z-score 

 

The standard classification of obesity based on BMI can be, however, use only in adult subjects. 

BMI values are not related to age and do not distinguish males and females. Thus, assessing 

obesity in children and adolescents must consider the children�s age and gender31. The BMI z-

score considers individual�s gender and age and compares the BMI of the individual with 

standard BMI of her/his age group32. The resulting value is the standard deviation (SD) from the 

mean value. According to the SD value, the subject can be consider as severely thin (SD < -3), 

thin (SD < -2), normal weight (SD -2 to 1), overweight (SD > 1 and obese (SD > 2)33. 

 

 

Figure 2: Boys chart according to BMI z-score. The optimal BMI is an area between yellow lines. 

Boys with BMI z-score > 1 are considered as overweight. BMI z-score > 2 (red line) indicates 

obese individual (adapted from33).  

 

Nevertheless, BMI or BMI z-score do not give us any indication of distribution of body fat. Central 

or abdominal fat increases the risk for metabolic and cardiovascular complications in 

adolescents, as in adults34,35. Therefore, other adiposity indices, such as waist circumference, 

waist-to-hip ratio and waist-to-height ratio may be used. 
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1.1.5.3 Waist Circumference 

 

Waist circumference (WC) is a highly sensitive and specific measure of upper body fat in young 

people and thus it is valuable for identifying overweight and obese adolescents at risk of 

developing metabolic complications. It has been shown, that WC is a better predictor for 

cardiovascular disease in children than BMI36. Also, several other evidences indicate that WC 

combined with BMI predicts health risk better than does BM37,38. According to the WHO, men 

and women are considered to have a high WC when the values exceed 102 and 88 cm, 

respectively39. 

 

1.1.5.4 Waist-to-Hip Ratio 

 

Waist-to-hip ratio is another useful adiposity index. It is the ratio of the waist circumference 

divided by hip circumference. Previous studies have indicated a positive association between 

WHR and cardiovascular diseases40,41. We consider men obese with WHR � 0,9. In women, WHR 

� 0,85 indicated obesity39. 

 

1.1.5.5 Waist-to-Height Ratio 

 

Waist-to-height ratio (WHtR) is a dimensionless ratio of the waist circumference and height. 

Increased WHtR indicates higher risk of obesity-related cardiovascular diseases and correlates 

with abdominal obesity42. Moreover, Ashwell et al. showed that WHtR is more reliable tool for 

detecting cardiometabolic risk factors in both sexes compared to BMI and WC43. For both 

genders, general cutoff of 0,5 has been suggested44. However, more recent cutoff values 

depending on the risk we evaluate43. 
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1.1.6 Risk Factors 

 

Obesity is a multifactorial disorder and is often combination of many factors including lack of 

physical activity, inappropriate eating habits, socioeconomic factors, genetic and hormonal 

factors, abnormalities in the central nervous system, or psychological disorders. This chapter 

describes some of these factors. 

 

1.1.6.1 Physical Activity   

 

Sedentary lifestyle is well known risk factor associated with obesity45. For this reason, regular 

physical activity is recommended to prevent weight gain46. Sadly, lifestyle in most developed 

countries does not require the same physical activity that was necessary in the past47. We may 

observe the same trend in children where regular sport activity helps to prevent development 

of childhood obesity48,49. 

 

1.1.6.2 Eating Habits 

 

The 20th century brought affordable calorically dense food which greatly contributed to the rapid 

increase of obesity worldwide50. Increase content of carbohydrates and fats in food has been 

associated high high body weight51. Diet high in vegetables, fruits, whole grains, nuts, and yogurt 

has the opposite effect51. In children and adolescents, consumption of sugar-sweeten beverages 

greatly contributes to obesity as well50,52. 

 

1.1.6.3 Socioeconomic Factors 

 

Socioeconomic status is also one of the major aspects associated with obesity. In the first half 

of the 20th century, income was the major factor in development of obesity. Obese and 

overweight people often came from a high income social group53. This causality is, however, no 

longer valid. In the present, we may observe that the obesity is more prevalent in individuals 

with low income rather than in those with high income54,55. 
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1.1.6.4 Genetic Factors 

 

Multifactorial etiology of obesity excludes a possibility of existence of single genetic marker 

which can determine a development of this medical condition. On the other hand, hereditary 

factors play an inconsiderable role in its development. Dozens of genes have been suggested to 

be associated with obesity56,57. To date, the fat mass and obesity-associated (FTO) gene is 

considered the first unequivocal obesity-related gene58. Previous studies repeatedly showed 

association between FTO variants and type 2 diabetes mellitus and obesity59�61. Despite the 

advances in genetics, the full understanding of obesity genetics has not yet been reached. 

 

1.1.6.5 Gut Bacteria 

 

It is estimated that human body contains around 1014 microorganisms which coexist with the 

human body in symbiosis62. Besides skin, genitourinary and upper respiratory tracts, the lower 

gastrointestinal tract contains great number of the microorganisms63,64. It has been shown that 

human microbiome plays an important role in many chronic diseases. Host-microbiome 

interactions are involved in the pathogenesis of obesity65,66, diabetes, metabolic diseases67,68, 

and cancer62. Furthermore, it has been shown that gut microbiota show altered lipid and 

carbohydrate metabolisms in obese subjects69,70. 

Typical examples of different microbiomes between obese and lean subjects are phyla 

Bacteroidetes and Firmicutes. Compared to normal weight subjects, gut microbiome of obese 

subjects shows higher concentration of Firmicutes and lower concentration of Bacteroidetes71. 

Moreover, high-fat diet induces an increase of Firmicutes and a reduction of Bacteroidetes.  

  

1.2 Taste 

1.2.1 Introduction 

 

As strict heterotrophs, animals must obtain nutrients and energy from external organic 

molecules. Predicting the nutritional content of food before digestion allows the accurate 

selection of diet composition72. The primary role of taste is determination whether a potential 

food contains beneficial substances, such as ions for maintaining electrolyte balance and 
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macronutrients necessary as an energy source, or dangerous toxic molecules that should be 

avoided73. Tongue is considered as main taste organ. However, tastants can be also perceived 

by different structures in oral cavity such as soft palate, epiglottis, throat, and larynx74. For the 

long time, it was believed that individual parts of the tongue can detect only to one taste 

modality. Current finding, however, disproved this �taste map� concept75. All the taste 

modalities are equally perceived on all part of the tongue76. 

The perception of these basic tastes is mediated by specialized taste receptor cells (TRCs) 

clustered in taste buds77,78. It is generally accepted that humans can perceived five basic taste 

modalities: salty, sour, sweet, bitter and umami. However, last decades of intensive research of 

taste frontiers brought number of interesting finding. Previous studies showed that mammals� 

TBCs can detect divalent ion, such as calcium79, and, most importantly, dietary lipids. 

 

1.2.2 Taste Papillae 

 

Taste papillae are a nipple-like structures responsible for gustation. In mammals, three types of 

taste papillae, fungiform, circumvallate, and foliate, were identified80. The most abundant 

papillae are fungiform papillae which are mucosal protrusions distributed in the anterior part of 

the tongue. The foliate papillae can be found in the lateral region. The biggest papillae, 

circumvallate papillae are positioned in central region of the posterior tongue81. 

 

1.2.3 Taste Buds 

 

Taste buds are the peripheral gustatory organs located predominantly in the oral epithelium. 

Most of the taste buds are located on the tongue epithelium, although their presence has been 

observed in other part of oral cavity such as soft palate, pharynx, and upper esophagus81,82. The 

molecular recognition of tastants occurs at the apical tips of taste bud cells. At the apical part, 

specific taste cells are located. Each taste bud consists of 50-100 taste cells83.  
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1.2.4 Taste Cells 

1.2.4.1 Type I Cells 

 

Type I cells are glial-like cells84. In their cytoplasm, we can find many electron dense granules85. 

They role may be also a sensing of sodium86. 

 

1.2.4.2 Type II Cells 

 

Type II are spindle shaped cells with short microvilli at the apical region85. These cells express 

taste receptor and are associated with the taste of sweet, bitter and umami compounds87. They 

express Phospholipase C�2 (PLC�2), a second messenger necessary for taste transduction88. 

 

1.2.4.3 Type III Cells 

 

Type III cells are slender shaped and contain a single microvillus that protrudes into the taste 

pore85. They are presynaptic cells associated with the taste of sour compounds89. 

  

1.2.4.4 Type IV Cells 

 

Type IV cells (basal cells) are precursor cells. Their only known function is renewal of old taste 

cells90. 

 

1.2.5 Basic Taste Modalities 

 

So far, five basic taste modalities have been generally recognized. Each of the taste modalities 

has its own specific function. The salty taste indicates the presence of sodium, which is 

important for the maintenance of the osmotic balance of the body. Sweet and umami tastes are 

perceived with pleasant feelings, which signals the presence of energy-rich nutrients. On the 
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other hand, the sour and bitter taste modalities are innately aversive and represents potentially 

harmful molecules such as acids or toxic compounds, respectively91. 

  

1.2.5.1 Salty 

 

Maintaining a stable concentration of inorganic cations is necessary for proper action potentials, 

muscle contraction, and numerous other body functions. However, excessive intake of salt, 

which is around 6 g/day according to the World Heathy Organization (WHO)92, may lead to 

serious health complications including stroke, gastric cancer, and hypertension93,94. Salty taste 

is commonly think as the sensation of Na+. Other cations such as K+ and Li+ are also perceive by 

this taste modality but in lesser intensity than Na+95. A perception of salty taste leads to both 

attractive and aversive reactions. The reaction is directly dependent on salt concentration where 

concentration lower than 100 mM is perceive as pleasant95. Detection of salty taste is facilitating 

by epithelial sodium channel (ENaC)96. ENaC is composed of three subunits (�, � and �)97 where 

the � subunit appears to be essential for sodium recognition97,98. 

 

1.2.5.2 Sour 

 

The presence of sour molecules is detected by membrane ion channel receptor cells, which 

allow the direct entry of H+ ions99. The detection of H+ ions is facilitated by transient receptor 

potential channels (PKD2L1 and PKD1L3)99,100, hyperpolarization-activated cyclic nucleotide-

gated channels (HCNs)101 and acid sensing ion channels102. 

 

1.2.5.3 Sweet 

 

In mammals, maintaining of glucose level within a narrow physiological range is necessary for 

proper physiological functions. Therefore, glucose intake, storage, mobilization, and breakdown 

are strictly regulated at different levels and multiple mechanisms of glucose sensing coexist72. 

Sugars are often equated with sweet stimuli but sweet tastants include a broad range of 

structurally distinct molecules generally referred as artificial sweeteners. The sweeteners have 
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very different structures from the traditional mono- and disaccharides that humans have 

evolved to detect as an energy source103. 

Sweet tastants are detected by type II taste receptor cells104. The detection is mediated by the 

heterodimer formed of two GPCRs: namely, taste receptor type 1 member 2 (T1R2) and taste 

receptor type 1 member 3 (T1R3)105. The T1Rs belong to class C of GPCR and are formed by an 

extracellular N-terminal domain, that is linked to a seven helical transmembrane domain (TD) at 

the C terminus via a cysteine-rich domain (CRD106, Figure 3). The extracellular N-terminal domain 

contains Venus flytrap domain (VFTD)107 which in crucial for taste recognition. 

 

Figure 3: Schematic structure of T1Rs subunits. Each of the T1Rs receptors are constituted of N-

terminal extracellular Venus flytrap domain (VFTD) attached to transmembrane domain (TD) via 

cysteine-rich domain (CRD) (adapted from106). 

 

Both T1R2 and T1R3 contain multiple binding sites, therefore is this heterodimer activated by 

various sweet tastants105,108,109. Monosaccharides fructose and glucose and disaccharide sucrose 

interacts with Venus flytrap domain (VFTD) of the T1R2 and T1R3 subunit87,103,110�112. This domain 

also contains binging sites for artificial and natural high-potency sweeteners like saccharin, 

sucralose, acesulfame K (AceK), and stevioside108�113. Another high-potency sweeteners, 

aspartame and neotame, bind to the VFT domain of the T1R2 domain but not T1R3 

domain111,114,115.    
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1.2.5.4 Umami 

 

In a similar manner to the sweet taste, a receptor for the umami taste is a heterodimer 

composed of two T1R family members (i.e. T1R1 and T1R3)104. T1R1 and T1R3 receptors are 

highly affinitive to amino acid L-glutamate, but these receptors also show affinity to other L-

amino acids. In contrast, D-amino acids do not serve as ligands116. 

In the last decades, several studies reported that T1R3, the T1R subunit that involved in sweet 

and umami sensation, is also involved in �calcium taste� (i.e. Ca2+ oral sensitivity)79. 

 

1.2.5.5 Bitter 

 

In direct contrast to sweet and umami tastes, the bitter taste is generally thought to indicate the 

presence of toxic molecules in food. In order to avoid consumption of such molecules, bitter 

taste evokes aversive reactions91. This hypothesis is, however, far from perfect. Numbers of 

bitter tasting molecules are known for their beneficial role for human body such as polyphenols 

from olive oil117 or red wine118.  

Bitter tastants are detected by taste receptor type 2 (T2R) family which belong to GPCR104. This 

family of GPCR consist of 25 different subunits119,120 in humans. T2Rs subunits can be activated 

by structurally very different molecules including toxic plant metabolites and synthetic 

compounds121. For instance, human TAS2R43 (hTAS2R43) is activated by aristocholic acid, 

hTAS2R1 is activated by sodium cyclamate, phenylthiocarbamide (PTC) is activated only by 

hTAS2R38, diphenidol activates 15 different hTAS2Rs121. In recent year, majority of human 

TAS2Rs (over 80%) have been deorphaned, which means that these receptors are sensitive to at 

least one bitter molecule121,122. 

 

1.2.5.6 Extraoral Taste Receptors 

 

It has been shown that taste receptors are expressed in number of extraoral tissues. Sweet taste 

receptors have been found in pancreas and liver123 or in testis124. Furthermore, all three T1Rs 

taste receptors have been found in bladder125 and brain126
. Some of the bitter taste receptors 

have been observer in gastrointestinal tract127 or in the airways128. Extraoral function of these 
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receptors depends on the tissue. In the airways for instance, the function of these receptors is 

protection against inhaled toxins and irritants via changing of respiratory function129. 

 

1.2.6 Taste Transduction 

 

GPCRs-associated tastes (i.e. sweet, umami and bitter) share common signaling pathway. After 

activation of the specific receptor, tastant-binding T1R activates the heterotrimeric G-protein 

Gustducin. Gustducin activates phospholipase C �2 (PLC�2) which catalyzes hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol trisphosphate (IP3) and diacylglycerol 

(DAG). The increase of IP3 concentration eventually leads to the increase of intracellular Ca2+ 

concentration130,131. The high level of Ca2+ depolarizes the taste cell leading to the generation of 

action potentials via the voltage-gated sodium channels (VGSC) of cells. This action potential 

leads to the release of adenosine 5'-trisphosphate (ATP) through membrane depolarization-

dependent channels which is detected by receptors of the taste axons which transmit 

information from the taste cells towards central nervous system (CNS)131,132. 

In case of sour and salty tastes, signal transduction is more straightforward. The signal is 

triggered by the ion channel activation induced depolarizations of the taste cells, which elicit 

action potentials that depolarize the taste cell leading to the generation of action potentials via 

VGSC132. 

Depending on the taste papillae, nerve impulse is conveyed to CNS via three different pathways. 

The pathways are via chorda tympani nerve (fungiform papillae), glossopharyngeal nerve 

(circumvallate papillae), or chorda tympani and the glossopharyngeal nerve combined (foliate 

papillae)133. In the CNS, the impulse reach part of gustatory apparatus131. 
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1.3 Fat taste 

1.3.1 Introduction 

 

Dietary lipids are known to be perceived by olfactory system (smell) and somatosensation 

(texture, oral irritation). Growing number of evidences pointed out a possible existence of the 

orosensory system which can detect the dietary lipids by its taste. 

 

1.3.2 Dietary Lipids 

 

Dietary lipids are one of the fundamental part of our diet and play a crucial role in human body. 

They serve as energy molecules and participate in human development and growth by supplying 

the essential fatty acids and fat-soluble vitamins (A, D, E, and K)134. Dietary lipids deficiency 

causes many health conditions such as learning ability, growth retardation, and visual 

impairment135. On the other hand, lipids overconsumption may cause other health difficulties 

such as such as obesity136, diabetes137, and cancer138. 

Out of the many types of lipids, polyunsaturated fatty acids (PUFAs), especially omega-3- fatty 

acids, are the most important for human health. Omega-3 fatty acids, including alpha-linolenic 

acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are known for their 

anti-inflammatory features. They are presented in the cell membranes, act as lipid mediators 

and are precursors for many metabolites. Moreover, they are important for fetal development 

and healthy aging. There are many researches which confirm their positive influence on 

prevention and treatment of some disorders. 

 

1.3.3 Lipids Chemoreception in Taste Buds Cells 

 

Growing number of studies have shown that dietary lipids are perceived not only by the 

olfactory and somatosensory systems139, but also by its taste. So far, thee different types of 

receptors have been proposed as candidates for the taste of fat. In this chapter, two of them 

will be briefly described. The last receptor, CD36, will be described in the separate chapter. 
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1.3.3.1 DRK Channels 

 

Delayed Rectifying K+ (DRK) channels are integrated within the apical membrane of lingual taste 

cells, which allows the flow of K+ into the extracellular space. These channels have been found 

in rat fungiform taste buds140. Gilbertson et al. showed, for the first time, that these channels 

are inhibited by polyunsaturated fatty acids (PUFAs) in rat TBC141. The inhibition of the channels 

causes the depolarization of the taste cell which leads to opening of voltage gated Ca2+ channels 

(VGCC) that, eventually, sends signal about the taste to the CNS142. Out of all candidate DRK 

channels, KCNA5 (also known as kv1.5) appears to be the most promising one. It is expressed in 

rat fungiform taste buds and is highly sensitive to fatty acids140. Another evidence supporting 

the DRK channel hypothesis is that obesity-prone and obesity-resistant rodents exhibit different 

expression of DRK channels140,143. Nevertheless, presence of DRK channels in human taste cells 

have not been observed yet. 

 

1.3.3.2 GPCRs 

 

G protein-coupled receptor (GPCRs) superfamily is involved in many cellular processes including 

tastants recognition. Three different taste modalities (i.e. sweet, umami, bitter) are mediated 

though GPCRs from T1R and T2R families (discussed in chapters 1.2.5.3-5). Therefore, dietary fat 

oral recognition via GPCRs appears quite promising. 

In 2005, Hirasawa et al. deorphanized GRP120144 and since that, GPR120 is the most promising 

candidate. It has been observed that GPR120 (also known as Free Fatty Acid Receptor 4, FFAR4) 

is activated by s several MCFAs (medium-chain fatty acids) and LCFA (long-chain fatty acids)145. 

GPR120 is expressed in several cell types including adipose, pancreatic or intestinal cells144,146,147. 

Rodent studies reported GPR120 expression in all gustatory papillae148, in type II taste cells in 

particular149. In mice, GPR120 knock-out led to diminished preferences linoleic acid and oleic 

acid. Moreover, the taste nerve response to several fatty acids was reduced comparing to wild-

type mice while other taste were not alter149. In humans, mRNA of GPR120 was found in 

circumvallate, fungiform papillae and non-gustatory epithelia150. 

GPR40 is also another promising taste receptor. Despite similarity in ligand specificity, human 

GPR40 shares only 10% % amino acid identity with human GPR120151. GPR40 (also called Free 

Fatty Acid Receptor, FFAR1) is also activated by MCFA and LCFA152. GPR40 knock-out mice also 
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exhibit reduced preferences for linoleic and oleic acid compared to wild-type mice149. In mice, 

GPR40 is expressed in type I taste cells of foliate papillae and in small number of fungiform 

papillae149. However, no expression of this receptor has been found in taste buds in rats148 and 

in human150. GPR40 is, however, expressed in pancreas, liver, skeletal muscle, and many other 

tissues153. Therefore, he may act as extraoral fatty acid receptor. 

Besides GPR120 and GPR40, other GPCRs show affinity to fatty acid. GPR84 shows affinity to 

medium-chain fatty acid (carbon chain length of 9-14) Capric acid (C10:0))154. Also, GPR41 

(FFAR3) and GPR43 (FFAR2) detect short-chain fatty (such as propionate) acids and were found 

in adipose and immune cells, respectively155. They detect fatty acids produced by endogenous 

bacterial flor 156. Their role in oral fat sensing has not been observed. 

 

1.4 CD36 

 

Cluster of Differentiation 36 (CD36), also known as Fatty Acid Translocase (FAT), is a 

glycoprotein, which belongs to the class B scavenger receptor family143. CD36 was originally 

isolated from membrane of human platelets157 and to date is known to be expressed in various 

tissues such as endothelial cells158, adipocytes159, cardiomyocytes160, and many others. 

Interestingly, expression of CD36 has been observed in TBC161. 

 

1.4.1 CD36 Ligands 

 

CD36 binds various types of molecules including proteins such as thrombospondin162, collagens 

type I and IV157,163, apoptotic cells164,165, or erythrocytes infected by Plasmodium falciparum166. 

For studying of taste and obesity, ability of CD36 to bind a broad spectrum of lipids is the most 

important. CD36 is known to bind various long-chain fatty acids159, native lipoproteins HDL, LDL, 

and VLDL167, acetylated LDL (AcLDL)168, oxidized low density lipoprotein (OxLDL)169 and oxidized 

phospholipids170. 
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1.4.2 Function 

 

CD36 has been shown to have multiple roles as a class B scavenger receptor in a variety of cell 

types. In vascular cells, CD36 activation by thrombospondin-1 triggers downstream signaling via 

caspase and MAP (mitogen-activated protein) kinase-dependent pathway with increased 

apoptosis171. Furthermore, it has been shown that CD36 binds to apoptotic bodies and promotes 

phagocytosis and clearance171. CD36 is also an important member of pro-inflammatory 

response. Upon bacterial infection, CD36 binds microbial diacylglycerides and stimulates a pro-

inflammatory TNF-� response. Moreover, CD36 acts as a co-receptor to TLR4-TLR6, which 

amplify the pro-inflammatory signaling in response to OxLDL172. A growing number of evidences 

show that CD36 also plays via its lipid-binding ability an important role in obesity. This issue will 

be addressed in 1.4.6. 

