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 Abstract 
 

 

 

 

In many applications, we may wish to interpolate or approximate a multivariate function pos-

sessing certain geometric properties or “shapes” such as smoothness, monotonicity, convexity 

or nonnegativity. These properties may be desirable for physical (e.g., a volume-pressure 

curve should have a nonnegative derivative) or practical reasons where the problem of shape 

preserving interpolation is important in various problems occurring in industry (e.g., car 

modelling, construction of mask surface). Hence, an important question arises: How can we 

compute the best possible approximation to a given function f when some of its additional 

characteristic properties are known? 
 

This thesis presents several new techniques to find a good approximation of multivariate 

functions by a new kind of linear operators, which approximate from above (or, respectively, 

from below) all functions having certain generalized convexity. We focus on the class of 

convex and strongly convex functions. We would wish to use this additional information in 

order to get a good approximation of f . We will describe how this additional condition can be 

used to derive sharp error estimates for continuously differentiable functions with Lipschitz 

continuous gradients. More precisely we show that the error estimates based on such 

operators are always controlled by the Lipschitz constants of the gradients, the convexity 

parameter of the strong convexity and the error associated with using the quadratic function. 

Assuming, in addition, that the function, we want to approximate, is also strongly convex, we 

establish sharp upper as well as lower refined bounds for the error estimates. 
 

Approximation of integrals of multivariate functions is a notoriously difficult tasks and satis-

factory error analysis is far less well studied than in the univariate case. We propose a method 

to approximate the integral of a given multivariate function by cubature formulas (numerical 

integration), which approximate from above (or from below) all functions having a certain type 

of convexity. We shall also see, as we did for for approximation of functions, that for such 

integration formulas, we can establish a characterization result in terms of sharp error 

estimates. Also, we investigated the problem of approximating a definite integral of a given 

function when a number of integrals of this function over certain hyperplane sections of d-

dimensional hyper-rectangle are only available rather than its values at some points. 
 

The motivation for this problem is multifold. It arises in many applications, especially in 

experimental physics and engineering, where the standard discrete sample values from func-

tions are not available, but only their mean values are accessible. For instance, this data type 
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Abstract (English) 
 

 

 

appears naturally in computer tomography with its many applications in medicine, radiology, 

geology, amongst others. 
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 Résumé 
 

 

Dans de nombreuses applications, nous souhaitons interpoler ou approcher une fonction de 

plusieurs variables possédant certaines propriétés ou “formes” géométriques, telles que la ré-

gularité, la monotonie, la convexité ou la non-négativité. Ces propriétés sont importantes pour 

des applications en physique (par exemple, la courbe pression-volume doit avoir une dérivée 

non négative), aussi bien où le problème de l’interpolation conservant la forme est essentiel 

dans divers problèmes de l’industrie (par exemple, modélisation automobile, construction de la 

surface du masque). Par conséquent, une question importante se pose : comment calculer la 

meilleure approximation possible à une fonction donnée f lorsque certaines de ses propriétés 

caractéristiques supplémentaires sont connues ? 
 

Cette thèse présente plusieurs nouvelles techniques pour trouver une bonne approximation 

des fonctions de plusieurs variables par des opérateurs linéaires dont l’erreur d’approximation 

A( f ) ¡ f garde un signe constant pour toute fonction f satisfaisant une certaine convexité 

généralisée. Nous nous concentrons dans cette thèse sur la classe des fonctions convexes ou 

fortement convexes. Nous décrirons comment la connaissance a priori de cette informa-tion 

peut être utilisée pour déterminer une bonne majoration de l’erreur pour des fonctions 

continuellement différentiables avec des gradients Lipschitz continus. Plus précisément, nous 

montrons que les estimations d’erreur basées sur ces opérateurs sont toujours contrôlées par 

les constantes de Lipschitz des gradients, le paramètre de la convexité forte ainsi que l’erreur 

commise associée à l’utilisation de la fonction quadratique. En supposant en plus que la 

fonction que nous voulons approcher est également fortement convexe, nous établissons de 

meilleures bornes inférieures et supérieures pour les estimations d’erreur de l’approximation. 

Les méthodes de quadrature multidimensionnelle jouent un rôle important, voire fondamen-tal, 

en analyse numérique. Une analyse satisfaisante des erreurs provenant de l’utilisation des 

formules de quadrature multidimensionnelle est bien moins étudiée que dans le cas d’une 

variable. Nous proposons une méthode d’approximation de l’intégrale d’une fonction réelle 

donnée à plusieurs variables par des formules de quadrature, qui conduisent à des valeurs 

approchées par excès (respectivement par défaut) des intégrales des fonctions ayant un 

certain type de convexité. Nous verrons aussi, comme nous l’avons fait pour l’approxima-tion 

des fonctions, que pour de telles formules d’intégration, on peut établir un résultat de 

caractérisation en termes d’estimations d’erreur. En outre, nous avons étudié le problème de 

l’approximation d’une intégrale définie d’une fonction donnée quand un certain nombre 

d’intégrales de cette fonction sur certaines sections hyperplanes d’un l’hyper-rectangle sont 

seulement disponibles. 
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Résumé (Français) 
 

 

 

 

La motivation derrière ce type de problème est multiple. Il se pose dans de nombreuses appli-

cations, en particulier en physique expérimentale et en ingénierie, où les valeurs standards 

des échantillons discrets des fonctions ne sont pas disponibles, mais où seulement leurs 

valeurs moyennes sont accessibles. Par exemple, ce type de données apparaît naturellement 

dans la tomographie par ordinateur avec ses nombreuses applications en médecine, 

radiologie, géologie, entre autres. 
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Motivation 
 

The main purpose of this thesis is to find a good approximation of multivariate functions by a 

new kind of linear operators, which approximate from above (or from below) all functions 

having certain generalized convexity. We focus on the class of convex and strongly convex 

functions. Actually, approximating an arbitrary function f is, in general, very difficult to do, but 

we sometimes know beforehand that f satisfies some known structural and regularity 

properties. For example, it may be known that this function has some additional kind of 

convexity, therefore we would wish to use this information in order to get a good approxima-

tion of f . We will describe how this additional knowledge can be used to derive sharp error 

estimates for continuously differentiable functions with Lipschitz continuous gradients. More 

precisely we show that the error estimates based on such operators are always controlled by 

the Lipschitz constants of the gradients, the convexity parameter of the strong convexity and 

the error associated with using the quadratic function. Assuming the function, we want to 

approximate, is also strongly convex, we establish sharp upper as well as lower refined 

bounds for the error estimates. 
 

Approximation of integrals of multivariate functions is a notoriously difficult tasks and satis-

factory error analysis is far less well studied than in the univariate case. We propose a method 

to approximate the integral of a given real-valued function of multiple variables by cubature 

formulas (numerical integration), which approximate from above (or from below) all functions 

having a certain type of convexity. We shall also see, as we did for approximation of functions, 

that for such integration formulas, we can establish a characterization result in terms of sharp 

error estimates. Also, we investigated the problem of approximating a definite integral of a 

given function when a number of integrals of this function over certain hyperplane sections of 

d¡dimensional hyper-rectangle are only available rather than its values at some points. 

 

The motivation for this problem is multifold. It arises in many applications, especially in 
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experimental physics and engineering, where the standard discrete sample values from func-

tions are not available, but only their mean values are accessible. For instance, this data type 

appears naturally in computer tomography with its many applications in medicine, radiology, 

geology, amongst others. 
 

