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R&umeée

La tempé&ature de surface terrestre (LST, Land Surface Temperature) est un parameire
important dans les systémes climatiques. La LST est appliqguée &divers domaines thématiques
tels que I’é¢tude du bilan énergétique de la surface terrestre, I’estimation d’humidité du
sol/é&saporation, la surveillance de la végéation, la mod@isation de la circulation
atmosphérique du globe. La LST est également utilisée comme parametre d’entrée pour estimer
d’autres parameétres atmosphériques. Il est important d’obtenir une distribution temporelle et

spatiale de LST a I’échelle locale et globale.

L’obtention de la LST a partir de mesure terrain est une tache ardue et chronophage et cette
technique n’est donc pas un moyen efficace pour des zones éendues. La té&&léection dans
I’infrarouge thermique (TIR, Thermal InfraRed) est par contre est un moyen rapide et
¢conomique d’obtenir la LST aux grandes échelles spatiales. Les méthodes basées sur la
télédétection d’obtention de la LST dans I’TIR ne fournissent qu’une valeur de température
par pixel. Ces produits LST sont inévitablement des combinaisons de zones mixtes méne si la
résolution est de 1’ordre de quelques metres. Il est donc nécessaire de développer des

méhodes pour dé&erminer les tempé&atures sous-pixel.

La thése consiste en huit chapitres déerits ci-dessous.

Le chapitre 1 introduit les notions néeessaires pour développer les méhodes de restitution de
la LST et de démixage de la tempé&ature (TUM : Temperature Un Mixing) et les objectifs du

travail de these.

Différentes méthodes d’obtention de la LST sont développées pour les données TIR
multispectrales : par exemple, la mé&hode monocanal, la mé&hode multicanaux, la mé&hode
multi-angle, la mé&hode de separation de Tempé&ature and émissivité (TES), la mé&hode
jour/nuit basé sur la physique, la mé&hode de restitution de LST en deux éapes. Ces
mé&hodes ont leurs avantages et inconvénients. Mais encore, le choix d’une méhode
d’estimation de la LST est dependant des caracté&istiques du capteur. Ces méhodes
d’estimation de la LST multi-spectales ne peuvent pas &re directment appliquées aux donnéss
TIR hyperspectrales avec des milliers de canaux. Pour estimer la LST &partir des données
TIR hyperspectrales, la mé&hode de restituton des LST et émissivitédes surface terrestre (LSE,
Land Surface Emissivity) par éape et la mé&hode de restitution des LST et LSE simultané



néeessitent la exacte connaissance du profil atmospherique. La méhode Empirical
Orthogonal Function (EOF) base€sur une regression lin&ire et la méhode Artificiel Neural
Net (ANN) ne nezessitent pas de profil atmospherique, mais elles nésessitent des millers de
canaux. La méhode de restitution des profils atmospheriques, LST et LSE simultané ne pas
néeessite aucune autre information atmospherique, mais elle est complexe aappliquer. Ces
méthodes ne peuvent pas étre utilisées pour 1’obtention en temps quasi réel de LST a partir de
donné&s TIR hyperspectrales contenant des données endommagées. Il donc est néessaire de
développer une mé&hode pour ce type de données.

~

Diverses mé&hodes TUM pour du image de moyenne cu basse resolution spatiale sont
développés : par exemple, la mé&hode multi-spectrale, la mé&hode multi-angle, la méhode
multi-pixel et multi-ré&olution, la mé&hode multi-temporelle. Ces mé&hode TUM necessitent
que les émissivité des composantes sont connues, et ne peut pas &re appliqué aux données
TIR de haute ré&olution spatiale. Pour estimer les temperatures des composantes, la méthode
de démixage spectrale et mixage thermique estime la LST apartir des données Landsat
ETM+ visible et TIR. Avec une haute ré&olution spatiale, cette méhode ré&upée les
tempé&atures des sous-pixels et n’est pas applicable pour estimer tempé&atures des sous-pixels
apartir des données TIR hyperspectral aé&oporté& haute résolution spatiale. La mé&hode
TRUST est developé sur la base de la physique, mais elle nésessite que la varation des
tempé&atures des sous-pixels soit petite. Nous visons & développer une méhode de
réeupé&ation des LST des sous-pixels pour ce type de surface en utilisant une réolution
spatiale éeveée et des données TIR hyperspectrales qui contiennent de larges informations de

la composition des pixels mixtes.

Le chapitre 2 deerit les bases fondamentales de la radiation thermique. De fagn plus
spécifique, les théories de la radiation thermique, de I’émission et de la diffusion sont
exposés. De plus les éuations de transfert radiatif sont posées et le modée

lin&ire/non-lin&ire de mixage est déerit.

Les éyuations de transfert radiatif dans la intervalle spectrale de TIR est:

Rs (0\, ! (Dv ' ﬂ') = Rg (0v ! ¢v ! j‘)T(ev’ /1) + RatT (Hv’ ﬂ“) + RST (Hwﬂ’)

La radiance spectrale measurée sur la surface de la terre, s’écrite:
R (6,,4)=£(6,, )BT, A) +[1-£(6,, VIR, (1) + R (1)) 2, (6., 0., 9., 9, ) B (6, A)

ou g(0y, A) est I’émissivité spectrale de la surface, pp(0s,0,,0s,¢v,A) est la réflectivité spectrale
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bi-directionnelle, Ts est la LST, t(6,,A) est la transmission totale de la atmospheré R, (}) est
la radiance atmosphé&ique descendante, R.;(8y,A) est la radiance atmosphé&ique directe,
RsT(6,,1) est la radiance provenent de la diffusion atmosphé&ique de la contribution solaire,
Rs] est la radiance descendant provenent de la diffusion atmosphrique de la contribution
solaire, Eqn(6s,1) est la radiance solaire directe au niveau du sol, 6, est I’angle zénithal, ¢s est

I’angle d’azimutal solaire.

Le modée lin&ire de méange utilisédans ce travail de thése s’ecrit :
N

Ry (6,2, % ¥) = > (&, ;(6,)B(T, 1, 4, %, ¥) + (L=, (B,))R, (A)S; (%, V)
j=1

0URy(6,,A,x,y) est la radiance spectral de pixel mixte mesurée au dessous de I’atmosphée,
&,j(0y) est I’énissivité spectrale de la composante pure j dans le pixel mixte, Ts; est la
tempé&ature de la composante j dans le pixel mixte, Sj(x,y) est I’abondance de la composante j

dans le pixel mixte, N est le nombre de composante dans le pixel mixte.

Le chapitre 3 déaille les mé&hodes d’estimation de la LST et de dénixage de la tempé&ature
(TUM) apartir des donneé TIR. Les mé&hodes d’estimation de la LST apartir des données
TIR multi-spectrales, les mé&hodes d’estimation de la LST & partir des données TIR
hyperspectrales, les mé&hodes TUM pour des données TIR basse/moyenne résolution spatiale,
et les mé&hodes TUM pour les données TIR haute résolution spatiale sont préentées.

Les inconvénients principaux des méhodes d’estimation de la LST apartir des donnéss TIR
hyperspectrales:

(1) La difficulté&de correction atmospherique. La majeure partie des méhodes de correction
atmospherique est dévelop& pour les donnés TIR hyperspectrales aé&oportés. Les méhodes
de correction atmospherique pour les données satellitaires TIR necessitent les autres données

atmospheriques qui sont difficiles &obtenir.

(2) La difficultéde restitution des LST, LSE et profil atmospherique simultanément. Les
methods associées sont complexes et necessitent le recours ales modées atmospheriques
rapides, donc ces mé&hodes sont difficiles aappliquer. C’est néessaire que on développe le
modée atmospherique rapide . Par ailleurs, la performance de ces méthodes n’est pas stable a

cause de leur nature complexe.

Les inconvenients principaux des méhodes d’estimation des LSTs des sous-pixels apartir des

données TIR hyperspectrales avec haute réolution spatiale incluent:



(1) La difficultéde démixage de la LST pour les surfaces héerogenes avec une grande
variation des tempé&atures. Le mé&hode TUM basé sur la physique pour estimer la LSTs des
sous-pixels apartir des données TIR haute résolution spatiale necessitent que la variation des
LSTs soit petite, ce qui n’est pas toujours vrai pour les surfaces hé&é&ogenes.

(2) La difficulté de démixage de la LST pour les surfaces regueuse. Les majorité des
meéhodes TUM de restitution de la LST &partir des données TIR haute réolution spatiale ne
considéent pas les factors non-linéires: la conductance et I’advection horizontale. La
rugositédes surfaces urbaines n’est pas négligeable dans I’image TIR avec haute réolution
spatiale.

Le chapitre 4 décrit les données, les zones d’intérét, et le modée atmospherique.

Les donné&s de sondage atmosphé&ique utilisés dans cette thése sont les données de profil
atmosphé&ique NOAA / ESRL. Les bases de donnés utilisé&s comprennent la base de
donné&s TIGR, les bases de données d'émissivite ASTER et MODIS USCB et les données
d'é@nissivitéurbaine de la litté&ature (Cubero-Castan, 2015). Les données satellitaires utilisés
dans ce travail incluent les donnés METOP-A IASI, le produit LST de Metop-A IASI, le
produit LST de Metop-A AVHRR et le produit MOD11B LSE.

La zone d’intérét de la Mer Mediterrané couvrant la longitude de 12°E a 32" E et la latitude
de 30°'N &43°N est utilisée pour cartographier la LST des surfaces ahaute énissivitéen
utilisant des meéhodes pour les donnés TIR hyperspectrales contenant des données
endommagées. La zone d’interet de I’ Australie couvrant la longtitude de 112°E a 152" Eetla
latitude de 43° S a 0" N est utilisée pour cartographier la LST des surfaces naturelles en

utilisant la mé&hode d’estimation de la LST développés.

Enfin, le modée de transfert radatif atmospherique 4A/ OP est pré&entédans ce chapitre.

Le chapitre 5 pré&ente le développement d'une méhode multicanaux pour les surfaces
pré&entant une haute émissivité En se basant sur la mé&hode SW (Split Window), nous avons
propos€une méhode multicanaux pour extraire la LST utilisant une éjuation de régression
lin&ire qui relie la LST aplus de deux tempé&atures de brillance TIR TOA (Top Of
Atmosphere). Pour déerminer les nombres d'onde centraux des canaux i et les coefficients,
nous simulons d'abord une grande quantitéde données IASI en utilisant le modée de transfert
radiatif atmosph&ique 4A / OP et I'&uation de transfert radiatif dans un intervalle spectral de

645-2760 cm-1 et une résolution spectrale de 0,25 cm-1. Diverses conditions atmosphé&iques
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et conditions de surface peuvent &re utilisées par 4A / OP pour la simulation. Les sorties
atmosphé&iques de 4A / OP et le spectre LSE du corps noir sont introduits dans I'éjuation de
transfert radiatif pour calculer la tempé&ature de brillance spectrale. Apreés la simulation des
donnés, nous avons analyséla relation entre les coefficients w; et la teneur en vapeur d'eau &
l'aide des données de simulation et avons déerminé les nombres d'ondes centraux pour
chaque canal i ainsi que les coefficients en utilisant la technique de réression par éapes avec
des données de simulation. La préeision de la mé&hode multicanaux est éalué en utilisant
des données de simulation et des données de satellite au nadir. De plus, la sensitivitéde la
meéhode multicanaux déelopé ala réolution spectrale et au bruit instrumental est &udiée
avec les données de simulation.

Les conclusions que nous en tirons dans ce chapitre sont:

(1) LST de surfaces presentant une haute énissivitépeut &re obtenue exactement apartir des
donées de simulation avec un RMSE de 0,2 K par la mé&hode multicanaux dévelopée en
utilisant seulement 10 canaux.

(2) Les coefficients w; de la mé&hode dévelopée dépendent de la résolution spectrale. Mais
LST des surfaces préentant une haute é@missivité peut toujours ére obtenue pré&isément
quand les coefficients sont déerminés pour chaque réolution spectrale.

(3) L’influence du bruit instrumental n’est pas significatif : L’influence du bruit instrumental
est I’ordre du bruit.

(4) La comparaison de la LST extraite des donnés Metop-A IASI avec le produit LST de
Metop-A AVHRR montre que le RMSE de la LST extraite est de 0,4 K. La LST de surfaces
presentant une haute é@missivit€peut etre obtenue pré&sisément apartir des donnés satellite

par la méhode dévelopé.

Le chapitre 6 déerit I'extension de la mé&hode multicanaux congie pour les surfaces ahaute
énissivitépour les surfaces naturelles. La mé&hode multicanaux, mentionné& au chapitre 5,
suppose I'hypothése que 1’émissivité est égale a I'unité, ce qui rend la méthode non
directement applicable pour les surfaces naturelles. En s’inspirant de la méthode SW et en
supposant que le spectre LSE dans le domaine spectral de 815 cm™ - 960 cm™ peut &re
exprimé&comme une fonction linéire de LSEs de deux canaux, nous avons extrait la LST
pour les surfaces terrestres naturelles en utilisant une fonction liné&ire de plus de 2
températures de brillance et en reliant les coefficients w; de cette éjuation de régression

lin&ire ala combinaison des deux LSEs et la teneur en vapeur de eau. La base de donnés de
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simulation est cré&®e al'aide de 4A / OP avec des données typiques de profil atmosphé&ique
provenant de la base de données TIGR et des donnés LSE typiques de la base d'émissivité
ASTER. Pour déerminer les canaux et les coefficients dans cette mé&hode multicanaux
étendue, nous sélectionnons tout d’abord des paires de canaux initiaux qui représentent les
caractéistiques principales du spectre de la tempéature de brillance al'aide de donnés de
simulation. Aprés cela, nous avons déerminén paires de canaux les plus importants et les
coefficients ®; & partir des couples de canaux initiaux séectionné& par la méhode de
regression par éapes. Le critére de déermination de nombre des canaux est ce que la erreur
de LST obtenue par les données de simulation est infé&ieure &0,5 K. La relation entre les
coefficients m; et la teneur en vapeur d'eau et LSE a é&é&analysée alaide de données de
simulation. La présision de la méhode multi-canale éendue est &aluéen utilisant des
donnés de simulation et des données de satellite. La sensitivitéde cette mé&hode multicanaux
étendue a le bruit instrumental et a la erreur de la teneur en vapeur d’eau est éudié avec les

données de simulation.
Nous en tirons les conclusions suivantes:

(1) Les coefficients o; sont lié ala teneur en vapeur d'eau et au contraste spectral du spectre
LSE et de la LSE moyenne. Quand la condition de LSE est connue et la erreur de la teneur en
vapeur d’eau est 10%, LST peut ére obtenue exactement apartir des donnéss de simulation
avec un RMSE de 0,6 K en utilisant des measures TIR hyperspectales &10 canaux.

(2) Si la valeur moyenne de deux LSEs est < 0,95, I’erreur de la LST obtenue par la mé&hode

multi-canaux éendue apartir des données de simulation passe de 0,5 K &0,8 K.

(3) L’influence du bruit intrumental sur la mé&hode multicanaux éendue est le double de la

grandeur du bruit.

(4) Avec le produit LSE de MODIS en tant qu'entré et une erreur de 10% sur la teneur en
vapeur d'eau, la difféence entre la LST obtenue par Metop-A IASI et le produit LST de
Metop-A/ IASI est d'environ 2 K.

Le chapitre 7 montre le développement d'une mé&hode TUM am@diorée basés sur la physique.
La méthode d’obtention de la LST extrait une seule LST a partir de données TIR sur un pixel.
Nous avons développéune méhode basée sur la physique pour obtenir des tempé&atures des
sous-pixels sur des surfaces hé&é&ogeénes préentant de grandes variations de tempéature.
Supposant que chaque type de surface a des pixels purs dans I'image TIR, la mé&hode TUM

proposée a &é&développé& pour ré&upéer simultanénent les tempéatures des sous-pixels,
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I’abondances des composantes & partir dimages TIR & réolution spatiale deveés par
résolution non lin&ire des éguations de transfert radiatif pour am@iorer la preeision des
résultats et en utilisant une nouvelle fonction de cott et de nouvelles valeurs de premiée
estimation pour stabiliser la solution des é&juations de transfert radiatif avec des termes
atmosphé&iques connus. Plus préeisénent, les tempé&atures de sous-pixels peuvent &re
obtenues en trois éapes: les LSE et les LST des pixels purs sont extraits en utilisant la
meéhode TES et en utilisant des images visibles pour localiser les pixels purs. Deuxienement,
les premié&es valeurs initiales sont obtenues par la mé&hode TRUST. Troisiénement, avec la
LSE des pixels purs et les paraméres initiaux des composantes et les termes radiatifs
atmosphé&iques connus, les tempé&atures des sous-pixels et les abondances de composantes
sur des pixels méangé sont obtenus par la mé&hode TUM proposée. La fonction de cott dans
la méhode TUM proposée est une combinaison de la fonction de coQ utilisé dans la
méhode TRUST et d'une fonction de co(t basée sur une solution non linéire. La pré&ision de
la méhode proposee est evalué al'aide de données de simulation. La sensitivitéde cette
méhode ala difféence entre les émissivités des composantes, ala diffé&ence entre les
tempé&atures de sous-pixels, et ala variation des tempé&atures des sous-pixels est éudi€e avec

les données urbaines de simulation.
Les conclusions dans ce chapitre sont:

(1) Si la variation de la tempéature de chaque composante est 6 K, les tempéatures des
composantes peuvent &re obtenues par la mé&hode TUM proposée apartir des données TIR
hyperspectrales de simulation avec un RMSE de 3 K. Les temperatures des composantes

obtenues sont plus pré&eises que elles obtenues par la mé&hode TRUST.

(2) Si la variation de chaque tempé&ature de composante change de 3 K &9 K, le RMSE des
tempé&atures des composantes obtenue par la mé&hode proposée passe de 1,7 K a3,5 K. La

méthode proposée n’est pas trés sensible a la varation de température de composante.

(3) Si la difféence entre les tempé&atures des composantes descend de 15 K a5 K et la
variation de tempé&ature de composante est 3 K, le RMSE des tempé&atures des composantes
obtenues par la méhode proposée augment de 1,9 K &2.1 K. La méhode proposée n’est pas

sensible ala difféence entre les temp&atures des composantes.

(4) Si la diffé&ence entre les émissivité&s des composantes change de 0,07 &0,035 , le RMSE
des tempé&atures des composantes obtenues par la méhode proposée passe de 3,5 K &5,7 K.

La méhode proposee est aussie sensible ala diffé&ence entre les émissivités des composants.
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Le chapitre 8 expose les conclusions et les perspectives.

Dans cette thése, nous avons tout d’abord développé une méthode multicanaux pour obtenir
les LST apartir de données hyperspectrales, éudi€sa sensibilit€et éaluésa preeision en
utilisant des données simulées et des donnés de téé&léection. Ensuite nous avons déeloppé
une mé&hode TUM am@iorée fondé sur la physique pour la haute réolution spatiale et les
données hyperspectrales et avons réalisé I’analyse de sensibilité et d’erreur en utilisant des

données de simulation.
Finalement, les perspectives de ce travail sont :

(1) La méhode multicanaux proposee pour les surfaces naturelles néeessite la connaisse de la
LSE et la teneur en vapeur d’eau qui sont difficiles aobtenir. Il néessaire de déselopper une

nouvelle methode pour correction atmospherique des données TIR hyperspectrales.

(2) La mé&hode multicanaux proposée est congie pour les donnés TIR hyperspectrales au
nadir dans cette é&ude. Nous éendions la méhode multicanaux pour les mesures hors-nadir
dans le futur.

(3) La mé&hode TUM proposee n’est pas €valuée en utilisant des données de satellite. Nous
&aluerons la mé&hode TUM proposé avec les donnés de satellite et déveloperons une
nouvelle mé&hode TUM pour stabiliser la ré&olution du modée lin&ire/non-liné&ire de
méange.

(4) La méhode TUM proposeé n’est pas éaluée sur les pixels mixtes contenant plus que
deux composantes. Nous évaluerons la performance de cette méhode sur les pixels mixtes

composés de trois composantes dans le futur.
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1 Introduction

1.1 Background

Land surface temperature (LST) is a key parameter in climate systems. LST is used for
various thematic applications, such as earth surface energy budget studies (Zhou et al. 2003),
numerical weather/climate forecasting (Le Marshall et al. 2006), climate variability analysis,
global sea circulation study (Valor and Caselles 1996), and soil moisture/evapotranspiration
estimations (Rhee et al. 2010).

LST is defined as the radiant temperature calculated from the thermal radiation emitted
by the observed surface. Because the thermal radiation acquired by a radiometry is in reality

emitted by a thin layer of surface, radiant temperature is also called the skin temperature.

Ground measurements cannot practically provide LST values over vast region. Thermal
infrared (TIR) remote sensing has become an effective method to measure LST on large
spatial scales (Dash et al. 2002; Li et al. 2013). In remote sensing-based way, space-borne
sensors measure the surface emitted radiance modified by the atmosphere in different spectral
channels; brightness temperatures are calculated from the radiance by reversing Planck’s
function. Various methods are used to retrieve LST from the brightness temperatures with
auxiliary data. The merits of remote sensing in measure of LST include: requirement of less
human labour and material resources; its feasibility of measure of LST in large spatial scale;
its efficiency in producing LST data.

Atmospheric correction is one critical process for retrieving LST from spaceborne
radiometry. Surface emitted thermal radiation reaching spaceborne sensor is affected by
atmospheric absorption attenuation and a deduction caused by the atmospheric emission. The
aerosol scattering and absorption in 8 -12 pm is negligible and generally ignored. The
atmospheric absorption gases in thermal infrared region include trace gases such as CO,, Os,
CO, CH,, and water vapor. The volume of trace gases in the atmosphere is nearly invariant
spatially and temporally. Unlike the trace gases, water vapor varies on short spatial-scales and

on short time-scales, which make it important to correct of atmospheric effects.

Temperature and emissivity separation is another critical process for retrieving LST from
spaceborne radiometry. Because surface emission in a channel is a function of LST and LSE,
LST is one of the coupling physic parameters in radiance measured by spaceborne sensor.

LSE varies dramatically over continental surfaces due to the change of surface characteristics



such as vegetation fraction, soil moisture, surface type and surface roughness.