 

1.4.4 Structure 

 

Human CD36 is located on chromosome 7q21.11172,173 and spans around 32 kb. CD36 contains 

15 exons. Exons 1, 2, and 15 are non-coding. Exons 3 and 14 encode the N- and C-terminal ends 

of the CD36 protein, respectively174. Like other receptors of the class B scavenger receptor 

family, CD36 consists of one large extracellular domain and is docked in the membrane by N- 

and C- terminal domains172. CD36 includes two transmembrane domains spanning residues 7-

34 (Exon 3) and 440-466 (Exon14), two short cytoplasmic tails at both the N,- and C-terminal 

ends (extending residues 1-6 (Exon3) and 467-472 (Exon 14), respectively), and a large highly 

glycosylated extracellular domain comprising residues 35-439 (Exon 3-14)166,174. Human172,175, 

mouse172 and rat176 CD36 is composed of 472 amino acids. Mice and rats CD36 share percentage 

of identity with human CD36 (83% and 86%, respectively)177. Estimated molecular weight of 

these sequences is approximately 53 kDa. However, a large number of post-translational 

modifications causes resulting  molecular weight of 88 kDa178. 

 

1.4.4.1 Post-Translational Modifications 

 

Different post-translation modifications in CD36 have been observed or predicted (Figure 4). 

Out of these modifications, N-linked glycosylation are the most abundant ones. Several 
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asparagine residues in extracellular loop have been shown to be glycosylated179. The 

extracellular loop also contains several acetylated lysine residues180, three disulfide bridges181, 

and thee phosphorylations at Thr-92163, Tyr-62 and Thr-323180. Each of the two intracellular 

domains contain two palmitoylation (N-terminal: Cys-3 and Cys-7, C-terminal: Cys-464 and Cys-

466)182. The C-terminal is also ubiquitinated at Lys-469 and Lys-472183. The role of these 

glycosylation is essential for trafficking of CD36 to  the cell membrane but not for ligand 

recognition179. Smith et. al observed that the C-terminal ubiquitination is upregulated by LCFA 

and inhibited by insulin183.  

 

 

 

Figure 4: Schematic visualization of CD36 binding domain with predicted post-translational 

modifications and predicted binding sites for specific ligands (adapted from184). 

 

1.4.5 CD36 as Taste Receptor  

 

Expression of CD36 have observed in mice185 and rats186 TBC. In mice, CD36 is predominantly 

localized at the apical side of TBC lining the taste pore. CD36 is predominantly expressed in mice 

circumvallate papillae and in lesser extent in foliate and fungiform papillae185. In human, the 

presence of CD36 has been documented in foliate and circumvallate papillae161,187,188. In the TBC, 

CD36 is coexpressed with �-gustducin185 which indicates that that CD36 may be expressed in 

type II taste cells. Another evidence was brought using CD36 knock-out mice. During double-

choice preference tests, knock-out of CD36 let to complete suppression of spontaneous 
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preference for lipid solutions in mice185,189. Likewise, CD36 inactivation led to impaired 

preference of LCFAs without any change in sweet and bitter taste in rats185. 

 

1.4.6 CD36 and Obesity 

 

Relationship between obesity and peripheral taste system has been shown both in rodents and 

humans. In rodents, obese rats and mice appeared to be less sensitive to oil in diet compared to 

lean controls. This means that spontaneous preference for dietary fat appears in higher 

concentration in obese rodents than in controls190. This difference is also apparent in cellular 

response. Ca2+ response to fatty acids was significantly diminished in obese mice compared to 

lean mice. One of the explanations is that CD36 density in the lipid rafts of TBC is significantly 

reduced obese mice. This may also explain why the obese mice exhibited impaired detection of 

low concentrations of lipids properly during mentioned behavioral tests161. 

 

1.4.6.7 CD36 Genetic Variations 

 

Several CD36 polymorphisms have been studied for their possible association with obesity and 

obesity-related diseases. Liu et al.80 showed that there are at least 11 polymorphisms associated 

with type II diabetes mellitus191, metabolic syndrome192, or reduced fat oxidation rate193 in 

various populations. Also, some of the CD36 SNPs have been showed to be associated with 

obesity or BMI in European194,195 and African-American196 populations. Nevertheless, data from 

European meta-analysis showed that there is no clear relationship between CD36 

polymorphisms and obesity197. 

So far, two CD36 SNPs have been related to lipid taste perception. Pepino et al. showed, for the 

first time, that A-allele of CD36 SNP rs1761667 is related to lipid taste perception198. Follow-up 

studies have found similar results in African-American199 Italian200 populations. Besides 

rs1761667, T-allele of CD36 SNP rs1527483 was associated with different perceived ratings of 

fat content in food in African-American199 and Malaysian201 populations. 
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2 Aim of the Dissertation 
 

The overall aim of the dissertation was to observe a relationship between orosensory fatty acid 

perception and obesity or selected adiposity parameters in children, adolescents and adults 

from different populations. Furthermore, we analyzed the most promising CD36 genetic 

polymorphisms. We aim to assess how can be the polymorphisms in this lipid taste receptors 

related to orosensory detection threshold and obesity. Secondly, we assessed to bitter tastes 

oral sensitivity to observe a possible cross-talk between the two taste modalities. The last aim 

of the dissertation was an assessment of dietary habits and preferences of studied individuals. 
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3 Material and methods 

3.1 Participants 

 

The studies were carried out in accordance with the Declaration of Helsinki (1989) of the World 

Medical Association. 

 

3.1.1. Algerian Population 

 

We conducted two case-control studies on Algerian population. The first study group was 

composed of young school children. The children were between 7 and 8 years old. The second 

study group was composed of Algerian adolescents. The both study groups were composed of 

boys and girls and we recruited them from Constantine district in Algeria.  

The participants with any history of a chronic condition such as cardiovascular disease, diabetes, 

liver or kidney disease were excluded from the study. A written consent was obtained from 

parents of all participants. The probands and their parents were assured about the 

confidentiality of the project and informed about the purpose, protocol and potential risks of 

the study. All personal data, such as names and dates of birth, were erased from the database. 

The study protocol was approved by the research council of the University of Constantine1. 

 

3.1.2 Tunisian Population 

 

In Tunisian population, we conducted one cohort study and one case-control study on adult 

subjects. The cohort study group included obese Tunisian women recruited from the group of 

patients who visited the gynecology outpatient department of Farhat Hached University 

Hospital in Sousse, Tunisia. The women were between 38 and 43 years old. The case-control 

study included normal-weight and obese Tunisian adult, both male and female, age around 35 

years. The subjects were recruited from the outdoor patient department of National Institute of 

Nutrition (Tunis, Tunisia), National School of Veterinary Medicine (Tunis, Tunisia) and Regional 

Hospital of Mateur (Tunis, Tunisia). 

Medical records were screened by specialist clinicians. The exclusion criteria were smoking, 

diabetes, breastfeeding, pregnancy-related complications, chronic illness such as hypertension 

or any other inflammatory pathology, any autoimmune disease, any lipid-lowering medication, 
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recent weight loss, dieting and the use of any medications known to affect taste (such as birth 

control pills). All the included participants had normal glucose tolerance test and 

electrocardiogram. Moreover, the women from the cohort study could not have any history of 

gestational diabetes.  

The studies were approved by Farhat Hached Hospital Committee for Research on Human 

Subjects (Tunisia) and the Research Council of National Institute of Nutrition (Tunis, Tunisia, 

respectively. Informed written consent was obtained from all the subjects. The present 

experimental protocol conforms to the relevant ethical guidelines for human research. 

 

3.1.3 Czech Population 

 

We recruited young adult with various BMI from South Moravian Region, Czech Republic. The 

group was formed of male and female Caucasians. The subjects agreed with all procedures and 

signed a written informed consent form. The study was approved by The Ethical Committee of 

Masaryk University in Brno, Czech Republic. 

Exclusion criteria were history of medical conditions such as hypertension or diabetes, 

significant weight change in past three months, any medications known to affect appetite, body 

weight and taste, regular smoking (more than one pack per week), pregnancy and lactation. The 

subjects did not follow any caloric or dietary restriction diet (such as veganism or gluten-free 

diet) and were informed about the aim of the study protocol and potential risks of the study.  

 

3.2 Anthropometric Parameter 

 

We measured following anthropometric parameters: weight and height (all study groups), waist 

circumference (Algerian children and Czech adults), hip circumference (Czech adults). The 

parameters were measured without shoes and in light clothing or unclothed. Waist and hips 

circumferences were measured in standing position on the narrowest diameter between xiphoid 

process and the iliac crest and at the widest part over the greater trochanters, respectively. 

From weight and height, BMI (weight/height2) was calculated. Due to the young are of the 

Algerian participants, BMI z-score was used. In the Czech study, where waits and hip 

circumferences were obtained, we determined waist-to-hip-ratio (WHR = waist 
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circumference/hips circumference) and waist-to height ratio (WHtR = waist 

circumference/height). 

 

3.3 Determination of Blood Parameters 

3.3.1 Algerian Adolescents   

 

From the Algerian adolescents, fasting venous blood was collected in heparinized tubes. The 

serum and the plasma were isolated by centrifugation (1 000 g, 20 min). The concentrations of 

fasting glucose, total cholesterol (TC), and triglycerides (TG) were measured by Biochemical 

analyzer XL 200 (ErbaLachema, Mannheim, Germany). Low-density lipoprotein cholesterol (LDL-

C) and high-density lipoprotein cholesterol (HDL-C) levels were determined by cholesterol 

oxidase method (BioSystems, Barcelona, Spain). Insulin concentrations were measured by ELISA 

(RayBio, Norcross, GA, USA). 

 

3.3.2 Tunisian Population 

 

We collected fasting blood in the both Tunisian studies. We collected serum and plasma (using 

EDTA treated tubes). The serum and the plasma were prepared by centrifugation (1 000 g, 20 

min). Serum was aliquoted and frozen at -80 °C and was immediately used for glucose 

determination. We determined these blood parameters: fasting plasma glucose concentration, 

concentration of plasma glycosylated hemoglobin (HbA1C), serum insulin concentration, TC, TG, 

free cholesterol (in Tunisian cohort study only), LDL-C, and HDL-C. Other biochemical 

parameters, such as urea, creatinine and C-reactive protein were analyzed by routine standard 

techniques using an automated Synchron CX7 Clinical System (Beckman Coulter, Brea, CA, USA). 

In Tunisian obese women, we determined IL-6 and TNF-� serum concentration. Moreover, we 

measured concentration of ALAT (alanine aminotransferase), AST (aspartate transaminase) in 

the Tunisian case-control study. 

To observe a difference in some of the determined blood parameters (i.e. TC, TG and insulin), 

we collected the venous blood samples again 1 h after the LA tasting session in Tunisian case-

control study 
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3.4 Taste Sensitivity Analysis 

3.4.1 Fat Taste 

 

Taste sensitivity to fatty acids was determined using the alternative-forced choice (AFC) 

method202,203. For this method, ascending concentration of fatty acid (e.i. 0,018, 0,18, 0,37, 0,75, 

1,5, 3, 6 and 12 mmol/L) was mixed with solution containing Arabic gum and EDTA (both from 

Sigma Aldrich, St. Louis, MO, USA). The Arabic gum was used to minimize textural cues of the 

different concentrations of the fatty acid. EDTA was used to prevent oxidation of the fatty acid. 

The samples were homogenized using sonication for 4�5 min at 4 °C in an ice bath, stored at 4°C 

in the absence of light and used within 48 hours. Control samples were prepared without the 

addition of the fatty acid in the same manner. Oleic acid (Tunisian cohort study, Algerian case-

control studies) and linoleic acid (Tunisian case-control study, Czech cohort study) were chosen 

for the tests. Concentration of EDTA was 0,01% (w/v) and concentration of Arabic gum was 

either 0,01 % (Tunisian and Algerian studies) or 5 % (Czech population). 

In the day before the test, the participants were asked to avoid smoking and consumption of 

alcoholic beverages and hot spicy meals (such as chilly, garlic or horseradish). The participants 

were called on a stipulated date and advised to arrive early in the morning without having eaten 

breakfast (fasting state) or to fast 2 hours prior to their test. Also, consumption of sweetened 

beverages was not allowed 2 hours before the test, the participants could drink only non-

sparkling water. One hour before testing, the subjects were asked to refrain from eating, 

drinking or consuming oral irritants (gum, mouthwash). 

During the test, the subjects were presented with three samples per set, two control samples 

(without the fatty acid) and one �odd� sample containing the fatty acid in ascending order of 

concentration from the lowest (0,018 mmol/L) to the highest (12 mmol/L). The samples were 

served at the room temperature. The participants kept each sample in their mouths and they 

were not allowed to drink the solution, rather they had to spit out it after several seconds. To 

mask olfactory cues, participants wore a nose clip. Visual cues were masked using a blindfold or 

the testing session was conducted under red light. 

After each set, the subjects were asked to identify the odd sample which differed from the other 

two. If they identify the sample correctly, they were presented with three more samples at the 

same fatty acid concentration. If they failed, they were presented with another set with higher 

fatty acid concentration.  
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In the Tunisian and Algerian studies, we used an approach described by Pepino et al.198. In this 

approach, we decreased the concentration of the fatty acid after two correct responses in the 

row and increased the concentration after each incorrect response. The procedure was 

terminated when four changes of direction (reversals) occurred and they met the following two 

criteria. First, there could not be more than two dilution steps between two successive reversals. 

Second, the series of reversals could not form an ascending pattern. The threshold 

concentration was calculated as mean of log values for the last four reversals. 

In Czech population study, approach used by Steward et al.202 was used. The test continued until 

the subject identified the odd sample at a given concentration three consecutive times. If the 

subject failed to identify the fatty acid at the given concentrations, he was classified as �non-

tasters�. 

 

3.4.2 Bitter Taste 

 

In the Tunisian case-control study, we invited lipid-tasters to participate to the additional session 

regarding the bitter taste. As bitter tastant, 6-n-propylthiouracil (Sigma Aldrich, St. Louis, MO, 

USA) dissolved in deionized water was used. We used method performed by Bartoshuk et al.204. 

However, we did not correlate the PROP arbitrary perceived responses to NaCl-evoked intensity 

ratings as it seemed to us very subjective. Hence, we measured the detection thresholds for 

PROP (0,0001 - 3,2 �mol/L) as using the similar procedure as used in the linoleic acid test.  

 

3.5 Genetic Analysis 

3.5.1 Polymorphisms Genotyping 

 

Genomic DNA (gDNA) was extracted from venous blood or flocked saliva swabs. We analyzed 

thee polymorphisms in CD36 gene. In the Algerian and Tunisian studies, rs1761667 

polymorphism was analyzed. In the Czech cohort study, rs1527483 and rs3212018 

polymorphisms were analyzed. Furthermore, we analyzed 2 SNPs of T2R38 (i.e. rs1726866 

rs10246939) in Tunisian case-control study. The selected SNPs were analyzed using restriction 

fragment-length polymorphism (RFLP) method followed by agarose gel electrophoresis. Analysis 

of insertion/deletion polymorphism rs3212018 was analyzed using the similar method without 
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the endonuclease digestion step. Sequences of used primers are shown in Table 2. Amplification 

was initiated by denaturation (3 min at 95°C). After the denaturation, DNA was subjected to 

further amplification (denaturation for 30 s at 95°C, annealing for 30 s at different temperatures 

and extension for 30 s at 72°C). The amplification programs were identical for all the 

polymorphisms except annealing temperatures. The annealing temperatures are shown in Table 

1. After 35 cycles, the PCR terminated by final extension for 5 min at 72°C. 

 

Table 2: The list of analyzed polymorphisms, their sequences and annealing temperatures. 

SNP Gene Variation Primer sequence 

Annealing 

temp. 

rs1761667 CD36 A/G F 5� CAAAATCACAATCTATTCAAGACCA 3� 
56°C 

   R 5� TTTTGGGAGAAATTCTGAAGA G 3� 

     
 

rs1527483 CD36 C/T F 5� GCCAATTAGAATCACTTCATAAACC 3� 
56°C 

   R 5� TGATGGATTAAACCCAAATGAA 3� 

     
 

rs3212018 CD36 16 bp del. F 5� TCTGGGAGAAATGAGATAAAAGATG 3� 
56°C 

   R 5� GCAGCAATCCTGGTCTTATG 3� 

     
 

rs1726866 TAS2R38 Ala262Val F 5� GGAAGGCACATGAGGACAAT 3� 
62°C 

   R 5� ATTGCCTGAGATCAGGATGG 3� 

     
 

rs10246939 TAS2R38 Val296Ile F 5� TGTTGCCTTCATCTCTGTGC 3� 
62°C 

      R 5� TGTGGTCGGCTCTTACCTTC 3� 

 

After the PCR, the amplicons were digested by specific restriction enzyme (Thermo Fisher 

Scientific, Waltham, MA, USA). Each restriction enzyme was chosen to be allele-specific. Used 

enzymes, their incubation temperatures and products of the digestions are displayed in Table 3. 

The products of the digestion were separated agarose gel electrophoresis 2% (w/v) stained by 

ethidium bromide. The products were visualized under UV light. 
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Table 3: The list of used restriction enzymes, their incubation temperatures and the size of the 

restriction products. 

SNP Enzyme Temp. (°C) Allele Product length (bp) 

rs1761667 HhaI 37 A 190 

   G 138, 52 

     

rs1527483 TaqI 65 C 37, 70, 129 

   T 107, 129 

     

rs3212018 - - Ins 182 

   Del 166 

     

rs1726866 BseXI 65 Ala 122, 75, 19 

   Val 197, 19 

     

rs10246939 FokI 37 Val 194 

      Ile 107, 87 

 

3.5.2 CD36 Sequencing 

 

In the Czech cohort study, we selected four (n = 4) subjects without an ability to detect linoleic 

acid (non-tasters) and the same number of subjects with the lowest linoleic acid detection 

threshold (supertaster). We sequenced exons 5 and 6, which encode hydrophobic pocket, a part 

of extracellular domain of CD36 which is responsible for fatty acids binding180. The selected 

region included amino acids 95 � 143 (exon 5) and 144 � 203 (exon 6). 

The selected exons were amplified using standard PCR. Primers for exon 5 span the exon and 31 

bp and 110 bp before and a behind the exon, respectively. Primers for exon 6 span the exon and 

122 bp and 170 bp before and a behind the exon, respectively. Sequences of used primers and 

temperatures profile are shown in Table 4. 

The amplicons were purified using Shrimp Alkaline Phosphatase (SAP) and Exonuclease I 

(Thermo Fisher Scientific, USA). The mixture was incubated at 37 °C for 15 min and 85 °C for 15 

min (enzyme inactivation), followed by sequencing with BigDye® Terminator v.3.1 (Thermo 

Fisher Scientific, USA). As sequencing primers, the forward PCR primers were used. The 

amplicons were then purified using EDTA/ethanol precipitation, re-suspended in 10 �l of Hi-Di 
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Formamide (Thermo Fisher Scientific, USA), and sequenced using automated ABI 3130 Genetic 

Analyzer (Thermo Fisher Scientific, USA). The resulting sequences were analyzed in MEGA 7 

software205 and NC_000007.14 sequence from Nucleotide NCBI database was used for 

alignment. 

 

Table 4: Primes sequences and a temperature profile used for sequencing of CD36 exons 5 and 

6. 

Exon Primers Temperature profile 

Product 

length 

(bp) 

5 
5' AAATGTTTTGAATTTTGTTTACTGCT 3'  40 x   

296 bp 

5' CGTTTTGATAAAAATGGAAAAACA 3' 94  

94  /54  /72 

  72   10  

6 
5' TGGCAGGATCTGGCAGTAA 3' 3 min 30 s/60 s/30 s 5 min � 

492 bp 
5' TTCCCAACTAGGAAAGCTGAA 3'         

 

3.6 Questionnaires 

3.6.1 Algerian Children 

 

Using simple questionnaire, we collected the information about habitual preferred eating 

patterns in the Algerian children. The questionnaire was composed of the food products which 

are usually consumed in Algeria and served at breakfast, lunch and dinner. We asked the 

question �what do you eat preferably in the week among the listed food items� and we noted 

responses. In fact, we determined �preferred food pattern� of the children and tried to correlate 

the same. The food pattern was also, sometimes, cross-checked with the mothers. 

 

3.6.2 Czech Adults 

 

In the Czech cohort study, a modified version of the validated self-administered questionnaire, 

Food Craving Inventory206 was used. This questionnaire contained 37 items is designed to 

measure the frequency of cravings for specific food. These 37 items were divided into four 

categories: high fats, sweets, carbohydrates/starches and fast-food fats. The participants had to 

answer, on a scale from 1 �never� to 5 �always / almost every day�, how often did they crave 
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each item in the last month. The present study was focused only on dietary lipids. Therefore, we 

used only the food items which were categorized as �high fats� and �fast-food fats�. The food 

items from these categories are commonly consumed in both American and Czech diet, so we 

removed only one item from �high fats� group. Hence, we removed item �corn bread� which is 

very uncommon in Czech diet. We did not include all 37 items in the questionnaire, thus could 

not perform the same statistical analysis mentioned by White et al.206. We calculated the mean 

craving for each food group (i.e. high fats and fast-food fats) and for both the groups together. 

The participants were also asked whether they consumed alcoholic beverages and what was 

their average weekly consumption. Based on their answers, average alcohol consumption (in 

units per week) was calculated. 

 

3.7 Statistical Analysis 

 

For statistical analysis, Statistica software (Statsoft, Tulsa, OK, USA) was used. P value ! 0,05 was 

considered statistically significant. The data are displayed as mean ± SD. In the performed case-

control studies, we divided the subjects into two groups (i.e. obese and controls). The decisive 

criterion was BMI or BMI z-score (in children and adolescents). We considered adults with BMI 

" 30,0 kg/m2 and children or adolescents with BMI z-score " 2 as obese.  