 

 

 

 

Outline 
 

This thesis consists of five chapters. The first chapter introduces the usual convexity and its 

generalizations. It includes almost everything pertinent and essential characterization results 

for (possibly smooth) convex functions. It also provides a unifying framework for many times 

surprisingly short proofs using well-known characterizations of convexity for functions of one 

variable. One of the most important properties of the convex function is that the function 

always controls its first order (linear) Taylor approximation. Unfortunately, in general, it is still 

difficult to get better bounds on the error introduced by such an approximation if no addi-tional 

information is available. Therefore, we need to extend the notion of classical convexity. We 

realized that the natural condition that we can impose on the function is to belong the class of 

strongly convex functions. Furthermore, we will establish an intimate relationship between 

usual convexity and strong convexity which helped us to establish some important 

characterizations of these kind of functions. It is also shown that under strong convexity type 

restrictions, we can obtain better lower and upper bounds in linear approximation than that 

from usual convexity. This is one of the main aims of this chapter. For this end, we consider 

the case when, in addition, the gradients are Lipschitz continuous. In this setting, we present 

some characterization theorems and also give more controlled and then improved error 

bounds than those obtained for ordinary convexity. It is worth mentioning in this chapter, we 

are try to provide more details in the proofs where it felt needed based on [1, 7, 8, 10]. 

 

In the second chapter, due to the urgent need for some concepts and characterization theo-
rems for this study, we begin by giving two equivalent definitions of a prototype and then state 
some well-known fundamental theorems and properties of such a geometric object. After that, 
we define the notion of generalized barycentric coordinates with respect to an arbitrary set of 

points in Rd , or equivalently, with respect to a (convex) polytope. We then show that such 

coordinates always exist for any given finite point set. This existence result is due to Kalman in 
the sixties [26, Theorem 2]. Moreover, this chapter introduces Delaunay triangulations as 
geometrically duals to Voronoi diagrams. We summarize basic properties of such widely-used 
triangulations. Under the convexity assumption, we also provide an approximation method, 
which we call it a barycentric approximation. This class of (linear) operators approximate all 
convex functions from above. Finally, we give a characterization result for these operators in 
terms of their error estimates. Such a characterization theorem is due to Guessab in his recent 
paper [2]. 
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In the third chapter, we have proposed a convenient and practical method to approximate a 

given real-valued function of multiple variables by linear operators, which approximate all 

strongly convex functions from above (or from below). We have used this additional 

knowledge to derive sharp error estimates for continuously differentiable functions with 

Lipschitz con-tinuous gradients. More precisely, we show that the error estimates based on 

such operators are always controlled by the Lipschitz constants of the gradients, the convexity 

parameter of strong convexity and the error associated with using the quadratic function, as 

we will see in theorems 3.2.1 and 3.2.3. Moreover, assuming the function, we want to 

approximate, is also strongly convex, we establish sharp upper as well as lower refined 

bounds for the error esti-mates, see Corollaries 3.2.2 and 3.2.4. As an application, we define 

and study a class of linear operators on an arbitrary polytope, which approximate strongly 

convex functions from above. Finally, we present a numerical example illustrating the 

proposed method. Actually, one of the main reasons that attracted our attention to such class 

of functions is that these latter are used widely in economic theory (see [1]), and are also 

central to optimization theory (see [2]). Indeed, in the framework of function minimization, this 

convexity notion has important and well-known implications. 

 
In chapter four, we have expanded some results of the papers [1, 2, 3, 4] by introducing a new 
class of cubature formulas for numerical integration (or multidimensional quadrature), that 
approximate from above (or from below) the exact value of the integrals of every function 
having a certain type of convexity. First, we would like to mention that all these papers were 
established in the context of the classical notion of convexity. Here, our objective is to extend 
the ideas given there under certain types of generalized convexity. To this end, in this chapter, 
we first present some definitions, notations and then state two characterization results of any 

linear functional C 1,1(-) ! R, which is nonegative on the set of convex functions. Further-more 

we define two new classes of cubature formulas, which we call them strongly positive, 
respectively negative, definite cubature formulas. We then apply our general results to the 
case when the functional is the error functional of our cubature formulas. More precisely, we 

show that, for functions belonging to C 1,1(-), the error estimates based on such cubature 

formulas may always controlled by the Lipschitz constants of the gradients, the different types 
of convexity and the error associated with using the quadratic function. In addition, knowing 
whether the function to be integrate satisfies the classical convexity or strong convexity, we 
establish sharp upper as well as lower refined bounds for the error estimates. One of the 
valuable results in this chapter that is, for strongly positive definite cubature formulas, we 
establish characterization results between them and the partition of unity of the integration 
domain, but also show how we can construct them using decomposition method for domain 
integration. The same thing has been done for strongly negative definite cubature formulas, 
we characterize them in two different ways: the first one by certain partitions of unity and the 
second one by a class of positive linear operators. Further, we show that there is a main 
difference between them and strongly positive definite cubature formulas. Indeed, we will 
show that the latter (strongly negative definite cubature formulas) can exist only if the domain 
of integration is a convex polytope. Finally, we will provide some numerical examples to 
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illustrate the efficiency of our cubature formulas. 

 

In the fifth and last chapter, we have focused on the problem of approximating a definite 
integral of a given function f when, rather than its values at some points, a number of inte-

grals of f over certain hyperplane sections of a d-dimensional hyper-rectangle Cd are only 

available. We develop several families of integration formulas, all of which are a weighted sum 

of integrals over some hyperplane sections of Cd , and which contain in a special case of our 

result multivariate analogues of the midpoint rule, the trapezoidal rule and Simpson’s rule. 
Basic properties of these families are derived, in particular, we show that they satisfy a 
multivariate version of Hermite-Hadamard inequality. This latter does not require the classical 
convexity assumption, but it has weakened by a different kind of generalized convexity. As an 
immediate consequence of this inequality, we derive sharp and explicit error estimates for 
twice continuously differentiable functions. More precisely, we present explicit expressions of 
the best constants, which appear in the error estimates for the new multivariate versions of 
trapezoidal, midpoint, and Hammer’s quadrature formulas. It is shown that, as in the univari-
ate case, the constant of the error in the trapezoidal cubature formula is twice as large as that 
for the midpoint cubature formula, and the constant in the latter is also twice as large as for 
the new multivariate version of Hammer’s quadrature formula. Numerical examples are given 
comparing these cubature formulas among themselves and with uniform and non-uniform 
centroidal Voronoi cubatures of the standard form, which use the values of the integrand at 
certain points. In fact, according to the data available to us in this problem, the motivation for 
this chapter is the following relevant question: how can we get a lower and upper estimate of 

the exact value of the integral of f over Cd ? 
 

This problem arises in many applications, which mentioned above. The cubature formulas we 

have presented in this chapter have applications to the theory and practice of the numerical 

solution of PDEs using the so-called non conforming Crouzeix–Raviart element. In a forthcom-

ing paper, see [1], we have used cubature formulas of this type for the approximate solution of 

a planar elasticity problem. 
 

 

 

 

 

 

Contributions 
 

The author has written two papers on the subject of the thesis. On the approximation of 

strongly convex functions by an upper or lower operator is published in Appl. Math. Comput. 

