Complexes de fer(II) et de cobalt(II) de basse coordinance : synthèses, caractérisations et applications en réaction d’hydroamination des alcènes
Auteur / Autrice : | Clément Lepori |
Direction : | Jérôme Hannedouche |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 08/12/2017 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Paris-Sud (1970-2019) |
Laboratoire : Institut de chimie moléculaire et des matériaux d’Orsay (Orsay, Essonne ; 2006-....) | |
Jury : | Président / Présidente : Cyrille Kouklovsky |
Examinateurs / Examinatrices : Jérôme Hannedouche, Cyrille Kouklovsky, Marine Desage-El Murr, Vincent César | |
Rapporteur / Rapporteuse : Marine Desage-El Murr, Clément Mazet |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Les motifs azotés sont présents dans de nombreuses molécules d’intérêts pharmaceutiques. Les méthodes de synthèses traditionnelles de ces motifs vont, par exemple, de la substitution nucléophile d’amines sur des halogénures d’alkyles à de l’amination réductrice des composés carbonylés. Ces méthodes, bien qu’efficaces, nécessitent néanmoins des quantités stœchiométriques de réactifs pour être appliquées et génèrent souvent des quantités importantes de déchets. Un des challenges de la chimie organique moderne consiste à développer de nouvelles méthodes de synthèses de ces motifs plus économiques et plus respectueuses de l’environnement en produisant un taux de déchets le plus faible possible. L’addition directe d’une amine sur une double liaison carbone-carbone non-activée que l’on appelle la réaction d’hydroamination des alcènes est une approche très prometteuse pour le développement d’une méthodologie de synthèse alternative de ces composés. En effet, dans cette réaction, tous les atomes du substrat de départ sont transférés au produit réduisant ainsi considérablement les déchets produits. De plus, les amines et les oléfines employées sont des réactifs relativement bon marché, abondants et variés. Néanmoins, cette transformation a priori simple nécessite généralement l’emploi d’un catalyseur. Dans la littérature, la réaction d’hydroamination des alcènes a été étudiée en utilisant comme catalyseur des complexes de métaux alcalins, alcalino-terreux, de terre-rares et de métaux de transition. Au commencement de ce projet, il n’existait pas d’exemples de réaction d’hydroamination des alcènes mettant en jeu des amines primaires non protégées catalysée par des complexes de fer ou de de cobalt. Dans ce contexte, notre équipe s’est intéressée à la réactivité de complexes de fer(II) et de cobalt(II) de basse valence stabilisés par des ligands de type β-dicétiminate. Ces complexes se sont révélés être d’excellents catalyseurs pour promouvoir la réaction d’hydroamination des amines primaires non protégées liées à des alcènes non activés.Dans un premier temps, les synthèses des complexes de fer(II) et de cobalt(II) alkyles stabilisés par des ligands β-dicétiminates ainsi que leurs applications en réaction de cyclohydroamination des amines primaires non protégées seront présentées. De plus, des études mécanistiques poussées permettront d’éclaircir le mécanisme de la réaction, qui est proposé de passer par une étape élémentaire clé d’insertion 1,2 migratoire aboutissant à la formation d’une liaison carbone-azote.Dans un second temps, les influences des propriétés électroniques et stériques des ligands sur la réactivité en réaction d’hydroamination des alcènes des complexes de fer(II) alkyles seront étudiées. Nous nous attarderons particulièrement sur des complexes stabilisés par des ligands β-dicétiminates dissymétriques ou iminoanilidures. Les données cristallographiques des complexes à l’état solide permettront alors de rationaliser les variations de réactivités de ces différents complexes.Enfin, les complexes de fer(II) et de cobalt(II) synthétisés précédemment seront exploités pour développer de nouvelles réactivités en réactions d’oxydation, d’amination oxydante ou de création de liaison azote-silicium par un couplage déshydrogénant.