To assess relationships between rs1761667 and measured parameters, we consider each 

genotype separately. Due to the low minor allele frequency of rs1527483 and rs3212018, we 

combined the subjects with minor homozygous genotypes and those with heterozygous 

genotypes (which means TT + CC for rs1527483 and DD + ID for rs3212018). This approach was 

also used in some calculations regarding rs1761667. 

We used following statistical tests: Shapiro-Wilks test to observe data distribution. Student�s t-

test, Mann-Whitney U test, one-way ANOVA and Kruskal�Wallis ANOVA for determination 

between study groups. Pearson�s correlation coefficient and Spearman rank correlation to 

observe a correlation between measured parameters. Two tailed Fisher�s exact test for 

comparison the genotype distributions. Chi-square (#2) was used to assed the Hardy-Weinberg 

equilibrium and differences in habitual preferred eating patterns in Algerian children. Dunn�s 

method was used for all multiple comparisons among genotypes. 
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insulin positively correlated with fasting glucose concentration (p < 0,05). HOMA index was also 

higher in obese participants that that in lean ones (p < 0,01). As expected, TC and TG, HDL-C and 

LDL-C levels positively correlated with each other (p < 0,01, p < 0,04, p < 0,01, respectively). Also, 

TG concentration positively correlated with LDL-C (p < 0,01) and negatively with HDL-C levels (p 

< 0,01). Regarding the above-mentioned parameters, no difference between boys and girls was 

observed. The characteristics of the Algerian adolescents are displayed in Table 6. 

 

Table 6: Characteristics of the Algerian adolescents. 

Parameters 
Controls Obese 

mean   SD mean   SD 

Age (years) 13,92 ± 2,08 14,01 ± 1,73 

BMI z-score 0,03 ± 0,59 2,67 ± 0,45** 

Glycemia (mmol/L) 4,41 ± 0,54 4,76 ± 0,46* 

TC (mmol/L) 3,04 ± 0,72 3,39 ± 0,64* 

LDL-C (mmol/L) 1,64 ± 0,63 2,00 ± 0,55** 

HDL-C (mmol/L) 1,08 ± 0,27 0,91 ± 0,18** 

TG (mmol/L) 0,74 ± 0,36 1,04 ± 0,46** 

Insulin (pmol/L) 45,98 ± 6,25 54,38 ± 20,23** 

HOMA index 1,29 ± 0,27 1,70 ± 1,09** 

* p < 0,05 ** p < 0,01 between controls and obese. Abbreviations: TC (total cholesterol), LDL-C (low-density lipoprotein cholesterol), 

HDL-C (high-density lipoprotein cholesterol), TG (triglycerides), HOMA (homeostasis model assessment). 

4.1.3 Tunisian Cohort Study 

 

This cohort study included 203 obese Tunisian women with average BMI = 34,6 ± 4,2 kg/m2. The 

average age of the women was 38,4 ± 11,4 years. The characteristics of the women are shown 

in Table 7. Compared to control values207,208, serum TG, interleukin 6 (IL-6) and Tumor necrosis 

factor alpha (TNF-!) concentrations were higher in this sample. Measured levels of fasting 

glucose, urea, creatinine, cholesterol, TG, HDL-C, LDL-C, glycated hemoglobin (HbA1c), 

apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), insulin and C-reactive protein (CRP) were 

within normal range for obese women. 
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Table 7: Characteristics of the obese Tunisian women included in the cohort study. 

Parameters mean   SD 

Age (years) 38,4 ± 11,4 

BMI (kg/m2) 34,6 ± 4,2 

TNF-a (pg/ml) 131,4 ± 165,5 

IL-6 (pg/ml) 73,3 ± 48,7 

Glucose (mmol/l) 5,97 ± 1,84 

Urea (mmol/l) 3,39 ± 1,58 

Creatinine (mmol/l) 0,39 ± 14,58 

Cholesterol (mmol/l) 5,08 ± 1,29 

TG (mmol/l) 1,77 ± 1,06 

HDL-C (mmol/l) 1,14 ± 0,31 

LDL-C (mmol/l) 3,04 ± 1,01 

HbA1c (%) 5,6 ± 1,22 

ApoA1 (g/l) 2,04 ± 0,74 

ApoB (g/l) 1,26 ± 1,13 

Insulin (pmol/l) 78,76 ± 67,64 

CRP (mg/l) 7,8 ± 7,8 

Abbreviations: TNF-  (Tumor necrosis factor alpha), IL-6 (interleukin 6), LDL-C (low-density lipoprotein cholesterol), TG 

(triglycerides), HDL-C (high-density lipoprotein cholesterol), HbA1c (glycated hemoglobin), ApoA1 (apolipoprotein A1), ApoB 

(apolipoprotein B), CRP (C-reactive protein). 

 

4.1.4 Tunisian Case-Control Study 

 

We! recruited! 52! obese! (34,29! ±! 5,31! kg/m2)! and! 52! control! (23,22! ±! 1,44! kg/m2, p < 0,01) 

Tunisian adults. The study included male (n = 33) and female (n =71) participants. The 

characteristics of the obese and control subjects are shown in Table 8. 

Both controls and obese exhibited normal blood glucose level, though the obese group exhibited 

significantly higher glycemia level than the control group (p < 0,01). Also, insulin level was 

elevated in the obese group as compared to the control group (p < 0,01). Both transaminase 

enzymes (i.e. ALAT, ASAT) were higher in the obese subjects (p < 0,01, p < 0,05, respectively). 

No significant difference was observed in LDL-C and HDL-C levels between the two groups. 

Likewise, there was no difference in uric acid, creatinine, CRP, and HbA1C values between 

control and obese subjects. 
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Table 8: Characteristics of control and obese Tunisian adults included in the Tunisian case-

control study.  

Parameters 
Controls Obese 

mean   SD mean   SD 

Age (years) 35,30 ± 4,10 35,00 ± 5,43 

Weight (kg) 67,65 ± 8,21 95,24 ± 16,32** 

Height (m) 1,70 ± 0,08 1,67 ± 0,09* 

BMI (kg/m2) 23,22 ± 1,44 34,29 ± 5,31** 

Glycemia (mmol/L) 4,65 ± 0,76 5,23 ± 0,78** 

Insulin (pmol/L) 6,52 ± 3,93 26,57 ± 13,81** 

ALAT (U/I)  16,26 ± 8,42 22,25 ± 11,97** 

ASAT (U/I) 19,32 ± 4,73 21,77 ± 6,64* 

LDL-C (mmol/L) 2,64 ± 0,64 2,57 ± 0,72 

HDL-C (mmol/L) 1,25 ± 0,41 1,11 ± 0,32 

Uric acid (µmol/L)  254,59 ± 89,28 271,82 ± 90,08 

Creatinine (µmol/L) 68,27 ± 34,67 62,91 ± 16,7 

CRP (mg/L) 4,89 ± 2,35 4,91 ± 3,41 

HbA1c (%) 5,59 ± 0,44 5,74 ± 0,58 

* p < 0,05 ** p < 0,01 between controls and obese. Abbreviations: ALAT (Alanine transaminase), ASAT (Aspartate transaminase), 

LDL-C (low-density lipoprotein cholesterol), TG (triglycerides), HDL-C (high-density lipoprotein cholesterol), CRP (C-reactive protein), 

HbA1c (glycated hemoglobin). 

 

4.1.5 Czech Cohort Study 

 

Czech cohort study included 116 participants with various BMI from 15,93 kg/m2 to 39,52 kg/m2. 

The study included males (n = 43) and female (n = 73). Table 9 shows characteristics of the Czech 

population. Out of the subjects, 12 of them were considered as obese (BMI > 30 kg/m2, 6 males, 

6 females). The average age in the group was 21,84 ± 0,22 years. The male group has higher BMI, 

waist-to-hip-ratio (WHR), waist-to-height ratio (WHtR) and waist circumference (WC) than the 

female group. As expected, we noticed a strong positive association in all four measured 

anthropometric parameters (p < 0,01). 
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Table 9: Characteristics of the study Czech adult population. 

Parameters mean   SD 

Age (years) 21,84 ± 2,38 

BMI (kg/m2) 23,34 ± 4,28 

WC (cm) 76,88 ± 10,05 

WHR (cm/cm) 0,79 ± 0,08 

WHtR (cm/cm) 0,44 ± 0,05 

LA (mmol/L) 1,47 ± 2,75 

Abbreviations: WC (waist circumference), WHR (waist-to-hip-ratio), WHtR (waist-to-height ratio), LA (linoleic acid oral detection 

threshold). 

 

4.2 Taste Sensitivity 

4.2.1 Fat Taste and Obesity 

 

We noticed statistically significant difference in oleic acid oral detection threshold between 

obese and lean subjects in both Algerian case-control studies (Figure 5). Studied obese children 

exhibited significantly lower detection threshold (0,34 ± 0,93 mmol/L) than the control children 

(2,14 ± 2,97 mmol/L, p < 0,01). In addition, we reported positive correlation between waist 

circumference and the detection threshold in these children (Figure 6, p <0,01). We did not find 

any correlation between BMI z-score and the detection threshold. 

The same trend was observed in the Algerian adolescents (Figure 5). The detection threshold in 

obese adolescents was almost twofold higher (2,57 ± 2,95 mmol/L) than in controls (1,33 ± 2,96 

mmol/L, p < 0,01). We also observed direct correlation between BMI z-score and the oleic acid 

detection threshold in this population (p < 0,01). Furthermore, if we divide the participants 

based on oral detection thresholds, into three categories: high tasters (0,018 mmol/L), middle 

tasters (from 0,18 to 1,5 mmol/L), and low tasters (from 3 to 12 mmol/L), we observe a 

significant relationship between the corpulence and oleic acid detection threshold (p < 0,01). 

The relationship between oleic acid detection threshold and thee taster categories shows Figure 

7. No difference in oral detection threshold between genders was observed. 
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Figure 5: Oleic acid detection threshold in Algerian children (black) and adolescents (grey). We 

observed significantly higher detection threshold in both age groups. Moreover, the control 

adolescents were less sensitive to oleic acid than the control children (p = 0,04). This difference 

is even greater in the obese (p < 0,01). * p < 0,05; ** p < 0,01 

 

Figure 6: Correlation between waist circumference and oleic acid detection threshold in the 

Algerian lean (black) and obese (grey) children. ** p < 0,01 
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Figure 7:  Average BMI z-score in each of three taster categories. �High tasters� group consist of 

control subjects only (n = 8). The most common group, �Medium tasters� contained both 

controls (n = 60) and obese (n = 45) subjects. The �Low tasters� group contained 52 subjects (11 

controls, 41 obese). * p < 0,05 

 

 

Figure 8: Difference of linoleic acid detection threshold between controls and obese Tunisian 

adults(A). Correlation between BMI and linoleic acid detection threshold in obese (grey) and 

control (black) groups (B). * p < 0,05; NS = insignificant difference 

 

In the Tunisian case-control study, obese subjects exhibited slightly higher detection threshold 

(1,80 ± 3,01 mmol/L) than lean controls (1,09 ± 2,30, Figure 8a). However, this difference was 
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too small to be statistically significant (p = 0,18). Moreover, we observed a positive association 

between BMI and the detection threshold in obese subjects (p = 0,037), but not in control 

subjects (Figure 8b). 

 

In the Czech cohort study, we also found a significant relationship between linoleic acid 

detection threshold and measured anthropometric parameters (Figure 9). There was the 

positive correlation between LA detection threshold and BMI (p = 0,047), waist circumference 

(p = 0,004), waist-to-hip-ratio (p = 0,016), and waist-to-height ratio (p = 0,025). The male subjects 

had more than two-fold lower sensitivity (higher detection threshold) than female subjects (p < 

0,01). 

 

Figure 9: Relationship between BMI, WC, WHR, WHtR, and linoleic acid detection threshold in 

Czech adults. * p < 0,05; ** p < 0,01 
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4.2.2 PROP 

 

We noticed that obese Tunisian subjects exhibit higher PROP detection threshold than control 

subjects (0,40 ± 0,34 �mol/L and 0,18 ± 0,298 �mol/L, respectively, p < 0,01). Also, PROP 

detection threshold positively correlated with BMI in both control (p = 0,03) and obese (p < 0,01) 

groups. The results of the PROP detection threshold are shown in Figure 10. Moreover, we 

observer strong positive correlation between LA and PROP detection threshold in the obese 

participants (p < 0,01, Figure 11). 

 

 

Figure 10: Orosensory detection thresholds of PROP in obese and control subjects (A). 

Correlation between BMI and orosensory detection thresholds of PROP in obese (grey) and 

control (black) groups (B). * p < 0,05; ** p < 0,01, NS = insignificant difference. 
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Figure 11: Relationship between detection thresholds of linoleic acid and PROP. ** p < 0,01. 

 

4.2.3 Cholesterol and Triglyceride Levels after Tasting Session 

 

One hour after the linoleic acid tasting session, we observed a noteworthy increase of total 

cholesterol (TC) level in the obese subject (p < 0,01), though the control group exhibited the 

opposite trend (p <0,05). In case of triglyceride level, we noticed the opposite trend. The tasting 

session cause a decrease of triglyceride level in obese and increase in control subjects (p < 0,01). 

The changes of the total cholesterol and the triglycerides are shown in Figure 12. 

 

 

Figure 12: The effect of fatty acid-tasting on total cholesterol and triglyceride concentration in 

Tunisian control and obese adults. * p < 0,05; ** p < 0,01. 
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4.3 Genetic Analysis 

4.3.1 CD36 Polymorphisms 

 

Tables 10 and 11 show genotype and allelic frequencies of studied CD36 polymorphisms in the 

selected populations. Regarding rs1761667, G-allele it the minor allele in both Algerian a 

Tunisian populations. In Czech populations, T-allele of rs1527483 and deletion allele of 

rs3212018 were considered as minor with allelic frequencies 9,1 % and 18,5 %, respectively. The 

studied polymorphisms did not deviate from Hardy-Weinberg equilibrium. 

 

Table 10: Genotype and allelic frequencies of CD36 polymorphism rs1761667 in Algerian and 

Tunisian populations. 

Sample Genotype Allele 

Total 

number 
Obese Control p value 

n % n % n %  

Algerian children AA  34 29 22 39 12 20  

 AG  58 50 26 46 32 54  

 GG  24 21 9 16 15 25  

 AG+GG  82 71 35 61 47 80 0,041 
  A 126 54 70 61 56 47 

0,036   G 106 46 44 39 62 53 
    

 
 

 
 

 
 

Algerian adolescents AA  65 39 35 42 30 37  

 AG  76 46 43 52 33 40  

 GG  24 15 5 6 19 23  

 AG+GG  100 61 48 58 52 63 0,525 
  A 206 62 113 68 93 57 

0,041  
 

G 124 38 53 32 71 43 
 

 
  

 
 

 
 

 
 

Tunisian adults AA  35 34 24 46 11 21  

 AG  56 54 22 42 34 65  

 GG  13 13 6 12 7 14  

 AG+GG  69 66 28 54 41 79 0,012 
  A 126 61 70 67 56 54 

0,065   G 82 39 34 33 48 46 
    

 
 

 
 

 
 

Tunisian obese cohort AA  59 29      

 
AG  102 50      

 
GG  42 21      

 
AG+GG  144 71      

  A 220 54      

    G 186 46           
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Table 11: Genotype and allelic frequencies of CD36 polymorphisms rs1527483 and rs3212018 in 

Czech population. 

Polymorphism Variation Genotype Allele 
Total number 

n % 

rs1527483  C/T CC  97 83.6 

  CT  17 14.7 

  TT  2 1.7 

  CT+TT  19 16.4 

   T 211 90.9 

   C 21 9.1 

      

rs3212018 16 bp del ins/ins  77 66.4 

  ins/del  35 30.2 

  del/del  4 3.5 

  ins/ins+del/del  39 33.7 

   ins 189 81.5 

      del 43 18.5 

 

4.3.1.1 Rs1761667 and Obesity 

 

We noticed significantly higher rs1761667 A-allele frequency in obese Algerian children 

compared with controls, whereas the G-allele was more common in the control group (p = 

0,036). This suggests that subjects with A-allele has higher risk for obesity (odds ratio = 1,76, 

95% confidence interval of odds ratio = 1,04�2,97, risk ratio= 1,29; confidence interval = 1,02�

1,64) than individuals with G-allele. Likewise, we observed higher A-allele frequency in obese 

Algerian adolescents compared to lean controls (p = 0,041, odd ratio = 1,63; 95% confidence 

interval of odd ratio = 1,04�2,55, risk ratio = 1,20; 95% confidence interval of rick ratio = 1,01�

1,42). However, we did not find any significant difference of BMI z-score and rs1761667 

genotypes. 

In the Tunisian case-control study, we did not find a statistically significant difference of allelic 

distribution between obese and control subjects. Using dominant model, we found a higher AA 

genotype frequency of rs1761667 in obese subjects compared to controls (p = 0,012). 
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4.3.1.2 Rs1761667 and Fatty Acid Detection Threshold 

 

Obese Algerian children with AA genotype exhibited significantly higher oleic acid oral detection 

threshold compared to obese children with GG genotype (Figure 13A, p < 0,05). Interestingly, 

we did not observe any difference in the difference in the control group. In the Algerian 

adolescents, no significant association between rs1761667 and oleic acid detection threshold 

was observed (Figure 13B). 

 

 

Figure 13: Oleic acid detection threshold in Algerian children (A) and adolescents (B). We 

noticed, that obese children with AA genotype exhibit significantly higher detection threshold 

compared to obese children with GG genotype (Figure 9A, p  <  0,05). 

 

In the Tunisian cohort study, we noticed that subjects with GG genotype of rs1761667 exhibit 

significantly higher oleic acid oral sensitivity (lower detection threshold) than individuals with 

AA genotype (Figure 14, p < 0,01). We did not observe a statistically significant difference in the 

taste detection thresholds of subjects with the AG or the AA (or GG) genotypes. On the other 

hand, we failed to replicate these results in the Tunisian case-control study. There was no 

difference of linoleic acid detection threshold and rs1761667 genotype neither in obese nor in 

control group. 
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Figure 14: Oleic acid detection threshold in Tunisian cohort study. We observed statistically 

significant difference between the three groups. The difference between the AG and GG 

genotypes was not statistically significant. ** p < 0,01. 

 

4.3.1.4 Rs1527483 and Corpulence 

 

Figure 15 shows the relationship between measured anthropometric parameters and rs1527483 

genotypes. In the Czech cohort study, we noticed that persons with CT/TT had higher BMI, waist 

circumference and waist-to-height ratio (WHtR) than the participants with CC genotype (p 

values were 0,011; 0,005 and 0,010, respectively). This difference was not observed in waist-to-

hip-ratio (WHR) (p = 0,077). Furthermore, the subjects with CT/TT genotypes exhibited higher 

detection threshold for linoleic acid than participants with CC genotype (p = 0,037, Figure 16). 
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Figure 15: Association between measured anthropometric parameters and rs1527483 genotype 

in the Czech cohort study. Out of measured anthropometric parameters, BMI, waist 

circumference and waist-to-height ratio (WHtR) differences were related to rs1527483 

genotypes. There was no relationship between waist-to-hip ratio (WHR) and rs1527483 

genotype. * p < 0,05; ** p < 0,01; NS = insignificant difference. 

 

 

Figure 16: Relationship between rs1527483 genotypes and linoleic acid (LA) detection threshold 

in Czech adults. Individuals with CC genotype exhibited significantly higher orosensory sensitivity 

to LA than individuals with CT and TT genotypes. * p < 0,05 
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4.3.2 CD36 and Fatty Acid Non-Tasters 

 

Regardless CD36 genotypes, we observed that fatty acid non-tasters are equally distributed in 

all studies populations. There was no significant relationship between non-tasters and any of 

the CD36 polymorphism. 

The selected CD36 exons 5 and 6 corresponded with sequences in online database. We 

sequenced base pairs 80,661,027 - 80,661,322 (exon 5) and base pairs 80,662,855 - 80,663,346 

(exon 6) on chromosome 7. In the analyzed DNA sequences of 4 non-tasters and 4 supertasters, 

we did not find any polymorphism. We can state that the cause of altered dietary lipids oral 

perception is not related to mutations in exons 5 and 6 of CD36 gene in our study. 

 

4.3.3 T2R28 SNPs 

 

Table 12 shows genotype and allelic frequencies of studied T2R38 polymorphisms in obese and 

control Tunisian adults. Using dominant model, we observed that AA genotype (which encodes 

alanine) of rs1726866 was more frequent in the obese Tunisian group (p = 0,017). We did not 

find any significant association between rs10246939 SNP and obesity. Combination of 

rs1726866 and rs10246939 formed 9 different haplotype combinations. However, none of them 

differed between obese and control groups. Furthermore, we observed strong linkage 

disequilibrium (LD) between rs1726866 and rs10246939 (D� = 0,863, r2 = 0,616). Compared to 

other two genotypes of rs10246939, the controls with the VV genotype have significantly lower 

LA detection threshold (p = 0,042) than obese individuals. The individuals with AA genotype 

(alanine) of rs1726866 had significantly higher BMI than the individuals with AV and VV 

genotypes (p < 0,01). The genetic frequencies studied SNPs did not deviate from Hardy-

Weinberg equilibrium. 
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Table 12: Genotype and allelic frequencies of rs1726866 and rs10246939 in Tunisian obese and 

lean adults. 

SNP Genotype 
Amino 

acid 

Total 

number 
Obese Control p value 

n % n % n %  

rs1726866 

CC AA 23 22 17 33 6 12  

CT AV 43 41 15 29 28 54  

TT VV 38 37 20 39 18 35  

CT+TT AV+VV 81 78 35 67 46 89 0,017 

rs10246939 

AA II 28 27 14 27 14 27  

AG IV 53 51 23 44 30 58  

GG VV 23 22 15 29 8 15  

AA+AG II+IV 81 78 37 71 44 85 NS 

rs1726866 

and 

rs10246939 

haplotype 

CCAA AAII 1 1 1 2 0 0 NS 

CTAA AVII 2 2 0 0 2 4 NS 

TTAA VVII 25 24 13 25 12 23 NS 

CCAG AAIV 2 2 2 4 0 0 NS 

CTAG AVIV 40 38 15 29 25 48 NS 

TTAG VVIV 11 11 6 12 5 10 NS 

CCGG AAVV 20 19 14 27 6 12 NS 

CTGG AVVV 1 1 0 0 1 2 NS 

TTGG VVVV 2 2 1 2 1 2 NS 

 

 

4.4 Nutrition Questionnaires 

 

In Algerian children, we compare habitual food pattern between control and obese children, we 

noticed a statistically significant difference between these two groups (p < 0,01), as far as the 

consumption of four food products (pasta, chips, chocolates and bread) and three food products 

(wafer, bread and candy) is concerned (Table 13). In addition, we noticed that AA genotype 

significantly predisposed these children to prefer palatable food products, that is, pasta, chips, 

chocolates and bread (p = 0,04) (Table 14). 