247 (2014), 1129-1138. The article "New Cubature formulas and Hermite-Hadamard type 

inequalities using integrals over Some hyperplanes in the d -dimensional hyper-rectangle" 

accepted for publication in Appl Math Comput (2017) and has been the subject of chapter 
 

5. Finally, The generalization given in Chapter 4 of the results on cubature formulas that 

approximate from above (or from below) the exact value of the integrals of every function 

having a certain type of convexity is new. A paper on this subject is in preparation. 
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Motivation et objectifs de la thèse 
 

Le but principal de cette thèse est de trouver une bonne approximation des fonctions de 

plusieurs variables par des opérateurs linéaires dont l’erreur d’approximation A( f ) ¡ f garde un 

signe constant pour toute fonction f satisfaisant une certaine convexité généralisée. Nous nous 

concentrerons sur la classe des fonctions convexes et fortement convexes. L’approximation 

d’une fonction arbitraire f est, en général, très difficile à construire, mais nous savons parfois à 

l’avance que la fonction à approcher f satisfait certaines propriétés connues de structure et de 

régularité. Par exemple, on peut savoir que cette fonction vérifie un certain type de convexité, 

donc nous voudrions utiliser cette information afin d’obtenir une bonne approximation de f . 

Nous décrirons comment la connaissance a priori de cette information peut être utilisée pour 

déterminer une bonne majoration de l’erreur pour des fonctions continuellement dif-férentiables 

avec des gradients Lipschitz continus. Plus précisément, nous montrons que les estimations 

d’erreur basées sur ces opérateurs sont toujours contrôlées par les constantes de Lipschitz 

des gradients, le paramètre de la convexité forte ainsi que l’erreur commise associée 
 

à l’utilisation de la fonction quadratique. En supposant en plus que la fonction que nous 

voulons approcher est également fortement convexe, nous établissons de meilleures bornes 

inférieures et supérieures pour les estimations d’erreur de l’approximation. 
 

 

Les méthodes de quadrature multidimensionnelle jouent un rôle important, voire fondamen-tal, 

en analyse numérique. Une analyse satisfaisante des erreurs provenant de l’utilisation des 

formules de quadrature multidimensionnelle est bien moins étudiée que dans le cas d’une 

variable. Nous proposons une méthode d’approximation de l’intégrale d’une fonction réelle 

donnée à plusieurs variables par des formules de quadrature, qui conduisent à des valeurs 

approchées par excès (respectivement par défaut) des intégrales des fonctions ayant un cer-

tain type de convexité. Nous verrons aussi, comme nous l’avons fait pour l’approximation des 

fonctions, que pour de telles formules d’intégration, on peut établir un résultat de car- 
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actérisation en termes d’estimations d’erreur. En outre, nous avons étudié le problème de 

l’approximation d’une intégrale définie d’une fonction donnée quand un certain nombre 

d’intégrales de cette fonction sur certaines sections hyperplanes d’un l’hyper-rectangle sont 

seulement disponibles. 
 

 

La motivation derrière ce type de problème est multiple. Il se pose dans de nombreuses appli-

cations, en particulier en physique expérimentale et en ingénierie, où les valeurs standards 

des échantillons discrets des fonctions ne sont pas disponibles, mais où seulement leurs 

valeurs moyennes sont accessibles. Par exemple, ce type de données apparaît naturellement 

dans la tomographie par ordinateur avec ses nombreuses applications en médecine, 

radiologie, géologie, entre autres. 
 

 

 

 

 

Plan de la thèse 
 

Cette thèse se compose de cinq chapitres : 
 

 

Nous poursuivrons, d’abord, l’introduction des travaux antérieurs concernant ce sujet, et 

présentons aussi un résumé des résultats que nous avons obtenus. 
 

 

Le premier chapitre introduit la convexité habituelle et ses généralisations. Il comprend presque 

tout ce qui est essentiel concernant les résultats de caractérisation des fonctions convexes 

(éventuellement régulières). Il fournit aussi un ensemble de preuves étonnamment courtes utilisant 

des caractérisations bien connues de convexité pour des fonctions à une seule variable. Certains 

résultats de ce domaine sont peu connus : nous avons donc essayé d’en offrir une vision 

synthétique et unifiée. Une des propriétés la plus importante d’une fonction convexe est que la 

fonction contrôle toujours son approximation de Taylor du premier ordre (linéaire). 

Malheureusement, en général, il est encore difficile de borner l’erreur introduite par une telle 

approximation si aucune information supplémentaire n’est disponible. Par conséquent, nous 

devons étendre la notion de convexité classique. Nous avons réalisé que la condition naturelle que 

nous pouvons imposer à la fonction est d’appartenir à la classe des fonctions fortement convexes. 

De plus, nous établirons une relation étroite entre la convexité classique et la convexité forte qui 

nous a aidé à établir quelques caractérisations importantes pour ce type de fonctions. Il est 

également montré que, sous des restrictions du type convexité forte, nous pouvons obtenir de 

meilleures bornes inférieures et supérieures pour l’erreur dans l’approximation linéaire que celles 

qui sont obtenues pour la convexité classique. C’est l’un des principaux objectifs de ce chapitre. 

Pour cette fin, nous considérons le cas où, en outre, les gradients sont Lipschitz continus. Dans ce 

contexte, nous présentons quelques théorèmes de caractérisation et donnons également des 

bornes d’erreur, qui sont contrôlées et améliorées 
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par rapport à celles obtenues pour la convexité ordinaire. Enfin, nous essayons de fournir 

plus de détails dans les preuves là où il nous semblait nécessaire de le faire (en se basant 

sur les travaux [1, 7, 8, 10]). 
 

Dans le deuxième chapitre, en raison du besoin urgent de quelques concepts et théorèmes de 
caractérisation pour cette étude, nous commençons par donner deux définitions équiv-alentes 
d’un prototype et ensuite nous énonçons quelques théorèmes fondamentaux bien connus et 
les propriétés d’un tel objet géométrique. Par la suite, nous définissons la notion de 
coordonnées barycentriques généralisées par rapport à un ensemble arbitraire de points dans 

Rd , ou équivalent, par rapport à un polytope (convexe). Nous montrons alors que ces coor-

données existent toujours pour tout ensemble fini de points donnés. Ce résultat d’existence 
est dû à Kalman dans les années soixante [26, Théorème 2]. De plus, ce chapitre introduit les 
triangulations de Delaunay comme géométriquement duales aux diagrammes de Voronoi. 
Nous résumons les propriétés fondamentales de telles triangulations largement utilisées. 
Sous l’hypothèse de convexité, nous fournissons également une méthode d’approximation 
que nous appelons approximation barycentrique. Cette classe d’opérateurs (linéaires) satisfait 
la condition de croissance pour toute fonction convexe. Enfin, nous donnons un résultat de 
caractérisation pour ces opérateurs en terme de leurs estimations d’erreur. Un tel théorème 
de caractérisation est dû à Guessab dans son récent article [2]. 

 

 

Dans le troisième chapitre, nous avons proposé une méthode convenable et pratique pour 

approcher une fonction réelle à plusieurs variables par des opérateurs linéaires vérifiant la 

condition de décroissance pour toute fonction fortement convexe. Nous avons utilisé ce résultat 

pour établir une meilleure estimation de l’erreur pour des fonctions continuellement différentiables 

avec des gradients de Lipschitz continus. Plus précisément, nous montrons que les estimations 

d’erreur basées sur ces opérateurs sont toujours contrôlées par les constantes de Lipschitz des 

gradients, le paramètre de convexité de la convexité forte et l’erreur associée 
 

à l’utilisation de la fonction quadratique, comme on le verra dans les théorèmes 3.2.1 et 3.2.3. 

