Dynamique asymptotique pour des équations de KdV généralisées L2 critiques et surcritiques

par Yang Lan

Thèse de doctorat en Mathématiques fondamentales

Sous la direction de Frank Merle et de Thomas Duyckaerts.

Le président du jury était Jean-Claude Saut.

Le jury était composé de Frank Merle, Thomas Duyckaerts, Jean-Claude Saut, Thierry Cazenave, Philippe Gravejat, Enno Lenzmann, Luis Vega.

Les rapporteurs étaient Thierry Cazenave, Philippe Gravejat.


  • Résumé

    Dans cette thèse, nous étudions la dynamique à temps long des solutions des équations de KdV généralisées (gKdV) critiques et surcritiques pour la masse.La première partie de cette thèse est consacrée à la construction d’une dynamique explosive auto-similaire stable pour des équations de gKdV légèrement L2 surcritique dans l’espace d’énergie H1. La preuve repose sur le profil auto-similaire construit par H. Koch. Nous donner une escription précise de la formation des singularité près du temps d’explosion.La deuxième partie est consacrée à la construction de solutions explosive aux équations de gKdV légèrement L2 surcritiques avec plusieurs points d’explosion. L’idée clé est d’envisager des solutions qui se comportent comme une somme de bulles découplée, chaque bulle se comportent comme un solution auto-similaire explosent en un seul point. Nous utilisons les argument topologique classique pour s’assurer que chaque bulle explose en même temps. Ici, nous avons besoin de données initiales plus grande régularité pour contrôler la solution entre les différents points d’explosion.Enfin, dans la troisième partie, nous considérons les équations de gKdV L2 critiques avec une perturbation saturée. Dans ce cas, toute solution avec des données initiales dans H1 est toujours globale en le temps et bornée dans H1. Nous donner une classification explicite de la dynamique près du solitons. Sous certaines hypothèses de décroissance, il n’y a que trois possibilités : (i) la solution converge asymptotiquement vers une onde solitaire ; (ii) la solution reste dans un petit voisinage de la famille modulée de l’état fondamental, en s’étalant par de temps infiniment grande (Blow down) ; (iii) la solution quitte tout petit voisinage de la famille modulée de solitons.

  • Titre traduit

    Asymptotic dynamics for L2 critical and supercritical generalized KdV equations


  • Résumé

    In this thesis, we deal with the long time dynamics for solutions of the L2 critical and supercritical generalized KdV equations.The first part of this work is devoted to construct a stable self-similar blow up dynamics for slightly L2 supercritical gKdV equations in the energy space H1. The proof relies on the self-similar profile constructed by H. Koch. We will also give a specific description of the formation of singularity near the blow up time.The second part is devoted to construct blow up solutions to the slightly L2 supercritical gKdV equations with multiple blow up points. The key idea is to consider solutions which behaves like a decoupled sum of bubbles. And each bubble behaves like a self-similar blow up solutions with a single blow up point. Then we can use a classic topological argument to ensure that each bubble blows up at the same time. Here, we require a higher regularity of the initial data to control the solution between the different blow up points.Finally, in the third part, we consider the L2 critical gKdV equations with a saturated perturbation. In this case, any solution with initial data in H1 is always global in time and bounded in H1. We will give a explicit classification of the flow near the ground states. Under some suitable decay assumptions, there are only three possibilities: (i) the solution converges asymptotically to a solitary wave; (ii) the solution is always in some small neighborhood of the modulated family of the ground state, but blows down at infinite time; (iii) the solution leaves any small neighborhood of the modulated family of the ground state.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Saclay. DIBISO. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.