Table 13: Difference of preferred food patter between Algerian obese and control children. 

Food contents Controls Obese Total 

Pasta, chips, chocolates and bread 4 44 48 

Wafer, bread and candy 23 13 36 

Candy, bread and cheese 32 0 32 
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Table 14: Relationship between CD36 polymorphism rs1761667 and preferred food patter in 

Algerian children. 

Food contents 
Rs1761667 genotype 

AA AG GG 

Pasta, chips, chocolates and bread 20 20 8 

Wafer, bread and candy 9 21 6 

Candy, bread and cheese 5 17 10 

 

In the Czech cohort study, we observed statistically significant correlation between measured 

anthropometric parameters and craving for �High fats� food items (Table 15). The subjects with 

BMI, waist circumference, waist-to-hip ratio and waist-to-height ratio tend to have more 

frequent craving for fatty food (p values respectively 0,026; 0,007; 0,011; 0,044). In addition, the 

subject with frequent craving for �High-fats� food items have higher linoleic acid detection 

threshold (p = 0,033). We did not observe any of these trends with the �Fast-food fats� items. 

Interestingly, we found association between consumption of alcohol and the craving for �Fast-

food fats� food items (p = 0,021). 

 

Table 15: Correlation between FCI food items categories and measured anthropometric 

parameters, linoleic acid detection threshold and weekly alcohol consumption in the Czech 

adults. 

Parameter 

Food item group 

Fast-food fats  High fats  Total fats 

R p   R p   R p 

BMI (kg/m2) 0.163 NS  0.225 0.026  0.211 0.037 

WC (cm) 0.151 NS   0.277 0.007   0.238 0.022 

WHR (cm/cm) 0.162 NS  0.263 0.011  0.239 0.021 

WHtR (cm/cm) 0.161 NS   0.212 0.044   0.201 0.056 

LA (mmol/L) 0.173 NS  0.214 0.033  0.187 0.062 

WAC (unit/week) 0.224 0.021   0.182 0.06   0.21 0.03 

Abbreviations: WC (waist circumference), WHR (waist-to-hip-ratio), WHtR (waist-to-height ratio), LA (linoleic acid oral detection 

threshold), WAC (weekly alcohol consumption). NS = insignificant correlation. 
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5 Discussion 
 

Obesity remains one of the most important global health issues nowadays. Multifactorial 

ethology of this disease requires complete understanding of all factors which might have any 

effect on this worldwide pandemic. Inappropriate diet is one of key factors. Fat 

overconsumption is the main cause of positive energetic balance that eventually leads to 

accumulation of body fat and obesity209. Humans, or mammals in general, perceive dietary lipids 

as palatable part of daily diet. Are mammals able to detect dietary lipids?  Is there any 

relationship between hypothetical �taste of fats� and obesity? 

It is generally accepted, that dietary lipids are detected by the olfactory and somatosensory 

systems139. However, last decades brought various evidences supporting the hypothesis that 

mammals can detect dietary lipids via gustatory system. Moreover, the ability to detect the 

dietary lipids varies amongst individuals. This difference may play an important role in obesity. 

Therefore, we conducted the present studies on different populations. 

In Algerian adolescents and Tunisian adults, we have determined differences of blood 

parameters between obese and lean controls. In Algerian adolescents, we noticed higher 

glycemia, LDL-C, triglycerides, and insulin concentrations in obese individuals than the lean ones. 

It has been already shown that the Brazilian obese teenagers suffer from high blood 

concentrations of LDL-C, glucose and insulin210. Elsewhere, it has been observed that the 

prevalence of hyperinsulinemia and hypertriglyceridemia was significantly higher in severely 

obese children and adolescents, compared to the less obese persons211. Moreover, adolescents 

from the obese group exhibited low HDL-C concentrations. Indeed, it has been previously 

reported that low HDL is associated with high BMI and waist circumference212. Also, Jiang et 

al.213 have shown that insulin concentration positively correlated with serum triglyceride, and 

negatively with HDL-C levels all age group obese children including 12�17 years old individuals. 

The differences might have adverse consequences for cardiovascular diseases in adulthood in 

these adolescents. Moreover, we observed a high HOMA index, an indicator of insulin-resistance 

(IR) which is directly associated with aggravation of obesity214 in the obese adolescents. 

Obese Tunisian women exhibit a normal biochemical profile, marked with normal uric acid, 

creatinine, LDL-C, HDL-C and CRP concentrations. Nevertheless, they suffer from 

hyperinsulinemia which is associated with a mild increase of blood glucose concentrations. The 

glucose concentration seems under metabolic control as the HbA1c concentrations were not 

altered in these individuals. However, these women had higher levels of blood triglycerides, IL-
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6 and TNF-� compared to normal range207,208. Dyslipidemia is one of the most common obesity 

comorbidity215 and the high level of blood triglycerides is one of the rick factor for 

atherosclerosis. IL-6 and TNF-� are pro-inflammatory cytokines often associated with obesity. 

High IL-6 level is one of the symptom of obesity and its high concentration in obese has been 

already shown elsewhere216�218. 

In the Tunisian case-control study, we did not observe any abnormality in the measured blood 

parameters. Only the obese subjects suffer from hyperinsulinemia associated with a mild 

increase of fasting glucose concentration. Hyperinsulinemia is a common result of obesity. Long-

lasting hyperinsulinemia may result to insulin resistance219. Furthermore, obese individuals 

exhibited higher ALAT and ASAT levels than lean controls. These results are consistent with 

previous findings. High aminotransferase levels in obese individuals have been previously shown 

in adults220, adolescents221 and children222. Obesity is associated with a spectrum of liver 

abnormalities, collectively called of nonalcoholic fatty liver disease (NAFLD). High transaminase 

concentration is one of the NAFLD indicators223. Also, prevalence of NAFLD increases with 

increasing BMI224. Nevertheless, transaminase concentrations of the Tunisian adults were in 

normal range. Therefore, we cannot state that these individuals may have suffered from NAFLD. 

One of the key objectives of the dissertation was assessment whether obese subjects exhibit 

altered orosensory perception for dietary lipids. In the first study conducted on Algerian 

children, we observed that obese children exhibited significantly higher orosensory detection 

threshold than lean controls. We obtained the similar results in the second study where Algerian 

adolescents were recruited. However, there results from Tunisian case-control study did not 

show the same results. These results are consistent with studies conducted in French225 and 

Australian226 populations where the obese subjects exhibited high orosensory detection 

threshold for fatty acids. The different orosensory perception in obese children and adolescents 

has been also observed in the other taste modalities. Obese children and adolescents have a 

significantly lower ability to identify the correct taste modalities. The difference has been 

observed in salty, umami and bitter tastes227. This difference was also observed in young adults 

where obese individuals exhibited a significantly higher taste threshold for salty taste compared 

controls228. 

When we consider respective differences from the performed case-control studies, we may 

observe a certain trend. The most significant difference of detection threshold was observed in 

children. This difference was observed in the adolescents too, but in the lesser extent. And 

finally, difference between obese and lean adults was not statistically significant. This trend may 
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have several explanations. Compared to adolescence and adulthood, childhood obesity is 

affected by fewer environmental factors such as chronic stress229,230 or sedentary lifestyle45. 

Individuals are exposed to these factors throughout their lives, however their impact on obesity 

increases over time. Furthermore, we noticed that Algerian children have significantly lower 

orosensory detection threshold (higher sensitivity) than the Algerian adolescents. To date, no 

study elucidate how are dietary lipids perceived in different age groups. However, Segovia et al. 

already reported that male children are more sensitive to sweet tastant sucrose than male 

adults231. According the results, Segovia et al. believe that this difference is caused by higher 

taste pore density in children than in adults231. 

The difference of the altered detection threshold in obese individuals may have another 

explanation. Obesity is greatly influenced by the individual�s diet. Previous studies on animal 

models have showed that diet-induced obese (DIO) rodents are less sensitive to oil in diet than 

lean controls190. Similar results were obtained in human volunteers. Stewart et al. showed that 

lean subjects exhibited significantly decreased oral sensitivity to oleic acid after diet rich in 

dietary fats (high-fat diet) and increased oral sensitivity after low-fat diet232. Moreover, Brennan 

et al. noticed that obese subjects show enhanced gastrointestinal sensitivity to fat after acute 

dietary restrictions233. From our data, we cannot clearly state whether the low orosensory 

sensitivity to dietary lipids in obese is a consequence or a cause of obesity. Nevertheless, when 

we consider quoted publications it seems likely that low orosensory sensitivity is rather a 

consequence of high body weight than the cause of obesity. 

In the present studies, we observed that orosensory detection threshold for dietary lipids often 

correlated with anthropometric parameters. Waist circumference of Algerian children positively 

correlated to oleic acid detection threshold. Likewise, BMI z-score of Algerian adolescents 

positively correlated with oleic acid threshold. In the Tunisian case-control study, the detection 

threshold correlated with BMI of obese individual but not with BMI of lean controls. And finally, 

selected anthropometric parameters correlated with linoleic acid detection threshold in the 

Czech cohort study. In the Czech study, we decided to use several different anthropometric 

parameters to eliminate any misinterpretation of BMI values30. Nevertheless, the selected 

parameters were in strong correlation. According to these results, it seems that corpulence, not 

obesity alone, is the factor responsible for difference in orosensory detection threshold. Indeed, 

we did not find any correlation between the detection threshold and obesity indicators (such as 

CRP, IL-6 or TNF-!) besides BMI, BMI z-score, WC, WHR, and WHtR. 
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We also observed that Tunisian obese individuals exhibited lower orosensory sensitivity (higher 

detection threshold) for PROP. Moreover, PROP detection threshold significantly correlated 

with BMI of the obese individual but not with BMI of the lean controls. PROP is a typical bitter 

molecule but it is also considered marker for general taste sensitivity234. This result supports the 

theory that obese subjects have attenuated orosensory detection ability. As above mentioned, 

obese children and adolescents exhibited significantly diminished ability to identify the correct 

taste modalities, bitter taste included227. Similarly, obese children from another study also 

exhibited a low ability to identify presented tastants235. Nevertheless, their detection ability was 

improved after weight loss. Moreover, obese subjects were showed to possess low intensity 

ratings for bitter vegetables, the source of vitamins and minerals236. 

In the Tunisian case-control study, we noticed interesting strong correlation between PROP and 

LA oral detection thresholds. Previously, it has been proposed that alteration of fatty acid 

detection threshold might be associated with alteration of bitter taste modality237.  

Furthermore, PROP tasters exhibited high taste intensity rating for linoleic acid than PROP non-

tasters238. This finding supports the hypothesis that orosensory sensitivities of each taste 

modalities are related to each other (as mentioned before). 

In the Tunisian adults, we observed noteworthy differences of total cholesterol and triglycerides 

concentration after the taste test. These results partly corroborate with finding of Chevrot et 

al.225. Chevrot et al. have reported significant increase of triglyceride concentrations after the 

oral fatty acid stimulation. In our study, the triglyceride increase has been observed only in lean 

subjects, not in obese. This rapid decrease of triglycerides and increase of total cholesterol in 

obese subjects might be due to a defect in the vagal reflex loop, tongue-brain-intestine. To date, 

no other evidence about this phenomenon has been published. Therefore, more studies focused 

on endocrinological response to orosensory stimulation is required. 

In this thesis, we have been focused on CD36 polymorphisms. CD36 appears to be the most 

promising taste receptor for dietary lipids. So far, the most studied polymorphism is rs1761667.  

This SNP has been related to several health complications such as coronary artery disease239 or 

ischemic stroke240. Our findings suggest that this SNP may be also related to obesity. We 

observed that A-allele was more abundant in obese Algerian children and Adolescents than in 

the lean controls. The same analysis was performed in Tunisian case-control study, but the 

differences were only statistically marginal. Furthermore, A-allele of this SNP is related to 

increase orosensory detection threshold in Algerian children and Tunisian obese women. 

However, there we did not observe any difference in Algerian adolescents and in Tunisian case-
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control study. The reason for this failure in Algerian adolescents might be the young age of the 

participants. In has been shown that circumvallate papillae, which are the papillae with highest 

expression of CD36161,187,188, continue grow until the age of 15-16 years241. Circumvallate papillae 

express nine-times more CD36 mRNA than fungiform papillae185. 

 Rs1761667 has been, for the first, associated with altered orosensory lipid perception by Pepino 

et al.198 and later confirmed in African-American196 and Italian200 populations. Nevertheless, 

influence of rs1761667 on obesity and orosensory lipid perception remains controversial. 

Recent Malaysian study did not find any relationship between rs1761667 and lipid perception 

or obesity (rs1761667). Also, study of Pioltine et al.242 did not find any relationship between 

rs1761667 and obesity.  Surprisingly, this study showed that A-allele of rs1761667 is associated 

with a decreased intake of fat in obese subjects. This is rather an opposite effect that we would 

expect. 

In the Czech study, we analyzed other CD36 polymorphisms, rs1527483 and rs3212018. 

Regarding rs3212018, we did not observe any significant relationship with orosensory threshold 

nor with anthropometric parameters. Rs3212018 has been previously associated with waist 

circumference and obesity196. However, a comprehensive meta-analysis published by Choquet 

et al.197 failed to obtain the similar results. Deletion of rs3212018 had very low frequency among 

populations. Thus, assessment of rs3212018 relevance in obesity remains difficult. 

T-allele of rs1527483 has been previously associated with high BMI and percentage of body fat 

(BF%)243. In our study, we did no not measure the BF%, however BMI and other used adiposity 

parameters could be sufficient substitution for BF%244. We observed that individuals with CC 

genotype of rs1527483 have lower orosensory detection threshold for linoleic acid than subjects 

with CT/TT genotypes. So far, there is no study that shows relationship between orosensory 

detection and this. So far, thee studies study relationship of rs1527483 with orosensory lipid 

perception. Two studies conducted on African-American and Asian populations reported that 

this SNP is associated with oral fat perception of lipids196,201. However, study conducted on 

Italian population did not, however, confirm this finding200. Apart from differences between 

study populations, the discrepancy between these results may be caused by two major factors: 

1) While the studies of Keller et al. and Ong et al. included 317 and 313 subjects, respectively, 

the study of Melis et al. was performed only on 64 subjects (with only 7 subjects with CT 

genotype and none with TT genotype). Despite the small sample group, the results of Melis et 

al. suggest a possible, but not statistically significant, influence of rs1527483 in bitter taste 

perception. In this study, T-allele of this SNP was presented rather in subjects with decreased 
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PROP sensitivity. 2) During paper screening test used by Melis et al., a paper disc impregnated 

with oleic acid was placed on the center of the tongue which means that there was no contact 

with circumvallate papillae located on posterior region of the tongue. On the contrary, testing 

method used by our group and Keller et al. use the whole surface of the oral cavity for oral 

sensitivity test which means the used fatty acid can reach the whole tasting area. So far, we do 

not know a level of CD36 expression in different taste papillae, nevertheless CD36 expression in 

circumvallate papillae and foliate papillae is 9-fold and 3,5-fold higher than in fungiform papillae 

in mice, respectively245. 

Rs1761667 has been shown to associated with low expression of CD36 in platelets and 

monocytes246. Whether this SNP has the same effect on TRC remains unknown. Regarding 

rs1527483, it remains unknown this SNP may influence CD36 function. Rs1527483 is intronic 

polymorphism. Therefore, regulatory role of this SNP can be considered247.  

In each performed study, we noticed that some of the subjects are not able to identify the fatty 

acids at any given concentration. These subjects were defined as non-tasters. It is interesting 

that we identified the non-tasters throughout all age groups, populations and in both genders. 

Used statistical analysis did not reveal any significant influence on this phenomenon. One 

explanation for this might be an existence of mutation within CD36 gene. Based on the results 

of Kuda et al.180, we searched for a mutation within the exons known to encode the hydrophobic 

pocket of CD36. This pocket is responsible recognition of most of CD36 ligands, LCFA included. 

However, our results did not reveal any mutation in the region. So far, no clear cause of fatty 

acid insensitivity has been presented. Therefore, this phenomenon deserves further deeper 

study. Another explanation might be an existence of more pathways of oral lipid sensing. In 

human foliated and circumvallate papillae, two different fatty acid receptors, CD36 and GPR120, 

have been detected209. According to Sclafani et al., CD36 is more important in fatty acid 

detection than GPR120248. Indeed, experiments performed on human taste cells revealed that 

CD36 is more sensitive to fatty acids than GPR120161. Also, exposition of linoleic acid to CD36 

triggers its degradation from the lipid raft, whereas GPR120 is still presents. If the same 

mechanism applies in human cells, dietary fat can be detected by its taste without the CD36 via 

GPR120.  

We noticed significant correlation between obesity and palatable food pattern in Algerian 

children. Stewart et al. previously showed that subjects with high fat breakfast showed impaired 

fatty acid sensitivity226. In another study, Stewart et al. showed that study participants classified 

as hyposensitive to oleic acid consumed significantly more energy, fat, saturated fat, fatty foods 
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(butter, meat, dairy), had greater BMI and were lesser perceptive of small changes in the fat 

content of custard, compared with hypersensitive participants232. 

Dietary habits are one of the most important environmental factors in adiposity development. 

In the Czech study, we noticed that craving for dietary lipids is related to measured adiposity 

parameters. From the used questionnaire, we noticed than craving for �fatty� food rises with 

increasing BMI, waist circumference, waist-hip ratio, and waist-to-height ration. The similar 

results were previously obtained by Chao et al. who showed that BMI positively correlated (using 

also FCI) with craving for high fats and fast-food fats249. The food items used in the FCI are rich 

in saturated and trans-unsaturated fatty acids. High consumption of saturated and trans-

unsaturated fatty acids have been previously related with high BMI, obesity and T2DM250�252. It 

has been shown that craving for food is related to individual�s diet. The individuals who follow 

low-fat diet exhibited reduced craving for high-fat foods253. In addition, subjects exhibited 

significant decrease of food craving after six months weight loss compared to controls254.  

These differences may be caused by the attenuation of the hypofunctioning reward circuitry in 

individuals with high BMI. The striatum plays a crucial role in encoding reward from food intake. 

The food intake is associated with neurotransmitter dopamine255. Obese individuals have 

smaller density of striatal D2 receptor compared to lean individuals256�258. After palatable food 

intake, obese persons exhibited attenuated activation of striatal dopamine target regions (i.e. 

caudate, putamen)259. Interestingly, striatum of obese individuals is more activated in response 

to pictures of food than in lean controls260. 

Furthermore, we noticed that increased craving for the dietary lipids is associated with high oral 

detection threshold for linoleic acid. This finding agrees with findings that high consumption of 

dietary lipids causes decrease of oral lipid sensitivity both humans202 and rodents261. We did not 

analyze daily diet of the participants in the study. Yet, a few of the participants did not follow 

the necessary 2 hours fasting before the taste test and the resulting linoleic acid oral detection 

threshold was significantly higher than we expected (data not shown). We asked the participants 

to come again to perform the taste test one more time under the proper conditions. The 

divergent data were excluded from the final calculation. 
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6 Conclusion 
 

The results from the five performed studies prove that high adiposity is closely related to 

orosensory lipid perception. Obese subject showed lower oral sensitivity to dietary lipids. 

Moreover, we observed increased craving for fatty food with growing weight. Furthermore, 

summary results from fatty taste and bitter taste show that low orosensory detection is also 

present in other taste modalities. 

Comprehensive interpretation of CD36 genetic polymorphisms remains complicated. 

Mechanism of taste is complex process. Determined orosensory detection threshold is an 

outcome of vast number of factor where these factors act together is different ratios. Therefore, 

we can state that genetic polymorphisms do not play the crucial role in taste but their effect is 

undeniable.  
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Abstract

Recent studies have suggested that excessive intake of dietary fat is associated with obesity. Some obese subjects have been reported to

exhibit high thresholds for the gustatory detection of lipids via lipid receptors, such as cluster of differentiation 36 (CD36). We studied

lingual detection thresholds for emulsions containing oleic acid in obese Tunisian women (n 203) using a three-alternative forced

choice (3-AFC) method. Genotyping of the TNF-a (rs1800629), IL-6 (rs1800795) and CD36 (rs1761667) genes was performed to associate

with lipid taste perception thresholds. The CD36 genotype distribution was as follows: GG (n 42), AG (n 102) and AA (n 59). Women with

the CD36 GG genotype exhibited oral detection thresholds for oleic acid that were more than three times lower than those with the CD36

AA genotype. The present study confirms a high threshold of gustatory fat detection in obese women with the CD36 AA genotype, but

there is no significant association with the IL-6 and TNF-a gene polymorphisms.

Key words: Obesity: Lipids: Taste: Genes

As the obesity epidemic continues, more subjects are getting

fatter and are therefore at increased risk for metabolic compli-

cations, hypertension and cancer-related mortality(1,2). The

aetiology of obesity is multifactorial, and genetic inheritance

and behavioural/environmental causes are considered to be

the main factors(3). Dietary fat is considered palatable to

humans, and several factors, including its olfactory, visual

and textural properties, have been proposed as playing a

key role in the attractiveness of fat(4). Humans and rodents

can detect long-chain fatty acids in their diets as gustatory

cues(4–9). Some recent studies have shown that obese subjects

exhibit a high preference for dietary lipids as compared to

lean subjects(10,11), which suggests that inappropriate lipid

perception might influence obesity risk by impacting feeding

behaviour. In fact, obesity is associated with a low sensitivity

to the oro-sensorial detection of fat(10,11).