En supposant en plus que la fonction que nous voulons approcher est fortement convexe, 

nous fournissons des bornes supérieures ainsi que des bornes raffinées inférieures pour les 

estimations d’erreur, voir les Corollaires 3.2.2 et 3.2.4. Comme application, nous définissons 

et étudions une classe d’opérateurs linéaires sur un polytope arbitraire vérifiant la condition de 

décroissance et qui approchent les fonctions fortement convexes. Enfin, nous présentons un 

exemple numérique illustrant la méthode proposée. Ainsi, l’une des principales raisons qui a 

retenu toute notre attention sur une telle classe de fonctions est que ces dernières sont 

largement utilisées dans la théorie économique (voir [1]), et sont également essentielles à la 

théorie de l’optimisation (voir [2]). En effet, dans le cadre de la minimisation des fonctions, 

cette notion de convexité a des implications importantes et bien connues. 
 

 

Dans le chapitre 4, nous avons développé certains résultats des travaux [1, 2, 3, 4] en intro-

duisant une nouvelle classe de quadrature multidimensionnelle, qui conduisent à des valeurs 
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approchées par excès (respectivement par défaut) la valeur exacte des intégrales de toute 
fonction ayant un certain type de convexité. Tout d’abord, nous aimerions mentionner que 
tous ces résultats ont été déjà établis dans le contexte de la notion classique de convexité. Ici, 
notre objectif est d’étendre les idées qui y sont données sous certains types de convexité 
généralisée. Dans ce chapitre, nous présentons d’abord quelques définitions et notations puis, 

deux résultats de caractérisation de toute fonctionnelle linéaire C 1,1(-) ! R, qui est positive sur 

l’ensemble des fonctions convexes. De plus, nous définissons deux nouvelles classes de 
formules de quadrature, que nous appelons les formules de quadrature définies fortement 
positives, respectivement négatives. Nous appliquons ensuite nos résultats généraux au cas 
où la fonctionnelle est l’erreur fonctionnelle de nos formules de quadrature. Plus précisément, 

nous montrons que pour les fonctions appartenant à C 1,1(-), les estimations d’erreur basées 

sur ces formules de quadrature sont toujours contrôlées par les constantes de Lipschitz des 
gradients, les différents types de convexité et l’erreur associée à l’utilisation de la fonction 
quadratique. De plus, en sachant que si la fonction à intégrer satisfait la convexité classique 
ou la convexité forte, nous établissons de bonnes bornes supérieures ainsi que des bornes 
inférieures raffinées pour les estimations d’erreur. L’un des résultats intéressant de ce chapitre 
est que pour des formules de quadrature définies fortement positives, nous établissons des 
résultats de caractérisation en terme de la partition de l’unité du domaine d’intégration. Nous 
montrons également comment les construire en utilisant la méthode de décomposition du 
domaine d’intégration. Le même résultat a été établi pour les formules de quadrature définies 
fortement négatives. Nous les caractérisons de deux manières différentes : la première par 
certaines partitions d’unité et la seconde par une classe d’opérateurs linéaires positifs. De 
plus, nous montrons qu’il existe une différence principale entre celles-ci et les formules de 
quadra-ture définies fortement positives. En effet, nous montrerons que ces dernières 
(formules de quadrature définies fortement négatives) ne peuvent exister que si le domaine 
d’intégration est un polytope convexe. Enfin, nous fournirons quelques exemples numériques 
pour illustrer l’efficacité de nos formules de quadrature. 
 

 

Dans le cinquième et dernier chapitre, nous nous sommes concentrés sur le problème de 
l’approximation d’une intégrale définie d’une fonction donnée f quand, au lieu de ses valeurs 
en des points définis, un certain nombre d’intégrales de f sur des sections hyperplanes d’un 

hyper-rectangle Cd sont seulement disponibles. Nous développons plusieurs familles de 

formules d’intégration, qui sont toutes une somme pondérée d’intégrales sur certaines sec-

tions hyperplanes de Cd . Ces formules de quadrature sont des versions multidimensionnelles 

naturelles des formules du point milieu, des trapèzes et de Simpson. Des propriétés fonda-
mentales de ces formules de quadrature sont établies, plus particulièrement nous montrons 
qu’elles vérifient une version multidimensionnelle de l’inégalité Hermite-Hadamard. Cette 
dernière n’exige pas l’hypothèse de convexité classique, mais il nécessite un autre type de 
convexité généralisée. Comme conséquence immédiate de cette inégalité, nous déterminons 
des estimations d’erreur explicites pour les fonctions continuellement différentiables. Plus 
précisément, nous présentons des expressions explicites de meilleures constantes qui ap- 
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paraissent dans les estimations d’erreur pour les nouvelles formules de quadrature. Nous 

montrons que, comme dans le cas univarié, la constante de l’erreur dans la formule de de 

quadrature multidimensionnelle des trapèzes est deux fois plus grande que celle de la 

formule de quadrature multidimensionnelle du point milieu, et que la constante dans cette 

dernière est aussi deux fois plus grande que pour la nouvelle version multidimensionnelle de 

la formule de quadrature de Hammer. 
 

Des exemples numériques sont donnés en comparant ces formules de quadrature entre elles 

et avec des formules de quadrature de Voronoi centrales et non uniformes de la forme stan-

dard qui utilisent les valeurs de la fonction à intégrer en certains points. Les formules de 

quadrature que nous avons présentées dans ce chapitre trouvent leur intéret pour la 

résolution numérique des équations aux dérivées partielles en utilisant l’élément de Crouzeix-

Raviart dit non conforme. Dans la publication [1], les formules de quadrature de ce type ont 

été utilisées pour la résolution numérique d’un problème d’élasticité linéaire. 
 

 

Enfin, nous présentons et discutons deux perspectives liées à notre travail concernent l’extension de 

ces résultats à d’autre type de convexité généralisée, par exemple, la convexité uniforme. Nous 

envisageons par la suite d’étendre les formules de quadrature multidimensionnelle au cas où 

certaines intégrales sont connues sur chaque facette d’une triangulation simpliciale 

 

 

Contributions de la thèse 
 

L’auteur a rédigé trois articles dans le cadre du sujet de la thèse : 
 

 

1- L’article " On the approximation of strongly convex functions by an upper or lower operator" 

est publiée dans Appl. Math. Comput. 247 (2014), 1129-1138." constitue le cœur de la thèse 

et fait l’objet du chapitre 3. 
 

 

2- L’article "New Cubature formulas and Hermite-Hadamard type inequalities using integrals 

over some hyperplanes in the d-dimensional hyper-rectangle" accepté pour publication dans 

Appl. Math. Comput. (2017) et a fait l’objet du chapitre 5. 
 

 

3- Enfin, la généralisation donnée au chapitre 4 des résultats sur les formules de quadrature 

multidimensionnelle, qui conduisent à des valeurs approchées par excès (respectivement par 

défaut) de la valeur exacte de l’intégrale de toute fonction ayant un certain type de convexité 

fait l’objet d’une publication en cours de révision. 
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1 Convex Functions and their General-
izations 

 

 

The purpose of this chapter is to introduce the reader to usual convexity and its generalizations. 

Section 1.1, which is mainly for reference, collects in particular the most relevant and essential 

characterization results for (possibly smooth) convex functions. The presentation is essentially 

based on [1, 7, 8, 10], trying to provide more details in the proofs where it felt needed. However, 

our approach provides a unifying framework with often surprisingly short proofs using well-known 

characterizations of convexity for functions of one variable. One of the most important properties of 

the usual convexity is that the function always dominates its first order (linear) Taylor 

approximation. Unfortunately, in general, it is still difficult to get better bounds on the error 

introduced by such an approximation if we have no additional information. 
 

