Thèse soutenue

Sur des stratégies de calcul ondulatoires pour les milieux hétérogènes

FR  |  
EN
Auteur / Autrice : Hao Li
Direction : Hervé RiouPierre Ladevèze
Type : Thèse de doctorat
Discipline(s) : Mécanique des solides
Date : Soutenance le 08/02/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....)
Laboratoire : Laboratoire de mécanique et technologie (Gif-sur-Yvette, Essonne ; 1975-2021)
Jury : Président / Présidente : Antonio Huerta
Examinateurs / Examinatrices : Hervé Riou, Pierre Ladevèze, Antonio Huerta, Wim Desmet, Alain Le Bot, Guillaume Bézier
Rapporteurs / Rapporteuses : Wim Desmet, Alain Le Bot

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Ce travail de thèse s'intéresse au développement de stratégies de calcul pour résoudre les problèmes de Helmholtz, en moyennes fréquences, dans les milieux hétérogènes. Il s'appuie sur l'utilisation de la Théorie Variationnelle des Rayons Complexes (TVRC), et enrichit l'espace des fonctions qu'elle utilise par des fonctions d'Airy, quand le carré de la longueur d'onde du milieu varie linéairement. Il s'intéresse aussi à une généralisation de la prédiction de la solution pour des milieux dont la longueur d'onde varie d'une quelconque autre manière. Pour cela, des approximations à l'ordre zéro et à l'ordre un sont définies, et vérifient localement les équations d'équilibre selon une certaine moyenne sur les sous domaines de calcul.Plusieurs démonstrations théoriques des performances de la méthodes sont menées, et plusieurs exemples numériques illustrent les résultats. La complexité retenue pour ces exemples montrent que l'approche retenue permet de prédire le comportement vibratoire de problèmes complexes, tel que le régime oscillatoire des vagues dans un port maritime. Ils montrent également qu'il est tout à fait envisageable de mixer les stratégies de calcul développées avec celles classiquement utilisées, telle que la méthode des éléments finis, pour construire des stratégies de calcul utilisables pour les basses et les moyennes fréquences, en même temps.