Lingual cluster of differentiation 36 (CD36), like G protein-

coupled receptor 120 (GPR120) and G protein-coupled

receptor 40 (GPR40), has been shown to act as a lipid receptor

that is involved in a spontaneous preference for fat(6,12–15).

The lingual lipid receptors bind to long-chain fatty acids,

which are released by lingual lipases in the buccal

cavity(12–15). We performed the present study on CD36 SNP

because CD36 is a high-affinity receptor, whereas GPR120

and GPR40 are low-affinity receptors. In addition, GPR40

could not be detected on human lingual epithelium(16). More-

over, Sclafani et al.(17) have shown that CD36 is directly

involved in early fat detection, whereas GPR120 plays a role

in the post-ingestive regulation of fat preference(18).

Recent studies have shown that CD36 protein expression is

influenced by CD36 gene polymorphism, and it is related to

the detection threshold of dietary lipids in obese subjects(19).

Keller et al.(20) reported that obese subjects with the CD36

AA genotype (rs1761667) perceived more creaminess in

salad as compared to those with the AG or GG genotypes.

Pepino et al.(19) reported that obese subjects with the AA geno-

type exhibited higher oral detection thresholds for fat than

those with the AG and GG genotypes. These novel findings

*Corresponding author: Professor N. A. Khan, fax þ33 3 80 39 63 30, email naim.khan@u-bourgogne.fr

Abbreviations: GPR120, G protein-coupled receptor 120; HbA1c, glycosylated Hb.
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are changing our view about the pathogenesis of obesity;

however, future studies must be conducted to confirm these

interesting findings, particularly in developing countries

where obesity is quickly rising.

In chronic pathological conditions such as obesity, IL-6

plays a synergic role in inflammation(21–23), because macro-

phages within adipose tissue might secrete IL-6(22). An

association between the rs1800795 polymorphism of the IL-6

gene and increased adiposity, inflammation and metabolic

disturbances has been demonstrated(24,25). In obesity, adipose

tissues also secrete TNF-a abundantly(26), and rs1800629

polymorphism of the TNF-a gene(27) has been reported to

be associated with obesity risk(28) as well as a high incidence

of type 2 diabetes(29). Because obesity is marked by inflam-

mation, the present study is also designed to explore the

relationship between pro-inflammatory markers (IL-6, TNF-a

and C-reactive protein) and the oro-sensorial detection of

lipids in obese subjects.

There has recently been a rapid upsurge in overweight/

obesity and obesity-related diseases in Tunisia, especially in

women as compared to men(30,31). This sex gap between

women and man differs greatly according to environmental

and socio-economic conditions(31). Keeping in mind the afore-

mentioned literature on lipid oral taste sensitivity and CD36

SNP, we thought it would be worthwhile to investigate

whether CD36 SNP in obese Tunisian women is associated

with decreased fat taste perception.

Materials and methods

Subjects

Inclusion criteria. Obese women (n 203) were recruited

from the group of patients who visited the gynaecology

outpatient department (OPD) of Farhat Hached University

Hospital, Sousse (Tunisia), in 2012 and 2013 for a general

health check-up. Medical records were screened by specialist

clinicians. The studied women were between 38 and 43 years

old. The women were asked to return to the gynaecology

OPD when they were in their first week of menstruation,

and they were given an appointment for a particular date so

that blood sampling and an analysis of other parameters

could be performed.

The exclusion criteria included smoking, diabetes, breast-

feeding, pregnancy-related complications, a history of gesta-

tional diabetes, the use of oral contraception, chronic illness

such as hypertension or any other inflammatory pathology,

any autoimmune disease, any lipid-lowering medication,

recent weight loss, dieting and the use of any medications

known to affect taste. The inclusion criterion constituted a

normal glucose tolerance test and electrocardiograms.

Anthropometrics. Body weight and height were measured

in the morning while participants were unclothed and not

wearing shoes. BMI was calculated as body weight (in kg)

divided by height (in m2). Obesity was defined as a BMI of

30 kg/m2 or higher, in accordance with the recommendations

of WHO. The characteristics of the women are shown

in Table 1.

Ethics

The present study was carried out in accordance with

the Declaration of Helsinki (1989) of the World Medical

Association and was approved by Farhat Hached Hospital

Committee for Research on Human Subjects (Tunisia).

Informed written consent was obtained from all of the subjects.

The present experimental protocol conforms to the relevant

ethical guidelines for human research.

Blood samples

Fasting venous blood samples were collected from each

woman to obtain plasma (EDTA tubes) and serum. Serum

and plasma were prepared by centrifugation (1000 g at

20min). Plasma was immediately used for glucose determi-

nation. Serum was aliquoted and frozen at 2808C for further

analysis of blood parameters.

Determination of blood parameters

Serum TAG, total cholesterol and free cholesterol concen-

trations were determined using enzymatic methods, according

to the manufacturer’s instructions furnished with the kit

(Boehringer). HDL-cholesterol was also measured by a kit

(Boo Scientific). LDL-cholesterol concentrations were calcu-

lated according to Friedewald et al.(32). All biochemical

parameters were analysed on a Synchron CX7 Clinical

System (Beckman). Plasma fasting glucose was determined

by the glucose oxidase method with a glucose analyser

(Beckman Instruments). Plasma glycosylated Hb (HbA1c)

concentrations were determined by isolab column chromato-

graphy(33). Insulin serum concentrations were determined

using an Insulin IRMA kit (Immunotech; Beckman Coulter,

Inc.) with a detection limit of 0·5mIU/ml (3·4725 pmol/l).

The inter-assay CV was 3·3 and 4% for the 13 and 54 IU/ml

(90·285 and 375·03 pmol/l) concentrations, respectively.

Table 1. Clinical characteristics of obese Tunisian women (n 203)

(Mean values and standard deviations)

Parameters Mean SD

Weight (kg) 86·4 16·3

Height (cm) 158 6

BMI (kg/m2) 34·6 4·2

TNF-a (pg/ml) 131·4 165·5

IL-6 (pg/ml) 73·3 48·7

Age (years) 38·4 11·4

Glucose (mmol/l) 5·97 1·84

Urea (mmol/l) 3·39 1·58

Creatinine (mmol/l) 60·39 14·58

Cholesterol (mmol/l) 5·08 1·29

TAG (mmol/l) 1·77 1·06

HDL (mmol/l) 1·14 0·31

LDL (mmol/l) 3·04 1·01

HbA1c (%) 5·60 1·22

ApoA1 (g/l) 2·04 0·74

ApoB (g/l) 1·26 1·13

Insulin (pmol/l) 78·76 67·64

CRP (mg/l) 7·8 7·8

HbA1c, glycosylated Hb; CRP, C-reactive protein.
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Serum concentrations of urea, creatinine and C-reactive

protein were analysed by routine standard techniques using

an automated Synchron CX7 Clinical System (Beckman).

Serum concentrations of IL-6 and TNF-a were measured

with ELISA kits (Immunotech).

Oleic acid sensitivity analysis

Taste emulsions containing food grade oleic acid (Sigma)

were prepared according to Chalé-Rush et al.(34). EDTA

(0·01%, w/v) was added to prevent fatty acid oxidation.

The emulsions were sonicated for 4–5min in a Labo-Modern

sonicator at 48C in an ice bath. Samples were stored in

opaque polypropylene tubes and used for testing within

48 h of preparation. Control samples were prepared in the

same way but without added oil.

The women were called on a stipulated date and advised to

arrive early in the morning without having eaten breakfast

(fasting state). The subjects were weighed, and a blood

sample was drawn before the preference test to assess blood

parameters. Taste preference tests for dietary lipids were

performed by employing oleic acid at different ascending con-

centrations (0·018, 0·18, 0·37, 0·75, 1·5, 3, 6 and 12mmol/l) by

using a three-alternative forced choice (3-AFC) method(35).

According to the 3-AFC method, the patients were instructed

to taste, one by one, three solutions; two of the solutions con-

tained a control substance (acacia gum, 0·01%), and the third

one contained oleic acid in a solution that also included acacia

gum (0·01%). The acacia gum was used to mimic the textural

properties of oil in the control solution.

We increased the concentration of oleic acid in the test

solution when a single incorrect response was given, and

we decreased the quantity of this fatty acid after two correct

responses, in accordance with the method described by

Pepino et al.(19). A reversal in the response was considered

when the concentration sequence changed direction. The pro-

cedure was terminated when there were four reversals that

met the following two criteria. First, there could not be

more than two dilution steps between two successive

reversals. Second, the series of reversals could not form an

ascending pattern. The threshold concentration was calculated

as mean of log values for the last four reversals. To avoid

visual and olfactory cues, the testing session was conducted

under red light and participants used nose clips. The

women were not allowed to drink the solutions; rather, they

had to spit out each solution after keeping it in their mouths

for a few seconds. If they responded that they observed no

difference in the taste sensation, we increased the concen-

tration of oleic acid. If they were able to detect a difference,

it meant they were capable of detecting the presence of

‘fatty taste’.

Genotyping analyses

Genomic DNA was extracted from 5ml of whole blood with

the use of a commercially available DNA isolation kit

(Wizard Genomic DNA purification kit; Promega Corporation)

according to the manufacturer’s protocol. Genotyping of

TNF-a 2308 G/A (rs1800629), IL-6 2174 G/C (rs1800795)

and CD36 A/G (rs1761667) was performed according to

methods that have been previously used by our labora-

tory(36,37). The PCR primers for the three genotypes were as

follows: (TNF-a: 50-AGG CAA TAG GTT TTG AGG GGC AT-30

and 50-CGG GGA AAG AAT CAT TCA ACC AG-30; CD36:

50-CAA AAT CAC AAT CTA TTC AAG ACCA-30 and 50-TTT

TGG GAG AAA TTC TGA AGA G-30; IL-6: 50-ACT TTT CCC

CCT AGT TGT GTC TTT C-30 and 50-AGA ATG AGC CTC

AGA CAT CTC CAG T-30). PCR amplification reactions were

performed in a Veriti thermal cycler (Life Technologies).

After initial denaturation for 3min at 958C, DNA was subjected

to further amplification as follows for TNF-a and IL-6:

denaturation for 30 s at 958C, annealing for 30 s at 668C and

extension for 30 s at 728C. After thirty-five cycles, a final exten-

sion for 5min at 728C was used. Amplified DNA was digested

by either endonuclease Ncol (TNF-a) or TaqI (IL-6) and

further incubated at either 378C for 16 h (TNF-a) or 658C for

5 h (IL-6). For CD36, the conditions were as follows: denatura-

tion for 30 s at 958C, annealing for 30 s at 568C and extension

30 s at 728C. After forty cycles, a final extension for 5min at

728C was used. Amplified DNA was digested by Hha1 at

378C for 30min. The digestion products were analysed by

2% (w/v) agarose gel electrophoresis (Elisabeth Pharmacon)

containing ethidium bromide, and DNA fragments were visu-

alised under UV light. The following fragments were detected

for TNF-a: 264 bp (GG genotype), 264 and 284 bp (AG geno-

type) and 284 bp (AA genotype). For IL-6, two fragments of 24

and 180 bp (G allele) and an unrestricted fragment of 204 bp

(C allele) were obtained. Two fragments of CD36 (138 and

52 bp) in the presence of the G allele were visualised, and

an unrestricted fragment (A allele) had a length of 190 bp.

Statistical analysis

CSS Statistica software (StatSoft) was used for statistical

analysis. An ANOVA was used for correlation of the different

parameters and genotypes. A Kruskal–Wallis test was used

for one-way analyses on ranks. The x
2 test was used for the

comparison of genotype frequencies. Fisher’s exact test was

used for the comparison of allelic frequencies. For correlation

studies, we used Pearson’s correlation coefficient method.

Dunn’s method was used for all pairwise multiple com-

parisons between the AA, AG and GG genotypes and the

detection thresholds.

Results

Subject characteristics

Table 1 shows the anthropometric measures and concen-

trations of different blood parameters in the present cohort

of obese Tunisian women (n 203). The values of glucose,

insulin, urea, creatinine, cholesterol, HDL, LDL, HbA1c,

apoA1, apoB, insulin and C-reactive protein were within

normal ranges for obese women. Serum TAG, IL-6 and

TNF-a concentrations were higher in the women as compared

to previously reported control values(38,39).
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CD36 genotype and oleic acid detection thresholds

Table 2 shows the genotype frequencies of three polymor-

phisms in the present cohort of obese women. Fig. 1 shows

that the subjects with the GG genotype of the CD36 gene

had thresholds for oleic acid detection that were 3·3 times

lower than those of subjects with the AA genotype (95% CI

of relative risk 2·5032, 4·4298, OR 9·9615; 95% CI of OR

6·2101, 15·9793). We did not observe a statistically significant

difference in the taste detection thresholds of subjects with

the AG or the AA (or GG) genotypes. It is also noteworthy

that some subjects, which have been termed non-tasters,

could not detect fatty acid even at the highest concentration.

There were a total of four non-tasters in the AA, AG and GG

genotypes of CD36 gene (Fig. 1).

Association between cholesterol, LDL and glycosylated Hb
and CD36 polymorphism

Fig. 2(a) and (b) shows that cholesterol and LDL concen-

trations were significantly lower in subjects with the CD36

GG and AG genotypes than in subjects with the AA genotype

(P,0·01). Interestingly, the women with the GG genotype

exhibited higher HbA1c plasmatic concentrations than did

those with the AA genotype (P,0·05) (Fig. 2(c)).

CD36 genotypes and TNF-a and IL-6 concentrations

Serum concentrations of TNF-a was higher in women with

the CD36 AA genotype as compared to subjects with the

GG genotype (Fig. 3(a)). Interestingly, serum IL-6 concen-

trations were lower in women with the AA and AG genotypes

than they were in women with the GG genotype (Fig. 3(b)).

Association between TNF-a polymorphism and creatinine
serum level and association between IL-6 polymorphism
and IL-6 serum level

Fig. 4 shows that the women with the IL-6 GG and TNF-a

GG genotypes exhibited higher serum IL-6 and creatinine

concentrations, respectively, than did those with the IL-6 CC

and TNF-a AA genotypes. Moreover, we did not observe a

statistical association between the TNF-a SNP and serum

TNF-a concentrations (P.0·05).

Discussion

Evidence suggests that there might be a sixth taste modality

that is devoted to the oro-gustatory perception of dietary

lipids(14,40). Hence, it seems imperative to explore and better

understand the mechanisms that underlie the oro-gustatory

detection of dietary fat in order to help prevent and treat

obesity(5,41). A number of studies have suggested that lingual

CD36, a glycoprotein that is highly expressed in circumvallate

papillae, is implicated in the perception of dietary fat

taste(6,12–15). In the present study, we confirm that obese

women with the CD36 AA genotype (rs1761667) possess

higher thresholds for lipid taste sensitivity than do those

with GG genotypes.

Keller et al.(20) have provided preliminary evidence that

CD36 is involved in human oral fat perception and the

human attraction to added fats and oils in food. Pepino

et al.(19) have demonstrated that CD36 gene polymorphism,

which results in a decrease in the gene’s expression, is respon-

sible for an increase in the oral detection threshold of dietary

lipids in obese subjects. Aside from the present study, no

confirming or refuting report is available on this subject, par-

ticularly from developing countries where diets are rich in fat.

The present data strongly suggested that the oro-sensorial

perception of fat taste is altered in some obese subjects.

Indeed, we showed that the A allele of CD36 rs1761667 poly-

morphism in obese women, which was previously associated

with decreased expression of the CD36 protein, is associated

with a high oro-gustatory threshold detection for oleic acid.

Conversely, the subjects with the G allele were more sensitive

in their oleic acid lingual detection as compared to the sub-

jects with the A allele. These data corroborate not only the

clinical findings of Pepino et al.(19) but also experimental

data where an association between CD36 gene expression

and oral fat detection has been demonstrated(42). Mice with

partial CD36 gene knockout (CD36þ/2) had lower CD36

protein expression and a lower oral fat detection threshold

than wild type animals (CD36þ/þ). The CD36 knockout

(CD362/2) failed to exhibit a spontaneous preference for fat.

Table 2. Genotype frequencies in obese Tunisian women

Gene SNP ID Genotype All subjects Frequencies

CD36 rs1761667 GG/AG/AA 42/102/59 0·21/0·50/0·29

TNF-a rs1800629 GG/GA/AA 140/56/7 0·69/0·27/0·04

IL-6 rs1800795 GG/GC/CC 146/47/10 0·72/0·23/0·05

CD36, cluster of differentiation 36.
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Fig. 1. Oleic acid detection thresholds in obese Tunisian women. The

women (n 203) had either the AA genotype (n 59) or the GG (n 42) or AG

(n 102) genotype of the cluster of differentiation 36 (CD36) gene. The figure

shows the box plots of the medians, first and third quartiles, standard

deviations and extreme values. The difference between the three groups was

statistically significant (P,0·001; Kruskal–Wallis test). *Median value was

significantly different from that of the AA genotype (P,0·05; one-way

ANOVA). The difference between the AG and GG genotypes was not

statistically significant. NT, non-tasters.
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A low detection threshold for fat in the present study may

not have been caused by the low expression of a-gustducin,

a marker of taste receptor cells. Indeed, alteration in

CD36 expression is not related to changes in a-gustducin

expression(42). Moreover, a-gustducin knockout mice, like wild

type animals, exhibited an unaltered preference for dietary

fat(43). It is possible that other proteins which are likewise

involved in fat taste detection, such as GPR120, might also

participate in low-fat taste sensitivity(44). However, the CD36

and GPR120 receptors seem to be differently regulated in

lipid taste perception(18,44).

In the present study, we also observed that some of the sub-

jects failed to detect oleic acid in the emulsions. These subjects

were defined as non-tasters, and they were also reported by

Kamphuis et al.(9). The mutation responsible for gustatory

insensitivity to fatty acid in non-taster subjects deserves further

in-depth study.

We performed the present study on Tunisian obese women

(who probably eat an above-average amount of fatty food due

to cultural customs in Tunisia), because it has been shown that

some obese subjects had a low sensitivity to oleic acid(35,45).

Oral and gastrointestinal sensitivity to oleic acid are related

to each other, and they are decreased in obese subjects(35).

Nonetheless, the present association studies cannot distingu-

ish whether the decreased sensitivity to fat in obese women

is a cause or a consequence of obesity. However, Stewart

et al.(11) have shown that oral sensitivity towards oleic acid

in lean subjects is decreased with a high-fat diet and increased

with a low-fat diet. Brennan et al.(46) have reported that acute

dietary restriction in obese subjects enhances their gastro-

intestinal sensitivity to fat, and this is associated with an

increased effect of fat on satiation. In addition, a high-fat diet

has been shown to decrease the expression of CD36 in mice(42).

We observed an association between the CD36 AA geno-

type and high serum levels of cholesterol and LDL in obese

women. Because the CD36 A allele was previously associated

with reduced expression of the CD36 gene, it is possible that

high blood lipid concentrations are the result of their curtailed

uptake by adipocytes that also express CD36; in this case, it

acts as a fatty acid transporter(47,48). Moreover, CD36 gene

polymorphisms have been significantly associated with high

TAG concentrations among ethnic Chinese in Taiwan(49).

Interestingly, obese women with the CD36 G allele had

higher plasma HbA1c concentrations than women with the

A allele. These observations corroborate the findings of

Rać et al.(50), who have shown that the GG genotype was

significantly associated with higher HbA1c concentrations as

compared to the AA genotype of CD36 in obese children.

We observed that obese women had high IL-6 and TNF-a

serum concentrations. Homozygous women with the CD36

AA genotype had higher TNF-a serum concentrations than

did those with the GG or AG genotypes. Conversely, IL-6

serum concentrations were higher in women with the GG

genotype than they were in women with the AA or AG geno-

types. The importance of the association of high serum levels

of TNF-a with the CD36 AA genotype and the association of

high serum levels of IL-6 with the CD36 GG genotype is not

well understood. These cytokines play a key role in the

regulation of insulin sensitivity in subjects who are suffering
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Fig. 2. Association between blood parameters and cluster of differentiation 36 (CD36) SNP in obese Tunisian women. Concentrations of cholesterol (a), LDL (b)

and glycosylated Hb (HbA1c) (c) in women with the AA, AG or GG genotype of the CD36 gene. Values are means, with standard deviations represented by

vertical bars. Mean value was significantly different from that of the AA genotype: *P,0·05, **P,0·01 (one-way ANOVA).
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Fig. 3. Serum TNF-a (a) and IL-6 (b) concentrations in obese Tunisian

women with the AA, AG or GG genotype of the cluster of differentiation 36

(CD36) gene. The serum concentrations of cytokines were determined as

described in the Materials and Methods section of the present paper. Values

are means, with standard deviations represented by vertical bars. ***Mean

value was significantly different from that of the AA genotype (P,0·001;

one-way ANOVA). ††Mean value was significantly different from that of the

AG genotype (P,0·01; Fisher’s exact test).
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from obesity and metabolic syndrome(51). The SNP of these

cytokines have been suggested to predispose for obesity(52).

The homozygous subjects with the GG genotype exhibited

high serum IL-6 concentrations. These observations are in

close agreement with the results of Pereira et al.(53), who stu-

died the association between the IL-6 gene and plasma IL-6

concentrations in community-dwelling and institutionalised

older women. Those authors reported that women with the

IL-6 GG genotype had high IL-6 serum concentrations. High

serum IL-6 concentration in homozygous subjects with the

GG genotype might take part in increased fat oxidation

in response to fat load in obesity, as has been suggested

elsewhere(54). With regards to TNF-a, we noticed a positive

relationship between circulating creatinine concentrations

and the TNF-a GG genotype, which indicates that the present

subjects might be at risk for renal complications. Chang

et al.(55) have shown that the G allele of the TNF-a gene

was associated with high serum creatinine concentrations

that increased the risk for contrast-induced nephropathy.

We also observed a significant association between IL-6 and

TNF-a gene polymorphisms in obese women, which indicates

that inflammatory status, as indicated by pro-inflammatory

cytokines, is a key element of obesity in these women.

Curtis & Singh(56) have likewise shown that the SNP of these

two cytokines predispose for obesity.

Finally, we can state that a major value of the present study

is that it validates the importance of a common CD36 SNP

rs1761667 in obese women. The present results must be con-

firmed by additional studies in other developing countries.