For this reason, we need to relax the notion of classical convexity. It turns out, as will be 

clarified by the analysis below, that the natural condition that we can impose on the function is 

to belong the class of strongly convex functions. After providing an intimate relationship 

between convexity and strong convexity, we establish some characterizations of these kind of 

functions. It is also showing that in this setting, we can obtain better lower and upper bounds 

in linear approximation than that from usual convexity. This is the aim of section 1.2. 
 

 

In order to obtain better bounds for the linear approximation, under (possibly strong convex-

ity) convexity assumption, Section 1.3 considers the case when, in addition, the gradients are 

Lipschitz continuous. In this case, we provide some characterization theorems and also give 

more controlled and improved error bounds than those obtained for ordinary convexity. 
 

 

1.1 Usual convexity 
 

1.1.1 Notation and Terminology 
 

More special notions are introduced gradually throughout this document. We use the standard 

notation R for the set of real numbers, and we let 
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RÅ Æ {x 2 Rjx ¸ 0}, 
 

R¡ Æ {x 2 Rjx · 0}, 
 

RÅÅ Æ {x 2 Rjx È 0}. 
 

In other words, RÅ consists of all nonnegative real numbers, and RÅÅ denotes the set of all 

positive real numbers. Throughout, Rd denotes the d-dimensional Euclidean space. We may 

refer to its elements interchangeably as vectors or points. For a point x Æ (x1, x2, . . . , xd ) 2 
 

q 

Rd ,kxk Æ x1
2 Å x2

2 Å. . . Å xd
2 

 

is the Euclidean norm (also called the length) of x, and for x, y 2 Rd ,
-
x, y

®
Æ x1 y1 Åx2 y2 

Å. . . Å xd yd is the usual scalar product on Rd . Vectors in Rd will interchangeably be 
identified with column matrices. Thus, to us 
 

0 1 
x1 

Bx2 C 
B C 

(x1, x2, . . . , xd ) and B ... C 
B C 
@ A 
x

d 
 

denote the same object. For x, y 2 Rd , the notation [x, y] is often used to denote the line 
segment between x and y, that is, 
 

n o 

[x, y] Æ z 2 Rd j z Æ (1 ¡¸)x Å¸y, 0 · ¸ · 1 . 
 

 

1.1.2 Convex functions of one variable 
 

We start by recalling some well known general criteria for convexity of real-valued convex 

functions of one variable, which we shall use later. A real-valued function f defined on an 

interval I ½ R is convex if the inequality 
 

f (¸x Å(1 ¡¸)y) · ¸f (x) Å(1 ¡¸) f (y) 
 

 

 

holds for every x, y 2 I and every 0 · ¸ · 1. The following properties characterize the convexity 

of a function of one variable by means of its first and second derivatives, see [9, Theorem 1.6, 

Corollary 1.1, Theorem 1.8]. This theorem may serve as a basis for the corresponding 

characterizations in the multidimensional case. 
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Figure 1.1 – illustration of the inequality f (¸x Å(1 ¡¸)y) · ¸f (x) Å(1 ¡¸) f (y). 
 

 

Theorem 1.1.1 (Convexity criteria) Let f : I ! R be a continuous function defined on an open 

interval I ½ R. 

 

1. If f is differentiable, then f is convex if and only if it lies above or on all of its tangents. In 

other words f (y) ¸ f (x) Å f 0(x)(y ¡ x) for all x and y in I . 
 

2. If f is differentiable, then f is convex if and only if f 0 is increasing. 
 

3. If f is two times differentiable, then f is convex if and only if f 00 ¸ 0 (i.e., f 00(x) ¸ 0 for all 

x 2 I ). 

 

We now present a result for extrema of a function commonly known as one of Fermat’s 

theorems. This classical result may be found in [3, Theorem 1.3.7]. 
 

 

Theorem 1.1.2 (Fermat’s theorem on extrema) Let f : I ! R be a differentiable function de-

fined on an open interval I ½ R. If » 2 I is a local extremum, then f 0(») Æ 0. 

 

1.1.3 Convex sets 
 

We start with the definition of a convex set and its characterization. We also give some 

operations, which preserve convexity of sets. 
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Definition 1.1.3 (Convex set) A subset C of Rd is called convex if the line segment between 
any two points in C lies in C , i.e., 
 

(1 ¡¸)x Å¸y 2 C , 
 

holds for all x, y 2 C and ¸ 2 [0, 1]. 
 

 

The above definition can be generalized from two points to any number of points k. A convex 

combination of points x1, x2, . . . , xk 2 C is any point of form ¸1x1 Å ¸2x2 Å . . . Å ¸k xk , 

where ¸i ¸ 0,i Æ 1, . . . ,k and ¸1 Å¸2 Å. . . Å¸k Æ 1. 

 

We have the following simple characterization of convex sets, see, e. g., [10, Theorem 2.2], 

which can be shown by induction. 

 

Theorem 1.1.4 (Characterization of convex sets) A set C in Rd is convex if and only if it is 
closed with respect to taking all convex combinations of its elements, i.e., if and only if any 
convex combination of vectors from C again is a vector from C . 
 

 

The following result outlines properties of convex sets, see, e. g., [2, 10]. 
 

 

Theorem 1.1.5 (Convexity-preserving operations of convex sets) The convexity property 

of a set is also preserved by many operations: namely, the operations of taking: 

 

1. Intersection. 
 

2. Scalar multiplication. 
 

3. Closure. 
 

4. Interior. 
 

5. Coordinate Projection. 
 

6. Translate of a set. 
 

7. Sum of set. 
 

 

Next we consider the notion of extreme points. 

 

Definition 1.1.6 Let C ½ Rd be a convex set. A point x 2 C is called an extreme point of C if 
 

x Æ t y Å(1 ¡ t)z for y, z 2 C and t 2 (0, 1) implies x Æ y Æ z. 
 

 

Compact convex sets can be described via their extreme points as stated in the next result, 

see, e. g., [1, Theorem 6.35]. 
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Theorem 1.1.7 (Krein-Milman theorem) Let C ½ Rd be a compact convex set. Then the set 
of extreme points of C is not empty. Furthermore, every x 2 C may be expressed as a convex 
combination of finitely many extreme points of C . 

 

 

1.1.4 Multivariate convex functions 
 

The following is the traditional definition of a convex function, which is sometimes referred to 

as zero-order condition. 

 

Definition 1.1.8 (The zero order condition) A real-valued function f : C ! R defined on a 

convex subset C of Rd is said to be convex on C if 
¡ ¢ 

(1.1) f ¸x Å(1 ¡¸) y · ¸f (x) Å(1 ¡¸) f (y) 
 

for all x, y 2 C and 0 · ¸ · 1. 
 

If - f is a convex function on C , then f is said to be a concave function. 
 

 

• Function is below a linear interpolation from x to y. 
 

• Implies that all local minima are global minima. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Any minimum of convex function is a global minimum. 

 

If f (¸x Å(1 ¡¸)y) Ç ¸f (x) Å(1 ¡¸) f (y) for all x, y 2 C , x 6Æy and 0 Ç ¸ Ç 1, then we say that f is 

strictly convex. The strict convexity implies at most one global minimum. 
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Figure 1.3 – non-global local minimal. 
 