Various methods can be used to retrieve LST from satellite-based multispectral TIR data:
the single-channel method (Hook et al. 1992), the split-window (SW) method (McMillin 1975)
and the multi-channel method (Sun and Pinker 2003; Sun and Pinker 2005, 2007), the
multi-angle method (Chedin et al. 1982), the physical-based day/night operational method
(Wan and Li 1997), the Temperature and Emissivity Separation (TES) method (Gillespie et al.
1998), the multi-temporal physical method (Li et al. 2011), the Kalman filter physical method
(Masiello and Serio 2013) and the Two Step Retrieval Method (TSRM) (Ma et al. 2000; Ma
et al. 2002). The single-channel method requires good knowledge of LSE at the channel used
and an accurate atmospheric profile. This is difficult or even impossible to satisfy in most
practical situations. The SW method utilizes differential atmospheric absorption in two
adjacent channels centred at 11 um and 12 um, which does not require information about the
atmospheric profile for ocean applications at the time of the acquisition (McMillin 1975).
However, the SW method requires accurate atmospheric water vapour content and LSE for
land applications (Li et al. 2013). The multi-channel method uses characteristics of the
mid-infrared (MIR 3-6pm) channel i; at 3.9 um and channel i, centred at 8.7 um to improve
atmospheric correction at night, which does not require atmospheric water vapour content
(Sun and Pinker 2003; Sun and Pinker 2007). However, the multi-channel method cannot be
utilized in applications at daytime. Similar to the principle of the SW method, the multi-angle
method is based on the differential water vapour absorption measured by sensor from
different angles. The multi-angle method suffers from the phenomenon of LSE angular
dependence and LST angular dependence (Sobrino and Jiménez-Mufpz 2005). The four
methods mentioned above require good knowledge of LSE, which is difficult to obtain.
Therefore, the following methods have been developed to retrieve LST and LSE
simultaneously. The physical-based day/night operational method utilizes two-time
measurements at 7 MIR and TIR channels to constrain the ill-posed temperature/emissivity
separation with known atmospheric corrections (Ma et al. 2002). However, the physical-based
day/night operational method suffers from problems of geometry mis-registration, variations
in the viewing zenith angle and inaccurate atmospheric correction (Wan and Li 2008). The
TES method relies on an empirical relationship between spectral contrast and minimum
emissivity to separate LST and LSE from five atmospherically corrected Advanced
Spaceborne Thermal Emission Radiometer (ASTER) TIR data (Gillespie et al. 1998).
However, the TES method exhibits significant errors under hot and wet atmospheric
conditions (Gillespie et al. 2011). The multi-temporal physical method (Li et al. 2011) and the
Kalman filter physical method (Masiello et al. 2013) utilize the invariance feature of LSEs
measured within a short time period (six hours) to separate LST and LSE from geostationary

thermal infrared radiances provided that good atmospheric correction has been perform. The
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TRSM method simultaneously retrieves the atmospheric profiles, LST and LSE from the
Moderate Resolution Imaging Spectroradiometer (MODIS) channel data, which does not
require atmospheric correction or knowledge of LSE (Ma et al. 2002). However, the
requirement of adequate channels and the TRSM method’s complex nature make it difficult to
apply.

The LST retrieval methods mentioned above use satellite data measured at several broad
channels such as the Advanced Very High Resolution Radiometer (AVHRR) TIR data (band
width: 1 pm), MODIS TIR data (0.5 pm), ASTER TIR data (band width: 0.4 to 0.7 pm).
However, hyperspectral TIR sensors, namely, TIR sensors with many narrow and contiguous
channels, have much higher spectral resolution and provide opportunity to develop new
methods for retrieving LST. For example, the Spatially Enhanced Broadband Array
Spectrograph System (SEBASS) has 128 TIR channels (spectral resolution: ~4 cm™ at 10 pm),
the Atmospheric InfraRed Sounder (AIRS) has 2738 TIR channels (resolution: 0.55 cm™).
The hyperspectral TIR data with thousands of channels provide plenty of information on the
atmosphere and land surface.

Meanwhile, various spaceborne hyperspectral TIR sensors exist to provide this type of
data. The first successful sensor, AIRS (Susskind et al. 2003), has been providing
hyperspectral TIR data since 2002. There are hyperspectral TIR data observed by other
space-borne sensors, such as the Infrared Atmospheric Sounding Interferometer (IASI)
(Chalon et al. 2001; Simeoni et al. 2004) and the Cross-track Infrared Sounder (CrlIS) (Bloom
2001). In the future, the infrared sounder® (IRS) will also provide this type of hyperspectral
TIR data. There is a pressing need for methodological development in order to retrieve LST
from these space-borne hyperspectral TIR data.

Various methods exist to retrieve LST from space-borne hyperspectral TIR data: the
linear regression method (Schlussel and Goldberg 2002; Zhou et al. 2002; Goldberg et al.
2003; Weisz et al. 2007; Zhou et al. 2011), the Artificial Neural Network (ANN) method
(Aires et al. 2002a; Wang et al. 2013a), the stepwise LST and LSE retrieval method
(Pequignot et al. 2008), the simultaneous LST and LSE retrieval method (Susskind et al. 2003;
Paul et al. 2012), the physical simultaneous atmospheric profiles, LST and LSE retrieval
method (Rodgers 1976; Li et al. 2007; Masiello and Serio 2013). The ANN method and linear
regression method are based on a linear/nonlinear empirical relationship between principal
component amplitudes of brightness temperature spectrum at Top Of Atmosphere (TOA) and
LST or LSE. The linear regression method and the ANN method do not require extra

atmospheric data and are fast enough for near real-time application (Wang et al. 2013b).

! http://www.eumetsat.int/Home/Main/Satellites/Meteosat ThirdGeneration/index.htm
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However, the linear regression method and the ANN method require thousands of channels
and have much error for complex physical situations (Paul et al. 2012). For example, aerosols
hamper the application of the linear regression method and the ANN method. The stepwise
LST and LSE retrieval method relies on the phenomenon that LSE is close to unity at a
certain channel to separate LST and LSE with known atmospheric profile. The stepwise LST
and LSE retrieval method requires accurate atmospheric profile and good knowledge of LSE
at the used channel. The simultaneous LST and LSE retrieval method depends on an
empirical relationship between principal components of LSE and each channel LSE to
constraint iterative solution of LSE and LST with known atmospheric profile. The
simultaneous LST and LSE retrieval method does not require good knowledge of LSE at a
certain channel. However, the simultaneous LST and LSE retrieval method requires accurate
atmospheric profile. The physical simultaneous atmospheric profile, LST and LSE retrieval
method utilizes physical constraint based on spectral smoothness characteristic of LSE to
iterative solve LST, LSE and atmospheric profile simultaneously with the support of
atmospheric radiative transfer model. The physical simultaneous retrieval method does not
require atmospheric profile or good knowledge of LSE, but it has low computation efficiency
because of its complex nature. The hyperspectral TIR data contains damaged data due to the
dysfunction of instrument or other damage in the data transfer. However, these methods
cannot be used for hyperspectral TIR data containing damaged data at certain channels.

The LST retrieval methods mentioned above only retrieve a single LST for a pixel, it is
not correct for heterogeneous surfaces. Although satellite launching missions such as Micro
Satellite for Thermal Infrared Ground surface Imaging (Garcia-Moreno et al. 2009) (spatial
resolution: 50 m; 1- or 2- day interval) and hyperspectral Infrared Imager (HyspIRI) (Chien et
al. 2009) (spatial resolution: 60 m; 5-day interval) will provide data with higher spatial and
temporal resolutions and airborne thermal sensors provide images with spatial resolution of
several meters (Hecker et al. 2010), mixed pixels are inevitable in TIR data from these

satellite sensors.

LSEs and abundances of subpixel materials, which is also called component emissivities
and component abundances, are important for geological study such as mineral mapping
because silicate materials in rocks and soils have various spectral shapes in emissivity
(Vaughan et al. 2003). In the 8 pm to 12 pm atmospheric window, mineral groups such as
silicates, carbonates, sulfates, and phosphates have spectral features related to the
fundamental vibrational frequencies of their interatomic bonds. The features are known as
reststrahlen bands and can be used to identify a mineral sample. Also, component emissivities
and adundances are used for other applications such as urban environment study, surveillance
(Schaepman et al. 2009).



LSTs of subpixel materials, which is also called the component temperatures, are widely
used for various applications such as the estimation of evapotranspiration (Archer and Jones
2006), urban climate and environment analysis (Deng and Wu 2013). For instance, the merits
of usage of component temperatures for urban thermal pattern analysis mainly include:
convenient separation/identification of thermal behaviours of different urban surface materials,

inherent integration with ecological models.

TIR radiance data is a function of the component abundances, of the component
emissivities and of the component temperatures. TIR data is widely used to obtain spatially

distributed component emissivity, component temperature and component abundances.

Various methods for simultaneously retrieving temperature and emissivity from TIR data
exist in literature. However, these methods require the assumptions that a pixel is composed
of only one material (Borel 1997; Wan and Li 1997; Gillespie et al. 1998) or that the pixel is
composed of one or more material at the same temperature (Collins et al. 2001), while in

reality many pixels are composed of various materials at different temperatures.

Various methods exist for retrieving component temperatures from coarse or medium
spatial resolution TIR data: the multi-spectral temperature unmixing (TUM) method (Dozier
1981; Song and Zhao 2007), the multi-angular TUM method ( Li et al. 1999; Jia et al. 2003;
Timmermans et al. 2009), the multi-pixel and multi-resolution TUM method (Dozier 1981;
Zhang et al. 2005; Zhang et al. 2008; Zhan et al. 2011a), and the multi-temporal TUM method
(Zhang et al. 2003b). These methods are developed for low/medium spatial resolution TIR
data and they are not suitable for high spatial resolution TIR data.

For high spatial resolution TIR data, the Spectral Unmixing and Thermal Mixing (SUTM)
method estimates LST of high spatial resolution from Landsat ETM+ visible and TIR data by
approximating the mixing of temperature as a linear mixing of component temperatures
(Deng and Wu 2013). The SUTM method can only coarsely retrieve component temperatures
and is not suitable for high spatial resolution TIR data with thousands of channels. The
physics-based Thermal Infrared method for Unmixing Subpixel Temperature (TRUST)
method simultaneously retrieving component temperatures and component abundances over
mixed pixels by a minimization of reconstruction error of the mixed-pixel Bottom Of
Atmosphere (BOA) radiance (Cubero-Castan et al. 2015). The TRUST method for physically
unmixing component temperatures cannot be utilized for heterogeneous surfaces the large

variation of component temperatures.

1.2 Objectives

In this dissertation a framework is described to achieve the following ultimate objectives:
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developing a flexible method for retrieving LST from hyperspectral TIR data and developing
an improved physics-based method for unmixing subpixel temperatures from high spatial
resolution hyperspectral TIR data.

Specifically, the study will pay attention to the following.

A multi-channel method for retrieving LST from hyperspectral TIR data with assumption
of LSE of unity is developed.

® A LSE-adjusted multi-channel method for retrieving LST from hyperspectral TIR data
with known LSE condition and known water vapor content is developed. The method is
developed in the following two steps.

— reduction of the dimension of the LSE spectrum using a linear function

— development of a multi-channel method for retrieving LST from hyperspectral TIR
data with the proposed LSE linear function

® An improved physics-based method for unmixing subpixel temperatures from
hyperspectral TIR data with consideration of larger variation of subpixel temperatures is
developed.

1.3 Flowchart of the dissertation research and organization

of the dissertation

1.3.1 Flowchart of the dissertation research

To achieve the objectives in Section 1.2, the research work was carried out according to
the procedures shown in Figure 1.1. First, a large simulation database was created for 1ASI
using atmospheric data and land surface data with simulation model the Operational release
for Automatized Atmospheric Absorption Atlas (4A/OP). Second, a method for retrieving
LST for high emissivity surfaces from hyperspectral TIR data was developed by using an
empirical relationship between LST and a combination of IASI brightness temperatures with
the simulation database. In this step, the sensitivity analysis and the validation of the
developed multi-channel method were carried out using simulation data and satellite data.
Third, the developed multi-channel method was extended to natural land surfaces by refitting
the coefficients in the empirical relationship with consideration of LSEs of natural land
surfaces, and the sensitivity analysis and the validation were carried out using simulation data
and satellite data. Fourth, a new TUM method was developed by using an improved solution

of the radiative transfer equations for component abundances and component temperatures
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with known atmospheric condition, and the developed TUM method was evaluated using

simulation data.
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Figure 1.1 The flowchart of the dissertation research

1.3.2 Organization of the dissertation

The dissertation is composed of eight chapters.

In the first chapter, the importance of LST and component parameters is presented.
The background of retrieval of LST from TIR data and the background of estimation of
7



component temperatures are illustrated.

The second chapter is devoted to basic theories for retrieving LST from hyperspectral
TIR data, to basic theories for unmixing component temperatures from hyperspectral TIR
data.

The third chapter is to present a review of methods for retrieving LST from the
multispectral and hyperspectral TIR data and for retrieving component temperatures from TIR
data.

The fourth chapter is to introduce satellite data and related data used for developing a
flexible method for retrieving LST from hyperspectral TIR data and for developing an
improved physics-based method for unmixing component temperatures from hyperspectral
TIR data.

The fifth chapter is to develop a multi-channel method for retrieving LST for high
emissivity surfaces from hyperspectral TIR data, to evaluate the developed method and

analyze its sensitivities to spectral resolution, instrumental noise.

The sixth chapter is to develop a multi-channel method for retrieving LST for natural
land surfaces from hyperspectral TIR data with known water vapor content and known LSE
condition, to investigate its sensitivities to error of water vapor content, to variation of LSE

and to instrumental noise.

The seventh chapter is to develop an improved physics-based method for unmixing
component temperatures from hyperspectral TIR data, to evaluate the developed TUM
method.

The conclusions of this study and prospects are presented in the eighth chapter.



2 Fundamental definitions and theories on

the thermal radiation

2.1 Definitions

1) Wavelength
Wavelength, namely 2, is defined as the distance that an electromagnetic wave transfers

in a vibrational period. This definition is not restricted to electromagnetic wave. The unit of
wavelength for the infrared radiation usually is um.

Wavenumber, namely v, is another concept which is usually used in infrared remote
sensing. The wavelength is defined as the number of wavelength per unit length along
direction of radiation transfer. The unit of wavenumber for infrared region usually is cm™. If
the unit of wavelength is um and the unit of wavenumber is cm™, the relationship between

wavelength and wavenumber is expressed as

A-v :lOOOO. 2.1)

2) Solid angle

To analyze the radiation field, it is required to consider the electromagnetic energy
confined to an element of solid angle. The solid angle is defined as the ratio of the area of a
spherical surface o intercepted at the core to the square of the radius r as shown in Figure 2.1
and in equation 2.2.

Q== (2.2)

Figure 2.1 Definition of a solid angle ), where ¢ denotes the area, and r denotes the radius



Figure 2.2 Illustration of a differential solid angle. The notifications are defined in the text.
Here, the differential solid angle is expressed as

Q:d_O-—Sian¢d9 (23)

r2

where 6 denotes the zenith angle, and ¢ denotes the azimuthal angle.
3) Radiant exitance

Radiant exitance is defined as the amount of radiant energy gives out by an emitting
surface per unit area and per unit time and is expressed as

2
M=d0Q (2.4)
dodt

where Q is the radiant energy in unit of J;

M is the radiant exitance in unit of W/m?.

4) Irradiance

Irradiance is defined as the amount of radiation incident on a surface per unit area and

per unit time and expressed as

2
g-d4Q (2.5)
dodt

where E is the irradiance in unit of W/m?.
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5) Radiant intensity

Radiant intensity is defined as the amount of radiant energy gives out by an emitting
point in unit time in directions confined to unit solid angle and is expressed as
2
_dR (2.6)
dQdt
where | is the radiant intensity in unit of W/sr.

6) Radiance

Radiance is the amount of radiant energy gives out by an emitting surface in unit time,
which crosses unit intercepted area vertical to the direction of radiation transfer, in the
directions confined to unit solid angle, which is oriented at an angle 6 to the normal of the
intercepted area and is expressed as

__d @.7)
dQdo cos@dt

where R is radiance in unit of W m? sr™.
7) Spectral Radiance
Spectral radiance R; is defined as the amount of radiance gives out by an emitting

surface per unit wavelength.

* dQdocos@dtd A (2.8)

8) Kinetic temperature

Kinetic temperature is defined as the average temperature of the molecules in the object.
It can be measured by laying the thermometer on the object or by burying the thermometer in
the object (Becker and Li, 1995).

9) Brightness temperature

Brightness temperature is defined as the temperature of blackbody which gives out the
same amount of radiant energy as the observed object and expressed as
Tb (ﬂ) = Bzil[Rz (T )] , (29)
where Ty()) is brightness temperature of the observed object;
T is the radiant temperature of the observed object;

R, is the observed spectral radiance;

11



B,.(x) is the Planck’s function.

2.2 Thermal radiation theories

Any substance at a finite absolute temperature emits electromagnetic energy. Any object
hot gives off light which is known as thermal radiation. The relationship between the amount
of energy emitted by a blackbody, its wavelength and the temperature of blackbody is an

equation known as the Planck’s law.

2.2.1 Planck’s law

In general, a certain fraction of the energy incident upon the surface of a solid object is
absorbed and the remainder is reflected. A blackbody is defined as an idealized, perfectly
opaque material that absorbs all the incident radiation at all the frequencies, reflecting none.
In addition to being a perfect absorber, the blackbody also emitted all the absorbed radiation

to keep its temperature stable.

According to Planck’s law, given a temperature T, the spectral emittance of a blackbody

27C h ch
ET A =" pm—) (exp —1) W-m?2. um™] (2.10)

where E(T,L) is spectral emittance, which is defined as the energy per unit time per unit

wavelength crossing a unit area perpendicular to the viewing angler of the sensor;
h is the Planck constant;

A is the wavelength in um;

k is the Bolzmann constant;

c is the speed of the light;

Cy=2mhc’= 3.7418x10™° W m?; C,=hc/k=14388 um K.

For a blackbody radiates uniformly in all directions, the spectral radiance B(T,A) can be

written as

E(T )

B(T,A) = JW-m?.srt. um™] (2.11)

where B(T,A) is blackbody spectral radiance, namely, the energy per unit area per unit solid
angle per unit wavelength.
Sometimes, people prefer to express spectral radiance on terms of B(T,v) rather than on

12



terms of B(T,A). The spectral radiance can be written as

2h®
CZ

B(T,v)=

h
(expﬁ—l)‘l, W.m™.sr. ym™]. 2.12)

2.2.2 non-blackbody radiation

Generally, an object emits less energy than a blackbody and does not absorb all the
incident radiation. The spectral emissivity is defined as the ratio of spectral radiance emitted
by an object at a certain temperature to the spectral radiance emitted by a blackbody at the
same temperature. The spectral emissivity of blackbody is unity and the spectral emissivity of
non-blackbodies ranges from zero to unity. Given spectral emissivity (6, A), spectral radiance
of a non-blackbody at temperature of T (K) is
2¢%h

ch

A% (exp———1
expor D

R(0,14)=¢(0,1)B(T, A1) =¢(0, 1) (2.13)

where 0 is the incident angle.

Given spectral radiance R(6,)) and its actual temperature T (K), a blackbody equivalent

radiative temperature Ty, also called brightness temperature, is defined as

B(T,, 1) = R(0, A) = £(0, A)B(T, 2) - (2.14)

2.3 Emission and scattering

To quantitatively exam the interaction of radiation with a dialectic slab, the effective
reflectivity p, the effective transmissivity t, and the effective absorptivity o are used
expressions, where the adjective “effective” refers to the steady-state solution incorporating
all multiple reflections within the slab. The relationship between the three parameters can be

written as

a(A)+7t(A)+ p(L) =1 (2.19)
According to Kirchhoff’s law, for the material in thermodynamic equilibrium, o is equal
to its effective emissivity €. Here, we have
e(A)+7()+p(1) =1 (2.16)
In thermal infrared remote sensing, natural surfaces is assumed to be opaque, T = 0, in

which case equation 2.16 can be written as
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e(A)+ p(1)=1. (2.17)
As seen from the equation 2.17, in TIR spectral region, the effective emissivity of an

object is high when its effective reflectivity is low. Otherwise, its effective emissivity is low.

For the rough surface, more general expression of the emissivity should be defined.
According to Kirchhoff’s Law, the emissivity of a rough surface observed at the direction (6,

¢y) can be defined as

_ 2r % .
£0,0)=1-]" [ p,(6.9.6,0,)sin6 cos6d0dg, (2.18)

where 0, is the viewing zenith angle;
oy is the viewing azimuth angle;
0; is the incident zenith angle i;

@i is the incident azimuth angle i;

2,6, 9,0, ¢,) isthe directional hemispherical reflectance.

2.4 Atmospheric radiative transfer theories

2.4.1 Interaction of electromagnetic energy with atmosphere

For infrared region, atmospheric absorption is mainly caused by atmospheric gases, such
as water vapor, ozone, carbon dioxide. Through understanding the absorption, emission
behavior of atmospheric gases, the infrared remote sensing technique is utilized to monitor

the atmospheric parameters and to forecast weather condition.

In addition to these gases, other atmospheric gases such as methane and nitrous oxide
also have absorption lines in the infrared region. The total transmissivity is defined as the sum

of the absorption of the atmosphere.

According to the quantum theory, the absorption (or emission) of a molecule consists of
sharply defined frequency lines corresponding to the transitions between sharply defined

energy levels of the molecule.

1) Water vapor absorption

Water vapor has most significant absorption for electromagnetic radiation. Most of water
vapor is distributed in the low layers of the atmosphere. Water vapor content varies
dramatically with time and location. The higher the water vapor content, the more serious the
absorption is. In infrared region, water vapor has two strong absorption bands: 2.5um - 3.0um,
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and 5.0um - 7um.

2) Carbon dioxide absorption

Carbon dioxide is an important absorption gase in the infrared region. Carbon dioxide
has three absorption bands in the infrared region: one around 4.3um, one from 14um to 18 um

and one narrow absorption band at 2.7 um.

3) Ozone absorption

Ozone has strong absorption for electromagnetic radiation. Ozone is mainly in the 20 to
30 km altitude of the atmosphere. Ozone has two strong absorption bands: one at 0.3 um and

one around 9.6 um.

Besides absorption of atmospheric constituents, atmospheric gases also emit radiation
which contributes to the radiation observed at the TOA. In most atmospheric conditions, the
atmospheric emission cannot deduct atmospheric absorption attenuation, so the brightness
temperature observed at TOA is less than the brightness temperature of the observed object at
surface. In some atmospheric cases, the brightness temperature at TOA is larger than the
brightness temperature at surface.

2.4.2 Schwarzschild’s equation

When electromagnetic radiation transfers in a medium, the radiation is diminished due to
the absorption and scattering of the medium. Assuming the radiant intensity I, changes to I, +
dl, after passing through a thin layer of a medium with a depth of ds in the direction of

transfer of radiation, we have

dl, =—p, k,ds (2.19)

where pp, is the density of the medium,

k, is the mass extinction coefficient.