It is also possible that in the present study, there might be

an influence of female sex hormones on fat taste perception

and other parameters. At this stage, it is difficult to determine

whether oral fat perception sensitivity affects fat intake or

body weight. Future studies are needed to answer these

important questions. The stimulation of taste receptors, such

as CD36, by synthetic fatty acid analogues within the oral

cavity may provide a new target for obesity treatment.
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ORIGINAL ARTICLE

CD36 AA genotype is associated with decreased lipid taste

perception in young obese, but not lean, children
A Sayed1, O Šerý2,3, J Plesnik3,4, H Daoudi1, A Rouabah1, L Rouabah1 and NA Khan4

BACKGROUND/OBJECTIVE: Obesity is an alarming threat for all age groups, including children. Fat overconsumption is one of

the factors that directly influences this pathology. Recent studies have suggested that a common variant in the CD36 gene, that is,

single-nucleotide polymorphism (SNP) rs1761667-A allele, that reduces CD36 expression, associates with high oral fat detection

thresholds in some obese subjects. The objective was to assess fatty acid sensitivity in relation to CD36 SNP in young lean and

obese children.

SUBJECTS/METHODS: We studied lingual detection thresholds for emulsions, containing oleic acid, in Algerian children (n= 116,

age = 8± 0.5 years) who were divided into two groups: obese (n= 57; body mass index (BMI) z-score = 2.513 ± 0.490) and lean

children (n= 59; BMI z-score =− 0.138 ± 0.601) by alternative-forced choice method. To correlate the lipid taste perception

thresholds with CD36 SNP, the children were genotyped for A/G SNP rs1761667 in 5′UTR region of CD36 by using PCR and

restriction fragment length polymorphism.

RESULTS: We noticed significantly higher CD36 A-allele frequency (P= 0.036) in young obese children compared with leans.

CD36 A-allele was associated with higher lipid taste perception thresholds than G-allele in obese children, but not in lean controls.

Moreover, waist circumference was positively correlated with reduced fat taste sensitivity in these children.

CONCLUSIONS: CD36 SNP A-allele, being present both in young lean and in obese children, is associated with high threshold

for fatty acid taste sensitivity only in obese children.

International Journal of Obesity advance online publication, 24 March 2015; doi:10.1038/ijo.2015.20

INTRODUCTION

Obesity is one of the biggest worldwide health problem with
rising prevalence. Since 1980, the incidence of obesity is almost
doubled with ~ 35% of adults being overweight and ~ 11% of
adults being obese.1 This rising trend of obesity is also observed in
children. Worldwide prevalence of obesity among children rose
from 4.2% in 1990 to 6.7% in 2010.2 Obesity is considered as
multifactorial and polygenic disease, and onset of this disease
can be caused by various factors.1 One of the reasons of the onset
of obesity is altered energetic homeostasis, particularly caused by
an increase in consumption of high caloric diet containing large

amount of fat.1

It is known that rodents and humans can detect long-chain fatty
acids, present in their diet, as gustatory cue.3,4 The CD36, known
as fatty acid translocase, and GPR120, a G protein-coupled
receptor, have been shown to act as receptors in the tongue,
involved in the detection of dietary fatty acids. Indeed, the mice
lacking the expression of CD36 and GPR120 lose the spontaneous
preference for solutions containing oily emulsions.3,5

Some recent studies have shown that obese subjects exhibit a
high intake of dietary lipids as compared with lean subjects,6

suggesting that altered lipid perception might influence obesity
risk by impacting feeding behavior. Besides, obese subjects have
been shown to exhibit lower oral sensitivity for a dietary fatty
acid than lean subjects, and hypersensitivity to the taste of oleic
acid (OA) (C18:1) was associated with decreased consumption of
dietary fats and low BMI.6,7 However, the fatty acid taste sensitivity

may be modulated by environmental factors such as exposure to a
high-fat diet.6

In humans, the CD36 gene polymorphism, resulting in its
decreased expression, is responsible for an increase in the
detection threshold for oral dietary lipids in some obese
subjects.8 Keller et al.9 shed light on the association of CD36
gene polymorphism with oro-sensorial detection of high-fat
foods and obesity in African-American adults. By employing a
self-reported taste test, these investigators observed that partici-
pants with A/A genotype at rs1761667 had greater perceived
creaminess, regardless to fat concentration of the salad dressings.
Later on, Pepino et al.8 used CD36 single-nucleotide polymorph-
ism (SNP) rs1761667 and showed that some of obese subjects
with CD36 AA genotype exhibited higher oral detection thresh-
olds for fat than subjects with AG and GG genotypes. These novel
findings, available only in obese subjects, are changing our view
on the understanding of pathogenesis of obesity. No comparative
study on lean and obese subjects is available. It would be
interesting to know whether CD36 SNP would have a role in fat
detection in low-age group children. We, therefore, designed the
present study to determine the role of CD36 rs1761667 SNP in
gustatory perception of OA in lean and obese Algerian children.

MATERIALS AND METHODS

Subjects

We recruited one hundred sixteen (n= 116) school children, aged from 7 to
8 years, from Constantine district in Algeria by employing a multi-stage
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cluster random sampling method. The medical check-up was routinely
performed by physicians, nurses and physician assistants of Primary Health
Care Centers. The children having any history of a chronic condition such
as cardiovascular disease, diabetes, liver or kidney disease were
excluded from the study. A written consent from parents was obtained
for the participation of the children, and they were assured about
the confidentiality of the project. The parents were informed about the
purpose, protocol and potential risks of the study. All personal data related
to names and dates of birth were erased from the database. The study
protocol was approved by the research council of the University of
Constantine1.

Body mass index criteria and questionnaire on eating food pattern

Body mass index (BMI =weight/(height)2) is generally used to assess
overweight or obesity in adults where a BMI of ⩾ 25 kgm−2 but
o30 kgm− 2 is generally defined as overweight and a BMI of ⩾ 30 kgm− 2

as obese. However, in our study, we used the growth graphs, that is,
z-scores, of WHO 2007 to determine the overweight and obesity in young
children.
The children were also subjected to a questionnaire to collect the

information about their habitual preferred eating patterns. The ques-
tionnaire contained the list of food products, generally consumed in
Algeria and served at breakfast, lunch and dinner, with a standard serving
meal size. We asked the question ‘what do you eat preferably in the week
among the listed food items’ and the ‘response’ was noted. In fact, we
determined ‘preferred food pattern’ of the children and tried to correlate
the same. The food pattern was also, sometimes, cross-checked with the
mothers.

OA taste sensitivity analysis

OA (18:1) oro-sensory test was performed as previously described
by Stewart et al.10 We prepared emulsions containing food-grade
(Sigma, St Louis, MO, USA) OA, as per protocol of Chalé-Rush et al.4 at
various concentrations (0.018, 0.18, 0.37, 0.75, 1.5, 3, 6 and 12 mmol l− 1) in
deionized water. The solutions contained EDTA (Merck, Darmstadt,
Germany) at 0.01% (w/v) to prevent oxidation of OA. The emulsions were
homogeneously stirred and sonicated at 4 °C in Labo-Modern sonicator.
The samples were aliquoted in opaque polypropylene tubes and used
within 24 h. The acacia gum (Sigma) at 0.01% (w/v), present in all the
solutions, served as a control to mimic the textural properties of the oils in
the control solution.
On the day of tasting, the children were called to come in a fasting state

(without taking breakfast), anthropometric parameters were taken and
they were subjected to undergo the OA taste sensitivity analysis at
different ascending concentrations of OA (0.018, 0.18, 0.37, 0.75, 1.5, 3, 6
and 12mmol l− 1) as per three alternative-forced choice method.10,11 The
three alternative-forced choice method consists of tasting one-by-one,
the three test solutions were two solutions contain a control substance and
the third one contains OA. During performing the test, the children were
subjected to detect an odd solution, containing OA in the ascending order,
in one of the three test solutions unless a single correct response was
obtained.8,10 The children were presented with two more sets of samples
at the same concentration of OA, again, if the response was correct,

the concentration was defined as the detection threshold for OA.
We confirmed it by presenting OA solution at a lower concentration and
after the negative response; we further went up to the 'correctly' detected
OA concentration. Hence, we obtained at least two reversals. The children
were asked to rinse their mouth between each new set of samples. During
the tasting sessions, conducted in the red light to hide visual cues, the
children were advised to wear nose clips.

PCR genotyping

Genomic gDNA was extracted from flocked saliva swabs using automatic
DNA extraction system Prepito (Chemagen, Baesweiler, Germany) based
on magnetic particles separation. Polymorphism rs1761667 was geno-
typed using PCR and restriction fragment length polymorphism method.
For 25 μl PCR, we used 100 ng of gDNA together with Kapa G2 fast mix
(Kapa Biosystems, Wilmington, MA, USA), forward (5'-CAA AAT CAC AAT
CTA TTC AAG ACCA-3') and reverse (5'-TTT TGG GAG AAA TTC TGA AGA
G-3') primers. The amplified DNA was digested by HhaI restriction enzyme
(Thermo Fisher Scientific, Waltham, MA, USA). Genotyping of rs1761667
was performed by electrophoresis through a 2% agarose gel where, in case
of G-allele, two fragments were identified at the length of 138 and 52 bp.
In case of A allele, we observed undigested 190 bp product.

Statistical analysis

For statistical analysis, the CSS Statistica 12 software (StatSoft, Tulsa, OK,
USA) was used. We used Student’s t-test for comparing heights of subjects.
Allele frequencies were analyzed with Fisher’s exact test which is used in
the analysis of contingency tables. The Hardy–Weinberg equilibrium was
assessed by chi-square (χ2). The Hardy–Weinberg equilibrium is a principle
stating that the genetic variation in a population will remain constant from
one generation to the next in the absence of disturbing factors. When
mating is random in a large population with no disruptive circumstances,
the law predicts that both genotype and allele frequencies will remain
constant because they are in equilibrium. Dunn’s method was used for all
multiple comparisons among genotypes and study groups. Dunn's test
allows to highlight the difference using multiple and stepdown
comparisons. We used Spearman's rank to observe correlation between
OA sensitivity and physical parameters. Criterion for statistical significance
was Po0.05. Mann–Whitney test was used to compare different
genotypes.

RESULTS

Characteristics of the sample population

Out of the total number of subjects (n= 116) included in the
study, 57 were considered as obese with average BMI z-score =
2.513 ± 0.490 and 59 as controls with average BMI z-score =
− 0.138 ± 0.601 (F 1.114 = 51.000; Po0.000001). The average age
of the children was 8 ± 0.5 years (Table 1). The number of boys and
girls was 57 and 59, respectively. We also observed the difference
in height between lean and obese children. Obese children were
more than 3 cm higher than lean controls (Po0.0005).

Table 1. CD36 genotypes in lean and obese children

Characteristics Control Obese

AA AG GG AA AG GG

Age (years) 7.9± 0.5 8± 0.5 8± 0.5 8.2± 0.5 8.3± 0.5 8.2± 0.4

Gender
Female 7 17 7 11 13 4
Male 5 15 8 11 13 5

BMI z-score − 0.19± 0.74 − 0.19± 0.54 0.02 ± 0.59 2.37± 0.30 2.65± 0.54 2.44± 0.62
Waist (cm) 54.67± 1.82 55.75± 2.55 54.67± 2.44 67.27± 5.25 70.77± 8.09 69.67± 7.74
Number of children 12 32 15 22 26 9
Genotype Frequency 20.34 54.20 25.42 38.60 45.61 15.78

Abbreviation: BMI, body mass index. X2 P= 0.081; F test, P= 0.04 (for genotype frequencies) and P= 0.036 (for allele frequencies).
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Genetic analysis

No deviation from the Hardy–Weinberg equilibrium (P40.05) was
observed for the CD36 genotype in control and obese groups. We
observed significant deviation in allelic distribution of rs1761667
between obese and control children. Table 1 shows that A allele was
higher in obese subjects as compared with control group, whereas
the G allele was more common (P=0.036). This observation
indicates increased risk for obesity in children with A allele (odds
ratio = 1.76, 95% confidence interval= 1.04–2.94, risk ratio= 1.29;
confidence interval = 1.01–1.16). Furthermore, we assessed influence
of CD36 genotype on BMI in obese subjects and AG genotype was
found to be related to 0.14 z-score BMI (P40.05). This effect was not
observed in lean children. There was no significant differences
between CD36 genotype frequencies and allele frequencies
between male and female subjects (P=0.69).

OA detection threshold

We observed significant difference in oral detection sensitivity
for OA between obese and control children (Po0.01).

Figure 1a shows that control subjects exhibit high OA oral
sensitivity (low detection threshold). Obese children seem to have
40-fold decreased sensitivity (high detection threshold) for this
fatty acid (Po0.000005). Figure 1b shows that there was a
positive correlation between waist size and increased oral
detection threshold for OA in these children (P= 0.00009).
Then, we tried to assess influence of genotype on OA sensitivity

in each group. In control group, we did not observe any significant
difference (Figure 2a); however, in obese children (Figure 2b), OA
detection threshold in A-allele children was higher than that in
G-allele children (Po0.05, Mann–Whitney test).

Correlation between CD36 genotypes and preferred food pattern

To compare food behavior and CD36 genotypes, we used
Chi-square and F tests. Table 2 shows a correlation between
different CD36 genotypes and food pattern. We observed that A
allele significantly predisposed children to prefer palatable food
products, that is, pasta, chips, chocolates and bread (Po0.04).
When we compare habitual food pattern between control and
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Figure 1. Relationship between BMI and fatty acid sensitivity in young leans and obese children. (a) The OA oro-sensorial detection in lean
(n= 59) and obese children (n= 57) is shown. The results are means± s.d. (b) Spearman rank correlation between waist (cm) and OA
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obese children, we observe a statistically highly significant
difference between the two groups (Po0.001), as far as the
consumption of four food products (pasta, chips, chocolates and
bread) and three food products (wafer, bread and candy) is
concerned (Table 3).

DISCUSSION

It is becoming clear that the origin of obesity is multifactorial and
eating behavior has a significant role in this disease. In recent
years, compelling evidence have been accumulated on fat taste,
suggesting that dietary lipids can be sensed by oro-gustatory
system.3,4 The two lipido-receptors, GPR120 and CD36, have been
detected in human foliate and circumvallate papillae.12 The CD36
is high affinity receptor whereas GPR120 exhibit low affinity for
fatty acids. The CD36 seems to have a role in fatty acid detection
whereas GPR120 seems critically involved in post-prandial feeding
behavior.13 The importance of CD36 has been exemplified in a
recent study linking variants in CD36 gene with oral fat perception
and ultimately intake of dietary fat.9 In the present study, we shed
light on CD36 rs1761667 polymorphism and oro-sensorial
detection threshold for a fatty acid in 7–8 years old lean and
obese children.
We observed that there was a positive correlation between OA

detection threshold and obesity. To our knowledge, this is the first
report to show this relationship in 7–8 years old children, though
Stewart et al.6 have shown the BMI was correlated with high
thresholds detection of long-chain fatty acids in adult obese
subjects. It is possible that hight-fat diet in obese children may
result in increased thresholds. We can presume that as a result of
low sensitivity (high detection thresholds) to fatty acid, there
would be excess fat intake in obese children, and high amounts of
fats/fatty acids would be required to elicit a response within taste
receptor cells, thus contributing to excess energy intake and
perhaps increasing obesity. Nonetheless, it is interesting to
mention that the detection thresholds for OA in our study are
very low as compared with other studies,4,8,11 for instance,
Stewart et al.11 reported that lean and obese subjects had a
threshold for OA, respectively, ~ 3 mM and ~ 7mM.11 The
difference in thresholds may be due to the fact that we performed
the present study on children and other studies were conducted
on adult subjects. It is possible that the children might have lower
detections thresholds for fatty acids than adults.

We studied association of SNP rs1761667 located in 5’UTR of
CD36 gene with obesity and fatty acids oral sensitivity.
We observed significantly higher A-allele frequency in obese
children (P= 0.036) compared with that in control group. Though
the lean children had A allele, they did not show any significant
change in fatty acid sensitivity. However, obese children with A
allele exhibited significantly higher detection threshold for fatty
acid as compared with obese with G allele. Pepino et al.8

previously reported that A allele was associated with decreased
OA oral sensitivity, although these studies were conducted only in
obese adult subjects. In support of our observations, we would like
to cite the data obtained on mice where CD36 gene deletion
(CD36− /−) resulted into failure to exhibit spontaneous preference
for fat.14

It is interesting to note that there was a significant correlation
between obesity and palatable food pattern in obese children.
Whether daily intake of high energy food influences fatty acid
detection thresholds remains not understood. However, Stewart
et al.10 have shown that consumption of the high-fat diet
significantly increased taste sensitivity thresholds to OA in lean
subjects. Furthermore, after a period of fat restriction and
attenuation of high-fat diet, the OA sensitivity was decreased,
stressing that daily fat intake might be crucial in dietary fat
detection. Similarly, subjects with high fat breakfast showed
impaired fatty acid sensitivity.11 In another study, Stewart et al.6

have classified subjects as hypo- or hyper-sensitive to OA
detection, and they concluded that hyposensitive subjects
consumed significantly more energy, fat, saturated fat, fatty foods
(butter, meat, dairy), had greater BMI and were lesser perceptive
of small changes in the fat content of custard, compared with
hypersensitive subjects. In fact, we observed that CD36 A allele in
obese children, associated with high threshold for fatty acid
detection (see above), was significantly associated with food
intake comprised of palatable ingredients, that is, pasta, chips,
chocolates, wafer and candy. Whether other taste modalities are
also altered in obese children as compared with control
population remains to be studied in future, though there are
some reports that taste sensitivity to monosodium glutamate is
attenuated in obese women.15

The present study suggests that the CD36 genotype is not
sufficient to impact oral fat sensitivity, because variations in CD36
did not affect fat taste perception in lean children. Further, it
suggests that perhaps there is an interaction between CD36 SNP
and diet, in such a way that the obese with AA phenotype, while
consuming a high fat diet, would exhibit less sensitivity to fatty
acids. Our study is not only a confirmatory report on the high fatty
acid detection thresholds in obese subjects but also presents new
insights in gene and fat taste interaction in young children.
The results of our study present some limitations. Our study was
conducted on a limited number of children and the observations
must be reproduced in different young populations on a large
number of subjects. Some studies should be performed on obese
and young children, given a low or a high-fat diet for a short
period to confirm the oral fatty acid detection sensitivity and BMI
and preference of a palatable food.

Table 2. Relationship between preferred food pattern and CD36 genotypes

Food contents AA genotype AG genotype GG genotype Total (n)

Pasta, chips, chocolates and bread 20 20 8 48
Wafer, bread and candy 9 21 6 36
Candy, bread and cheese 5 17 10 32
Total (n) 34 58 24 116

X2 P= 0.078; allele frequency difference Po0.04.

Table 3. Relationship between preferred food pattern and obesity

Food contents Control
children

Obese
children

Total (n)

Pasta, chips, chocolates and
bread

4 44 48

Wafer, bread and candy 23 13 36
Candy, bread and cheese 32 0 32
Total (n) 57 59 116

X2 Po0.000001.
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Abstract: Growing number of evidences have suggested that oral fat sensing, mediated by a

glycoprotein CD36 (cluster of differentiation 36), plays a significant role in the development of

obesity. Indeed, a decreased expression of CD36 in some obese subjects is associated with high

dietary fat intake. In the present study, we examined whether an increase in body mass index

(BMI) is associated with altered oleic acid lingual detection thresholds and blood lipid profile in

young Algerian teenagers (n = 165). The obese teenagers (n = 83; 14.01 ˘ 0.19 years; BMI z-score

2.67 ˘ 0.29) exhibited higher lingual detection threshold for oleic acid than lean participants (n = 82,

13.92 ˘ 0.23 years; BMI z-score 0.03 ˘ 0.0001). We also studied the association between rs1761667

polymorphism of CD36 gene and obesity. The AA and AG genotypes were more frequent in obese

teenagers, whereas GG genotype was more common in lean participants. The A-allele frequency

was higher in obese teenagers than that in lean children. We report that rs1761667 polymorphism of

CD36 gene and oro-gustatory thresholds for fat might play a significant role in the development of

obesity in young teenagers.

Keywords: CD36; taste; obesity; adolescents; oleic acid

1. Introduction

During the last decades, obesity has become one of the major health issues for our civilization

with its increasing prevalence in all age groups. According to WHO, there are more than 1.9 billion

obese adults and 42 million overweight young children worldwide [1]. It is generally accepted that

obesity is influenced by environmental and genetic factors [2]. However, one of the key factors is also

an excess of fat in our diet which, associated with the lack of physical activity, leads to an increase in

body mass index (BMI) [3,4]. Dietary fat provides more than twofold energy compared to proteins

and carbohydrates, thus high consumption of lipids would worsen obesity and result into several

pathologies like atherosclerosis, hypertension, and some other diseases [3,4].

Dietary fat is mainly perceived by its textural properties [5]. Nevertheless, growing evidences

indicate the existence of another factor, i.e., taste for fat, which could play a role in the attraction

for dietary lipids [6]. There are two main long-chain fatty acid receptors, i.e., CD36 and GPR120,
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which play a role in the gustatory detection of lipids. The CD36 (also known as FAT, fatty acid

translocase) belongs to the scavenger receptor family, and is known to bind to various ligands such

as thrombospondin-1, oxidized low-density lipoproteins, growth hormone (GH)-releasing peptides

and also dietary fatty acids [7]. The GPR120 belongs to the G-protein-coupled receptor (GPCR) family

and is expressed in human and rodent taste bud cells [8]. Recent studies conducted on animal models

and in vitro cell cultures showed possible alternative roles of GPR120 and CD36 in oral fat sensing.

Hence, GPR120 seems to play a role in post-prandial regulation, whereas CD36 serves as a primary

fat taste sensor in the lingual epithelium [6,9–11].