 

Remark 1.1.9 In connection with the last definition, we can note the following equivalent 

geometric meaning of the definition, if x and y are two distinct points belonging to the domain 
 

C of function f , and consider the point ¸x Å(1 ¡¸) y with ¸ 2 [0, 1]. The function f is convex on 

the domain C iff for every x and y belong to the domain C of f , the line segment (chord) 
connecting the point x, f x) to y, f (y) is always above or on the curve f . Or equivalently,

the value of f at points
¡
 on (the¢ line

¡ 
segment

¢
 ¸x Å(1 ¡¸) y, is less than or equal to the height of

the chord which connecting the points x, f (x) and y, f (y) . Analogously, f is concave iff the

line segment (chord) lies below or on the
¡ 

curve
¢ 

f . This
¡ 

geometric
¢ 

meaning illustrated in the
figures below 1.4,1.6,1.8 and 1.10. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – convex function. 
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Figure 1.5 – convex function. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 – concave function. 
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Figure 1.7 – concave function. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 – neither convex nor concave. 
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Figure 1.9 – neither convex nor concave. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 – convex and concave. 
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The function in Fig.1.4 is convex, Fig.1.6 is concave and Fig.1.8 is neither. The function in 

Fig.1.10 is convex on the part where it is solid and concave on the part where it is dotted. 
 

 

The following result outlines some properties of convex functions, and it also gives some ways 

to construct new convex functions from given convex functions, for more details see [8, 

Section 3.2]. 

 

Theorem 1.1.10 (Convexity-preserving operations of convex functions) The convexity 

prop-erty of a function is also preserved by many operations: namely, the operations of taking: 

 

1. Nonnegative weighted sum. 
 

2. composition with affine function. 
 

3. Pointwise maximum and supremum. 
 

4. Composition. 
 

5. minimization. 
 

6. Perspective. 
 

 

By induction on the number of points, convexity can also be characterized using general 

convex combinations of more than two points. This is the so-called Jensen’s inequality. An 

elementary proof may be found in [1, Theorem 7.5]. 

 

Theorem 1.1.11 (Jensen’s inequality) Let C ½ Rd be a convex set, and let f : C ! R be 

convex on C . If ¸1,¸2, . . . ,¸k 2 [0, 1],
Pk

iÆ1 ¸i Æ 1, and x1, x2, . . . , xk 2 C , then 
k k 

X X 

f ( ¸i xi ) ·  ¸i f (xi ). 

i Æ1 i Æ1 

 

Continuity is an important property of a convex function. The following theorem shows that a 

convex function is automatically continuous on an open convex set or the interior of its 

domain, see [5, Theorem 1.3.12]. 

 

Theorem 1.1.12 (Continuity property of convex functions) Let C ½ Rd be an open convex set. 
 

Let f : C ! R be convex. Then f is continuous on C . 

 

For a continuously differentiable function f defined on an open convex set C ½ Rd , we denote 
its gradient at x 2 C , by 

rf (x) Æ 
µ 

@  @  @ 

(x)
¶

. 

f 

(x), 

f 

(x), . . . , 

f 

@x1 @x2 @xd
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Convex functions have a nice property that a local minimum of the function in the convex set 

is namely automatically a global minimum. This is the reason why convex functions are 

important in optimization problems as well as in other areas of mathematics. 
 

 

 

 

Theorem 1.1.13 (Global minimum) Let f : C ! R be a differentiable convex function defined on an 

open convex set C ½ Rd . Let x¤ 2 C . Then the following three statements are equivalent. 

 

 

(i) x
¤
 is a local minimum for f . 

 
 

 

(ii) x
¤
 is a global minimum for f . 

 
 
 

(iii) rf (x¤) Æ 0, (i.e., all partial derivatives @
@

x
f
i  at x¤ are zero). 

 

 

 

 

 

 

Proof The direction (ii) implies (i) is trivial. We now prove that (i) implies (iii). Assume that x¤ 
is a local minimum. Let i 2 {1, 2, . . . ,d} and consider the one (real) variable function g (t) Æ f 

(x ¤ Å tei ), where ei denotes the i th unit vector of Rd : its i th component is one, and all 

others zero. Note that since C is an open set, x
¤ Å tei 2 C for sufficiently small t È 0. 

Furthermore g is differentiable at t Æ 0 and that 
 

g 0(0) 

@f 

(x¤). (1.2) 
Æ

 @xi 
 

Since x¤ is a local minimum point of f , we deduce that t Æ 0 is a local minimum of g , then according to 

Fermat’s theorem, see Theorem 1.1.2, 0 should be a critical point so g 0(0) Æ 0. Hence by (1.2) we 

conclude that @
@

x
f
i (x¤) Æ 0. Since this holds for any i 2 {1, 2, . . . ,d} assertion 

 

(iii) follows. Note that we have proven that the implications holds for any differentiable  
function, which need not be convex.  
It remains to show that (iii) implies (ii). Let x

¤ 2 C be a stationary point, i.e.,rf (x¤) Æ 0. 

Assume, on the contrary, that x¤ it is not a global minimum, then there exists x 2 C such that f 

(x) Ç f (x¤). Let us consider the one variable function g : [0,1] ! R, defined by g (t) Æ 

f (t x Å(1 ¡ t)x¤). Note that g is convex and differentiable on [0, 1], and moreover there holds 
 

g 0(0) Æ 
-
rf (x¤), x ¡ x¤® 

 

Æ 0. 
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Therefore, using convexity of g , we obtain 
 

0 Æ g 0(0) 
 

Æ lim 
t !0Å 

 
Æ lim 

t !0Å 
 

· lim 
t !0Å 

 

 

 

g (t) ¡ g (0) 
 
 

t 
 

g (t £1 Å(1 ¡ t) £0) ¡ g (0) 
 
 

t 
 

t g (1) Å(1 ¡ t)g (0) ¡ g (0) 
 
 

t 
 

Æ g (1) ¡ g (0) 
 

Æ f (x) ¡ f (x¤) Ç 0. 
 

Thus, we have arrived at a contradiction. Hence, x¤ must be a global minimum. 
 

 

 

The role of convexity in linking the global maximum and extreme points in optimization theory 

is illustrated by the so-called maximum principle. 
 

 

Theorem 1.1.14 (The maximum principle) Let C ½ Rd be a compact convex set and let f : 
 

C ! R be a continuous convex function. Then f attains its maximum at an extreme point of C . 
 

 

Proof Since C is compact and f is continuous then by Weierstrass’s Theorem, there exists 

x 2 C with f (x) Æ maxx2C f (x). By Theorem 1.1.7, the set C is the convex hull of its extreme 
 

points, so we can write 
 

N 
X 

x Æ ti vi 
 

i Æ1 
for each i ,i Æ 1,2,..¸., N , 1

, . . . , t
N ¸ 

0 with 
P i Æ1 

t 
i 
Æ 

1, and extreme points v
1 

, . . . , v 
N 

of C . Sincefor some integer N 1, t     N    

f (vi ) · f ( 

 

),

                 

(1.3)x                  

we get by convexity of f                  

        N     N        

        X     X        

     

f (
 

) Æ f ( ti vi ) ·   ti f (vi ) · f ( 
 

). 
    

     x x     

        i Æ1     i Æ1     

 

Thus, we arrive at the equality 
 

N 
X 

¡ ¢ 

ti  f (x) ¡ f (vi ) Æ 0. 
 

i Æ1 
 

But from (1.3), we know that the above is a sum of nonnegative terms summing to zero. It 

implies that each term in the above sum is zero, and hence f (x) Æ f (vi ) for some i . 
Therefore, the maximum of f is attained at an extreme point of C .  
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1.1.5 Characterizations of convexity 
 

There are multiple ways to characterize a convex function, each of which may by convenient 

or insightful in different contexts. Below we present only the most commonly used ones. 
 