Meanwhile, the radiant intensity increased in this transfer process due to the emission of
radiation and multiple scattering of radiation by the medium. By defining the source function
coefficient as j,,which has the same physical meaning as the mass extinction coefficient, the

amount radition dl. added to radiant intensity I.is written as
dl, =p, j,ds (2.20)

By combining the decrease of radiation in equation 2.19 and the increase of radiation in

equation 2.20, we have equation 2.21 to express the change of radiation intensity.
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dl, =—p.k,ds +p, j,ds (2.21)
Here, we define the source function J. as
J, == (2.22)

So equation 2.21 can be written as

dl,
pk,ds

=—1,+J, (2.23)

In TIR remote sensing, scattering of radiation by the atmosphere can be neglected. It is
generally assumed that, in localized portion, the atmosphere is in thermodynamic equilibrium
and being plane-parallel. When a beam of light in TIR region passes through the atmosphere,
TIR radiation is simultaneously affected by atmospheric absorption and emission. Here, the
source function in equation 2.22 can be defined by the planck function and equation 2.23 is
expressed as

da,
K S =—1,(s)+B[A,T(s)] (2.24)

where T(s) is atmospheric temperature at the point where the depth of the medium in the

direction of radiation transfer is s.

Here we define the monochromatic optical thickness of the medium from s to s; as shown
in Figure 2.3 in the form

7(s5)= f pk.ds (2.25)

To multiply the terms in both sides of equation 2.24 by e* Y and to integrate ds from 0

to sy, we have
[ pras ! [ pras
L,(s)=1,0)e* " + [ BILT(s)le" ™ pk.ds (2.26)
s=0

The first term in left side of equation 2.26 denotes the absorption attenuation of radiant
intensity by the medium. The second term in the left side of equation 2.26 denotes the part of
radiation emitted by the atmosphere itself. Schwarzchild (1914) proposed equation 2.24
within the context of Kirchhoff’law and without considering the scattering, and derived an
integral solution of equation 2.24. Equation 2.24 is also called the Schwarzchild’s equation
(Liou,2002).
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7(S,51)

Figure 2.3 I[llustration of the monochromatic optical thickness of the medium from s to s1

2.4.3 Radiative transfer equation

For spectral radiance measured by a remote sensor at TOA, atmospheric effects cannot
be ignored. Figure 2.4 illustrates the different terms in the radiative transfer equation at a
wavenumber A for the TIR spectrum, which form the spectral radiance measured by a sensor
at TOA. Surface emission, which is a function LST and LSE, is denoted as [1] in Fig. 2.4.
Part of spectral radiance emitted by the atmosphere reaches the surface, and then reflected by
the surface towards the sensor ([2] in Figure 2.4). Meanwhile, atmosphere directly emits
radiance upwards to the sensor ([5] in Fig. 2.4). For the MIR spectrum in daytime, direct solar
radiance penetrate the atmosphere and part of it reaches the surface, and then is reflected by
the surface towards the sensor ([4] in Figure 2.4). The atmosphere scatters the solar radiance
directly upwards to the sensor ([7] in Figure 2.4). Part of solar radiance scattered by the
atmosphere reaches the surface, and then is reflected by the surface towards the sensor ([3] in

Figure 2.4). The spectral radiance measured by a sensor at the TOA can be written as

R0, 0, ) =R, (0,0, )7(6,,2) + R 1 (6,,2) + R (6,, 2) (2.27)

where Rq(6y, 9y,A) is the total radiance reaching the sensor;

R¢(0vo, v ,A) is the spectral radiance by a sensor at the ground,;

A is the wavelength;

0y is the viewing zenith angle;

oy IS the viewing azimuth angle;

1(6y, A) is the total atmospheric spectral transmittance;

Ra1(8y, A) is the upwelling atmospheric radiance;

Rst(6y, A) is the upwelling atmospheric spectral diffusion radiance resulting from the
scattering of solar radiance at zenith angle 6,;

with
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R,(8,,4) = £(6,,@,, A)B(T,, 2) + joz” jo% 2,(6,,9,,6,¢ , D[R, (A)+R_ (A)]sin & cosddd'dg

+pb (95 ! 9\, ' ¢s ’ §0\,1 i) Esun (05 ’ l)
(2.28)

where g(6v, @v, 1) is the land surface emissivity;

T,is the land surface temperature;

Pu(By, ov, O ¢, 1) is the bi-directional spectral reflectivity;

Ra (1) is the downwelling atmospheric spectral radiance;

s is the solar azimuth angle;

0 is the solar zenith angle;

Rs (1) is downwelling hemispheric atmospheric spectral diffusion radiance resulting from the
scattering of solar radiance divided by IT,;

E«un(6s, A). is the direct solar spectral irradiance at the ground level,

and with

) ot(1,6,¢,
R,.(6,,2) :J-OP B(Tp,ﬂ)%dp
(2.29)

: 0r(4,0,,0,,
Ry (0,2) =] B(Tp,i)%dp

where t(A,0,¢ ,p) is the transmittance of the atmosphere between the top of atmosphere and
the pressure p observed at incident angle (6, );
Ps, and p is the pressure measured at the land surface and at the pressure layer p in hPa;

T, is the atmospheric temperature at pressure layer p in K.

For the spectral radiance at TIR channels, nighttime measurement at the MIR channels,
Esun(8s, 1)=0 and Ry;(8y, )= R, ( A)=0. In the TIR remote sensing, we generally assume that

natural land surfaces are lambertian, namely, py(8y,¢v, 9’,(p’,k) =pp(Ov, Qv Bs,05,A)=po.
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Figure 2.4 Illustration of radiative transfer equation in the infrared region. Here, path @
represents the emission emitted by the surface. Path @ represents the downwelling
atmospheric emission reflected by the surface. Path 3 represents the downwelling
hemispheric solar diffusion radiance divided by []. Path @ represents the direct solar
radiance reflected by the surface. Path Grepresents the upwelling atmospheric radiance.
Path ®represents the radiance observed at the ground attenuated by the atmosphere. Path

(@ represents the upwelling solar diffusion radiance.

For a sensor onboard satellite with finite range of spectral response, the radiance

measured by the sensor at channel i, the so-called channel-averaged radiance, is defined as

j: f.(A)R, (6, 2)7(6,,2)d A j: f. ()[R, (6, 2) +R.(8,, A)]d A
+

(2.30)
j:’ f.(A)dA jo“’ f.(1)dA

Ri (9\/) =

where R;(9y) is the channel-averaged radiance;
fi()) is the spectral response function of the channel i.

For the channels with narrow spectral range (~1.0 um), without introducing significant

errors, equation 2.30 can be approximated as (Li et al., 1999)
R(6,)=B,(T,.8)=7(6)B(T,.0)+R.; (6)+R (6, (2:31)

with

B (T,.0)=¢:(0)B(1.0)+[1-5@)IR,, +R )+ (0.0, 9)E,,(6)

where T; is the brightness temperature at TOA at channel i;
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T, is the brightness temperature at ground level at channel i;

& IS the channel-averaged emissivity;

Rat 11 is the channel-averaged upwelling atmospheric radiance;

Rt 1 is the channel-averaged downwelling atmospheric radiance;

Bi(T;) is the channel-averaged planck function;

Rs . is channel-averaged downwelling atmospheric diffusion radiance resulting from
scattering of solar radiation;

Rs+ is channel-averaged upwelling atmospheric diffusion radiance resulting from scattering
of solar radiation;

pi(8s, By,0) is the channel-averaged bi-directional reflectivity;

Equni(8s) is the channel-averaged direct solar spectral radiance at the ground level;

and with

. jo f ()X (1)dA 232

j: f.(1)dA

where X; is the channel-averaged terms measured at channel i;

X(A) is the corresponding term measured at wavelength A.

In thermal infrared region, the solar radiation is neglected, and the natural land surface is
assumed to be lambertian, namely Rq;i(6y) = Rsji = Esuni(6s) = 0, and &i(8,) = &;. For channels
with narrow spectral interval in the TIR region, the radiance measured by sensor at channel i
in equation 2.31 is expressed as

R(6)=&7(6)B,(T.)+7,(6,)1-&)Ry, +R, (6, 233)

2.5 Mixing models for mixed pixels

Mixed pixel is defined as a pixel which is consists of more than one materials. On the
contrary, a pixel which includes only one material is the so-called pure pixel. Remotely
sensed thermal infrared images, especially the remotely sensed thermal infrared images with

low spatial resolution usually have many mixed pixels.

Component is a material that is decomposed from a mixed pixel. Component is the
minimum unite in a mixed pixel. Component cannot be divided any more in the mixing model
for mixed pixels. For a mixed pixel consists of vegetation, bare soil and water body,
vegetation, bare soil and water body are the components for the mixed pixel. The number of
components is determined according to the requirement of the operational application, the

information content of remotely sensed data and the difference among the components.
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Temperature unmixing is defined as a group of genetic processes by which component
temperatures in a pixel is decomposed based on multi-temporal, angular, spectral, or spatial
observations. Different components in a pixel can be separately distributed, jointly
inter-shaded, or entirely intermingled in rural croplands.

The mixing model for mixed pixels in the thermal infrared spectrum can be expressed as

a function

Ry =F(Ts1,6,8,T 5.6, 8, T,

s,n?

&S0, X) (2.34)

where Ry is the radiance measured by at the ground for a mixed pixel,
T, is the LST of n™ component;

g, is the LST of the nt component;

S, is the abundance of the n"" component;

X is other parameter of component.

2.5.1 Mixing model for flat surfaces

For a flat-ground scene, the spectral radiance measured by a sensor at the ground over a
mixed pixel can be modeled as a linear mixture of radiances stemming from each pure

component in the pixel:

Ry (6,,4,%,y) = Z(Sﬂ, i(0)B(T ;A% y) + (=g, ; ()R, (1))S;(x.Y) (2.35)

where Ry(6,,,x,y) is spectral radiance measured by a sensor at the ground for the mixed pixel
(x,y); N is the number of components composing the mixed pixel (X,y); &.(6,) is the
emissivity of the pure component j in the mixed pixel; Ts; is the LST of the component j in

the mixed pixel; Sj(x,y) is the abundance of the component j in the mixed pixel.

2.5.2 Mixing model for rough surfaces

The mixing model for flat surfaces is not suitable for ground surface with 3D structure.
Li extended the mixing model for flat surfaces to heterogeneous 3D surfaces (Li et al. 1999).
Fontanilles developed a mixing model for urban surfaces (Fontanilles et al. 2010). Cubero
Custan proposed a mixing model to combine component radiance at a fine aggregation
surface (Cubero-Castan et al. 2012). According to mixing model in (Cubero-Castan et al.
2012), the spectral radiance measured at the ground over a mixed pixel is a combination of

the radiance emitted by components in the pixel Renis, the radiance of component j reflected

21



neig
'emis !

by component i R the downwelling atmospheric radiance reflected by each component

R and the downwelling atmospheric radiance reflected by the neighborhood component

atm,{ !

Rnelg

emis

Ry (G A%, ¥) = R + Ry, + RIS +RS, 2.36)
In the infrared spectral region, we assume that the atmospheric radiance reflected by

neighborhood is small in comparison with the emissive neighborhood radiance. Following
Kirchof’s law, the hemispheric directional reflectance is related to hemispheric directional
emissivity by p+e=1. The definition of the aggregation surfaces is shown in Figure 2.5, which
is useful to represent fine surfaces of urban 3D structures. Given a scene composed by many
facets, the emissivity of facet i g,;, and the temperature of facet i Ts;, equation 2.36 can be

expressed as

R Z(E,ll B(I-SI) ( gll) AQ

(1 gll AQ; AQ

. ). 1= i
+Z; Cui > 2t Q

(2.37)

where AQ; is the solid angle on which the facet i is seen by the sensor, and Q; is the
instantaneous field of view of the sensor; AQ;_,; is the solid angle on which facet j is seen by

facet i.

The mixing model is nonlinear model because multiple reflections due to the 3D

structure are taken into account and that the planck’s law is used.
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Figure 2.5 The illustration of aggregation surfaces in instantaneous field of view (Blue:

aggregation surfaces).
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3 State of art of estimation of LST and
unmixing component temperatures from
TIR data

LST is a key parameter in climate systems. TIR remotes sensing is an effective way to

acquire LST over vast region.

Space-borne multispectral TIR sensors exist for a long time and provide large amount of
data for retrieving LST over regional or global regions. With the development of
hyperspectral TIR sensor, hyperspectral TIR data is an important source of information for
retrieving LST from space. Various methods exist to retrieve LST from the multispectral and
hyperspectral TIR data.

The LST retrieval methods mentioned above only retrieve a single LST for a pixel. It is
not correct for heterogeneous surfaces. Various methods exist to unmixing component

temperatures from TIR data.

3.1 Review of methods for retrieving LST from space-borne

TIR data

3.1.1 LST retrieval methods for multispectral TIR data

Multispectral TIR data observed at the TOA is an important type of satellite data for
retrieving LST in large spatial scale. For retrieving LST from multispectral TIR data observed
at TOA, there are the two important steps: atmospheric correction and temperature and
emissivity separation. According to the characteristics of the LST retrieval methods, the LST
retrieval methods can be classified into: stepwise methods for retrieving LST and LSE from
multispectral TIR data, methods for simultaneously retrieving LST and LSE and methods for

simultaneously retrieving LST, LSE and atmospheric profile.

3.1.1.1 Stepwise methods for retrieving LST from multispectral TIR
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data

In this case, LST and emissivity are retrieved in two steps: LSE is firstly determined, and
then LST is retrieved using the determined emissivity. The proposed stepwise LST retrieval
methods include: single-channel method, the multi-channel method, the multi-angle method.

1) Single-channel method

With emissivity value calculated in advance, the single channel method uses satellite data
observed at one channel located in the atmospheric window for retrieving LST by inversion of
the radiative transfer model in equation 2.33 and by correcting of the effects atmospheric
attenuation and emission from radiance observed at TOA using atmospheric radiative transfer
code with atmospheric profile data. The atmospheric profile data can be obtained either from
the ground-based atmospheric radiosounding, from satellite vertical sounders, the weather
forecasting model (e.g. ECWMF, NCEP).

To reduce the dependence of the single-channel method on the atmospheric profile data,
several algorithms are developed by parameterizing the atmospheric profile. Qin proposed a
method to retrieve LST from Landsat-5 data using only the near-surface atmospheric
temperature and water vapor content and using a linear relationship between the atmospheric
transmittance and total water vapor content (Qin et al. 2001). Jiméez-Mufopz,
Jiménez-Mufdz and Cristdal provided a method for retrieving LST from any satellite TIR
data with FWHM (full width at half maximum) of about 1 um with the known LSE and the
known total water vapor content (Jiménez - Mufbz and Sobrino 2003; Jimenez-Munoz et al.
2009). This algorithm requires minimum input data and can be used for any sensors using the

same equation and coefficients.

It should be noted that the single-channel methods requires accurate LSE, which is rarely

known.

2) Multi-channel method

An alternate method, the so-called split-window method, was first proposed by McMillin
to estimate Sea Surface Temperature (SST) from satellite data and was extended to retrieve
LST from space (McMillin 1975). This method relies on the phenomenon that the
atmospheric attenuation suffered by the surface emitted radiance is proportional to the
difference between the at-sensor radiances measured simultaneously in two adjacent channels.
On the basis of the first order of the Taylor series of the radiative transfer equation, LST can
be retrieved by a linear function of at-sensor brightness temperatures centered at two adjacent
TIR channels in the spectral region of 10~12.5 um. With the known LSE of two adjacent

channels, a typical linear split-window algorithm can be written as equation 3.1 (Becker and
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Li 1990; Prata 1993; Sobrino et al. 1994; Becker and Li 1995; Wan and Dozier 1996; Tang et
al. 2008; Atitar and Sobrino 2009).

To=g+aT +a,(T-T)) (3.2)
where T; and T; are brightness temperatures measured at two adjacent channels and a; (i=0,1,2)
are coefficients related with the spectral response function of two adjacent channels, the two
channel LSEs ¢; and gjand the water vapor column (WV) and the viewing zenith angle (VZA).
The coefficients a; (i= [1,2]) are pre-determined by fitting the simulation data with various
atmospheric conditions and various LSE conditions or by comparing the satellite data against
the matched in-site LST data. Different split-window algorithms, using linear and nonlinear
functions of brightness temperatures of the two channels, are developed by employing a
combination of LSE, WV and the VZA for parameterizing the coefficients a; (i= [1, 2])
(Becker and Li 1995; Wan and Dozier 1996; Coll and Caselles 1997; Francois et al. 1997; Sun
and Pinker 2003; Sobrino et al. 2004a; Sobrino and Romaguera 2004b; Sun and Pinker 2007).
Because of its little requirement of atmospheric data, which is difficult to obtain for most of
the satellite sensors, and also because of its easy operation, the multi-channel method is
applied to many satellite sensors, such as the AVHRR, MODIS, SEVIRI, FY-3 (Kerr et al.
1992; Wan and Dozier 1996; Sun and Pinker 2003; Jiang and Li 2008; Tang et al. 2008;
Hulley and Hook 2011). Because of accurate LSE is hard to acquire, the LST cannot be

retrieved as accurate as the SST using the split-window method.

When satellite TIR sensors with more than two channels were available, LST can be
retrieved by a linear or nonlinear function of at-sensor brightness temperatures of more than
two TIR channels using the methods as the split-window methods (Sun and Pinker 2005,
2007). Assuming channel LSEs are known in advance, Sun and pinker (2003) developed a
three-channel linear algorithm to retrieve night-time LSTs from the Geostationary Operational
Environmental Satellite (GEOS) data using a linear function of brightness temperatures in
two TIR channels and one MIR channel. The three-channel algorithm is expressed as

—& 1-¢&

—c 1
LST :do+(dl+d21—g')'l'i +(dg+d, —)T; +(ds +dg )T, (3.2
&

i & &

where T;and T; are the brightness temperatures at TOA in the two TIR channels;
Tiy is the brightness temperature at TOA in the MIR channel,

giand g;are the LSE measured in the two TIR channels;

&y IS the LSE measured in the MIR channel.

d; (i=[1,6]) are the constant coefficients independent on the atmosphere and the VZA.

Furthermore, Sun and pinker (2005) proposed a four-channel non-linear algorithm to
retrieve night-time LSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
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data with coefficients depending on the land surface types to account for LSE effects. To
account for the solar radiation during the daytime, a solar correction term dgT;;c0S65 should be
added to equation 1.2 or a solar correction must be performed to the T using methods
proposed by Adams et al. (1989) and Mushkin et al. (2005) (Adams et al. 1989; Mushkin et al.
2005). Evaluation with ground observations shows that the LST retrieved by the four-channel
multi-channel method is more accurate than those obtained by the generalized split-window
algorithm. Error of solar correction and the phenomenon that the variation of MIR channel
LSE is larger than the TIR channel LSEs harm the wide application of the multi-channel
method.

3) Multi-angle method

Similar to the SW method, the multi-angle method relies on that the differences among
the at-sensor brightness temperatures measured at different viewing angles in a given channel
for the same object is proportional to the atmospheric attenuation suffered by the surface
emitted radiance. Assuming LST and LSE are independent on the VZA and the atmosphere is
horizontally uniform and stable over the observation time, with the known LSE in the given
channel, Prata (1993, 1994) developed a dual-angle method to retrieve SST and LST from
ATSR data. The dual-angle method can be expressed as

1
Ts = _Tn +%(Tn _Tf)+ P, (3.3)

&

1-¢
1 & ’

i
where g; is the LSE measured at the given channel,

pk (k=1,2) are the constant coefficients,

T, and T; are the at-sensor brightness temperatures measured in the nadir and forward views.
Sobrino (1996) developed an improved dual-angel algorithm which accounts for the

emissivity at nadir &, and the emissivity at forward view & (Sobrino et al. 1996):

Ts :Tn + pl(Tn _Tf)+ P, + p3(1—gn)+ p4(5n _gf): (3.4)

where py (k=[1,4]) are coefficients related to atmospheric transmittances and mean air
equivalent temperatures in the nadir and forward views. This algorithm is only dependent on
the LSEs and not dependent on the WV. To reduce the influence of the WV on the LST
retrieval, Sorbrino (2004c¢) proposed a nonlinear dual-angle algorithm using a nonlinear
function of (T,-Ty) to estimate atmospheric attenuation suffered by the surface emitted
radiance and using a combination of WV and LSEs at the nadir and forward views to
parameterize the coefficients. Comparison of the nonlinear dual-angle algorithm with the
nonlinear SW algorithm incorporating LSEs, WV, and VZA showed that the dual-angle
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algorithm performs better than the SW algorithm provided that the spectral and angular
variations of the LSEs are well known (Sobrino and Jimenez-Munoz, 2005). However, the
multi-angle method suffers from the angular dependence of LSE and angular dependence of
LST and mis-registration when applied to satellite data.

3.1.1.2 Methods for simultaneously retrieving LST and LSE

The LST retrieval methods above (such as the single channel method, multi-channel
method, multi-angle method) require accurate LSE in advance, which causes much error to
the retrieved LST when error of LSE is significant. Therefore, it is needed to retrieve LST and
LSE simultaneously.

1) Gray body method

With TIR data measured at N channels, N equations can be obtained. Assuming
atmospheric correction is well performed, we have N+1 unknowns (1 LST and N LSEs) in the
N equations. It is an ill-posed problem to solve LST and LSE from the N equations. The
method assumes LSE does not change with wavelength for wavelengths larger than 10 um.
For two or more TIR channels, the number of unknowns are equal to or less than that of
radiative transfer equations in this case, and then LST and LSE will be retrieved from the
multiple-channel TIR data (Barducci and Pippi 1996). The gray body method is accurate for
dense vegetation and water body, but it is difficult to be applied to surfaces with high
emissivity spectral contrast. Moreover, the gray body method has large error when

atmospheric correction is not accurate.

2) Temperature and Emissivity Separation method (Zhou et al.)

The TES method relies on an empirical relationship between the minimum channel LSE
and spectral contrast of LSE to increase the number of equations, which makes the ill-posed
problem deterministic (Gillespie et al. 1998).