It has been previously shown that a single nucleotide polymorphism (SNP) rs1761667 of CD36

gene, located in the 5’ flanking exon 1A area [10], is associated with the decreased expression of

CD36 protein [12]. This CD36 gene polymorphism has been associated with some pathologies like

coronary artery disease [10,13] and type 2 diabetes mellitus [14]. Besides, rs1761667 polymorphism

has been shown to influence gustatory perception of dietary lipids in humans. The first evidence

of the impact of rs1761667 polymorphism on oral fat sensing was reported by Pepino et al. [15]

who showed that A-allele is associated with decreased oro-gustatory detection of oleic acid in some

Afro-American obese subjects. We recently conducted a study on obese Tunisian women and showed

that the participants with A-allele of rs1761667 polymorphism exhibited decreased oral sensitivity

(high thresholds) to oleic acid [16]. In another study conducted on young Algerian children age

seven to eight, we have observed higher A-allele frequency of rs1761667 polymorphism in obese

children compared to leans [17]. As expected, the obese young children exhibited higher detection

threshold for oleic acid than lean participants [17]. Moreover, in the recent study Melis et al. [18] have

shown that high expression of CD36 (influenced by rs1761667) may by the determining factor for oral

detecting of dietary fat predominantly in subjects with the low density of taste papillae.

The early period of childhood and adolescence is critical for the development of obesity in the

later stage of life. It has been shown that young obese teenagers, predominantly males, are unable

to return to the normal healthy state [19]. Risk factors for childhood obesity include parental fatness,

social status, birth weight, timing or rate of growth, physical activity, dietary factors, and other

behavioral or psychological factors [20]. Childhood obesity has been shown to result into high central

adiposity and high blood pressure including high carotid extra-medial thickness in adulthood [21].

Janssen et al. [22] have clearly shown that overweight and obesity during childhood are strong

predictors of obesity and risk for coronary heart disease in young adults. Longitudinal studies have

demonstrated that the transition from childhood to adulthood should be taken into account to build

obesity prediction models [23]. Hence, it seems imperative to know better the predictive factors of

childhood obesity to avoid the obesity-associated complications in adulthood.

As mentioned above, there seems a relationship between decreased oral fat sensing and

CD36 SNP in adult and young obese subjects; however, no such study is available in teenagers.

We, therefore, conducted the present study to investigate the relationship between rs1761667

polymorphism of CD36 gene, oral fatty acid detection thresholds in young lean and obese

Algerian teenagers.

2. Experimental Section

2.1. Subjects

We recruited (n = 165) male and female adolescents from Constantine district in Algeria. All

the participants belonged to Arab-Berber ethnicity. The study was conducted on a young population

(Table 1). The exclusion criteria for participants were any history of a chronic pathology such as

cardiovascular disease, diabetes, liver, or kidney disease. The smokers were also excluded from the

study. A written consent was obtained from all participants and their parents, and they were assured

about the confidentiality of the study. All personal data, such as names and dates of birth, were erased

from the database.
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Table 1. Characteristics of study groups and concentrations of blood parameters between controls

and obese participants.

Parameters Control Participants (n = 82) Obese Participants (n = 83)

Age (years) 13.92 ˘ 0.23 14.01 ˘ 0.19
BMI z-score 0.03 ˘ 0.00 2.67 ˘ 0.29 **

Glycemia (mmol/L) 4.41 ˘ 0.06 4.76 ˘ 0.05 *
TC (mmol/L) 3.04 ˘ 0.08 3.39 ˘ 0.07 *

LDL-C (mmol/L) 1.64 ˘ 0.07 2.00 ˘ 0.06 **
HDL-C (mmol/L) 1.08 ˘ 0.03 0.91 ˘ 0.02 **
TG (mmol/L) 0.74 ˘ 0.04 1.04 ˘ 0.05 **

Insulin (pmol/L) 45.98 ˘ 0.69 54.38 ˘ 2.22 **
HOMA index 1.29 ˘ 0.03 1.70 ˘ 0.12 **

* p < 0.05, ** p < 0.01 between controls and obese. Abbreviations: TC (total cholesterol); LDL-C
(low-density lipoprotein cholesterol); HDL-C (high-density lipoprotein cholesterol); TG (triglycerides); HOMA
(homeostasis model assessment).

2.1.1. Ethics

The study was carried out in accordance with the Declaration of Helsinki (1989) of the World

Medical Association, and the research council of the University of Constantine-1 approved the study

protocol (10 September 2014). Our experimental protocol conforms to the relevant ethical guidelines

for human research.

2.2. BMI z-Score

The BMI of teenagers was calculated as per WHO guidelines and expressed as z-score [24]. The

lean subjects had a BMI z-score below 1 and obese more than 2. To observe a clear difference between

lean and obese groups, the subjects with BMI z-score between 1 and 2 were excluded from the study.

2.3. Determination of Fasting Blood Glucose and Lipids Parameters

Venous blood from all the subjects was collected in heparinized tubes. The concentrations

of fasting glucose, total cholesterol (TC), and triglycerides (TG) were determined by Biochemical

analyzer XL 200 (ErbaLachema, Mannheim, Germany). LDL and HDL cholesterol levels were

measured by cholesterol oxidase method (BioSystems, Barcelona, Spain). Insulin concentrations were

determined by ELISA (RayBio, Norcross, GA, USA).

2.4. Oleic Acid Sensitivity Analysis

The participants were called on a stipulated date and advised to come early in the morning

without taking breakfast (fasting state). The subjects were weighed and a blood sample was drawn,

before the sensitivity test, to assess blood parameters. We used the alternative-forced choice (AFC)

method as described before [16,17]. Briefly, different concentrations of oleic acid, OA (0.018, 0.18, 0.37,

0.75, 1.5, 3, 6, and 12 mmol/L) were prepared and the teenagers were subjected to taste, one-by-one,

the three solutions. One solution contained OA with acacia gum (0.01%) and the other two served

as controls with 0.01% acacia gum only. The taste sessions were performed in an isolated chamber,

close to the laboratory. Control samples were prepared in the same way but without added oil. We

started with the lowest OA concentration, and the detection threshold was established when the

subject identified twice the same solution containing OA. The participants were asked to use a nose

clip to minimalize olfaction cues during the test and to rinse the mouth between every tasting. The

teenagers were not allowed to drink the solutions, rather they had to spit them out after keeping the

solution in mouth for few seconds.
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2.5. Genotyping Analysis

Genomic DNA (gDNA) was extracted from venous blood, using Wizardr Genomic DNA

Purification Kit (Promega, USA). Rs1761667 polymorphism of CD36 gene was genotyped using

PCR-RFLP. As per our method [16,17], the gDNA was amplified with Kapa mix, containing Taq

polymerase (Kapa Biosystems, Wilmington, MA, USA) with forward and reverse primers (5’-CAA

AAT CAC AAT CTA TTC AAG ACCA-3’ and 5’-TTT TGG GAG AAA TTC TGA AGA G-3’). After

amplification, the 190 bp PCR product was digested by HhaI endonuclease (Thermo Fisher Scientific,

Waltham, MA, USA) which cleaves the product into two fragments of 138 bp and 52 bp if the

G-allele is present, whereas in the presence of A-allele we observed undigested 190 bp product.

The final products were separated and analyzed in 2% agarose gel electrophoresis, stained with

ethidium bromide.

2.6. Statistical Analysis

Statistical analysis was conducted by Statistica 14 software (Statsoft, Tulsa, OK, USA). One-way

ANOVA was used to compare the difference between parameters in the study groups. For

correlation between various parameters, Spearman rank correlationwas performed. Hardy-Weinberg

equilibrium (HWE) was assessed by chi-square (χ2) test. For the comparison of allelic and genotype

frequencies between obese and control, Fisher exact test was used. All data in the tables and figures

are presented as means ˘ SEM, and p < 0.05 was considered as statistically significant.

3. Results

3.1. Characteristics of the Participants

The teenager participants (n = 165) were divided into two groups: obese with a BMI z-score

higher than 2 (n = 83 (females = 39, males = 44), z-score 2.67 ˘ 0.29) and leans with a BMI z-score

below 1 (n = 82 (females = 37, males = 45), z-score 0.03 ˘ 0.0). The average age of the subjects was

13.9 ˘ 1.1 years.

3.2. Blood Parameters

Table 1 shows that both lean and obese young teenagers had fasting glucose concentrations

within normal range, though the latter had slightly higher glycemia than the former (p < 0.05).

Similarly, total cholesterol (TC) concentration was normal in both the groups, but obese participants

had higher TC concentration than control children (p < 0.05). Lean participants had higher HDL-C

concentration compared to obese teenagers (p < 0.01). Obese children had significantly elevated

LDL-C concentration compared to lean ones (p < 0.01). Triglycerides (TG) concentration was higher

in obese teenagers than that in lean participants (p < 0.01). Insulin concentration was also higher in

obese teenagers than that in lean children (p < 0.01). We observed a positive association between total

TC and TG, HDL-C and LDL-C levels (p < 0.01, p < 0.04, p < 0.01 respectively). TG concentration

was positively correlated with LDL-C (p < 0.01) and negatively with HDL-C levels (p < 0.01). Fasting

glucose concentration was positively correlated with insulin level (p = 0.026). HOMA index was also

higher in obese participants that that in lean ones. No difference between boys and girls was observed

as regards the above-mentioned parameters.

3.3. Oleic Acid Sensitivity

We observed statistically significant difference in oleic acid oral detection threshold between

obese and lean adolescents (Figure 1). Obese subjects exhibited almost twofold OA detection

threshold (2.57 ˘ 0.29 mmol/L, p < 0.01) than lean participants (1.33 ˘ 0.15 mmol/L). We noticed a

positive correlation between BMI z-score and OA detection (p < 0.01). If we divide all the participants,

on the basis of oral detection thresholds, into three categories: high tasters (between 0 to 0.018 mM),
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middle tasters (between 0.18 and 1.5 mM), and low tasters (between 3 and 12 mM), we notice a

relationship between BMI and fat taste thresholds (p < 0.001; Figure 2). We did not find any significant

difference in the measured parameters between genders.

Figure 1. Relationship between BMI and oro-sensory detection of a fatty acid in young leans and obese

children. The oleic acid detection thresholds were determined in lean (n = 82) and obese children

(n = 83) as described in the Materials and Methods section. The results are means ˘ SEM.

Figure 2. Fatty acid sensitivity in all young teenagers in relation to BMI. The lean and obese children

(n = 165) were divided into three groups on the basis of oro-sensory detection of oleic acid as high,

middle, and low tasters. “High tasters” group contained lean teenagers only (n = 8), most of the

teenagers from the both groups (control, n = 60; obese, n = 45) belonged to the “Middle tasters” group

and the “Low tasters” group consisted predominantly of obese participants (n = 41) and controls

(n = 11). The results are means ˘ SEM.

3.4. CD36 Genotyping

Figure 3 shows rs1761667 genotypes on agarose gel. We did not observe any deviation

from Hardy-Weinberg equilibrium (p > 0.05) in lean and obese participants (Table 2) in genotype

frequencies of rs1761667 polymorphism of CD36 gene. The frequencies of A-allele in lean and obese

groups were 56.7% and 68.1%, respectively (p = 0.041, OR = 1.63; 95% CI of OR = 1.04–2.55). AA and

AG genotypes are present predominantly in obese teenagers (p = 0.008; p = 0.002, respectively). Minor

genotype was, on the other hand, present in the controls. We did not find any significant difference
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between CD36 genotype and oleic acid oral sensitivity threshold. Similarly, we did not observe any

significant difference between CD36 genotypes and BMI z-score neither in obese nor control teenagers

(p = 0.58; p = 0.41, respectively). We did not find any significant difference between the genders.

Figure 3. Rs1761667 genotypes separated on 2% agarose gel and stained with ethidium bromide. The

blot shows one identical photograph from several reproduced ones.

Table 2. Genotype and allelic frequencies of CD36 rs1761667 between control and obese participants.

Parameters Control Participants (n = 82) Obese Participants (n = 83) Statistical Calculations

HWE χ
2 2.67 3.05 NS

Alleles (%) p = 0.041
A 93 (56.7) 113 (68.1) OR = 1.63; 95% CI
G 71 (43.3) 53 (31.9) RR = 1.28; 95% CI

Genotypes (%)
AA 30 (36.6) 35 (42.2) p = 0.008
AG 33 (40.2) 43 (51.8) p = 0.002
GG 19 (23.2) 5 (6.0) -

Abbreviations: HWE χ
2 (Hardy-Weinberg equilibrium χ

2); MAF (Minor allele frequency); OR (odd ratio); RR
(relative risk).

4. Discussion

It has been previously shown that the subjects which are obese at a young age became severely

obese in adulthood [25,26]. Excess of caloric intake, largely contributed by fat overconsumption,

seems to be one of the factors implicated in this pathology [6]. Moreover, altered oro-gustatory

perception of lipids has been associated with obesity [6]. It, therefore, seems mandatory to shed light

on oral fat sensing that might take part in the regulation of feeding behavior in obese subjects.

As regards blood parameters, we observed higher glycemia, LDL-C, triglycerides, and insulin

concentrations in obese children than the lean participants. It has been previously shown that the

teenagers with a high degree of obesity exhibited high blood concentrations of LDL-C, glucose and

insulin [27]. Similar results were also obtained in an American population, where the prevalence

of hyperinsulinemia and hypertriglyceridemia was significantly higher in severely obese children

and adolescents, compared to the less obese individuals [28]. We noticed low HDL-C concentrations

in the obese group. Indeed, Ruel et al. [29] have reported that low HDL is associated with high

BMI and waist circumference. Jiang et al. [30] have also shown that insulin levels were positively

correlated with serum triglyceride, and negatively with HDL-C levels in all age group obese children

including 12–17 years old participants. These investigators concluded that these changes in obese

children might have adverse consequences for cardiovascular diseases in adulthood. Furthermore, in

obese children, we also observed a high HOMA index, an indicator of insulin-resistance (IR) which is

directly associated with the aggravation of obesity [31].
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As regards the gustatory detection of lipids, we noticed that obese participants exhibited a

significantly higher detection threshold (lower sensitivity) compared to lean participants. Whilst

the “High tasters” group is composed mainly of controls, in “Low tasters” group we can find

predominantly obese teenagers. Previous studies performed on Australian [32] and Tunisian [16]

adults also showed that the obese subjects exhibited reduced oleic acid sensitivity. Low fatty acid

oro-sensory detection in obesity has been attributed to low expression of CD36 protein in the

mouse [33] or to AA genotype of rs1761667 polymorphism of CD36 in human beings [12,16,17].

However, we did not observe a relationship between CD36 geneAA genotype and fatty acid detection

thresholds. The reason for this failure might be the less developed papillae which might not have

expressed sufficiently the truncated CD36 protein, transduced by CD36 rs1761667 AA genotype [12],

in the young Algerian children. In fact, it has been shown that fungiform papillae attain full size

at the age of 8–10 years, and the circumvallate papillae, located in the posterior region, continue to

grow until the age of 15–16 years [34]. This argument is pertinent as the circumvallate papillae have

been shown to express nine-time higher CD36 mRNA than fungiform papillae [35]. Alternatively, it

is also possible that a variant of GPR120, another lipido-receptor that is associated with obesity in a

European study [36], might be involved in low oro-sensory sensitivity in obese Algerian teenagers;

however, further studies are required to confirm this hypothesis. We also noted higher A-allele

frequency compared to G-allele in our study, and this kind of distribution has been, so far, reported in

Arabic populations, namely in Tunisia [16] andAlgeria [17]. Interestingly, previous studies conducted

on different populations, namely Caucasians [18], Indians [14], and Asians [13] showed a high

frequency of G-allele.

Nonetheless, A-allele frequency of rs1761667 polymorphism of CD36 gene was higher in obese

children than lean participants. A-allele was found to be associatedwith the intake of soda and French

fries in obese children, suggesting that fat-containing products might influence, in the long-term,

the fatty acid oro-sensory detection capacity. Our hypothesis is supported by the observations of

Stewart et al. [37] who have reported that feeding a high-fat diet significantly increased oleic acid

oral detection threshold in lean subjects. Similarly, feeding a high-fat diet in mice resulted in high

oro-sensory threshold for linoleic acid [11].

Ours is the first study to show an association between high oro-sensory threshold for a fatty acid

and obesity in 13–14 year old teenagers. These results might be confirmed in other young population

with different cultural and eating habits. Though the obese participants had CD36 A-allele, it was

not associated with high oro-detection threshold for the fatty acid. Besides, we cannot rule out

an influence of altered levels of sex hormones in obese teenagers on fat taste perception and other

parameters. It is also difficult to determine whether oral fat perception sensitivity affects fat intake or

body weight regulation. Future studies are required to address these questions.
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Background & aims: We assessed orosensory detection of a long-chain fatty acid, linoleic acid (LA), and a

bitter taste marker, 6-n-propylthiouracil (PROP), and correlated lipid-taster subjects with PROP detection

and polymorphism in genes encoding bitter and lipid taste receptors, respectively, TAS2R38 and CD36, in

normal weight and obese subjects.

Design: The normal weight (n ¼ 52, age ¼ 35.3 ± 4.10 years, BMI ¼ 23.22 ± 1.44 kg/m2) and obese

(n ¼ 52, age ¼ 35.0 ± 5.43 years, BMI ¼ 34.29 ± 5.31 kg/m2) participants were recruited to determine fat

and bitter detection thresholds. The genomic DNA was used to determine single nucleotide poly-

morphism (SNP) of CD36 (rs1761667) and TAS2R38 (rs1726866 and rs10246939).

Results: The study included the participants who could detect LA, i.e., lipid-tasters. There was a positive

correlation between BMI and detection thresholds for fat and bitter taste in normal weight and obese

subjects. Obese participants showed a positive correlation between LA and PROP detection thresholds.

PROP detection thresholds were higher for CD36 SNP (rs1761667) and TAS2R38 SNPs (rs1726866 and

rs10246939) in obese participants compared to normal weight subjects. LA detection thresholds were

not high for CD36 SNP (rs1761667) or TAS2R38 SNP (rs1726866 and rs10246939) in obese participants.

Conclusions: Orosensory detection thresholds for fat and bitter taste are associated with BMI, and CD36

and TAS2R38 genotypes are not always associated with taste phenotypes.

© 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

1. Introduction

The increased incidence of obesity represents a critical issue

worldwide [1], and the southern Mediterranean countries are

increasingly affected by its epidemic. Since 1980, the prevalence of

obesity has grown up rapidly in Tunisia [2]. Though there are

several factors implicated in this disease, the sense of taste plays an

important role in the development of dietary habits [3,4]. Bitter

taste has been associated with feeding behavior and obesity [3,5].

The TAS2R38 gene encodes bitter taste receptor [5,6] with two

variants, i.e., rs1726866 and rs10246939, and the former has been

reported to be associated with BMI in participants [5e8].

Obese individuals have been shown to be less sensitive to oro-

sensory detection of dietary fat and, therefore, might eat more

lipids [9,10]. Recent years have suggested that there might exist a

sixth taste modality, i.e., the taste for fat [11]. Two main taste lipid

receptors, i.e., CD36 and GPR120, have been shown to be involved in

the preference for dietary lipids [12e15]. The ability to perceive

dietary lipids via CD36 might be influenced by a common

Abbreviations: BMI, body weight index; LA, linoleic acid; PROP, 6-n-propylth-

iouracil; SNP, single nucleotide polymorphism.
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polymorphism rs1761667 [16]. Conversely, obese subjects with AA

genotype of rs1761667 have been reported to exhibit higher oral

detection thresholds for a long-chain fatty acid than those with AG

and GG genotypes. These observations were, later on, confirmed by

three studies, conducted on Algerian normal weight/obese children

[17] and adults [18], and Tunisian obese women [19].

There seems a relationship between fat and bitter taste, and

obesity. Tepper and Nurse [20] showed that bitter non-taster par-

ticipants were unable to accurately distinguish fat content in high-

and low-fat Italian salad dressings. Several studies have clearly

suggested that there exists a higher preference for dietary fat in

PROP non-taster than that in PROP-taster participants [6,20,21].

Consequently, the subjects who are unable to taste PROP are sup-

posed to consume more dietary fat and, therefore, might develop

obesity [22]. Melis et al. [23] have recently established a link be-

tween fat taste perception, CD36 polymorphism and PROP-tasting

capacity. These investigators reported that the capacity to detect

a fatty acid was directly associated with TAS2R38 or PROP

responsiveness [23]. The PROP non-taster subjects belonged to AA

genotype of CD36 rs1761667 [23]. These studies remain to be

confirmed in other populations. No study is available on the cor-

relation between bitter and fat taste perception and CD36 and

TAS2R38 polymorphism in an African population.

Since fat intake is altered in obesity and fat taste perception is

associated with PROP (bitter) status along with CD36 and TAS2R38

genetic polymorphism, the present study was designed to inves-

tigate these parameters in normal weight vs obese participants in a

Tunisian population.

2. Methods

2.1. Participants

The normal weight (n ¼ 52, age ¼ 35.3 ± 4.10 years, male ¼ 23,

female ¼ 29, BMI ¼ 23.22 ± 1.44 kg/m2) and obese (n ¼ 52,

age ¼ 35.0 ± 5.43 years, male ¼ 10, female ¼ 42,

BMI ¼ 34.29 ± 5.31 kg/m2) non-smoking and healthy Tunisian

adults, both males (n ¼ 33) and females (n ¼ 71), were recruited

from the outdoor patient department (OPD) of National Institute of

Nutrition (Tunis, Tunisia), National School of Veterinary Medicine

(Tunis, Tunisia) and Regional Hospital of Mateur (Tunis, Tunisia).

Medical records were screened by specialist clinicians and dietitian

nutritionist. The exclusion criteria were as follows: any history of

recent weight loss, diabetes, pregnancy-related complications,

chronic illness like hypertension or other inflammatory pathology

or any autoimmune diseases. Breastfeeding or lipid lowering

medication-using persons as well as the subjects using any medi-

cation, known to affect taste (such as birth control pills), were also

excluded from the study. All the included participants had normal

glucose tolerance test and electrocardiogram.

The study was carried out in accordance with the Declaration of

Helsinki (1989) of the World Medical Association, and the Research

Council of National Institute of Nutrition (Tunis, Tunisia) approved

the study protocol. Informed written consent was obtained from all

the participants. Our experimental protocol conforms to the rele-

vant ethical guidelines for human research. As a routine, the par-

ticipants were also asked to fill in a nutrition questionnaire [24].