Given a function f : C ½ Rd ! R defined on a convex set C . The definition of the convex 
function is intimately related to the concept of a convex set. The graph of a function f is 
defined as, 

©
(x, f (x))jx 2 C 

ª
½ RdÅ1. 

 

The epigraph of f is defined as the set of points (x, t) 2 C £R lying on or above the graph of 
the function: 

 

epi ( f ) Æ 
©

(x, t) 2 C £R : f (x) · t
ª
½ RdÅ1. 

 

The following theorem indicates the relation between convex function and convexity of its 
epigraph. We refer to [4, Proposition 2.6] for an elementary proof. 

 

 

Theorem 1.1.15 (Characterization in terms of graphs) The function f is convex iff the set 

epi ( f ) is convex. 

 

This property is useful because it allows us to check convexity of a multivariate function by 

checking convexity of functions of one variable, for which there exist many simpler criteria. 

 

Theorem 1.1.16 (One-variable characterization) Let f : C ! R be a real-valued function 

defined on an open convex set C ½ Rd . For each x 2 Cand z 2 Rd , we define the interval 
 

I Æ {t 2 R : x Å t z 2 C } and the function g : I ! R given by g (t) Æ f (x Å t z). Then f is convex 

if and only if each such function g (for all x 2 C , z 2 Rd ) is convex. 

 

As a special case of Theorem 1.1.16, we obtain the following result. 
 

 

Corollary 1.1.17 Let f : C ! R be a real-valued function defined on an open convex set C ½ Rd . 
 

Then the function f is convex on C if and only if the function g : [0, 1] ! R given by g (t) Æ f (t x 

Å(1 ¡ t)y) is convex (as a univariate function) for all x 2 C and all y 2 C . 

 

When f is smooth enough (in some sense convex with some continuity property of the deriva-

tives ), as for univariate functions, we can give other characterizations of convexity. If a 

function is differentiable then, as for univariate functions, we can give characterizations of 

convex functions using derivatives, which essentially states that the tangent hyperplanes of 

convex functions are always underestimates the function. 
 

 

The following theorem gives the first order characterization of convex functions. 
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Theorem 1.1.18 (The first-order condition for convexity: Gradient inequality) Let C ½ Rd 
 

be a nonempty open convex set and let f : C ! R be a continuously differentiable function. 

Then f is convex if and only if for any x, y 2 C we have 
 

f (y) ¸ f (x) Å hrf (x), y ¡ xi. (1.4)
 

 

Proof We first assume that f is convex. Let us fix x 2 C and consider the function 

 

g (y) Æ f (y) ¡ hrf (x), yi, y 2 C . 

 

Since h(.) Æ ¡hrf (x),.i is an affine function, therefore h(.) is a convex function, and the sum of 

two convex functions is a convex function, then g is a convex function on C . Furthermore, we 

observe that 
 

rg (y) Æ rf (y) ¡ rf (x), 
 

then x is a critical point of g . Applying Theorem 1.1.13, we have for all y 2 C 

 

g (x) · g (y), 

 

which is equivalent to the desired inequality (1.4). 
 

To prove the converse, assume that the gradient inequality (1.4) holds. By the one-variable 

characterization of convexity, see Theorem 1.1.16, all we should prove is the convexity of 

every one-dimensional function 
 

g (t) Æ f (x Å t z) 
 

for all fixed x 2 C , z 2 Rd , such that x Å t z 2 C . Let us define I Æ {t 2 R : x Å t z 2 C }. Since 

C is an open convex set and x 2 C , then clearly I is a non-empty open interval containing 

zero. Moreover, by (1.4), we have for all t, t0 2 I , 
 

 

f (x Å t z) ¸ f (x Å t0z) Å
-
rf (x Å t0z), (x Å t z) ¡(x Å t0z)

®
  

Æ f (x Å t0z) Å
-
rf (x Å t0z), (t ¡ t0)z

®
  

Æ f (x Å t0z) Å(t ¡ t0)
-
rf (x Å t0z), z

®
, 

 

which is equivalent to 
 

g (t) ¸ g (t0) Å g 0(t0)(t ¡ t0). 
 

Hence by Theorem 1.1.1, this implies that g is convex. 
 

 

 

Theorem 1.1.18 means that the linear Taylor approximation is a lower estimate, i.e, the 

tangent of convex function always lies under the function at any point, such a tangent is called 

a supporting hyperplane of the convex function. Another type of a first order characterization 

of convexity is the monotonicity property of the gradient. In the one-dimensional case, this 
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Figure 1.11 – If f is convex and differentiable, then f (x) Å hrf (x),(y ¡ x)i · f (y) for all x, y 
belonging to domain of f (the first order characteristic of a convex function ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 – If f is convex and differentiable, then f (x) Å hrf (x),(y ¡ x)i · f (y) for all x, y 
belonging to domain of f (the first order characteristic of a convex function ). 

 

 

means that the derivative is nondecreasing, but another definition of monotonicity is required 

in the multivariate setting. 

 

Definition 1.1.19 A mapping F : D ½ Rd ! Rd is monotone on D if 
 

hF (x) ¡F (y), x ¡ yi ¸ 0, 8x, y 2 D. (1.5)
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If we let F Æ rf in the above definition, then it follows the following theorem which states that, 

for convex function f , it is gradient rf is a monotone mapping. 

 

 

Theorem 1.1.20 (Characterization via the monotonicity of the gradient) Let C ½ Rd be a 

non empty open convex set and let f : C ! R be a continuously differentiable function. Then f is 

convex on C if and only if its gradient rf is monotone on C , i.e., 
 

hrf (x) ¡ rf (y), x ¡ yi ¸ 0, 8x, y 2 C . (1.6)
 

 

Proof First we assume that f is a continuously differentiable convex function on C . Let x and 

y 2 C , and consider f restricted to the line passing through them, i.e., the function defined by 
 

g (t) Æ f (x Å t(x ¡ y)), (1.7)
 

which, since C is an open convex set and x, y 2 C , is defined on an open interval I containing [0,1]. 

Then, by the one-variable characterization Theorem 1.1.16, g is convex on I . Moreover, since g is 

a continuous differentiable then by Theorem 1.1.1, g 0 is increasing. Thus we deduce 
 

g 0(1) ¡ g 0(0) ¸ 0. (1.8)
 

But since 
 

g 0(t) Æ hrf 
¡
t x Å(1 ¡ t)y

¢
, x ¡ yi, (1.9)

the desired result (1.6) now follows from (1.8). 
 

Conversely, assume that the gradient rf is monotone on C and let g be the function defined as 

in (1.7). Then, for any t, t0 2 I , 0 · t Ç t0 · 1, we get 
 

g 0(t0) ¡ g 0(t) Æ hrf (t0x Å(1 ¡ t0)y) ¡ rf (t x Å(1 ¡ t)y), x ¡ yi 
 

Let u Æ t0x Å (1 ¡ t0)y and v Æ t x Å (1 ¡ t)y, since u and v are combinations of points in the 

convex set C then u, v 2 C . We have u ¡ v Æ (t0 ¡ t)(x ¡ y), then from (1.9) it follows that 

g 0(t0) ¡ g 0 

1  

(t) Æ (t0 ¡ t) hrf (u) ¡ rf (v),u ¡ vi. (1.10)
 

In view of the monotonicity property (1.6), it follows from (1.10) that g 0 is non-decreasing. 
Thus, by Theorem 1.1.1, we deduce that the function g is convex on [0,1], so from Corollary 
1.1.17 the convexity of g on [0, 1] implies the convexity of f on C .  
 