The TES method includes three modules: Normalization Emissivity Method (NEM)
(Gillespie, 1995), the Spectral Ratio (SR), the maximum minimum apparent emissivity
Difference Method (MND) (Matsunaga, 1994). Assuming maximum channel LSE of each
pixel is a constant, the NEM estimates the initial LST from the atmospherically corrected TIR
radiances. The SR is to calculate the ratio of normalized emissivities to their average. The SR
can describe the shape of emissivity accurately even if the initial LST is coarsely estimated.
With the results of the SR method, the MMD is utilized to derive the minimum channel LSE
using an empirical relationship between the minimum channel LSE and the spectral contrast
of channel LSEs. Once the minimum channel LSE is estimated, other channel LSEs can be

retrieved by the SR method and the LST can be refined and estimated.
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The TES method can be applied to all the land surfaces without requiring known spectral
variation in the LSE spectra. The TES method is accurate for surfaces with high emissivity
spectral contrast such as rocks and soils (Gillespie et al. 1998; Sobrino et al. 2008), but the
TES method exhibits much error for surfaces with low emissivity spectral contrast (e.g. water,
snow, vegetation) and for hot and wet atmospheric conditions (Sawabe et al. 2003; Coll et al.
2007; Hulley and Hook 2009b, 2011; Gillespie et al. 2011).

3) Two Temperature Method (TTM)

The TTM relies on that LSE is unchanged during two observations to increase the
number of equations. In this method, TIR data at N channels correspond to N X2 equations
and N+1 unknowns. When a sensor has N > 2, LST and LSE can be retrieved by this method
from the two observations (Watson, 1992). TTM doesn’t require any assumption about the
shape of the emissivity spectrum, except that the emissivity spectrum is time-invariant.
However, the high correlation of the radiative transfer equations at two adjacent TIR channels
cause the retrieval sensitive to error of atmospheric correction and error of the measured data
(Gillespie 1986; Caselles et al. 1997; Watson 1992) and the mis-registration degrades the
accuracy of the method (Wan 1999).

4) Physics-based day/night operational method

Wan and Li (1997) further developed a physics-based day/night method (D/N) to
simultaneously retrieve LST and LSE from a combined use of the day/night pairs of MIR and
TIR data (Wan and Li 1997). The method assumes that emissivities are unchanged from day
to night and the angular form factor has very small variations in the MIR spectral region of
interest to reduce the number of unknowns and make the retrieval stable. To reduce the error
of atmospheric correction on the retrieval, the air temperature at the surface level and the

water vapor column are introduced to modify the initial atmospheric profile in the retrieval.

The D/N method improved accuracy of the LST and LSE by using measurements at the
MIR channels to reduce the high correlation of radiative transfer equations and by refining the
atmospheric data with near-surface air temperature and the water vapor column. However,
similar to other multi-temporal method, the D/N method suffers from the critical problem of
mis-registration and the variation of LSE in the VZA. Moreover, the D/N method requires at

least seven channels in MIR and TIR wavelength.

3.1.1.3 Methods for simultaneously retrieving LST, LSE and

atmospheric profile
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The methods for simultaneously retrieving LST, LSE require accurate atmospheric data
for atmospheric correction, but the atmospheric data, which are synchronously measured with
the satellite data, is not always available. It is ideal to retrieve LST, LSE and atmospheric
profile simultaneously from TIR data. Ma (2000) first developed a two-step physical retrieval
method to simultaneously retrieve LST, LSE and atmospheric profile from MODIS data by
assuming that LSEs are constant in the MIR channels and in the TIR channel and by ignoring
the solar contribution in the MIR channels (Ma et al. 2000). Ma (2002) further developed an
extended TRSM method by considering the solar contribution (Ma et al. 2002).

The TSRM method stems from the physics-based atmospheric profile retrieval method.
Firstly, the TRSM method is to tangent-linearize the atmospheric radiative transfer equation
with respect to the atmospheric temperature and moisture profile, LST and LSE. After that, a
large amount of the equations are obtained by using the differential technique with the
first-guess atmospheric temperature and moisture profile, LST and LSE. Finally, Newton
iteration is ultilized with the regularized solution as the first-guess values to find the final
maximum likelihood solution of the atmospheric temperature and moisture profile, LST and
LSE.

Unlike the other methods, the TSRM method doesn’t require accurate atmospheric
correction. However, the TSRM method is highly dependent on the initial guess (Ma et al.
2002). And, due to the physical nature of the TSRM method, it requires adequate number of
channels in specific window, and its complex nature causes a low computational efficiency.
These shortcomings make it difficult to apply the method to satellite data. Moreover, the
reduction of unknowns in radiative transfer equation degrades the accuracy the TSRM

method.

3.1.2 LST retrieval methods for hyperspectral TIR data

Hyperspectral TIR data with thousands of continuous bands has high spectral resolution,
therefore allows improving the accuracy of the retrieval of the atmospheric profile, LST and
LSE. The LST retrieval methods for multispectral TIR data have their advantages and
disadvantages. Moreover, selection of the LST retrieval method is dependent on the
characteristic of the sensor. It is required to develop methods to retrieve surface and

atmospheric parameters from hyperspectral TIR data.
3.1.2.1 Iterative Spectral Smooth Temperature/Emissivity Separation

(ISSTES) method

Basing on that the typical LSE spectrum is smooth in comparison with the spectral
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feature caused by atmospheric absorption and radiation to reduce the number of unknowns,
Borel (1997) proposed the ISSTES method to iteratively retrieve LST and LSE from
hyperspectral TIR data provided the atmospheric correction is accurately performed (Borel
1997). If LST is not accurate, the LSE spectrum calculated by inverting the radiative transfer
equations will exhibit the atmospheric spectral feature, namely there will be sawteeth on the
estimated LSE spectrum. The LST and LSE are estimated when the spectral smoothness S of
the retrieved LSE spectrum is maximized. After that, different smoothness indexes, which
utilizing the first and second derivative of LSE spectrum, have been proposed (Kanani et al.
2007; Borel 2008; Cheng et al. 2010; OuYang et al. 2010), although they have the same
statistical performance regardless of the detail of the smoothness index.

Ingram and Muse (2001) evaluated the method’s sensitivity to the smoothness
assumption and measurement noise and found that the assumption doesn’t cause significant
error to the retrieved results but the retrieval accuracy of the method dependent on the SNR
(Ingram and Muse 2001). Moreover, the method requires that atmospheric correction is
accurately performed. Wang (2011) reported that the occurrence of singular point may lead to
difficulty in finding the acceptable solution when LST is close to the equivalent temperature

of atmospheric downwelling radiance.

3.1.2.2 Linear emissivity constraint temperature and emissivity

separation method (LECTES)

The LECTES assumes the LSE spectrum can be divided into M segments and that LSE
in each segments varies linearly with the wavelength. As a result, the retrieval of LSE
becomes retrieval of the coefficients of each line, which reduces the number of unknowns
(Wang et al. 2011). For hyperspectral TIR data with M segments (n channels in each
segments), the number of equations is nX M and the number of unknowns is M X
2LSE+1LST. The requirement of n XM >2M+1 is easily fulfilled for hyperspectral TIR data
because thousands of channels are available.

Wang (2011) analyzed the sensitivity of the method to the proposed assumption and
found that the error caused by the assumption can be negligible if the width of each segment
is well chosen. A width of segment of 10 cm™ is recommended. In comparison with the
ISSTES method, this method produces fewer singular points and is more resistant to both
white noise and error in the downwelling atmospheric radiance. Similar to ISSTES method,
LECTES method is only suitable for hyperspectral TIR data and requires accurate

atmospheric correction.

3.1.2.3 Linear Empirical Orthogonal Function regression method
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The traditional statistical regression method cannot be applied to hyperspectral TIR data
of high dimension, which is called the “curse of dimension”, therefore dimension reduction
techniques are required for LST retrieval using the hyperspectral TIR data. The linear EOF
regression method bases on the principal component analysis (PCA) technique to
simultaneously retrieve atmospheric profile, LST and LSE (Zhou et al. 2011). The PCA
technique is ultilized to convert the TIR radiance spectrum to amplitudes in EOF dimensions
with a transformation matrix determined in advance using simulation data. Given the EOF
amplitudes of the hyperspectral TIR radiance spectrum, LST can be retrieved by a linear
function of EOR amplitudes of hyperspectral TIR radiance spectrum and of the surface

pressure.

The linear EOF regression method ultilizes only the spectral information in the radiance
spectrum, and doesn’t require any atmospheric data and LSE data. Moreover, the method is
fast enough to be applied to satellite data. However, the method relies on an empirical linear
relationship between the principal component scores and the state parameters, which make the
accuracy of the method dependent on the simulation data.

3.1.2.4 ANN method

ANN can robustly perform highly complex, non-linear, parallel computations. ANN is
widely used by the remote sensing community (Mas and Flores 2008). ANN method
simulates the function of the brain in two steps: acquiring the knowledge by a learning
process; storing knowledge using interneuron connection strengths (Mas and Flores, 2008).

In comparison with other existing LST retrieval methods, the main advantage of the
ANN methods is their ability to learn complex pattern, their generalization ability to noisy
environments, their abilities to incorporate of both experimental knowledge and physical
constraints (Mas and Flores, 2008). Due to the nonlinear feature of the ANN method, ANN
methods are employed to retrieve surface and atmospheric parameters without knowledge of
the complex physical mechanisms. For example, Mao (2008) used an ANN to retrieve LST
and LSE from ASTER data and Aires (2002b) and Blackwell (2005) used an ANN to retrieve
atmospheric profiles from hyperspectral TIR data (Aires et al. 2002b; Blackwell 2005; Mao et
al. 2008). To reduce the effect of coupling between the surface and atmosphere, Aires (2002b)
used an ANN to retrieve both the atmospheric and surface temperatures assuming LSE is
unity, and Wang (2010) established an ANN to simultaneously retrieve the LST, LSE and
atmospheric profiles from the hyperspectral TIR data (Wang et al. 2010). RMSEs of the LST
and temperature profiles in troposphere are about 1.6K and 2K, respectively; RMSE of LSE is

less than 0.01 in the spectral interval from 10 um to 14 um.

The ANN performs like the black boxes, the retrieval process cannot be well controlled
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and it is difficult to determine the weights assigned to each input and to improve the output
due to the complex nature of the network. Moreover, the accuracy of the ANN method
depends on its architecture and the training data (Mas and Flores, 2008), which are difficult to
obtain. The architecture and the learning scheme are directly related to their ability to learn
and generalize. The characteristics of the training data, such as the size and the
representativeness, are also of considerable importance. The use of too few samples will
cause large error to the retrieved results, while the use of too many samples will result in that

it requires much time for training.

3.1.2.5 The extended two step retrieval method

Li (2007) firstly proposed the extended TSRM method to simultaneously retrieve LST,
LSE and atmospheric profile from hyperspectral TIR data by assuming the LSE spectrum can
be represented by several principal component scores to reduce the number of unknowns (Li
et al. 2007). Similar to TSRM method, this method includes three steps: linearizing of
atmospheric radiative transfer equation, solving a lot of equations with the first-guess values,
refining the estimated atmospheric and surface parameters using Newton iteration with the
regularized solution as the first-guess values. To stabilize the solution of surface and
atmospheric parameters, various LSE constraints were proposed to reduce the number of
unknowns and various regularization techniques (Masiello and Serio 2013; Wang et al. 2013a)
were developed to find the optimum regularization parameter, and no-linear ANN method was
employed to improve the accuracy of the first-guess values (Wang et al. 2013a). Meanwhile,
evaluation of the retrieval accuracy of the extended TSRM method with simulation data
showed that: LST can be retrieved by the method with RMSE of 1 K; RMSE of the retrieved
LSE ranges from 0.01 to 0.02 in the wavelength region between 10 pm and 12 um (Wang et
al. 2013a).

The extended TSRM method doesn’t require extra atmospheric information, and the
retrieval accuracy of the method is better than those of the empirical methods (Wang et al.
2013Db). However, similar to the TSRM method, the extended TSRM method is difficult to be

applied to satellite data because of its complex nature.
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3.2 Review of methods for unmixing temperature from TIR

data

3.2.1 Temperature unmixing methods for low/medium spatial

resolution TIR data

As mentioned above, the component temperatures are an important parameter in many
applications. However, the methods mentioned above are developed for retrieving a single
LST for a pixel from satellite TIR data. It is need to develop methods to decompose the
component temperatures from various satellite data, which are called TUM methods in the

literature.

For TIR data with N channels measured over a mixed pixel containing 2 components, the
unkonwns includes 2 component temperatures, 1 fraction of the hot component, N channel
emissivities of 2 components, which is significantly larger than the number of radiative
transfer equations for multi-spectral TIR data. It is more challenging to retrieve component

temperatures from TIR data.

3.2.1.1 Multi-angle TUM method

The multi-angle TUM method is a long-established method which retrieves the
component temperatures by inverting the forward thermal radiative transfer process (Jacob et
al. 2008; Menenti et al. 2008). The fundamentals of multi-angle TUM methods are the
angular-dependent component temperature and emissivity, which results in a directional effect
in the thermal radiance observed at various spatial scales. Li (1999) proposed a conceptual
model for effective directional emissivity from non-isothermal surfaces to account for the
effects of 3D-structure and heterogeneity on the directional TIR measurements (Li et al. 1999).
To reduce ill-posed problem of model inversion, Jia (2003) proposed a method to retrieve soil
and foliage component temperatures from bi-angular ATSR-2 data by estimating the fractional
vegetation covers (FVCs) from visible, near-infrared and shortwave infrared measurements
within a pixel and by inverting the linear mixing model using the retrieved FVCs and the
atmospherically corrected TIR radiance data (Jia et al. 2003). To retrieve more than two
components, Timmermans (2009) proposed an algorithm to retrieve sunlit/shaded soil,
sunlit/shaded leaf component temperatures from simulated directional thermal measurements
and field measurements by Bayesian inversion of no-linear soil-vegetation-atmosphere

transfer model (Timmermans et al. 2009).
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The multi-angle TUM method requires multi-angle data, for which the time continuity
is highly deficient. Moreover, this method is designed for specific vegetation types and
geometrical structures which are difficult to parameterize analytically.

3.2.1.2 Multi-spectral TUM methods

Dozier (1981) developed a physics-based method to retrieve the component fractions and
component temperatures which is modified and widely applied to various sensors. This
multi-spectral TUM method retrieves temperatures and fractions of two sub-pixel objects by
solving the linear mixing model for combining the radiance of components with two
assumptions: that the two components are blackbodies and that background object’s
temperature can be obtained from adjacent pixel. This method cannot use to separate soil and
vegetation temperatures. To unmixing soil and vegetation temperatures over mixed pixels,
Song (2007) proposed a constraint optimization algorithm — the genetic algorithm — to
retrieve soil/vegetation component temperatures from MODIS satellite data with neglecting
nonlinear factors such as the vertical structure, the conductance and the convection between

the two components, in combination of the component radiations.

The multi-spectral TUM methods are widely used because the multispectral satellite data
is available. And these methods are designed for specific land surface types, for which
component emissivities are known. The uncertainty in component emissivities, the emissivity
directionality (Li, 1999) and the nonlinear additive relationship of components (McCabe et al.
2008) degrade the accuracy of these multi-spectral TUM methods.

3.2.1.3 Multi-pixel and multi-resolution TUM methods

The multi-pixel and multi-resolution TUM methods both rely on assumption that the
component temperatures doesn’t change in a specific spatial scale. Multi-pixel TUM method
utilizes the geographical correlation among component temperatures of adjacent pixels in
which the associate component fractions differ pixel by pixel. The multi-resolution TUM

method utilizes multi-resolution data.

Dozier (1981) first proposed a multi-pixel TUM method by assuming that the
background temperatures and the temperatures of hot components of the adjacent pixels are
the same and that the component fractions differ from each other. This assumption is correct
when the temperature contrast between components is high. In reality, slight variations of
component temperatures among adjacent pixels appear (Barducci et al. 2004), and Zhan (2011)
used a quadric function to express the gradual and spatial variations of component
temperatures (Zhan et al. 2011b). Other multi-pixel TUM methods employ a trapezoidal
(Zhang et al. 2005; Zhang et al. 2008) or a triangular shape in the VI-LST feature space to
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retrieve soil and vegetation component temperatures.

To build the convex polygon in a feature space, the multi-pixel and multi-resolution
TUM methods require a large number of adjacent pixels in which the surface parameters have
large variations pixel by pixel. And it is difficult to fit the dry edge and wet edge of the
formulated trapezoids or triangles. The uncertainty in components selection degrades the
accuracy of the retrieved component temperatures. Besides, application of spatial
autocorrelations of physical properties among neighboring pixels partially decreases the
spatial resolution of decomposed component temperatures (Zhan et al. 2011b). The last
shortcoming of these methods is the neglect of horizontal advection at high spatial resolution
(Zhang et al. 2005).

3.2.1.4 Multi-temporal TUM method

Due to high deficiency of the multi-angular TIR data, Zhang (2003) proposed a method
to retrieve component temperatures using bi-temporal field measurement and NOAA/AVHRR
data (Zhang et al. 2003a). This multi-temporal TUM method inverts the linear mixing
equations for soil and vegetation component temperatures at two time by using the fact that
radiometric temperature difference between soil and vegetated surface are close to zero when
net radiation is equal to zero and by using a linear relationship between Diurnal Amplitude
(DA) of radiometric temperatures of soil and the DA of radiometric temperatures of mixed
pixel. The coefficients in these linear relationships are determined in advance using field
measurements with a given percentage of vegetation cover (PVC). The soil and vegetation
radiometric temperatures are converted to true surface temperatures with estimated

component emissivities.

The multi-temporal TUM method requires the assumption that a mixed pixel consists of
soil and vegetation, which is not suitable for heterogeneous surfaces. Its requirement of field
measurements, is another shortcoming of this multi-temporal TUM method. Also, the
temporal resolution of satellite TIR data is low, which cause that least attention is shown on

the multi-temporal method.

3.2.2 Methods for unmixing temperatures from high spatial

resolution TIR data

TIR data with high spatial resolution, especially hyperspectral TIR data with high spatial
resolution, can provide spectral and spatial information about the composition of
heterogeneous surfaces and it is useful for retrieving parameters of components. The above

TUM methods are not suitable for TIR data of high spatial resolution because the component
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emissivities in high spatial resolution imagery are different from those in low and medium
spatial resolution imagery. It is in urgent need to develop TUMs for this type of the TIR data.

3.22.1 The Spectral Unmixing and Thermal Mixing (SUTM)

method

Assuming component temperatures invariant in the image scene, the SUTM method
retrieves the component temperatures of vegetation/wet soil/bright impervious surfaces and
dry soil/dark impervious surfaces from Landsat ETM+ data by utilizing both the reflectance
data and the TIR data. The component temperatures of these land surface types are derived by
using the triangular shape in the feature space scatterplot of the VI and the LST. The LST
image at a higher spatial resolution is derived by applying a linear mixing of component
temperatures with the reflectance data.

The SUTM method takes into consideration of the four component land surface type
rather than the two land surface types of soil and vegetation, and can be applied to urban
surfaces. However, the neglect of gradual spatial variation of the component temperatures
causes much error to the results of the method and the method requires reflective wavelengths.
Another shortcoming of this method is the neglect of the nonlinear effects of conductance and

horizontal advection.

3.2.2.2 Physics-based TUM method

The physics-based TUM method, also called the TURST method, simultaneously retrieve
component temperatures and component fractions by inverting the radiative transfer equations
provided atmospheric correction is accurately performed and the component emissivities are
accurately retrieved (Cubero-Castan et al. 2015).

In the first step, the first-guess component temperatures and component emissivities are
derived for all the components from pure pixels using TES method with atmospherically

corrected radiances.

In the second step, assuming that variation of component temperature is close to the
mean component temperature, that the emissivity of component g is known, and that
component abundance S; is known, component temperatures are retrieved by inverting
linearized radiative transfer equations using the best linear unbiased estimator. The linearized
radiative transfer equations are derived by the first-order approximation of BOA radiance. In
this step, the mean component temperatures, component abundances, component emissivities
are assumed to be known. If the component abundances are unknown, the component

temperatures and abundances are retrieved by minimization of the reconstruction error in the
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next step.

In the third step, component temperatures and component abundances are determined
simultaneously by the TRUST method using two cost functions. For each set of materials that
could compose the mixed pixel, with all the possible values of component abundances,
component temperatures and component abundances are retrieved by a minimization of the

reconstruction error using the cost function D(§). The cost function D(§) is expressed as

= i R5 (ﬂ')_ RatmT (2’) _ ST ’
D(S) = \/Nﬂ ;( R—7) R,(S,Ts,A)) (3.5)

where N, is the number of the used channels; S is the fractions of meterials composing the
mixed pixels; Ry(A) is the satellite measured radiance at A pm; Rymi(A) is the upwelling

atmospheric radiance; T, = {Ts; + AT, i=<1,N>} is the estimated component temperatures

and AT is calculated in the second step and depends on component abundances S. Then, a
second minimization is performed to determine the true set of materials. To identify the
classes of materials with the same emissivity but different temperatures, a second cost

function is introduced

D/(5)=D(S)+ 1, -3 (4T, ) 39)

where v is a parameter which weighs the impact of the estimation of AT .

The TRUST method can retrieve component temperatures for surfaces with small
standard deviations of component temperatures from high spatial resolution TIR images. But
the TRUST method requires that the variations of component temperatures are small and has
large error if a pixel contains more than two components. The requirement of images in the

reflective domain also hampers its wide application.

3.3 Drawbacks of current methods and possible solutions

3.3.1 Drawbacks of current methods for retrieving LST from

hyperspectral TIR data

With the so-called ill-posed problem, it is difficult to retrieve LST from hyperspectral
TIR data. Specifically, the difficulties in retrieving LST from hyperspectral TIR data include

the following aspects:

(1) The difficulty of atmospheric correction. Most of the atmospheric correction methods
38



are designed for airborne hyperspectral TIR data. The atmospheric correction methods for
space-borne TIR data require the extra atmospheric profile data. Efficient atmospheric
correction methods for space-borne hyperspectral TIR data using only the satellite TIR data
are required to be developed.

(2) The difficulty of simultaneously retrieving LST, LSE and atmospheric profile.
Current methods for simultaneously retrieving atmospheric profile, LST and LSE are complex
and require the support of fast atmospheric radiative transfer model, therefore they are
difficult to be applied to satellite data. Efficient atmospheric radiative transfer model are in
urgent demand. Moreover, the performance of the physical methods for simultaneously
retrieving atmospheric profile, LST and LSE are not stable.

(3) The difficulty of validation of retrieved results. The spatial resolutions of spaceborne
hyperspectral TIR sensors are low with a resolution of 12 km for 1ASI and a resolution of
13.5 km for AIRS. The LST retrieved from hyperspectral TIR data are cross validated by
using other sensor’s LST product as a reference. However, the error in the validated LST
products itself, the uncertainty of spatial registration and the temporal discrepancy between
the two LST products degrade the performance of this validation. The radiance-based
validation methods require known LSE and known atmospheric profile. The above
shortcomings make these validation methods difficult to be applied to heterogeneous surfaces.
It is required to develop methods for accurately validating the retrieved LST.