2.2. Linoleic acid sensitivity analysis

The participants were recruited in the fasting state between

7:30 and 8 AM in a room with a constant temperature of 25 ± 0.5 !C.

Taste preference tests for dietary lipids were performed by

employing linoleic acid (LA) at different ascending concentrations

(i.e., 0.018, 0.18, 0.37, 0.75, 1.5, 3, 6 and 12 mmol/L) by “sip and spit”

technique and a three-alternative forced choice (3-AFC) method as

we have explained elsewhere [9,17,18]. In brief, we prepared three

solutions where two contained the acacia gum (0.01%, w/v), termed

as control solutions, and the third one contained the same quantity

of acacia gum and linoleic acid, termed as test solution. In an iso-

lated room, the participants were proposed to taste, at random, the

three solutions, one-by-one, and in case of a negative response

(non-detection of the fatty acid), they were further proposed to

taste another set of three solutions, where the third one contained

the ascending/increased concentration of the fatty acid, and we

continued the session, by increasing the concentration of the fatty

acid, until they detected the presence of linoleic acid. Between each

“sip and spit”, the participants were asked to rinse their mouth

with distilled water. In order to check whether the detection

threshold was correct, we proposed another set of three solutions,

wherein the one contained descending/lower concentration of the

fatty acid than the detected one. In case of a negative response, we

further proposed the solution where the test solution contained

higher concentration of linoleic acid, and if this response was cor-

rect, it was noted as linoleic acid detected threshold. To avoid ol-

factory and visual cues, the participants used nose clips and were

blindfold. The subjects were not allowed to drink the solutions,

rather they had to spit them out, after keeping the solution in

mouth for a few seconds.

In the present study, we continued further investigations only

on lipid-tasting participants and we excluded the lipid non-taster

subjects who were only 7; hence, 3 subjects belonged to the con-

trol group (age ¼ 35.67 ± 1.52 years, male ¼ 1, female ¼ 2) and 4 to

the obese group (age ¼ 37.25 ± 3.40 years, male ¼ 1, female ¼ 3).

Moreover, these participants did not turn back to complete the

sessions.

2.3. Bitter taste sensitivity analysis

The above-recruited lipid-taster subjects were further invited to

participate to the additional session regarding the bitter taste,

detected by 6-n-propylthiouracil (PROP), as per method of Bar-

toshuk et al. [25]. However, we did not correlate the PROP arbitrary

perceived responses to NaCl-evoked intensity ratings as it seemed

to us very subjective. Hence, we measured the detection thresholds

for PROP (0.0000001e0.0032 mmol/L) as mentioned for LA.

2.4. Determination of blood parameters

Before performing the fatty acid sensitivity test, fasting venous

blood was collected from all the participants. A plasma sample was

immediately used for glucose determination. Serum was aliquoted

and frozen at "80 !C for further analysis of blood parameters.

Concentrations of total cholesterol (TC) and triglycerides (TG) were

determined using enzymatic methods, according to the manufac-

turer's instructions furnished with the kit (DiaSys Diagnostic Sys-

tems GmbH, Holzheim, Germany). Glucose, ALAT (alanine

aminotransferase), AST (aspartate transaminase), LDL and HDL

cholesterols levels were measured by UniCel DxC 800 Synchron

Clinical Systems (Beckman Coulter Inc., Brea, CA, USA). Plasma

glycosylated hemoglobin (HbA1C) concentrations were determined

by column chromatography (Isolab, Seattle, WA, USA). Insulin was

determined by ELISA (RaybioTech, Inc, Norcross, GA, USA). Serum

concentrations of urea, creatinine and C-reactive protein (CRP)

were analyzed by routine standard techniques using an automated

Synchron CX7 Clinical System (Beckman Coulter Inc., Brea, CA,

USA). To observe a difference in some of the determined blood

parameters (i.e., TC, TG and insulin), we collected the venous blood

samples again 1 h after the LA tasting session.
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2.5. SNP analyses

Genomic DNA was extracted from 100 ml of whole blood, using

Wizard® Genomic DNA Purification Kit (Promega, Fitchburg, WI,

USA). For genotyping of rs1761667, we used the previously

described method [17,18]. The TAS2R38 polymorphisms,

rs10246939 (Val296Ile) and rs1726866 (Ala262Val), were analyzed

using restriction fragment-length polymorphism (RFLP) method

and agarose gel electrophoresis. For rs10246939, we used the for-

ward primer, 50 TGTTGCCTTCATCTCTGTGC 30 and a reverse primer,

50 TGTGGTCGGCTCTTACCTTC 30. For rs1726866, the following

primers were used: 50 GGAAGGCACATGAGGACAAT 30 as forward

and 50 ATTGCCTGAGATCAGGATGG 30 as reverse. The annealing

temperature for both the reactions was 62 !C.

To determine rs10246939 genotype, we digested the PCR prod-

uct with FokI restriction enzyme (Thermo Fisher Scientific, Wal-

tham, MA, USA) at 37 !C for 1 h. In case of I-allele, two fragments

(107 bp and 87 bp) were observed. In case of V-allele, an undigested

product of 194 bp was observed. For the determination of rs1726866

genotype, BseXI restriction enzyme (Thermo Fisher Scientific, Wal-

tham, MA, USA) was used. After digestion (65 !C for 1 h), we were

able to observe either three (122 bp, 75 bp and 19 bp) or two (197 bp

and 19 bp) fragments. Three fragments indicated presence of A-

allele, whilst two fragments indicated presence of V-allele.

2.6. Statistical analysis

Statistical analyses were conducted using the Statistica 12 soft-

ware (Statsoft, Tulsa, OK, USA). The data in the table and figures are

presented as means ± SD. The significance in measured parameters

between study groups was determined by one-way ANOVA. To

observe a correlation between BMI, PROP and LA taste sensitivity

thresholds, Spearman rank correlation was used. To compare the

genotype distribution, two tailed Fisher's exact test was used. For

comparison of PROP detection threshold and any other parameters

in individual genotypes, ManneWhitney U-test was used. In this

study, p < 0.05 was considered as statistically significant.

3. Results

3.1. Characteristics of the participants

All participants (n ¼ 104) were divided into two groups based on

their BMI (kg/m2): obese with BMI ¼ 34.29 ± 5.31 kg/m2 (n ¼ 52)

and normal weights with a BMI ¼ 23.22 ± 1.44 kg/m2 (n ¼ 52,

p < 0.01). Both the groups were of the same age (normal weights,

35.3 ± 4.10 years; obese, 35.0 ± 5.43 years, p > 0.05). Our study

included male (n ¼ 33) and female (n ¼ 71) participants. Table 1

shows the anthropometric parameters, and concentrations of

measured blood parameters, determined under fasting condition.

The participants exhibited normal range blood glucose level,

although it was significantly higher in the obese group than the

control group (p < 0.01). Insulin level was also higher in the obese

group as compared to the control group participants (p < 0.01).

ALAT and ASAT were elevated in obese subjects (p < 0.01, p < 0.05,

respectively). We did not observe any difference in LDL-cholesterol

(LDL-C) and HDL-cholesterol (HDL-C) between the two groups.

There was no alteration in uric acid, creatinine, CRP and HbA1C

values between control and obese participants.

3.2. Orosensory detection of LA and PROP is altered in obese

participants

We did not observe any difference in LA detection thresholds

between obese and control groups (Fig. 1A). The average LA

detection thresholds were 1.09 ± 2.30 mmol/L and

1.80 ± 3.01 mmol/L (p ¼ 0.18) for control and obese groups,

respectively. Nonetheless, LA oral sensitivity was associated with

BMI in obese participants (p ¼ 0.037), but not in control subjects

(Fig. 1B).

The obese subjects exhibited higher PROP detection threshold

than normal weight subjects (0.398 ± 0.342 mmol/L and

0.179 ± 0.297 mmol/L, respectively, p < 0.001) (Fig. 1C). Figure 1D

shows a positive correlation between BMI and PROP oral detection

thresholds in both the groups. Interestingly, a positive correlation

between LA and PROP detection threshold was observed in obese

participants (p < 0.001) (Fig. 1E).

3.3. SNP analysis

Genotype frequencies in polymorphisms are shown in Table 2.

For rs1761667, we compared the AA genotype with AG and GG

genotypes, for rs1726866 we compared AA genotype with AV and

VV genotypes, and for rs10246939, we compared II genotype with

IV and VV genotypes. Using this dominant model, we found a

higher AA genotype frequency of rs1761667 in obese subjects

compared to normal weight ones (p ¼ 0.012). Also, AA genotype

(which encodes alanine) of rs1726866 was more abundant in the

obese group (p ¼ 0.017). There was no significant association be-

tween rs10246939 and obesity (Table 2). After haplotype calcula-

tion, 9 different haplotypes were observed, and none of them

differed between obese and normal weight groups. We also

observed strong linkage disequilibrium (LD) between rs1726866

and rs10246939 (D0 0.863, r2 0.616).

After comparing PROP detection threshold in different genotype

groups, we observed that obese participants of the three SNP

(rs1761667, rs1726866 and rs10246939) always had higher detec-

tion thresholds than those in normal weight group (Fig. 2), though

no significant correlation was noticed among different genotypes

whether it was control or obese group (Table 2).

As far as the LA detection thresholds in different genotypes is

concerned, only VV genotype of rs10246939, but no genotype of

rs1761667 or rs1726866, in obese participants exhibited higher

value than the control subjects (data not shown, p ¼ 0.03).

Compared to other two genotypes, the control individuals with the

VV genotype also exhibited significantly lower LA detection

threshold (p ¼ 0.042).

The participants with AA genotype (homozygous for alanine) of

rs1726866 had significantly higher BMI than the participants with

other two genotypes (p ¼ 0.003). Subjects with VV genotype

Table 1

Characteristics of normal weight and obese participants.

Parameters Normal weight (mean ± SD)

(n ¼ 52)

Obese (mean ± SD)

(n ¼ 52)

Age (years) 35.3 ± 4.10 35.0 ± 5.43

Weight (kg) 67.65 ± 8.21 95.24 ± 16.32**

Height (m) 1.70 ± 0.08 1.67 ± 0.09*

BMI (kg/m2) 23.22 ± 1.44 34.29 ± 5.31**

Glycemia (mmol/L) 4.65 ± 0.76 5.23 ± 0.78**

Insulin (pmol/L) 6.52 ± 3.93 26.57 ± 13.81**

ALAT (U/I) 16.26 ± 8.42 22.25 ± 11.97**

ASAT (U/I) 19.32 ± 4.73 21.77 ± 6.64*

LDL-C (mmol/L) 2.64 ± 0.64 2.57 ± 0.72

HDL-C (mmol/L) 1.25 ± 0.41 1.11 ± 0.32

Uric acid (mmol/L) 254.59 ± 89.28 271.82 ± 90.08

Creatinine (mmol/L) 68.27 ± 34.67 62.91 ± 16.70

CRP (mg/L) 4.89 ± 2.35 4.91 ± 3.41

HbA1c (%) 5.59 ± 0.44 5.74 ± 0.58

Values are mean ± SD. *p < 0.05. **p < 0.01, according to one-way ANOVA.
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rs10246939 had significantly higher BMI than the participants with

IV and II genotypes (p ¼ 0.013).

3.4. Linoleic acid-tasting session alters cholesterol and triglyceride

levels

Figure 3 shows that LA tasting induced a notable increase in

blood TC in the obese group (p < 0.01), though in the control group,

the TC concentration was diminished after lipid tasting session

(p < 0.05). Interestingly, the exact opposite trend was observed in

case of blood TG level. The LA tasting session brought about a

decrease in TG in obese subjects, whereas the TG concentrations

were increased in control participants after the tasting round

(p < 0.01).

4. Discussion

The obese subjects exhibit a normal biochemical profile, marked

with normal uric acid, creatinine, LDL-C, HDL-C and CRP concen-

trations; however, they suffer from hyperinsulinemia, associated

with a slight increase in blood glucose concentrations, which seems

under metabolic control as the HbA1c concentrations are not

altered in these individuals.

We assessed the detection thresholds for linoleic acid (LA), a

long-chain fatty acid, and PROP which is an indicator of bitter taste

phenotype. There was no significant difference between two gen-

ders among the same groups of participants as far as taste sensi-

tivity is concerned (not shown). We observed that there was a

positive correlation between BMI and fatty acid/PROP lingual

detection thresholds in obese, but not in control, subjects. Inter-

estingly, there was a strong correlation between LA and PROP

detection thresholds in these subjects. Our observations corrobo-

rate several reports that have shown decreased oral fatty acid

detection capacity, i.e., increased thresholds, in obese objects

[10,16e19,26]. Our findings on the relationship between fatty acid

and PROP detection thresholds in obese subjects are very inter-

esting as it has been proposed that alterations in fatty acid detec-

tion might be related to a change in both bitter and fatty acid taste

modalities [27]. Though PROP is a candidate of bitter taste marker,

this agent has also been considered an example to detect a change,

in general, in oral chemosensory perception since it is associated

with the perception of a wide range of oral stimuli [6]. Our results

Fig. 1. Relationship between obesity and taste sensitivity in normal weight and obese participants. A: shows box plots of LA orosensory detection thresholds in normal weight

(n ¼ 52) and obese subjects (n ¼ 52). B: shows Spearman rank correlation between BMI (kg/m2) and LA orosensory detection thresholds in all the participants (n ¼ 104). C: shows

the box plots of PROP orosensory detection thresholds in normal weight (n ¼ 52) and obese subjects (n ¼ 52). D: shows Spearman rank correlation between BMI (kg/m2) and PROP

orosensory detection thresholds in all the participants (n ¼ 104). E: shows PROP vs LA orosensory detection thresholds in obese subjects (n ¼ 52). The results are means ± SD.

Table 2

Genotypes in normal weight and obese subjects.

a) Genotype distribution between control and obese subjects

SNP Genotype Obese (n ¼ 52) Normal weight (n ¼ 52) p Value

n % n %

rs1761667 AA 24 46.2 11 21.2

AG 22 42.3 34 65.4

GG 6 11.5 7 13.5

AG þ GG 28 53.8 41 78.8 0.012

rs1726866 AA 17 32.7 6 11.5

AV 15 28.8 28 53.8

VV 20 38.5 18 34.6

AV þ VV 35 67.3 46 88.5 0.017

rs10246939 VV 15 28.8 8 15.4

IV 23 44.2 30 57.7

II 14 26.9 14 26.9

II þ IV 37 71.2 44 84.6 0.155

rs1726866 and

rs10246939

haplotype

AAII 1 1.9 0 0.0 NS

AVII 0 0.0 2 3.8 NS

VVII 13 25.0 12 23.1 NS

AAIV 2 3.8 0 0.0 NS

AVIV 15 28.8 25 48.1 NS

VVIV 6 11.5 5 9.6 NS

AAVV 14 26.9 6 11.5 0.080

AVVV 0 0.0 1 1.9 NS

VVVV 1 1.9 1 1.9 NS

b) PROP detection threshold (mmol/L) and genotype distribution

SNP Genotype Normal weight

(mean ± SD)

(n ¼ 52)

p Value Obese (mean ± SD)

(n ¼ 52)

p Value

rs1761667 AA 0.073 ± 0.104 0.377 ± 0.366

AG 0.232 ± 0.342 0.224 0.378 ± 0.328 0.826

GG 0.093 ± 0.202 0.684 0.557 ± 0.300 0.254

rs1726866 AA 0.189 ± 0.398 0.431 ± 0.367

AV 0.210 ± 0.306 0.557 0.229 ± 0.231 0.093

VV 0.128 ± 0.255 0.714 0.496 ± 0.357 0.659

rs10246939 II 0.148 ± 0.286 0.501 ± 0.394

IV 0.203 ± 0.296 0.659 0.301 ± 0.264 0.173

VV 0.144 ± 0.347 0.562 0.451 ± 0.379 0.896

Values are mean ± SD. Fisher's exact (in a) and ManneWhitney U test (in b) were used for statistical calculations. NS ¼ insignificant differences.
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strengthen the link between PROP sensitivity and fat perception, as

PROP tasters have been shown to exhibit high taste intensity rat-

ings for linoleic acid, and vice versa [28]. Though high detection

thresholds, i.e., low sensitivity, for fat and bitter might be a

contributing factor to obesity, it is important to mention that the

family economic situations may also be determinant on the inci-

dence of obesity, as demonstrated by Burd et al. [29]. These in-

vestigators very elegantly showed that PROP-non taster children

from unhealthy environment had higher BMI than PROP-non taster

from healthy environment. The high thresholds for PROP in obese

subjects, in our study, will also aggravate obesity as PROP less

sensitive subjects have been shown to possess low intensity ratings

for bitter vegetables [30], the source of vitamins and minerals.

Our study, surprisingly, failed to show a correlation between

CD36 SNP and high fatty acid detection thresholds in obese par-

ticipants as observed in other studies from Algeria [17,18] and

Fig. 2. Relationship between PROP detection thresholds and genetic polymorphism in normal weight (n ¼ 52) and obese (n ¼ 52) participants. The genotype analysis of CD36

(rs1761667) and TAS2R38 (rs1726866 and rs10246939) were performed as described in the Materials and Methods. ManneWhitney U test was used for the analyses.
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Tunisia [19]. The reasons for this contradictory observation are not

understood. In these three studies, oleic acid, but not linoleic acid,

was used for detection thresholds, and in Arabic countries, partic-

ularly in the Mediterranean countries, olive oil is consumed in high

quantities. It is possible that these subjects have different thresh-

olds for oleic and linoleic acids. Nonetheless, in a French study, a

high detection threshold for linoleic acid was reported in obese

subjects [26]. In our study, we also failed to confirm the observa-

tions of Melis et al. [23] on the association of GG genotype of CD36

rs1761667 with high sensitivity to oleic acid rather we noticed

lower sensitivity (i.e., high thresholds) in obese subjects with GG

genotype as compared to normal weight subjects. The lack of

confirmation might be due to underlying differences in CD36 alleles

across populations. Nonetheless, we notice that obese subjects had

more AA genotype of rs1761667, compared to normal weights, and

this observation is interesting as the expression of rs1761667-A

allele results into reduced CD36 expression and reduced fatty

acid sensitivity [16], and, consequently, these subjects might eat

more fatty food as they will perceive them creamier due to the

presence of triglycerides in the fat of daily food [27].

We were further interested in the association of PROP detection

thresholds with CD36 and TAS2R38 genotypes in obesity. All the

genotypes of rs1761667 (CD36) and rs1726866 and rs10246939

(TAS2R38), except AV genotype of rs1726866, were associated with

higher PROP detection thresholds in obese subjects than normal

weight participants. The participants with AA genotype of

rs1726866 had significantly higher BMI than the subjects with AV

and VV genotypes. High PROP thresholds in VV genotype of

rs1726866 may also participate in obesity as V-allele of this geno-

type has been shown to be associated with high plasma leptin and

increased disinhibition [8].

Interestingly, the obese participants with VV genotype of

rs10246939 exhibited higher thresholds for LA than normal weight

controls, and these VV genotype subjects had significantly higher

BMI than the participants with IV and II genotypes. Also, the normal

weight controls with VV genotype of rs10246939 showed signifi-

cantly lower detection threshold than the control with II and IV

genotypes.

Since we have observed that fatty acid-taster participants are

PROP tasters, and the detection thresholds for both sapid molecules

are high in obese subjects, the question arises whether fat and

bitter taste might communicate with each other, if yes, how?

TAS2R38 is coupled to a G-protein, whereas CD36 does not belong

to the GPCR family. Keller [7] proposed that TAS2R38 might be

involved in the textural perception of fat, whereas CD36 might

assure the chemosensory detection of fat. It is possible that there

might be a downstream coupling between CD36 and TAS2R38 re-

ceptors at the cell signaling cascade. Besides, we have observed that

some of CD36-positive human fungiform cells also express

TAS2R38 in immunochemical studies (unpublished observations).

Our results on the TC and TG corroborate, in part, the findings of

Chevrot et al. [26] and Mattes [32]. Chevrot et al. [26] have

demonstrated that lean fatty acid-taster subjects, after an oral

stimulation by a fatty acid, had higher TG levels than that before

tasting session. However, in our study, we observed low TG levels,

after lingual-stimulation by the fatty acid, in obese subjects, in

contrary to Chevrot et al. [26]. This rapid decrease in TG and in-

crease in TC in obese subjects might be due to a defect in the vagal

reflex loop, tongue-brain-intestine [26]. This defect might not be

due to the release of PYY or cholecystokinin as we did not observe

any alternation in their blood concentrations after lipid-tasting

session (results non-shown).

Our study has several limitations. We did not determine the

number of tongue papillae as the PROP threshold is associated with

taste bud cells in fungiform papillae [20,33], though some authors

demonstrated no relationship between fungiform papillae density

and variations in TAS2R38 genotype [21,34]. Moreover, we did not

use the criterion of the magnitude of arbitrary responses between

PROP and NaCl to classify the subjects as high, medium or low

tasters because salt itself is a taste modality, and salt threshold may

not match with the fatty acid thresholds. It is also possible that the

“salt taste” might interfere with “fat taste”. Though we do not know

how the two modalities interact with other, a recent report has

beautifully shown that salt might promote passive over intake of fat

[35]. Moreover, Burd et al. [29] also used the similar criteria to

classify the children for bitter taste by proposing a solution con-

taining PROP (0.56 mmol/L), without the use of NaCl. Menella et al.

[36] also used the three concentrations of PROP without including

NaCl to determine the bitter taste thresholds.

To sum up, we can state that our study clearly demonstrates that

there exists a relationship between fat and bitter taste modalities

and they might play a crucial role in obesity. We also show that

TAS2R38 variants, rs1726866 and rs10246939 are associated with

obesity. However, the cellular and molecular mechanisms along

with the implication of endocrine or paracrine factors involved in

their modulation during obesity remain to be studied in future.

Fig. 3. The effect of fatty acid-tasting on cholesterol and triglyceride concentrations. The blood samples were collected before (fasting condition) and after 1 h of linoleic acid-tasting

session. The concentrations of total cholesterol (TC) and triglycerides (TG) were determined as described in the Materials and Methods. One-way ANOVA was used for the analyses.
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