Existence et construction de réseaux de Chebyshev avec singularités et application aux gridshells

par Yannick Masson

Thèse de doctorat en Mathématiques

Sous la direction de Alexandre Ern et de Olivier Baverel.

Soutenue le 09-06-2017

à Paris Est , dans le cadre de École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....) , en partenariat avec Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne) (laboratoire) et de Centre d'Enseignement et de Recherche en Mathématiques- Informatique et Calcul Scientifique / CERMICS (laboratoire) .

Le président du jury était Pierre Alliez.

Le jury était composé de Alexandre Ern, Olivier Baverel, Thilo Rörig, Laurent Hauswirth, Laurent Monasse, Pooran Memari.

Les rapporteurs étaient Tim Hoffmann.


  • Résumé

    Les réseaux de Chebyshev sont des systèmes de coordonnées sur les surfaces que l'on obtient par cisaillement d'un domaine du plan. Ceux-ci sont utilisés en particulier pour modéliser les gridshells qui constituent une construction architecturale notamment reconnue pour son faible coût environnemental. La difficulté principale dans la conception des gridshells est le manque de diversité des formes accessibles. En effet, bien que toute surface admette localement en tout point un réseau de Chebyshev, l'existence globale de ce type de coordonnées n'est possible que sur un ensemble restreint de surfaces. La recherche de conditions suffisantes pour l'existence globale de réseaux de Chebyshev est toujours d'actualité. Un des résultats de cette thèse est l'amélioration de ces conditions. Les possibilités d'améliorations en ce sens étant néanmoins limitées, nous élargissons la perspective en considérant des réseaux de Chebyshev avec singularités. Notre résultat principal est l'existence de réseaux de Chebyshev avec singularités coniques, lisses par morceaux, sur toute surface dont la courbure totale positive est inférieure à $2pi$ et dont la courbure totale négative est finie. Notre preuve est constructive, ce qui permet de déterminer ces réseaux dans des cas pratiques. Nous avons implémenté un cas particulier de notre algorithme dans le logiciel Rhinoceros et nous présentons des exemples de réseaux construits par cette méthode

  • Titre traduit

    Existence and construction of Chebyshev nets and application to gridshells


  • Résumé

    Chebyshev nets are coordinate systems on surfaces obtained by pure shearing of a planar domain.These nets are used in particular to model gridshells, an architectural construction which is well-known for its low environmental impact. The main issue when designing a gridshell is the lack of diversityof the accessible shapes. Indeed, although any surface admits locally a Chebyshev net at any point, the global existence for these coordinate systems is only possible for a restricted set of surfaces. The research for sufficient conditions ensuring the global existence of Chebyshev nets is still ongoing. A result achieved in this thesis is an improvement on these conditions. Since the improvement in this direction seems to be rather limited, we broaden the perspective by introducing Chebyshev nets with singularities. Our main result is the existence of a global Chebyshev net with conical singularities on any surface with total positive curvature less than $2pi$ and with finite total negative curvature. Our proof is constructive, so that this method can be applied to practical cases. We have implemented a special instance of this algorithm in the software Rhinoceros and some discrete Chebyshev nets constructed using this method are presented


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
  • Bibliothèque : École des Ponts ParisTech (Marne-la-Vallée, Seine-et-Marne). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.