3.3.2 Drawbacks of current methods for unmixing temperatures

from high spatial resolution TIR data

To retrieving component temperatures and component abundances from high spatial
resolution TIR images is an ill-posed problem. The difficulties for unmixing component

temperatures from high spatial resolution TIR data include following aspects:

(1) The difficulty of unmixing temperatures over heterogeneous surfaces with large
variation of component temperatures. The current physics-based TUM method for high spatial
resolution TIR images requires an assumption that the variation of component temperature is

small, the assumption is not always correct for heterogeneous surfaces.

(2) The difficulty of unmixing temperatures over rough surfaces. Most of the current
TUM methods for high spatial resolution TIR data don’t take nonlinear factors such as the
conductance and horizontal advection into consideration. The roughness of urban surface is
not negligible for TIR radiance data with high spatial resolution.

(3) The difficulty of determination of the number of components. The TUM methods for
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high spatial resolution TIR data still have large error for mixed pixels containing more than

two components.
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4 Data collection, data pre-processing and

model

4.1 Research areas

4.1.1 Research area for retrieving LST for high emissivity surfaces

from hyperspectral TIR data

The first research area for this study is the Mediterranean Sea which has a latitude
ranging from 30N to 43N and has a longitude ranging from 12 to 32 (Figure 4.1). The
Mediterranean Sea is in the middle latitude region; the sky over this area is frequently clear.
This area was utilized to map the error of LST retrieved by the proposed multi-channel
method for high emissivity surfaces from the Metop-A/IASI data.
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Figure 4.1 The Mediterranean Sea area used for mapping the error of the LST retrieved by

the multi-channel method from Metop-A 1ASI data.
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4.1.2 Research area for retrieving LST for natural land surfaces

from hyperspectral TIR data

IASI data and radiosonde data from NOAA/Earth System Research Laboratory (ESRL)
database over Australia in April and August 2014 were collected for evaluating the proposed
LST retrieval method for natural land surfaces. The Australia has latitude ranging from 43 <3
to 0 N and has longitude ranging from 112 to 152 € (Figure 4.2). The reason for selecting
the area is that the time of Metop-A/IASI data measured over Australia in the morning is
close to the time of the ESRL radiosonde data measured in this area.
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Figure 4.2 The Australia area used for collecting data for evaluating the LST retrieved by the

proposed multi-channel method from Metop-A 1ASI data.

4.2 Satellite data and related data

4.2.1 1ASI data

4.2.1.1 Metop-A/lASI sensor

With the development of hyperspectral TIR sensor, various spaceborne hyperspectral TIR
data is available. AIRS equipped on the Earth Observing System (EOS)/Aqua is the first
successful spaceborne hyperspectral TIR sensor which was launched in May 2002. After that,
IASI equipped on Metop-A satellite was launched in June 2006 and CrIS on Suomi-NPP
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satellite was launched in October 2011. The characteristics of these spaceborne hyperspectral

TIR sensors are listed in Table 4.1.

Table 4.1 The characteristics of the main on-orbit hyperspectral TIR sensors

) o Spectral Spatial
Sensor  Light splitting Spectral ) . . ) .
Resolution  resolution  Radiometric Noise

Name  method region(jam) ) of nadir
8.80-154 0.55
Grating 6.20 -8.22 1.2 13 0.15-0.35(280K)
AIRS spectrometer 3.74 -4.61 2
IASI Interferometer 3.62-15.5 0.5 12 0.20-0.35(280K)
9.13-15.38 0.625
CrIS Interferometer 5.71 -8.62 1.25 14 0.10-0.50(280K)

3.92 -4.65 2.5

Up to now, IASI is the most accurate thermal infrared sounding interferometer (Chalon et
al. 2001; Simeoni et al. 2004). The expected accuracy for atmospheric temperature profile and
surface temperature retrieved from Metop-A/IASI is 1 K, and that for atmospheric moisture
profile is 10%. IASI on the polar-orbiting meteorological satellite Metop-A equipped on the
space-borne hyperspectral TIR sensor was utilized for this study.

IASI has 8461 continuous channels centered in the spectral interval of 645 cm™to 2760
cm® (Hilton et al. 2012). The spectral sampling frequency for the 1ASI is 0.25 cm?,
respectively. The scanning angle of IASI is 482207 IASI scans the Mediterranean area in
mid-morning orbit every day. The major spectral characteristics of IASI are shown in Table
4.2. The radiant noise of main IASI channels in noise equivalent differential temperature at a
temperature of 280 K is shown in Table 4.3. The radiant noise of IASI channel i at a
temperature of Tb’ is calculated by the following equation

0B(Th =280, v)

oTh
NEAT. .(v) = — NEAT (4.1)
w M) = B =T ) w0 (V)

O0Th '
where NEAT ,g0(v) is the radiant noise of channel i in noise equivalent differential temperature

for a temperature of 280 K;
v is central wavenumber of a channel i;
NEAT(v) is the the radiant noise of channel i in noise equivalent differential temperature

for a temperature of Th'.
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Table 4.2 The main spectral region used by Metop-A/IASI

Name Spectral region Application of 1ASI
R1 650 to 770 cm™ Temperature profile
R2 790 to 980 cm™ Surface and cloud properties
R3 1000 to 1070 cm™ 05 sounding
R4 1080 to 1150 cm™ Surface and cloud properties
R5 1210 to 1650 cm™ Aumidity profile

CH, and N,O column amount
R6 2100 to 2150 cm™ CO column amount
R7 2150 o 2250 o™ Temperature profile

N,O column amount
R8 2350 to 2420 cm™ Temperature profile
R9 2420 to 2700 cm™ Surface and cloud properties
R10 2700 to 2760 cm™ CH, column amount

Table 4.3 The radiative noise of IASI channels in noise equivalent differential temperature

(NEAT) at a temperature of 280 K

Wavenumber NEAT Wavenumber NEAT Wavenumber NEAT Wavenumber NEAT

(cm™) K (em? K (em?) K (em? (K)
650 0.419 1200 0.095 1750 0.170 2300 0.239
700 0.157 1250 0.096 1800 0.200 2350 0.287
750 0.145 1300 0.098 1850 0.224 2400 0.351
800 0.145 1350 0.100 1900 0.250 2450 0.400
850 0.150 1400 0.105 1950 0.240 2500 0.700
900 0.150 1450 0.105 2000 0.130 2550 0.900
950 0.165 1500 0.111 2050 0.135 2600 1.100
1000 0.165 1550 0.116 2100 0.141 2650 1.300
1050 0.176 1600 0.125 2150 0.151 2700 1.600
1100 0.200 1650 0.137 2200 0.172 2750 1.935
1150 0.200 1700 0.160 2250 0.200

IASI is an optical mechanical scanning system, which scans the earth surface in a
direction perpendicular to the satellite orbit track step by step with scanning angle of #4820.
Each scanning in measurement track includes 30 views in the ground direction which are the
so-called Effective Field Of Views (EFOVs). Each EFOV contains 2>2 Instantaneous Field
Of Views (IFOVs) as shown in Figure 4.3. The diameter of each IFOV is 14.65 mrad which
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corresponds to a circular pixel of 12 km diameter at sub-satellite point.
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Figure 4.3 Illustration of IASI IFOV

Orbit track direction

4.2.1.2 Metop-A/lIASI data products

Metop-A/IASI data products consist of five types of products from Level 0 to Level 4.
Level 0 product is raw IASI radiance data which includes spectra without calibration. Level 1
A product consists of spectra without apodization. Processing in this step comprises decoding,
spectral calibration and radiometric post-calibration. Level 1B product consists of spectra
which are derived by spectral resampling. Level 1C product consists of spectra derived after
apodization. Level 2A products are products derived from IASI data which includes the
atmospheric temperature and moisture profile, spatial distribution of atmospheric trace gases,
LST and cloud parameters. Level 2B products are land surface products derived from the
combination of IASI data and data of other sensors on Metop-A, and are generally more
accurate and have higher spatial resolution. Level 3 products are spatially and temporally
averaged land surface products. Level 4 are products derived from multi-satellite data.
Metop/IASI products are created by the EUMETSAT Polar System Core Ground Segement,
located in EUMETSAT headquarters at Darmstadt Germany, and also in eight decentralized
Satellite Application Facilities (SAF), hosted by other EUMETSAT Member States.

The Level 1C product not only contains radiance spectra, but also contains information
about observing angle, time and geolocation. Metop-A/IASI Level 1C data product in the first
weeks of Feb, August and November 2014 over the Mediterranean Sea research area was
collected to evaluate the accuracy of the proposed multichannel method for high emissivity
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surfaces. More details about the Level 1C data can be found in 1ASI Level 1 product guide
(http://www.eumetsat.int/website/wcm/idc/idcplg?ldcService=GET_FILE&dDocName=pdf _i
asi_level_1 prod_guide&RevisionSelectionMethod=LatestReleased&Rendition=Web).

Metop-A/IASI Level 2A LST product was also used in this study. The IASI LST product
includes cloud fraction and LST product. The LST product is retrieved from clear-sky 1ASI
LevelC radiances by the EOF linear regression method (Zhou et al. 2011). The cloud
fractions are retrieved by the CO,-slicing method (Menzel et al. 1983; Smith and Frey 1990).
The cloud fractions in the IASI LST product varies from 0 to 100%: 0 signifying no cloud,
0.1%-99.9% signifying small cloud, 100% signifying full of cloud. The accuracy of the cloud
fractions and the LST product is 10% and 2 K. The IASI LST product and cloud fraction data
in April and August 2012 over Australia was collected to evaluate the accuracy of the LST
retrieved by the proposed multi-channel method over natural land surfaces.

4.2.2 Metop-A/AVHRR SST product

AVHRR on Metop-A has six channels centered in the visible - near infrared region and in
the TIR region. The spatial resolution of the Metop-A/AVHRR data at nadir in TIR region is 1
km. The spectral characteristics of the AVHRR channels in TIR region are shown in Table 4.4.
The instrumental spectral response functions for the two TIR channels of Metop-A/AVHRR
data are depicted in Figure 4.4.

The SST product from Metop-A/AVHRR is retrieved by the SW method (Le Borgne et al.
2007) The AVHRR SST product is available from the OSA-SAF since 2007. The
Metop/AVHRR product with spatial resolution of 1.0 km in satellite projection was used in
this study. This SST product includes SST, cloud information and quality information. The
standard error (absolute mean error + standard deviation of error) of the daytime
Metop/AVHRR SST product is 0.5 K and the standard error of the nighttime Metop/AVHRR
SST product is 0.66 K. The Metop/AVHRR SST product over Mediterranean Sea in the first
weeks of February, August, and November, 2014 was collected for this study. The
Metop-A/AVHRR SST product was taken as a reference to evaluate the LST retrieved by the

proposed multi-channel method for high emissivity surfaces from Metop-A/IASI data.

46



Table 4.4 The main radiant and spectral characteristics of Metop-A/AVHRR

Wavelength NEAT at 300K Applications
No. of channel
(nm) (K)
<0.12 K, Day/night cloud and surface
4 10.3-11.3 ]
0.20 mW/(m2 srcm-1) temperature mapping
<0.12K, Cloud and surface temperature,
5 11.5-12.5 ) L ] )
0.21 mW/(m* srcm™) Day/night cloud mapping

1 T T r

Channel 4_ Channels
09 g .

o.;— Jk | ]

4 6 8 10 12 14 15
Wavelength

Figure 4.4 The instrumental spectral response functions of AVHRR TIR channels

4.2.3 The MOD11B1 LSE product

The MOD11B1 v5 LSE product has daily LSE data produced using the day/night LST
retrieval algorithm from MODIS/Terra data (Wan and Li 1997a). The MOD11B1 LSE
product has bands 20, 22, 23, 29, 31, 32 centered at 3.7um, 3.9 um, 8.6 um, 11 ym and 12 pm
with spatial resolution of 6 km. The MOD11B1 LSE product is available since March 2000.
The MOD11B1 LSE product covers the Australia at midnight daily. The MOD11B1 LSE

product was used to evaluate the proposed multi-channel method for natural land surfaces.

4.2.4 TIGR Atmospheric profile database

Atmospheric profile data from the Thermodynamic Initial Guess Retrieval (TIGR)
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database consists of atmospheric moisture, temperature and ozone profile data (Chedin et al.
1985; Chevallier et al. 1998). Each TIGR atmospheric profile is measured at 40 pressure
layers (between 0.05 hPa and 1013 hPa). The 2311 atmospheric profiles in the TIGR 2002
v1.1 database, which are selected from approximately 80000 atmospheric profiles measured
by the radiosondes over the global, represent typical atmospheric situations from polar to
tropical atmosphere: the profiles with numbers from 1 to 872 denote the Tropical atmospheric
profiles, those with numbers from 873 to 1260 denote the first type Middle latitude
atmospheric profiles, those with numbers from the 1261 to 1614 denote the second type
Middle latitude atmospheric profiles, those with numbers from 1617 to 1718 denote the first
type Polar atmospheric profiles, those with numbers from 1719 to 2311 denote the second
type Polar atmospheric profiles. The TIGR 2000 v1.1 database is provided by the
Atmospheric Radiation Analysis Group
(http://ara.abct.Imd.polytechnique.fr/index.php?page=tigr). In this study, the TIGR

atmospheric profile data was utilized to develop the proposed multi-channel method for
retrieving LST from hyperspectral TIR data for high emissivity surfaces and to extend the
proposed multi-channel to natural land surfaces. The 40 pressure layers of each TIGR
atmospheric profile are shown in Table 4.5.

Table 4.5 The 40 pressure layers of each TIGR atmospheric profile

0.05 0.09 0.17 0.30 0.55 1.00 1.50 2.23
3.33 4.98 7.43 11.11 16.60 24.79 37.04 45.73
56.46 69.71 86.07  106.27 131.20 161.99 200.00 222.65

247.87 275.95 307.20  341.99 380.73 423.85 471.86  525.00

584.80 651.04 724.78  800.00 848.69 900.33 955.12  1013.00

4.2.5 NOAA/ESRL atmospheric profile database

Atmospheric profile data from NOAA/Earth System Research Laboratory (ESRL)
database consists of atmospheric dewpoint temperature and temperature profile

(http://esrl.noaa.gov/raobs/General _Information.html). Each dewpoint temperature profile and

temperature profile have data measured at 15-20 pressure layers. The pressure layers for
atmospheric dewpoint temperature profile and for atmospheric temperature profile are
between 5 hPa and 1014 hPa. The atmospheric profile data are measured by the radiosonde
which is generally launched twice a day (at 0:00 and 12:00 UTC time) at global radiosonde

sites. The NOAA/ERSL atmospheric profile data in April, November 2016 over Australia was
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collected to evaluate the accuracy of the proposed multi-channel method for natural land
surfaces. The spatial distribution of the radiosonde sites over Australia is shown in Figure 4.5.
A dewpoint temperature profile and an atmospheric temperature profile from NOAA/ESRL
database are shown in Figure 4.6.
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Figure 4.5 The spatial distribution of radiosonde sites for the selected NOAA/ESRL

atmospheric profile data
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Figure 4.6 A typical NOAA/ESRL atmospheric dewpoint temperature (a) and temperature (b)

profile
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4.2.6 ASTER emissivity library

The ASTER emissivity library includes data from three emissivity libraries: the Johns
Hopkins University (JHU) spectral library, the Jet Propulsion Laboratory (JPL) spectral
library, and the United States Geological Survey (USGS - Reston) spectral library. The
ASTER emissivity library consists of LSE information of soils, rocks, vegetations, water
bodies, minerals, meterorites and manmade materials (Salisbury et al. 1994). The merit of the
spectrums in ASTER emissivity library is that they have wide spectral interval which covers
the visible and infrared region and they have continuous measurements in the whole spectral

interval.

Specially, the measurements in JHU spectral library, which provides most of spectrums
for this study, include two types of spectrums: the bi-directional reflectance spectrum and the
directional hemispheric reflectance spectrum. The measurements of minerals and meterorites
in JHU are bi-directional reflectance spectra with spectral interval from 2.05 um to 25 um.
For other materials the measurements are directional hemispheric reflectance spectra. The
directional hemispheric reflectance spectra have a spectral interval of 0.4 um — 15 um and
consist of two parts of spectra: the spectra covering region from the visible to short-wave
infrared region, and the spectra covering the region from short-wave infrared region to
thermal infrared region. The directional hemispheric reflectance of these materials in the MIR
and TIR region is measured with a Transformed Infrared spectrometer and an integration
sphere. The measurements of directional hemispheric reflectance are converted to directional
hemispheric emissivity using the Kirchoff’s law: € = 1 — p. The latter part of spectra of the
directional hemispheric reflectance is measured with the Nicolet FTIR spectrometer and the
error of the Nicolet FTIR is within 1%. The ASTER LSE data was used to extending the
proposed multi-channel method to natural land surfaces in this study. The emissivity spectra

used in this study from ASTER emissivity library are shown in Figure 4.7.
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Figure 4.7 The emissivities of soils, vegetations, water bodies selected from ASTER emissivity

library and the emissivity of fresh leaf from the MODIS UCSB emissivity library

4.2.7 MODIS UCSB emissivity library

This data set contains emissivity spectrums of different manmade and natural materials,
collected by Zhengming Wan at the institute for Computational Earth System Science at the
University of California, Santa Barbara (USCB;

http://www.icess,ucsb.edu/modis/EMIS/htm-1/em.html). The wavenumber of the emissivity

spectrums in this data set is between 3.5 pm and 14.0 m. With emissivity spectrums of
various vegetations, this data set supplements the ASTER emissivity library. In this study, we
selected a LSE spectrum of fresh leaf, which has mean emissivity value less than 0.95 in
spectral interval of [800 cm™, 950 cm™], to extend the proposed multi-channel method to

natural land surfaces (shown in Figure 4.7).

4.2.8 Urban surface emissivities and urban surface temperatures

These urban surface emissivities and urban surface temperatures are measured during the
Detection in Urban scenario using Combined Airborne imaging Sensors (DUCAS) campaign
(Renhorn et al. 2013). The wavenumber of the LSE spectrums are between 833 cm™ and 1428
cm™. The materials in the urban surface emissivity data and urban surface temperature data
are grass, gravel roof and asphalt roof. The LSE spectrums and the urban surface temperatures
were utilized to simulate 1ASI data to evaluate the proposed physics-based unmixing method

mentioned above. The urban emissivity data is shown in Figure 4.8.
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Figure 4.8 The emissivity spectrums of urban materials adopted from the literature

(Cubero-Castan et al. 2015)

4.3 Data pre-processing

ESRL atmospheric dewpoint temperature profile data is converted to total precipitable
water vapor column data using an equation mentioned in (Lawrence 2005) and an equation
extracted from MODTRAN code. Given the atmospheric dewpoint temperature and

temperature profile, the atmospheric moisture profile is computed by

_A&'f'(Bl+T:/ _ATA
d
- (T51+T) )-100 (4.2)
1+ d

H =exp(

where H is relative humidity profile;
A; and B, are the coefficients: A;=17.625, B;=243.04<€;
T, Td is the dew point temperature profile in Kelvin;

T isthe atmospheric temperature profile in degree Celsius;

With atmospheric moisture profile, pressure profile, and temperature profile, mixing ratio

profile of atmospheric water vapor is expressed as

AN, -exp[18.9766-14.9505. 27312 _ 43880 (2310)1)
" 1 T—)-100 (4.3)
108.n0'mair'( p )
1013.25

where 7 is mixing ratio profile of atmospheric water vapor in g/g;

p is the atmospheric pressure profile in hPa;
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T isthe atmospheric temperature profile in K;

N is the Loschmidt coefficient in (number of molecules) fem™ n, =2.6867774 X 10%:
m,;; IS the average molecular weight of the air: m,;, =28.964 g/mole;

N, is the Avogadro coefficient: No=6.02214179 X 10%,

With atmospheric moisture profile in the format of mixing ratio and atmospheric pressure
profile, atmospheric total precipitable water vapor column is written as

+r
(2) (o Pu) g

Wy = ( ) -10

(4.4)
WV =) wy,
i=ln-1
where wv is the precipitable water vapor profile in g/cm?;
wv; is the precipitable water vapor content at pressure layer i (i=[1:n-1]) in g/cm?;
P2 i atmospheric pressure profile measured from the 2™ pressure layer to n™ pressure layer
in hPg;
Pins iS the atmospheric pressure profile measured from the 1% pressure layer to the n-1"
pressure layer in hPa;
r'.n-1 1S the mixing ratio profile of atmospheric water vapor measured from the first pressure
layer to the n-1" pressure layer in g/kg;
ron is the mixing ratio profile of atmospheric water vapor measured from the 2™ pressure

layer to the n™ pressure layer in g/kg;

WV is the total precipitable water vapor content column in g/cm?.

4.4 Atmospheric radiative transfer model

4AJOP is a line-by-line model. It relies on an optical thickness database, which is created
in advance, to perform fast simulation of the radiative transfer. 4A/OP supports simulation of
radiance spectrum in the infrared region; the usual spectral domain is between 600 and 3000
cm™. It can be used for various atmospheric and land surface conditions. Spectra with high
spectral resolution can be computed by 4A/OP (the normal spectral resolution is 5 -0™).
Users can simulate spectra with different spectral resolutions using various types of
instrumental functions. The newest version of the model allows simulation of the scattering of
aerosol. Partial derivatives of the radiances with respect to the temperature and gas mixing
ratio can also be computed.

The scheme of the 4A/OP is shown in Figure 4.9. The core code of the 4A/OP uses the
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optic thickness in atlases, the reference thermodynamic parameters, default gas mixing ratio,
atmospheric profiles, simulation definition parameters and instrumental spectral response
functions as inputs. Optical thickness in atlases, reference thermodynamic parameters, and
default gas mixing ratio are fixed input parameters. Atmospheric profiles, land surface
emissivity, instrumental spectral response functions, simulation definition parameters are
user-defined input parameters. The output parameters include radiance spectra, atmospheric
transmittance spectra, and partial derivatives of radiance with respect to temperature and gas
mixing ratio. Detailed instruction of the 4A/OP can be seen in (Chaumat et al. 2009). 4A/OP
was used to simulate Metop-A/IASI data in this study.

isrf$(INS)$(CASE).ddb
Instrument spectral

*
atm4a$(ATM).ddb response functions atl$(RESOL)*.ddb

Atmospheric profile Optical thickness
data bank data bank: Atlases

aerosols_$(AEROMOD).dat

Physical aerosol model
parameters ati$(RESOL )index.dsf
Atlas index
spemis$(EMUP).dat
spemis$(EMDOWN).dat v v

Surface emissivity
spectra dadad sgﬂfg‘i

Radiative transfer & <+— thermodynamic

parascat$(RSCA).dtp

User defined spectrum convolution parameters
—>
aerosol

parameters

para4a$(RSTR).dtp gascon.dsf
Definition Default gas mixing

parameters of the ratio
radiative transfer NO Conv. JYES

computation

spcdas$(ATMPROF)$(ATM)$(RSTR)$(RSCA)$(INS)$(CASE).ddb
spida$(ATMPROF)$(ATM)$(RSTR)$(RSCA)$(INS).ddb Convolved spectrum
"Infinite” (high) resolution spectrum & Jacobians

& Transmittances

Figure 4.9 Scheme of 4A/0P (Chaumat et al. 2009)
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5 Retrieving LST for high emissivity
surfaces from hyperspectral TIR data

using a muli-channel method

5.1 Introduction

LST is a key parameter in climate systems. Hyperspectral TIR sensors with thousands of

channels provide new way to retrieve LST from space.

Various methods exist to retrieve LST from space-borne hyperspectral TIR data: the
principal component regression method (Zhou et al. 2002; Schlussel and Goldberg 2002;
Goldberg et al. 2003; Weisz et al. 2007; Zhou et al. 2011), the ANN method (Aires et al.
2002a; Wang et al. 2013a), the stepwise LST and LSE retrieval method (Pequignot et al.
2008), the simultaneous LST and LSE retrieval method (Susskind et al. 2003; Paul et al.
2012), the physical simultaneous atmospheric profiles, LST and LSE retrieval method
(Rodgers 1976; Li et al. 2007; Masiello and Serio 2013). These methods cannot be used for
retrieving LST from hyperperspectral TIR data containing damaged data at certain channels.
The objective of this study is to develop a multi-channel method for retrieving LST for high
emissivity surfaces (surfaces of dense vegetation areas, surfaces of water areas) from

space-borne Hyperspectral TIR data.

5.2 Physical basis of the multi-channel method

Assuming that the land surface is a black body, the radiance at TOA at a hyperspectral

TIR channel R; can be written as

R=B,(T,)t+R . (5.1)

where B;(T,) is the surface radiance at a channel i with a surface temperature of T, Raqi is the

upwelling radiance emitted by the atmosphere, and ; is the atmospheric transmittance.

If equation 5.1 is linearized around LST, equation 5.1 can be rewritten as
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T=t,T +(1-1)Ta,,1<i< p 5 2)

where T; is the brightness temperature at TOA at channel i, Ta; is the equivalent atmospheric
temperature at channel i, 7; is the transmittance at channel i, and p is the number of channels

selected for retrieving LST.

Inspired by the SW method for LST retrieval, we propose a multi-channel method for
retrieving LST for high emissivity surfaces from hyperspectral TIR data. In this method, LST
can be written as

T, =W+ wT (5.3)

i=lp

where w; are regression coefficients. The number of channels is p, and the centre
wavenumbers at channel i (i=[1,p]), and coefficients w; (i=[0,p]) can be determined using

stepwise regression with simulation data.

5.3 Determination of the coefficients w; and the central

wavenumbers

5.3.1 Data for simulation

Although there are large amounts of hyperspectral TIR data measured at TOA, it is still
difficult to find spatially and temporally collocated atmospheric moisture and temperature
profile data. Additionally, there are few field-measured LST data at the spatial scale of a
satellite IFOV (12 km for 1ASI). Therefore, we have resorted to synthetic method for
determining the parameters in equation 5.3.

We selected typical profiles from the TIGR database for simulation (Chedin et al. 1985;
Chevallier et al. 1998) in two steps. First, we classified the 946 clear-sky TIGR profiles into
six groups according the concentration of water vapour. The method for determining the
clear-sky atmospheric situations are detailed by (Galve et al. 2008). The total precipitable
water-vapour ranges of the six groups are between 0 and 1 g/cm?, between 1 and 2 g/cm?,
between 2 and 3 g/cm?, between 3 and 4 g/cm?, between 4 to 5 g/cm?, and between 5 and 6
glcm?, respectively. After that, we randomly selected nearly 23 profiles from each group to
make sure the selected profiles were representative. The air mass types for the selected
atmospheric profiles are tropical, temperate, cold temperate and summer polar, cold polar, and
winter polar types. The total precipitable water vapours of the selected atmospheric profiles

range from 0 g/cm’? to 6 g/cm®. The bottom atmospheric temperatures of the selected
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atmospheric profiles range from 230 K to 320 K. The variation of bottom temperature with
the total precipitable water vapour for the 139 selected atmospheric profiles is presented in
Figure 5.1.
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Figure 5.1 The bottom temperatures as a function of the total precipitable water vapour for
the 139 atmospheric profiles and other 39 atmospheric profiles.

To describe the rapid variation of LST for each profile, the six LSTs for simulation are
sums of bottom atmospheric temperature (Ta0) and one out of six perturbations. The six
perturbations are [-15 K, -5 K, 0 K, 5 K, 10 K, and 15 K] when Ta0 <280K, and these

perturbations are [-10 K, -5 K, 0 K, 5 K, 10 K, and 20 K] when Ta0 >280K (Wang et al.
2013a).

5.3.2 Procedures for determining the central wavenumbers and the

coefficients w;

We used the stepwise regression method with the simulation data to determine the centre
wavenumbers at channel i and coefficients w; in equation 5.3 for IASI. The procedures are
shown in Figure 5.2.
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Figure 5.2 The scheme for determining the centre wavenumbers of channel i (i=[1,p]) and

the coefficients w; (i=[0,p]).

For this study, we have simulated large IASI data using 4A/OP with the data mentioned
in Section 5.3.1. The flowchart for simulating hyperspectral brightness temperature data at
TOA is shown in Figure 5.3. The 4A/OP is used to simulate atmospheric transmittance and
upward radiance using atmospheric profile data. Brightness temperature database is calculated
using the radiative transfer equation with output atmospheric radiative terms of 4A/OP. The
spectral interval and spectral sampling frequency for simulation are 800 - 1200 cm™ and 0.25
cm™, respectively. The viewing angle for simulation is restricted to nadir observation. For
each simulation case, a random noise dimension of 1601 generated by a Matlab random
number generator with NEAT of 0.1 K is added. The NEAT has been set according to that of
the IASI (Aires et al. 2002c). Because Os has a strong absorption feature in hyperspectral TIR
radiance spectrum, only hypersepctral TIR data at channels in the spectral interval of 800-985
cm™ and in the spectral interval of 1150-1200 cm™ have been used for stepwise regression
(Wang et al. 2009).
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Figure 5.3 Flowchart for simulating hyperspectral brightness temperature data at satellite

The stepwise regression is used to determine the centre wavenumbers of channel i and
the coefficients w; with the simulation data above. First, the channel centred at a wavenumber

of 1158.5 cm™, where transmittance is the largest, is selected as the initial channel.

In step m+1 of stepwise regression, for each remaining channel, a linear relationship

fitted by the least square method is written as
Ts = WO + ZwlT, + Wm+1Tm+l (54)
i=1

where T; (i=[1,m]) are the channel brightness temperatures determined before this step, and
T IS the brightness temperature at each remaining channel. The coefficients w; (i=[1,m+1])

in equation 5.4 is calculated by the following equation
W=(XTX)" XY (5.5)

where W is the coefficient vector of dimension m, X is hyperpsectral TIR brightness
temperature n>m matrix, and Y is the LST vector of dimension n. Here, X contains n samples
of the m channel hyperspectral TIR brightness temperatures. A sum of squares for partial

regression (Uy) is used to calculate the contribution of T, and is defined as

59



U, =SS, —SS_, (5.6)

where SSy and SS are the sum of the squares for regression with channel k, and without

channel k, respectively. The sum of squares for regression is defined as

2
n |
SS :Zl:[wo +Z;W0Tbij —y] (5.7)
i= =

where | is the number of channels and n is the number of simulation cases, and ¥ is the mean
of n samples of LSTs. The m+1" TIR brightness temperature at channel i added by the
stepwise regression is the one with largest partial regression square sums among the
remaining TIR brightness temperatures. We also check to see if the spectral interval of two
nearby central wavenumbers is larger than 4.5 cm™. If not, TIR brightness temperature at this

channel is replaced by the one with second-largest sum of squares for partial regression.

The criterion for determining the number of channels for equation 5.3 is that the root
mean square error (RMSE) of the LST retrieved using equation 5.3 from the simulation data
mentioned above is less than 0.2 K. The output coefficients w; and centre wavenumbers of
channel i are the solutions.

The variation of RMSE of the retrieved LST with the number of channels in the process
of determining the centre wavenumbers of channel i and the coefficients w; is shown in Figure
5.4: the error of the LST that is retrieved using the corresponding regression equation with the
simulation data above decreases with the growing number of channels, and the RMSE of the

retrieved LST is less than 0.2 K when the number of channels is larger than 10.

The centre wavenumbers of channel i (i=[1,p]) and the coefficients w; are shown in
Figure 5.5. From this figure, we can see that the centre wavenumbers correspond to the
wavenumbers where water vapour absorption is weak. The reason may be that the assumption
that LST can be expressed as a linear function of p hyperspectral TIR brightness temperatures
is more reliable at these wavenumbers. Figure 5.5 also shows that all the coefficients w; are

varying in a relatively small range between: -0.80~0.80.

60



-
(o)

o

m-
e
\

N -
N S
T T
L I

RMSE of the retrieved LST (K)

0.8r 1
0.6 1
L]
0.4 .
[ ]
e L]
0.2 | L | L ¢ S [ ]
2 3 4 5 6 7 8 9 10

Number of channels
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process for determination of centre wavenumbers and coefficients.

1 ; : . : . . : 290
’f/"n---tv«n.r.__W M"“x 1~l» i m]mw\\\fﬁ|1\mw Pl
| V A e
ol T Ty AT
o8 . "' | i&
] | ho/°1280
llr 1o,
| ]
0.4f | 1 275 €
g “ \ s
3" 02- | 270 &
@ | @
[ =4
2 Of w V 1265 €
3] 2 ik L
b [ v
8 -02f i‘ {260 &
I 6 5
0.4 5 \ 9 _ s §
7 . -
06- . ‘ 1250
0.8+ 1245

-1 L L L I L L L
800 850 900 950 1000 1050 1100 1150 1200

Center wavenumber at channel i

Figure 5.5 The centre wavenumbers at channel i (i=[1,p]) and coefficients wi (i=[0,p])
superimposed on a typical IASI spectrum. (wo=2.486; the No. above each blue square

indicate the order of each channel in the determination process).

61



5.4 Sensitivity analysis

5.4.1 Sensitivity to spectral sampling frequency

We analysed the sensitivity of the method to spectral sampling frequency by refitting the
coefficients w; in equation 5.3 for each spectral sampling frequency, using five simulation
databases and studying the error of LST retrieved using these refitted coefficients w; from five

other independent simulation databases.
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Figure 5.6 The five ISRFs at the channel with the centre wavenumber = 1158 cm!

superimposed on one typical IASI spectrum in the spectral interval of 1148-1168 cm-1.

To refit the coefficients w;, we created five simulation databases for five hyperspectral
TIR sensors with spectral sampling frequencies = 0.5,1,2,4,8 cm™. We assumed that the five
sensors have 10 channels with the centre wavenumbers shown in Figure 5.6. The instrumental
spectral response functions (ISRFs) for the five sensors are rectangular impulse functions.
The ISRFs for the five sensors at one channel are shown in Figure 5.6. The simulation
database for each of the five sensors is resampled from the simulation data mentioned in
Section 5.3 using each ISRF. The coefficients w; refitted for each spectral sampling frequency
are shown in Table 5.1. The main spectral and radiant characteristics of the five proposed
sensors are shown in Table 5.2.
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Table 5.1 The coefficients w; refitted for each spectral sampling frequency using linear

regression with simulation data.

Fq (cm™) Wo Wy W, W3 Wy Ws Ws Wy Ws Wo Wio
0.5 -0.435 0.688 0.025 0.788 0.877 -0.535 -0.516 -0.795 0.575 -0.609 0.504
1 0.676 0.614 0.132 1.126 1.050 -0.693 -0.624 -1.170 0.586 -0.603 0.579
2 -0.372 0.738 -0.148 2.249 0.939 -2.158 -1.210 -1.339 0.953 0.259 0.720
4 -0.080 0.531 1.555 -0.102 3.360 -3.164 -1.772 0.197 0.053 0.089 0.257
8 1.083 2.833 0.931 -1.686 2.256 -1.431 -2.140 1.996 0.683 -2.549 0.102

* Fg=Spectral sampling frequency

Table 5.2 The main radiant and spectral characteristics of the five proposed sensors for

analysing the sensitivity of the developed method to spectral sampling frequency

No. of the Spectral sampling Spectral interval NEAT Number of
sensor frequency(cm™) (cm?) (K) channels
1 0.5 800-1200 0.1K 800
2 1 800-1200 0.1K 400
3 2 800-1200 0.1K 200
4 4 800-1200 0.1K 100
5 8 800-1200 0.1K 50

To evaluate the accuracy of the LST retrieved using refitted coefficients w; an

independent simulation database are created using the other part of TIGR atmospheric profile

data (shown in Figure 5.1. in green asterisk) and resampled for each of the five hyperspectral

TIR sensors using each ISRF. The other part of TIGR profiles are selected in two steps. We
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classified all the remaining clear-sky TIGR profiles into five groups according to the total
precipitable water vapour column, except for the 139 profiles mentioned in Section 5.3.1, and
then we selected nearly 8 profiles from each of these five groups for evaluation. The total
precipitable water-vapour ranges of the five groups are between 0 and 1 g/cm?, between 1 and
2 g/cm?, between 2 and 3 g/cm? between 3 and 4 g/cm? and between 4 and 5 g/cm,
respectively. The variation of the bottom temperature with total precipitable water vapour for
the 39 atmospheric profiles is represented in Figure 5.1 by green squares. The LST data and
other parameters for this independent simulation are the same as those in Section 5.3. The
refitted coefficients w; and the 10 central wavenumbers determined in section 5.3 are then
used for retrieving LST from these five independent simulation databases. The LST errors
that were retrieved using equation 5.3 from each of the five independent simulation databases
with the refitted coefficients are analysed with the spectral sampling frequencies and shown in

Figure 5.7.
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Figure 5.7 Errors of the LST retrieved by equation 4.3 using the refitted coefficients w; from
each of the five independent simulation databases as a function of spectral sampling

frequency.

The coefficients w; refitted for each spectral sampling frequency using simulation data
vary significantly with spectral sampling frequencies. Therefore, we can conclude that the
coefficients in equation 5.3 are dependent on spectral sampling frequency. For the five
spectral sampling frequencies, the biases of the LST retrieved by equation with refitted
coefficients w; from each of the five independent simulation databases vary between -0.01 K
and -0.05K, and the corresponding standard errors of the retrieved LST for each independent

simulation database are less than 0.30 K. The LST can be retrieved accurately using equation
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5.3 with the refitted coefficients w; (i=[0, 10]) for each spectral sampling frequency.

5.4.2 Sensitivity to instrumental noise

To do this sensitivity analysis, three simulation databases are created by adding to
noiseless IASI data noises with NEAT = 0.1 K, 0.2 K, and 0.3 K, respectively. The noiseless
IASI data is created using simulation data with the other part of TIGR atmospheric profiles, as
mentioned in Section 5.4.1. For each noiseless IASI spectrum, 20 noise-added IASI
spectrums are created for each level of noise, including 20 random noises with the dimension
of 1,601. Each random noise is generated by the Matlab random number generator with
corresponding NEAT. The central wavenumbers at channel i and coefficients w; used for
retrieving ST from the three simulation databases above, are those determined in Section 5.3.
Figure 5.8 depicts the errors of the LST retrieved using equation 5.3 from each of the three

simulation databases as a function of instrumental noise.
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Figure 5.8 Errors of the LST retrieved using equation 5.3 from each the three simulation
databases as a function of instrumental noise.
With NEAT instrumental noise growing from 0.1 K to 0.3 K, the standard error of the
retrieved LST goes from 0.19 K to 0.53 K. Therefore, the impact of instrumental noise on the

accuracy of the LST retrieved by equation 5.3 is of the order of magnitude of the instrumental

noise.
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5.5 Accuracy evaluation

5.5.1 W.ith simulation data

First, we have evaluated the developed method by comparing the LST retrieved by that
developed method with the true LST using the simulation data in Section 5.3. The error of the
retrieved LST is shown in Figure 5.9. From this figure, we can see that the RMSE of the
retrieved LST is approximately 0.20 K, and the error of the retrieved LST ranges from -0.6 to
0.9K. Consequently, LST can be accurately retrieved using equation 5.3, with only 10
measurements in the spectral interval of 800 -1200 cm™.
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Figure 5.9 Error of the LST retrieved by equation 5.3 from the simulation data with the 139

atmospheric profiles. (STret= the retrieved LST, STact=the true LST)

To evaluate the method independently, we retrieved LST from the independent
simulation data mentioned in Section 5.4.1 using equation 5.3 with the coefficients w; and the
central wavenumbers determined in Section 5.3.The error of LST retrieved from this
independent simulation data is shown in Figure 5.10. The RMSE of LST retrieved by
equation 5.3 is 0.21 K. Our method is quite accurate and promising.

5.5.2 With satellite data

Our developed method was applied to part of the collected Metop-A/IASI data
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mentioned in Section 4.2. The five-minute Metop-A Level 1C IASI images sensed in the
morning on three clear days in the year 2014 (Feb. 2, Aug. 1 and Nov. 4) were used to
evaluate the accuracy of the developed multi-channel method. The used IASI data has a
viewing zenith angle less than 15° (the surface area covered by this used data is shown in
Figure 3.1 with rectangles). The cloud information in the Metop-A/AVHRR SST product was
used to select the clear-sky IASI data. Only IASI data with more than 90% clear AVHRR
pixels was used for this evaluation. In total, 386 matched IASI samples were used for this
application. The procedures for matching Metop-A/IASI data at nadir and Metop-A/AVHRR
SST product are described in the following text and in Figure 5.11.
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Figure 5.10 Error of the LST retrieved by equation 5.3 from independent simulation data with the

other part of TIGR atmospheric profiles. (STret=the retrieved LST, STact=the true LST)

1) The AVHRR pixel at the centre of a certain 1ASI pixel is located if the distance

between the centres of the two pixels is less than 0.1 degree.

2) The criteria for determining other AVHRR pixels inside the IASI pixel is that the
distance between the centre of an AVHRR pixel and that of the IASI pixel is less than
5 km.

3) The validated Metop-A/AVHRR SST product is taken as a reference to evaluate the
LST retrieved by our developed method from IASI. The comparison of the LST
retrieved by our developed method from IASI with the SST product from AVHRR is
shown in Figure 5.12. From this figure, we can see that the RMSE of the LST from IASI
is 0.43K. The LST can be retrieved accurately from satellite data by the developed
method.
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Figure 5.11 The matched Metop-A/AVHRR pixels plotted with the corresponding

Metop-A/IASI pixel at nadir
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Figure 5.12 Comparison of the LST retrieved by our method from Metop-A IASI data with

Metop-A AVHRR SST product over the Mediterranean Sea on three clear days. (STret=the

retrieved LST, SSTavnr=the AVHRR SST)

The spatial pattern of the LST error retrieved by the developed method from the IASI
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image sensed on 4 November 2014 over part of the Mediterranean Sea is shown in Figure
5.13. The error of the retrieved LST is homogeneously distributed, and no important deviation

is seen.
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Figure 5.13 Error of the retrieved LST (IASI-AVHRR) plotted on a quality image of Metop-A
AVHRR SST product over a part of the Mediterranean Sea on 4 November 2014.
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5.6 Summary and conclusions

In this chapter, with the assumption that LSE is equal to unity, we have developed a
multi-channel LST retrieval method for high-emissivity surfaces basing on 10 hyperspectral
TIR measurements of a radiometer with a spectral interval of 800 -1200 cm™ and a spectral
sampling frequency of 0.25 cm™. Also, we have evaluated the method using independent
simulation data. Moreover, we have analysed the sensitivity of the method to spectral

sampling frequency and instrumental noise. This work draws the following conclusions:

1) LST of high emissivity surfaces can be retrieved by our method from independent
simulation data with RMSE of 0.21 K, using only 10 hyperspectral TIR measurements. This

method is very accurate and promising.

2) The coefficients w;of the method are dependent on a spectral sampling frequency.
Nevertheless, LST of high-emissivity surfaces can still be retrieved accurately when the

coefficients are refitted for each spectral sampling frequency.
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3) The impact of instrumental noise is not significant: the accuracy of the retrieved LST

is of the order of magnitude of the instrumental noise.

4) In comparison with the AVHRR SST product, LST of high-emissivity surfaces can be
retrieved from satellite data with a RMSE of 0.43 K. The performance of our method is good
for retrieving LST for high-emissivity surfaces from satellite data.

The drawback of our method is that it requires the assumption of LSE of unity. It is only
accurate for retrieving LST over high emissivity surfaces with the support of methods to for
selecting high emissivity surfaces in land (Tonooka 2001). Our method can’t be applied to

natural land surfaces yet.
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6 Retrieving LST from hyperspectral TIR
data using a multi-channel method with a

linear LSE function

6.1 Introduction

In chapter 4, we developed a multi-channel method to retrieve LST for high emissivity
surfaces from hyperspectral TIR data containing damaged data at certain channels. However,
the multi-channel method for high emissivity surfaces requires the assumption of blackbody
LSE. The objective of the work in this chapter is to extend the developed multi-channel

method to natural land surfaces with proper consideration of LSE.

6.2 Physical basis of the multi-channel method with linear

LSE function

6.2.1 Variation of the channel LSE

The multi-channel method for high emissivity surfaces requires assumption that land
surface is blackbody. The higher the channel LSEs are and the less the spectral variation of
channel LSE is, the less the effect of channel LSEs on this multi-channel method is. To find
the spectral interval [v,, v,] where channel LSEs are high and constant, we used typical LSE
data in the ASTER emissivity library to study the variation in LSE. The LSE data in ASTER
emissivity library is introduced in chapter 4 of this thesis. Because pure pixels of rocks,
minerals, meteorites, and manmade materials are rare in recent spaceborne hyperspectral TIR
data with a spatial resolution of 12 km, we did not use the LSE data of these four materials for
this analysis. To eliminate the effect of atmospheric ozone, the spectral interval of 985-1071

cmt is not considered.

The mean and the standard deviation of the channel LSE as functions of wavenumber are
shown in Figure 6.1. The criteria for determining the spectral interval of [v,, vp] IS that the
mean values of the channel LSEs are larger than 0.95 and the standard deviations of the
channel LSEs are not larger than 0.01. As seen from Figure 6.1, the mean channel LSEs in the

spectral interval of 800-950 cm ™ are larger than 0.95, and the corresponding standard
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deviations of the channel LSEs are approximately 0.01. The mean channel LSE decreases to
about 0.943 in the spectral interval of 1071-1200 cm ' and the standard deviation of the
channel LSE increases to high values in the spectral interval of 1071-1200 cm ™, ranging
between 0.03 and 0.045. We only considered the channels in the spectral interval of 800-950
cm * in the determination of the central wavenumbers of the channels for the multi-channel

method.
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Figure 6.1 The mean value of channel LSE and the standard deviation of the channel LSE as a

function of wavenumber

6.2.2 The linear function for expressing LSE spectra

After that, with the LSE data in the spectral interval of 800-950 cm™, we found that the
channel LSEs in the spectral interval of 815-950 cm™ can be represented by a linear function
for each material with only two LSE values. The LSE value at channel i centered at
wavenumber v; can be represented by the following linear function

& = Egys +%(Vi —815) (6.1)
where g; is the LSE value at channel i;
v; is the central wavenumber of channel i;
€15 IS the LSE value at the channel centered at 815 cm™;

€950 IS the LSE value at the channel centered at 950 cm™.

The errors of the channel LSE reconstructed by the proposed linear function as a function
of wavenumber are shown in Figure 6.2. The RMSE of each reconstructed channel LSE is

less than 0.01 in the spectral interval of 815cm™-950cm™. The channel LSE centered at the
72



wavenumber v; (v;= [815 ~ 950 cm™]) can be accurately represented by the linear function in

the left side of the equation 6.1 for most of the materials.
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Figure 6.2 The errors the LSE value at channel i reconstructed by the linear function in equation

6.1 as a function of central wavenumber

6.2.3 The multi-channel method with the linear LSE function

Inspired by the SW method, we extended the multi-channel method for retrieving LST
from hyperspectral TIR data for high emissivity surfaces to natural land surfaces by
parameterizing the coefficients wi using LSE. According to the extended multi-channel

method, LST can be retrieved by

T, =0, + Z (a)SYiTS“ + a)W'iTW )
i=ln ' o

1-¢ (6.2)

j— 1
o ;= ﬂs,i,o + P

&
1-¢

&

o ;= ﬂw,i,o + ﬂw,i,l

where mg, ws; (i = [1:n]), owi (i = [1:n]), Bsio» Psit, Bwio» Pwis are the regression coefficients
(also called w; in this paper);

Tqi (i = [1:n]) is the brightness temperature at TOA at a strong-absorption channel i in K;

Twei (i = [1:n]) is the brightness temperature at TOA at a weak-absorption channel near a
strong-absorption channel i in K;

g; is the LSE at channel i;

T, is the land surface temperature in K.

Combination of the equation 6.1 and equation 6.2, LST (T) can be retrieved by
73



T =aw,+ Z (a’s,iTm + "’w,iTwei )

i=ln

V.. V..
1-(6.62— 1) &g + (25 —6.62) &g,
@ ;= Paio+ Paia Vl$5 V1$5
(6.62—- 13%)‘9815 - (é —6.62) &4

v, (6.3)
1ot —6.62)55,

Vwi Vwi
(662~ 1 <1) s — (55— 6.62)2sy

Vw,i
1- (662 - )eass +

2 w,i: ﬂw,i,o + w,i 1

where vs; , vy; are the central wavenumber of the strong-absorption channel i and the
weak-absorption channel i.

The coefficients w; and the central wavenumbers of channel i (i=[1:n]) in equation 6.3 are
determined using simulation data with input of the LSE conditions and water vapor content.
To reduce impact of the variation LSE, we only considered channels in the spectral interval of
[815cm™,950cm™] in determination of the central wavenumber of channel i. The procedures
for determining the coefficients w; and the central wavenumbers of channel i (i=[1,n]) are
detailed in the following section.

For determination of the coefficients ; and the central wavenumbers of channel i in
equation 6.3, we classified the LSE conditions of natural surfaces into four types. The channel
LSE value centered at 950 cm™ as a function of the channel LSE value centered at 815 cm™ is
shown in Figure 6.3. As seen from the Figure 6.3, the LSE conditions of natural surfaces can
be classified into 4 types according to the mean value of two channel LSEs centered at 815
cm™and centered at 950 cm™ (e,) and the difference between the channel LSE at 950 cm™ and
the channel LSE at 815 cm™ (g950-€815): (1) €4 > 0.95, €415 — €950 < -0.02, (2) &, > 0.95, -0.02 <
€g15 — €950 < 0.03, (3) &3 > 0.95, 0.03< €g15 — €950, (4) €4 < 0.95, -0.02 < gg15 — €950 < 0.03. In
application of the proposed multi-channel method to satellite data, the channel LSE at 815
cm™ gg5 and the channel LSE at 950 cm™ g5 were determined using MODIS LSE product
(introduced in Section 4.2.3) in this study.
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6.3 Determination of the coefficients and the central

wavenumbers

6.3.1 Construction of simulation database

To determine the initial strong-absorption channels and the initial weak-absorption
channels for equation 6.3, we simulated data using 4A/OP with a tropical atmospheric profile
from TIGR database. The total precipitable water vapor and the bottom temperature of the
selected atmospheric profile are 3.98 g/cm? and 296.8 K, respectively. The LST and LSE for
the simulation were 286.8 K and the LSE spectrum of deciduous trees from ASTER
emissivity library, respectively. The hyperspectral brightness temperature data at TOA for

nadir observations was simulated as mentioned in section 5.3.3.

To determine the w; coefficients the central wavenumbers of channel i in equation 6.3, we
simulated a large amount of data using 4A/OP using the method mentioned in section 5.3.3
with typical clear-sky atmospheric profiles from the TIGR atmospheric profile database. The
139 TIGR profiles and the LST data for simulation were those mentioned in Section 5.3.1.
For each simulation condition, the LSE data for the simulation was the data referred to in
Section 6.2.1. A random noise with a NEAT of 0.1 K was added to the simulated brightness

temperature data at TOA. In total, 39198 simulation cases were used in this study.
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6.3.2 Procedures for determining the central wavenumber of

channel i and the coefficients o;

We selected the initial strong-absorption channels and the initial weak absorption
channels in two steps using the simulated brightness temperature data mentioned in Section
6.3.1. We first selected a weak-absorption channel from each micro atmospheric window in
the spectral interval of 815-950 cm™. Then, we selected a nearby strong-absorption channel
for each weak absorption channel with the criteria that the brightness temperature difference
between the strong-absorption and weak-absorption channel is larger than ¢ K. The value of ¢
for this study is an empirical value of 0.4.

Using the large amount of simulation data mentioned above, using the initial
strong-absorption channels and the weak-absorption channels, we determined the ;
coefficients and the central wavenumbers of channels in equation 6.3 using the stepwise
regression method. The criterion for determination of the number of channels is that the
RMSE of the LST retrieved from the simulation data using the determined channels and the
determined coefficients reaches 0.5 K. The procedures for determination of the w; coefficients

and central wavenumbers of channel pair i are shown in Figure 6.4.

The LST retrieved by the equation 6.3 from the simulation data decreases to about 0.5 K
when the number of channel pairs increases to 5 (shown in Figure 6.5). The determined
coefficients w; and the determined central wavenumbers of the strong-absorption channels and
the weak-absorption channels are shown in Figure 6.6. The coefficients o; (i = [1, 5]) vary
over a small range from approximately —3 to 3. The determined central wavenumbers
distribute equally in the spectral interval of 815-950 cm™.
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channel pair i

6.4 Sensitivity analysis

6.4.1 Sensitivity to land surface emissivity

To analyze the sensitivity of this extended multi-channel method to LSE, we retrieved
LSTs from the simulation data with the 139 atmospheric profiles mentioned in Section 5.3.1
using the extended multi-channel method with known water vapor content and known LSE
condition, and analyzed the variation of the error of the retrieved LSTs with the four LSE
conditions of natural surfaces. The error of the retrieved LSTs for each simulation database as

a function of the LSE condition is shown in Figure 6.7.
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Figure 6.7 The error of the retrieved LSTs for each LSE condition as a function of the LSE

condition

As the mean value of channel LSEs in the spectral interval of [815, 950cm-1] decreasing
from larger than 0.95 to less than 0.95, the RMSE of the retrieved LSTs for the simulation
database with the corresponding LSE condition grows from approximately 0.5 K to
approximately 0.8 K. The LST retrieved by the extended multi-channel method has larger
errors when the mean value of channel LSEs is low. Note that the RMSE of the retrieved
LSTs for a large part of the simulation data with a mean channel LSE value of larger than 0.95
is less than 0.6 K.

6.4.2 Sensitivity to instrumental noise

To conduct this sensitivity analysis, we created three simulation databases by adding
noise to noiseless IASI data with NEAT = 0.1 K, 0.2 K, and 0.3 K. The noiseless IASI data
were created using the atmospheric profile data, the LST data, and the LSE data mentioned in
Section 5.3.1. The method for adding noise to the noiseless simulation data is detailed in
Section 5.4.2. The extended multi-channel method was used to retrieve LST from the three
simulation databases with known water vapor content and known LSE condition. Figure 6.8
depicts the error of the LST retrieved from each simulation database by the extended

multi-channel method as a function of the instrumental noise.

79



09 T T T T

08

075

07

065

RMSE of the retrieved Ts (K)

06

055

02 025 03 035
NEDT (K)

[t
o
ik
(&

Figure 6.8 The error of the LST retrieved from each noise-added simulation database as a

function of the instrumental noise

When the NEAT for the simulation database is equal to that used to develop this
extended multi-channel method (0.1 K), the RMSE of the LST retrieved from the simulation
database is 0.5 K. For the NEATs of 0.2 K and 0.3 K, the RMSEs of the LST retrieved from
the corresponding simulation databases increase to 0.65 K and 0.8 K, respectively. Therefore,
the accuracy of the LST retrieved using equation 6.3 is not significantly affected by the

instrumental noise.

6.4.3 Sensitivity to error of water vapor content

To conduct this sensitivity analysis, we retrieved LST from the simulation data
mentioned in Section 6.3.1 using equation 6.3 with error-added water vapor content and
known LSE condition. The errors of the water vapor content for this analysis are -20%, -10%,
0%, 10%, 20%, respectively. The error of the LST retrieved by equation 6.3 from the
simulation data using each error-added water vapor content data as a function of the error of

water vapor content is shown in Figure 6.9.
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Figure 6.9 The error of the LST retrieved by equation 6.3 using error-added water vapor

content data from simulation data as a function of the error of water vapor content

When the error of the total precipitable water vapor column changes from 0% to 10%
and 20%, the RMSE of the retrieved LST increases approximately by 0.1 K and 0.2 K,
respectively. The impact of error of water vapor content on the accuracy of the LST retrieved

by equation 6.3 is not significant.

6.5 Accuracy evaluation

6.5.1 W.ith simulation data

We evaluated the accuracy of the extended multi-channel method with the independent
simulation data. The central wavenumbers of the channels and the coefficients w; determined
in Section 6.3.2 were used to retrieve LST from the independent simulation data with known
LSE condition and known water vapor content. The atmospheric profile data and the LST
data for this independent simulation are mentioned in Section 5.4.1. The atmospheric profiles
for the independent simulation were different from the atmospheric profiles for simulation in
Section 6.3.1. The total precipitable water vapor column of the selected atmospheric profiles
ranged from 0 g/cm2 to 5 g/cm2. The LSE data and the instrumental noise for the simulation

were those mentioned in Section 6.3.1.

The errors of the LSTs retrieved using equation 6.3 for the independent simulation data
were shown in Figure 6.10. The bias and the RMSE of the LST retrieved from the
independent simulation data are -0.03 K and 0.54 K, respectively.
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Figure 6.10 The errors of the LST retrieved using Equation 6.3 from the independent

simulation data (LST_ret = the retrieved LST and LST_act = the true LST).

6.5.2 With satellite data

The simulation model itself has uncertainty; therefore, we applied the extended
multi-channel method to Metop-A/IASI data measured on April, November 2012 over
Australia with matched ESRL atmospheric profile data mentioned in Section 4.3.3, and
evaluated its accuracy by comparing the retrieved LST with the Level 2 LST product from the
METOP-A/IASI. The Australia area for collecting Metop-A/IASI data is introduced in
Section 4.1. The land cover types in the Australia were mainly soil surfaces and vegetated

surfaces.

The cloud information in the Metop-A/IASI LST product was used to determine the
clear-sky pixels. The Metop-A/IASI pixels with cloud fraction of less than 2% were used for
this evaluation. The criterion for matching the ERSL atmospheric profile data and the
clear-sky Metop-A/IASI data was that the difference of time between the Metop-A/IASI data
and the ERSL atmospheric profile data is less than 0.5 hr, and the Euclidean distance between
the center of a IASI pixel and the field site of a ERSL atmospheric profile is less than 0.5 <
An error of #10% was added to the total precipitable water vapor column data computed from
the matched ERSL atmospheric profile data. In total, 17 matched cases were used for this

evaluation with the satellite data.

The comparison of the LST retrieved by the extended multi-channel method from the
IASI data with the Level 2 LST product from Metop-A/IASI is shown in Figure 6.11. In
comparison with the Metop-A/IASI LST product, the RMSE of the retrieved LST is 2.1 K,
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and the mean value of the difference between the two LST datasets is 0.26 K. On the whole,

there is no large difference between the two LST datasets.
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Figure 6.11 Comparison of the LST retrieved by the extended multi-channel method from
matched Metop-A IASI data with Metop-A/IASI LST product over Australia in March and

August 2012. (Ts iasi=the Metop-A/IASI LST product)

6.6 Summary and conclusions

With introduction of a linear function for expressing LSE spectra in the spectral interval
of 815-950 cm*, we extended the multi-channel method to natural land surfaces using 10
hyperspectral TIR measurements centered in the spectral interval of 815-950 cm™ with
known LSE condition and known water vapor content. Then, we analyzed its sensitivities to
LSE, to the error of water vapor content and to the instrumental noise using simulation data.
Finally, we evaluated the accuracy of this multi-channel method using independent simulation

data at nadir and satellite data near nadir. This work draws the following conclusions:

With known LSE condition and the atmospheric water vapor content data with error of
10%, LST can be retrieved by the extended multi-channel method from the simulation data
with an RMSE of 0.60 K using hyperspectral TIR data at only 10 channels.

As the mean value of channel LSE in the spectral interval of 815-950 cm ' decreases
from the value of larger than 0.95 to the value of less than 0.95, the error of the LSTs
retrieved by the extended multi-channel method from the simulation data with each LSE
condition increases from 0.5 K to 0.8 K. In addition, the impact of the instrumental noise on

the extended multi-channel method is approximately two times its magnitude.
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With MODIS LSE product and NOAA/ESRL atmospheric profile, LST can be retrieved
by the extended multi-channel method from the 1ASI/Metop-A data with a difference of 2.1 K
on average in comparison with the LST product from the Metop-A/IASI.

The extended multi-channel method can be used for near-real-time retrieval of LST from
hyperspectral TIR data and to provide the physical method to simultaneously retrieve
atmospheric profiles, LST, and LSE with first-guess LST value in the future. The limitations
of the multi-channel method are that it requires known LSE condition in the spectral interval
of 815-950 cm* and known atmospheric water vapor content, and that it has not been
extended for off-nadir measurements yet.
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7 Unmixing component temperatures from
high spatial resolution hyperspectral TIR
data

7.1 Introduction

Component temperatures, component emissivities and component abundances in a mixed
pixel are important parameters for various applications. Hyperspectral TIR data, containing
large amount of information about composition of materials in mixed pixels, is an important

source of information for retrieving component parameters.

The objective of this chapter is to develop a physics-based method to unmix component
temperatures for heterogeneous surfaces with the large variation of component temperature
from high spatial resolution hyperspectral TIR data.

7.2 Physics-based temperature unmixing method

The component temperatures are retrieved by a three-step procedure:

1) First the LST and LSE over a pure pixel are retrieved by the TES method developed
by Gillespie et al. (1998). The identification of pure pixels is done by classifying a

co-registered hyperspectral image acquired in the visible domain.

2) Assuming each material has a pure pixel in TIR image, the initial component
temperatures and initial component abundances over mixed pixels are retrieved by the
TRUST method using the LSTs and the LSEs retrieved over the pure pixels.

3) Component temperatures and components abundances over mixed pixels are
simultaneously retrieved by the proposed physics-based TUM method using the retrieved
initial values of the component parameters. The radiative transfer equations are differentiated
around the initial component abundances over a mixed pixel. Then, component temperatures
and component abundances are jointly estimated by a minimization of the reconstruction error

of the mixed pixel BOA radiance.

The flowchart of the three-step procedure is shown in Figure 7.1.
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Figure 7.1 Flowchart of the three-step procedure for retrieving component temperatures
over heterogeneous surfaces. The TES method is used to retrieve LSTs and LSEs over pure
pixels. The TRUST method is to retrieve initial component temperatures and component
abundances over mixed mixed pixels with large variation of component temperatures. The
proposed TUM method is to refine the initial component temperatures and the initial

component abundances over mixed pixels.
A. Selection of pure pixels

Pure pixels are selected by the classification of the co-registered hyperspectral image in
the visible domain (Dimmeler et al. 2013). The method bases on the selection of
homogeneous areas in the image. A larger area of pure pixels is selected and erosion is
applied to select pure pixels far away from the border. Erosion is used to allow the
co-registration error. The erosion with structure element of 3>3 pixels is used to ensure the

selected pure pixels are reliable.

One of the shortcomings of using an image in the visible domain is that a couple
materials can be recognized as diffident in the visible domain but similar in the thermal
infrared domain. On the other hand, a couple of materials can be identified as similar in the
visible domain but different in the thermal infrared domain. Another limitation of this

classification method is that it requires a hyperspectral image in the visible domain.
B. Retrieval of LST and LSE over a pure pixel

The TES method retrieves LSE and LST over a pure pixel with known atmospheric terms
and consists of three modules: the NEM, the SR method and the MMD. The NEM retrieves

the initial values of LST and LSE. Assuming the maximum spectral LSE is equal to 1, this
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module uses the maximum of the brightness temperature as the LST. The spectral emissivity
is retrieved by inverting the radiative transfer equation with the estimated surface temperature
and known atmospheric terms. The SR module estimates the shape of the spectral emissivity
by calculating the ratio of the retrieved spectral emissivity to its mean value. The SR module
is less sensitive to the initial value of surface temperature. The MMD module refines the
minimum spectral emissivity by using an empirical relationship between the minimum
spectral emissivity and the spectral contrast of emissivity. This empirical relation is expressed
as

& = +a,(MMD)* (7.1)
where oy, op, 03 are coefficients determined using emissivities of man-made materials,
vegetations and soils from the ASTER database (Hulley et al. 2009a). The last two modules
(the SR module, the MMD module) are carried out several times to get more accurate results.

The TES method is accurate, except for materials with low spectral contrast of emissivity
such as vegetation, water, copper. The method has large error when the atmosphere is very

wet.

The TES method is applied to selected pure pixels to separate temperature and emissivity.
The mean parameters of are evaluated to give a statistical representative value for each type

of material in the image.
C. Retrieval of component abundances over a mixed pixel

This method requires assumptions that the component temperatures are known, that each
type of surface has pure pixels in the image and that the initial values of component
abundances are acceptable. First, differential radiative transfer equations are calculated

around the initial values of component abundances over a mixed pixel and are written as

AR, (4,) A(4,S,) A(4,Sy) [ AS,
: = : : (7.2)
AR (A4y,) ) (A, S) A4y, Sy) )L AS,
where ARg={Y (R¢(Si, Ti)-Ry(Sti, Tsri)).i=<1,M>}; S;; is the initial component abundance i
composing the mixed pixel; Tsy; is the initial component temperature i; AS;= S; — Sy;; A; is the
central wavelength of channel j; N, is the number of channels; N is the number of materials

composing the mixed pixel;
with

As(/lj) =& (/Ij)' B(Ts,i1lj)+[1_g(ﬂ’j)]' Ratm¢(/1j)

With N, equations, N<N;, represents an overdetermined problem. In real hyperspectral
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TIR satellite data, the N<<N,.

Then, a best linear unbiased estimator is used to retrieve component abundances over a

mixed pixel. The best linear unbiased estimator is written as
AS = (AT-C™1 A7t AT-Ct AR, (7.3)

where AT is transpose of matrix As.

In this step, the method for retrieving component abundances requires component
temperatures are known which is usually difficult to obtain. In the next step of this three-step
procedure for retrieving component temperature, component temperatures and component
abundances are simultaneously retrieved by a proposed TUM method by a minimization of

reconstruction error.
D. Simultaneously retrieval of component temperatures and component
abundances on a mixed pixel

With initial parameters of components retrieved by the TRUST method and accurate
atmospheric  correction, component temperatures and component abundances are

simultaneously retrieved by an improved physics-based TUM method. The reconstruction

error introduced in our developed TUM method is expressed as

= [1 < RMW-R(A) o 2=
D (Ts) _\/Nﬂ > D R,(S,Ts,2)) (7.4)

A

where ?s is a vector of component temperatures in the mixed pixel; S is a vector of
component abundances in the mixed pixel; N. is the number of used channels; %; is the
central wavelength of channel i.

The improved physics-based method retrieves component temperatures and component
abundances using two reconstruction errors. In first step, for the set of component emissivities
and the initial component abundances determined by the TRUST method, with a series of
possible component temperatures, a series of possible component abundances are estimated
by equation 7.3. Component temperatures and component abundances are estimated by

minimizing the reconstruction error D(TS). In the second step, to stabilize the solution of
radiative transfer equations in the improved physics-based TUM method, a second cost

function, namely DS(TS'), is introduced

D(T,),D(T,)~D; (S) >
D; (5),D(T)-D; ()< 8
where DT(§) is the cost function used by the TRUST method; B is the parameter balancing the

Ds(rs):

(7.5)
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quality of the improved physics-based TUM method and the quality of the TRUST method. If
B is too large, the initial component abundances and initial component temperatures are not
improved; if B is too small, the simultaneously retrieval of component temperatures and

component abundances is not stable. 3 is set to 0.000006 in this thesis.

7.3 Construction of simulation database for unmixing

component temperatures

To evaluate the accuracy of the developed TUM method, we simulated large amount of
hyperspectral TIR data over a flat surface scene composed of two materials using a typical
TIGR atmospheric profile and the LSEs of urban materials from the literature
(Cuberso-Custan, 2015). The two urban materials for simulation were grass and gravel with
mean temperatures of 295 K and 315 K. The bottom temperature and the total precipitable
water vapor content of the selected TIGR atmospheric profile were 298.12 K and 2.0 g/cm®.
The component abundance of grass varied from 70% to 30% by 2%. The LSE spectrums of
urban materials had a wavelength interval of 8 - 12 um. The characteristics of IASI were used
to simulate the BOA radiance at nadir. The spectral interval of the simulate BOA radiance was
8 — 12 um and its spectral sampling frequency was 0.25 cm™. The procedures for creating the

flat surface scene are mentioned as follow and are illustrated in Figure 7.2.

IASI Atmospheric
characteristics profile

A

Estimation of atmospheric
term with 4A/OP

Temperatures

N

>

> Abundances

Linear mixing model
(Mixed pixels)

Emissivities of
NEDT =0.2K gravel & grass

N

/BOA radiance
Figure 7.2 Flowchart of the method for creating simulation database for heterogeneous
surfaces

(1) Atmospheric radiative terms were simulated using 4A/OP model with the selected
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atmospheric profile data;

(2) Component temperature images of 6>8, which represent the temperatures of gravel or the
temperatures of grass over the flat scene, were created by a 2D Matlab random number
generator. The standard deviation of component temperatures for each material was set to
6 K. The spatial distribution of component temperature was random distribution over the
whole scene. The component abundance image of gravel for simulation varied from 70%
to 30%. The sum of component abundance of grass and component abundance of gravel
in a mixed pixel is 100%. The component temperatures and component abundance images
for simulation are shown in Figure 7.3 and Figure 7.4.

——
I Grass
I Gravel

Number of cases

275 280 285 290 295 300 305 310 315 320 325 330 335
Subpixel temperature (K)

Figure 7.3 Histgrams of gravel component temperature data and grass component
temperature data used to simulate mixed-pixel BOA radiance over heterogeneous surfaces.
The grass component temperature data has a mean value of 295 K with standard deviation
of 6 K. The gravel component temperature has a mean value of 315 K with a standard

deviation of 6 K.

(3) The BOA radiance over a mixed pixel was created using linear mixing model with the
simulated atmospheric radiative terms, the component temperature images, the
component abundance images and the LSE spectrums. The LSE spectrums of grass and

gravel are shown in Chapter 4.

(4) One noise equivalent temperature difference vector added to a mixed-pixel BOA radiance
spectrum was a vector of 11667 created by the matlab random number generator with a
mean value of 0 K and a standard deviation of 0.2 K. This instrumental noise was added

to each mixed-pixel BOA radiance spectrum for 20 times.
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(b)

Figure 7.4 Images of gravel component abundance (a) and grass component abundance (b)

used to simulate mixed-pixel BOA radiance data over heterogeneous surfaces

7.4 Accuracy Evaluation

7.4.1 Methodology

The TRUST method is a physics-based TUM designed for hyperspectral TIR sensor with
high spatial resolution. The TRUST method relies on a minimization of the reconstruction
error of the mixed-pixel radiance to jointly retrieve component parameters. The rationale of
TRUST is introduced in Chapter 3 of this thesis in detail.

It is impractical to evaluate the accuracy of the component temperatures retrieved by the
developed physics-based TUM with the spatially and temporally collocated field-measured
component temperatures. To carry out this evaluation, we resorted to synthetic method, which
creates BOA radiance using linear mixing model and 4A/OP with simulation data as
mentioned in Section 6.3.

The developed TUM method and the TRUST method were applied to the simulation data
mentioned in Section 7.3. The accuracy of the component temperatures and component
abundances retrieved from the simulation data by the developed TUM method were analyzed.
Moreover, the performance of the developed TUM method was evaluated by using a
comparison with the TRUST method. The procedures for applying the developed TUM
method and the TRUST method to the simulation data are listed as follow.

(1) To reduce the impact of the error of atmospheric radiative terms on the developed TUM,
only bands where atmospheric transmittance is relative larger were used by the developed

TUM method and the TRUST method in this study. The criteria for selecting the channels
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was that the transmittance at a channel for a typical atmosphere is larger than 0.8. The
atmosphere used for selecting the channels was the TIGR profile selected for data
simulation, which was mentioned in Section 7.3. The central wavenumbers of the
determined bands are shown in Figure 7.5.

290
h

N N
[o53 [os]
[ w
=
.

~
-
a

[
=
=}

(]

N

a
T

[
D
=1

Brightness temperature (K)

[

a

&l
T

Brightness temperature
2501 |+ one of the determined channel

24% 1 1 1 1 1 £ 1
00 850 900 950 1000 1050 1100 1150 1200
Central wavenumber of channel i (cm’1)

Figure 7.5 Illustration of the central wavenumbers of the determined channels with a typical

spectrum of IASI brightness temperature at TOA

(2) The spectra of downwelling atmospheric radiance for the simulated data were estimated
by 4A/OP with the atmospheric profile data mentioned in Section 7.3.

(3) With the known downwelling atmospheric radiance and the known emissivity spectra of
grass, gravel and asphalt, the TRUST method determined the materials composing each
mixed pixel and unmixed jointly component temperatures and component abundances
from the mixed-pixel BOA radiance mentioned in Section 7.3. An error of +/-0.005 was
added to each channel LSE for each material. The LSE errors are distributed

homogeneously among the selected channels.

(4) With the known atmospheric radiative term and the error-added emissivities of grass,
gravel, the developed TUM method unmixes simultaneously component temperatures and
component abundances from the simulated BOA radiance mentioned in Section 7.3 using
the coarse results of the TRUST method.

The root mean square error (RMSE+) of the retrieved component temperatures and
RMSE; of the retrieved component abundances were two indices introduced to express the
performances of the developed TUM method and the TRUST method.
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where i is the No. of a component (i = 1 represents the component of grass; i = 2 represents
the component of gravel);

j is the No. of a mixed pixel;

Tretij IS the retrieved temperature of component i at mixed pixel j;

Tire,ij 1S the true temperature of component i at mixed pixel j;

Sretij IS the retrieved abundance of component i at mixed pixel j;

Stre,ij IS the true abundance of component i at mixed pixel j;

N, is the number of mixed pixel.

7.4.2 Results

The developed TUM method and the TRUST method were applied to the BOA radiance
simulated in Section 7.3. The performances of the developed TUM method and the TRUST
method are presented in Table 7.1. When standard deviation of component temperatures is 6
K, component temperatures and component abundances retrieved by TRUST method from the
simulation data have a RMSE; of 4.0 K and a RMSEs of 2.9 %, while component
temperatures and the component abundances retrieved by the developed TUM method are
more accurate with a RMSE+ of 3 K and a RMSEg of 2.2%.

Moreover, the spatial patterns of component abundances retrieved by the developed
TUM method were analyzed. Images of component abundances retrieved by the developed
TUM method from simulation data with large variation of component temperatures are shown
in Figure 7.6. The spatial distributions of the retrieved component adundances are the same as
those of the true component abundances on the whole. The component abundances retrieved
by the developed TUM method can accurately represent the spatial patterns of component
abundances.
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Figure 7.6 Images of (a) gravel component abundance and (b) grass component abundance
retrieved by the developed TUM method from simulation data with standard deviation of

component temperatures of 6 K

Table 7.1 Performance of the developed TUM method and the TRUST method over

heterogeneous surfaces with large variations of component temperatures

mixing RMSE+ (K) RMSEs (%)
our TUM method TRUST our TUM method TRUST
Material 1 & 2 3.0 4.0 2.2 2.9

7.5 Sensitivity analysis

7.5.1 Sensitivity to standard deviation of component temperatures

To analyze its sensitivity to standard deviation of component temperatures, three
standard deviations of component temperatures, namely 3 K, 6 K and 9 K, were used to
simulate BOA IASI radiance as mentioned in Section 7.3. Specifically, for each standard
deviation of component temperatures, a simulation database was created as mentioned in
Section 7.3. The grass component temperature data for each simulation database was created
using the Matlab random number generator with the mean value of 295 K and the
corresponding standard deviation. Meanwhile, the mean value of 315 K and the
corresponding standard deviation were used to create gravel component temperature data for
each simulation database. The atmospheric profile data, the emissivities of grass and gravel,
the component abundance data and the instrumental noise for each simulation database were

those mentioned in Section 7.3. The errors of component temperatures and component
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abundances retrieved by developed TUM method from the BOA radiance in each simulation
database were analyzed with standard deviation of component temperatures. The performance
of the developed TUM method was compared to that of the TRUST method.

The variations of the performances of the developed TUM method and the TRUST
method with standard deviation are shown in Figure 7.7. With standard deviation of
component temperatures growing from 3 K to 9 K, the RMSE of the retrieved component
temperatures for the developed TUM increases by 1.8 K while that for the TRUST method
increases by 4.6 K. Both methods are sensitive to standard deviation of component
temperatures. It’s encouraging that the developed TUM method is less sensitive to the
standard deviation of component temperatures than TRUST.
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Figure 7.7 Variation of the performances of the developed TUM method and the TRUST

method with the standard deviation of component temperatures

7.5.2 Sensitivity to the mean difference between the two component

temperatures

To analyze the sensitivity of the developed TUM method to the mean difference between
component temperatures, two values for the difference between component temperatures
simulation, namely 5 K and 15 K were used to simulate mixed-pixel BOA radiance, while the
standard deviation of component temperatures for each material composing mixed pixels was
set to 3 K. Specifically, a simulation database was created for each mean difference between
the component temperatures as mentioned in Section 7.3. The component temperature data for
each simulation database was created by the Matlab random number generator with standard

deviation of 3 K and the corresponding mean difference between component temperatures.
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The mean grass component temperatures for the two simulation databases were 295 K, 295 K,
and the mean gravel component temperature for the two simulation databases were 300 K,
310 K. The atmospheric profile data, the emissivities of grass and gravel, the component
abundance data and the instrumental noise for each simulation database were those mentioned
in Section 7.3. The developed TUM method and the TRUST method were applied to this
simulated BOA radiance, the errors of component temperatures and component abundances
retrieved by each method were analyzed with the mean difference between component

temperatures.

The errors of component surface parameters retrieved by the developed TUM method
and the TRUST method are expressed as a function of the difference between the component
temperatures in Figure 7.8. When the difference between component temperatures changes
from 15 K to 5 K and the standard deviation of component temperatures is set to 3 K, the
RMSE of the retrieved component temperatures for the developed TUM method and that for
the TRUST method increase by 0.2 K and 0.4 K, respectively, and the RMSEs of the retrieved
component abundances for the two methods both increase slightly from 1.3% to 1.9%. The
two TUM methods are not sensitive to the mean difference between component temperatures.
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Figure 7.8 Variation of the performances of the developed TUM method and the TRUST

method with the mean difference between component temperatures
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7.5.3 Sensitivity to the mean difference between the two component
emissivities

To analyze the sensitivity of the developed TUM method to the difference between the
component emissivities, a set of three emissivities were created for simulation by a linear
mixing between the asphalt and the gravel as follow: Gravel is the original gravel, Gravel 1
consists of 50% asphalt and 50% gravel, Asphalt is the original asphalt. The created set of
emissivities for simulation was shown with wavenumber in Figure 7.9. In detail, two
simulation databases were created as mentioned in Section 7.3 either by using Gravel and
Asphalt as component materials with mean difference between component emissivities of
0.07 or by using Gravel 1 and Asphalt as component materials with mean difference between
component emissivities of 0.03. For each simulation database, the asphalt component
temperature data was created using mean temperature of 335 K with standard deviation of 9 K
and the other component temperature data was created using mean temperature of 315 K and
standard deviation of 9 K. The component abundances, the atmospheric profile data, the
instrumental noise for each simulation database were those mentioned in Section 7.3. The
developed TUM method and the TRUST method were applied to the two simulation database,
and the variation of the error of each retrieved component surface parameter for each TUM

method with the mean difference between component emissivties was analyzed.

The variation of the error of each retrieved surface parameters for each TUM method as a
function of the difference between component emissivities is shown in Figure 6.10. When the
mean difference between the component emissivities decreases from 0.07 to 0.035, the RMSE
of the retrieved component temperatures for the developed TUM method and that for the
TRUST method increase by about 2.2 K and 0.8 K respectively, and the RMSEs of the
retrieved component abundances for both methods increase by about 4.5%. Both the
performances of the two TUM methods degrade significantly when the difference between

component emissivities decreases gradually.
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7.6 Summary and conclusions

In this chapter, a physics-based TUM method was developed to simultaneously retrieve
component temperatures and component abundances from hyperspectral TIR data over
heterogeneous surfaces with large variation of component temperatures by using a nonlinearly
solution of the radiative transfer equations and a minimization of the reconstruction error of

the mixed-surface BOA radiance. The accuracy and the sensitivity of this developed TUM
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method were also evaluated by comparing the results with that retrieved by the TRUST
method using a flat surface scene simulation data. The conclusions we drew from this study

are as follow:

When the standard deviation of component temperatures is 6 K, component temperatures
retrieved by the developed TUM method from simulated hypersperspectral TIR data is more
accurate than those retrieved by the TRUST method with a RMSE of 3 K.

When the difference between the component temperatures decreases from 15 K to 5 K
and the standard deviation of component temperatures is set to 3 K, the component
temperatures retrieved by the developed TUM method have an error growing from 1.9 K to
2.1 K and those retrieved by the TRUST method have an error growing from 1.7 K to 2.1 K.
Both the methods are not sensitive to the difference between the component temperatures.

When standard deviation of component temperatures growing from 3 K to 9 K, the
RMSE of the component temperatures retrieved by the developed TUM method increases by
1.8 K and that retrieved by the TRUST method increase by 4.6 K. The developed TUM
method is less sensitive to the standard deviation of component temperatures than the TRUST
method.

When the difference between the component emissivities decreases from 0.07 to 0.035,
the component temperatures retrieved by the developed TUM method from the simulation
data have an error increasing from 3.5 K to 5.7 K while those retrieved by the TRUST method
have an error increasing from 5.5 K to 6.3 K. And the component abundances retrieved by
each method from the simulation data have an error increasing by 4.5%. Both the methods are

sensitive to the difference between component emissivities.

The shortcomings of the developed TUM method include: it requires images in the
reflective domain to identify pure pixels; it requires that each mixed pixel contains only two
components; it is not validated using satellite data; due to the high relativity among
hyperspectral TIR channels which causes that the solution of radiative transfer equations not
stable, the component temperature retrieved by the developed TUM method was not
improved significantly. Extra constraints are required to stabilize the solution of rediative
transfer equaitons to retrieve component temperatures from TIR data. In the future, we will
validate the developed TUM method using satellite data and evaluate the accuracy of the

developed TUM method for mixed pixels containing more than two components.
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8 Conclusions and perspectives

LST is an important parameter in climate systems. LST can be retrieved by various
methods from multispectral TIR data and hyperspectral TIR data. Hyperspectral TIR data
with high spectral resolution contains large spectral information about the atmosphere and
land surfaces, provide new way to develop methods for retrieving LST from space.
Hyperspectral TIR data has damaged data due to failure of the instrument or other damage in
the process of data transfer. The LST retrieval methods cannot be used for retrieving LST
from hyperspectral TIR data containing damaged data at certain channels. Moreover, the LST
retrieval methods retrieve a single LST for a mixed pixel, cannot be used to retrieve
component temperatures which are important for various applications. Various temperature
unmixing methods exist to retrieve component temperatures from TIR data. However these
temperature unmixing methods are not suitable for retrieving component temperatures for
heterogeneous surfaces with large variation of component temperatures from hyperspectral
high spatial resolution TIR data. The objectives of the thesis includes:(1) to develop a method
for retrieving LST from hyperspectral TIR data contain damaged data at certain channels; (2)
to develop a TUM method for retrieving component temperatures for heterogeneous surfaces
with large variation of component temperature from hyperspectral high spatial resolution TIR
data.

To fulfill these objectives, this study firstly developed a multi-channel method for
retrieving LST for high emissivity surfaces from hyperspectral TIR data by using stepwise
regression method. The accuracy and sensitivity of the developed multi-channel method for
high emissivity surfaces were analyzed using simulation data and Metop-A/IASI data. Then,
the developed multi-channel method was adapted for retrieving LST for natural land surfaces
by taking LSE into consideration. The sensitivities of the adapted multi-channel method to
LSE and instrumental noise were analyzed with simulation data. Finally, a physics-based
TUM method is developed by nonlinearly solving the radiative transfer equations and by a
minimization of construction error of the mixed-surface BOA radiance with the first-guess
values for component parameters. The sensitivities of the developed TUM method to the
standard deviation of component temperatures, to the difference between the component
temperatures, and to the difference between component emissivities, and the accuracy of
component temperatures retrieved by the developed TUM method was analyzed using

simulation data at nadir.
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8.1 Conclusions

We firstly proposed a multi-channel LST retrieval method for hyperspectral TIR data by
assuming LSE is unity. The accuracy of the developed multi-channel method is analyzed by
comparing input LSTs and the retrieved LSTs using simulation data and by comparing LSTs
retrieved by this method from Metop-A/IASI data and the SST product from
Metop-A/AVHRR over Mediterranean Sea area. The sensitivities of the developed
multi-channel method to instrumental noise and to spectral sampling frequency were analyzed

by using simulation data.

The conclusions we drew from this study are as follow:
(1) LST of high emissivity surfaces can be accurately retrieved by the developed
multi-channel method from the simulation data using only measurements at 10 channels with

RMSE of 0.2 K. The performance of the developed multi-channel method is encouraging.

(2) LST of high emissivity surfaces can be accurately retrieved from satellite data.
Taking Metop-A/AVHRR LST product as a reference, the RMSE of the LST retrieved from
Metop-A/IASI data is 0.43 K.

(3) The coefficients in the developed multi-channel method are dependent on spectral
sampling frequency. LST can be retrieved accurately by the developed multi-channel method
for each spectral sampling frequency if the coefficients are refitted.

(4) The impact of instrumental noise on the developed multi-channel method is of the
order of the magnitude of the instrumental noise. It is critical that developed multi-channel

method is not significantly sensitive to instrumental noise.

Then, we adopted the developed multi-channel method for high emissivity surfaces to
natural land surfaces by parameterizing LSE and water vapor content into the linear function
used by the multi-channel method for high emissivity surfaces. Validation was carried out by
comparing the input LST and the LST retrieved by the adopted multi-channel method over
natural land surfaces using simulation data and by comparing LST retrieved by the adopted
multi-channel method from the Metop-A/IASI data with the LST product from Metop-A/IASI
over Australia. The LSE data and water vapor content data used for applying the adopted
multi-channel method to satellite data were that from MODIS MOD11B1 LSE product and
that from NOAA ESRL atmospheric profile database. The sensitivities of the adopted
multi-channel method to instrumental noise, to LSE and to the error of water vapor content
were analyzed using simulation data. The conclusions which we drew from the study in this

chapter are listed as follow:
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(1) When water vapor content error is 10% and LSE error is neglected, the LST can be
retrieved by the adopted multi-channel method from simulated 1ASI data with a RMSE of 0.6
K using measurements at 10 channels and two channel LSEs. The adopted multi-channel
method is promising.

(2) When NEDT increasing by 0.1 K and 0.2 K, the RMSE of LST retrieved from the
simulated 1ASI data increases by 0.15 K and 0.3 K. The impact of instrumental noise on the
adopted multichannel method is two times of the magnitude of instrumental noise.

(3) When the mean value of the used channel LSEs decreases from large than 0.95 to less
than 0.95, the RMSE of the retrieved LST increases from 0.5 K to 0.8 K. The impact of LSE
on the adopted multi-channel method is significant.

(4) With MODIS LSE product and using water vapor content data with an error of 20%,
the difference between the LST retrieved by the adopted multi-channel method from the
Metop-A IASI data and the LST product from Metop-A/IASI is about 2 K. There are no large
difference between the LST retrieved by the adopted multi-channel method and LST product
from Metop-A/IASI.

Finally, with LSTs and LSEs over pure pixels retrieved by the TES method and the initial
component parameters retrieved by the TRUST method, we developed a physics-based TUM
method to simultaneously retrieve component temperature and component emissivity from
hyperspectral TIR data for heterogeneous surfaces with large variation of component
temperatures by nonlinearly solving the radiative transfer equations and by a minimization of
the reconstruction error of the mixed-pixel BOA radiance. The accuracy of the developed
TUM method was validated by comparing the retrieved results with those of the TRUST
method using simulation data at nadir. The sensitivities of the developed TUM method to the
standard deviation of component temperatures, to the difference between component
temperatures and to the difference between the component emissivities were analyzed. Main

conclusions described in this chapter are listed as follows:

(1) When the error of component emissivities of each material is 0.0005 and standard
deviation of component temperatures is 6 K, component temperatures can be retrieved by the
developed TUM method from the simulation IASI data with a RMSE of 3 K. Component
temperatures retrieved from the simulation data by the developed TUM method is more

accurate than those retrieved by the TRUST method.

(2) When the standard deviation of component temperatures grows from 3 K to 9 K, the
RMSE of the retrieved component temperatures for the developed TUM method increases by
1.8 K while that for the TRUST method increases by 4.6 K. The developed TUM method is
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less sensitive to the standard deviation of component temperatures than the TRUST method.

(3) When the difference between component temperatures decreasing from 15 K to 5 K
and the standard deviation of component temperatures is set to 3 K, the RMSE of the
retrieved component temperatures for the developed TUM method and that for the TRUST
method increase by 0.2 K and 0.4 K, respectively and the RMSE of the retrieved component
abundances for each method increases from 1.3% to 1.9%. The two TUM methods are not

sensitive to the difference between component temperatures.

(4) When the mean difference between the component emissivities decrease from 0.07 to
0.035, the RMSE of the retrieved component temperatures for the developed TUM method
and that for the TRUST method increase by about 2.2 K and 0.8 K respectively, and the
RMSEs of the retrieved component abundances for both methods increases by about 4.5%.
The performances of both methods degrade significantly when the difference between

component emissivities decreases gradually.

8.2 Perspectives

The adopted multi-channel method for retrieving LST for natural land surfaces requires
accurate LSE and accurate atmospheric water vapor content which are difficult to obtain. It’s

needed to develop new methods for atmospheric correction of hyperspectral TIR data.

The adopted multi-channel method for retrieving LST for natural land surfaces is
developed for measurements of hyperspectral TIR sensor at nadir in this study. We will extend

this multi-channel method to off-nadir measurements in the future.

The developed TUM method requires extra constraint to stabilize the inversion of
radiative transfer equations and has not been validated using satellite data yet. In the future,
we will validate the developed TUM method using satellite data and develop new TUM
method by incorporating new constraint to solve the radiative transfer equations for

component temperatures.

The developed TUM method has not been validated over mixed pixels containing more
than two components. We will evaluate the performance of the TUM method over complex

mixed pixels containing three components in the future.
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