 
Now, we consider the second order characteristic of a twice continuously differentiable convex 

function. Recall that the second derivative of a real-valued function f : D ½ Rd ! R is called a 
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Hessian matrix, denoted r2 f (x), with the matrix elements given by: 
 

@2 f  

r2
 
f
 
(x)

i j 
Æ

 @xi @x j (x),i Æ 1, . . . ,d, j Æ 1, . . . ,d, 
  

provided that f is twice differentiable at x and the partial derivatives are evaluated at x. 
 

 

We will now characterize convex functions in terms of their Hessian matrices. 

 

Theorem 1.1.21 (The second-order condition for convexity) Let C µ Rd be a nonempty 

open convex set, and let f : C ! R be twice continuously differentiable in C . Then, f is convex 

on C if and only if r2 f (x) is positive semi-definite for all x 2 C . 

 

Proof Assume that f is a twice continuously differentiable convex function and let x 2 C , z 2 

Rd . Consider again the function of one variable 
 

g (t) Æ f (x Å t z), t 2 I , (1.11)
 

where I Æ {t 2 R : x Å t z 2 C }. Then as f is a twice differentiable convex function on C , then 

so is g on I , and, using the fact that 
 

g 00(0) Æ hz,r2 f (x)(z)i, 
 

which is nonnegative by Theorem 1.1.1, we get that the Hessian of f is positive semi-definite 

at each x 2 C . 

For the converse, assume that the Hessian of f is positive semi-definite at each x 2 C . Again, 

using the one-variable characterization of convexity, see Theorem 1.1.16, we need to show 

convexity of the functions g defined by (1.11). Note that, for all t 2 I , we have 
 

g 00(t) Æ hz,r2 f (x Å t z)(z)i, 
 

then the positive semi-definiteness of r2 f (x Å t z) yields 
 

g 00(t) ¸ 0, t 2 I . 
 

Hence Theorem 1.1.1 confirms that f is a convex function. 
 

 

 

1.2 Strong convexity and its characterizations 
 

Till now, we have ignored a very important problem: How large is the error between f and its 

(linear) Taylor approximation. We have seen that the usual convexity implies that the first-

order Taylor approximation of f at x, is an under-estimation for the value of f at every other 

point y. Unfortunately, in general, it is still difficult to get better bounds if we have no 
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additional conditions on f . The first strongest condition that we can impose on f is to belong 

the class of strongly convex functions. In particular, it turns out that in this setting, we will 

obtain much better lower and upper bounds in such an approximation than that from usual 

convexity, see Corollary 1.2.11 below. Strongly convex functions are defined as follows. 

 

Definition 1.2.1 (Strongly convex function) Let C ½ Rd be nonempty convex set. A function 

f : C ½ Rd ! R is ¹-strongly convex with convexity parameter ¹ È 0 if, for all x, y 2 C and all t 2 

[0, 1] the following holds 
 

f 
¡
t x Å(1 ¡ t) y

¢
· t f (x) Å(1 ¡ t) f (y) ¡ 

¹
2 t (1 ¡ t)kx ¡ yk2. 

 

 

This is a generalization of the concept of (ordinary) convex function. Indeed, if we take ¹ Æ 0, 

we recover the definition of usual convexity. 
 

 

Here we state a result concerning the Euclidean norm, which will often be used later. 

 

Lemma 1.2.2 Let u, v be in Rd and t 2 [0, 1]. Then the following identity holds: 
 

ktu Å(1 ¡ t)vk2 Æ t kuk2 Å(1 ¡ t)kvk2 ¡ t(1 ¡ t)ku ¡ vk2 . (1.12)
 

Proof Simple expansions give 
 

ktu Å(1 ¡ t)vk2 Æ t2 kuk2 Å2t(1 ¡ t)hu, viÅ(1 ¡ t)2 kvk2 
 

t(1 ¡ t)ku ¡ vk2 Æ t(1 ¡ t)kuk2 ¡2t(1 ¡ t)hu, viÅ t(1 ¡ t)kvk2 . 
 

The required equality now follows by adding the above two identities and simplifying the 

resulting expression.  

 

The following functions are some important examples of strongly convex functions: 

 

Remark 1.2.3 
 

 

 

1. For all ¹ È 0, f (x) Æ ¹2 kxk2 is a ¹-strongly convex function. This is an immediate conse-
quence of Lemma 1.2.2. 

 

2. If each fi ,i Æ 1,2, . . . , p is strongly convex on C, then max1·i ·p fi is also strongly 

convex on C . 
 

3. Addition of a convex function to a strongly convex function gives a strongly convex  
function with the same modulus of strong convexity. Therefore, adding a convex 

function to ¹2 k.k2 does not affect ¹¡ strong convexity. 
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Given ¹ È 0 and a nonempty convex set C ½ Rd , by S¹ (C ) we denote the set of all strongly 
convex functions with convexity parameter ¹. As a complement result for Remark 1.2.3, the 

following result shows that the set S¹ (C ) is closed under convex combinations. 

 

© ª 

Proposition 1.2.4 Given a finite family fi : i Æ 1, . . . , N of functions from S¹ (C ), and given 

weights {wi }i
N

Æ1 ½]0, 1[ satisfying 
P

i
N

Æ1 wi Æ 1. Then, 
N 

X 

wi fi 2 S¹ (C ). 
 

i Æ1 
 

 

Proof Since all fi ,i Æ 1, . . . , N are ¹-strongly convex, then it holds for any x, y 2 C , and t 2 [0, 1], 
 

f i 
¡
t x Å(1 ¡ t) y

¢
· t fi (x) Å(1 ¡ t) fi (y) ¡ 

¹
2 t (1 ¡ t)kx ¡ yk2. 

 

 

 

Hence, multiplying both sides of the above inequality by wi and summing over i yields the 

required result.  
 

 

1.2.1 Characterizations in terms of usual convexity 
 

The next question is how to characterize the strongly convexity in terms of usual convexity. 

This question has a remarkably nice answer, there is a very simple and elegant relationship 

between the two forms of convexity. This important property will be frequently used in the 

sequel. Indeed, we have the following characterization. 
 

 

Theorem 1.2.5 Let C ½ Rd be nonempty convex set. A function f : C ! R is ¹-strongly convex if 

and only if the function g Æ f ¡ ¹2 k.k2 is convex. 
 

 

 

Proof Assume that f is strongly convex with convexity parameter ¹. Then, by Lemma 1.2.2, we 

get 
 

g (t x Å(1 ¡ t)y) Æ f (t x Å(1 ¡ t)y) ¡ 
¹
kt x Å(1 ¡ t)yk2 2 

 

· t f (x) Å(1 ¡ t) f (y) ¡ 
¹
 t(1 ¡ t)kx ¡ yk2 ¡ 

¹
kt x Å(1 ¡ t)yk2 

 

2 2 
Æ t f (x) Å(1 ¡ t) f (y) ¡ 

¹
 tkxk2 ¡ 

¹
(1 ¡ t)kyk2 

 

2 2 
 

Æ t g (x) Å(1 ¡ t)g (y), 

 

which shows that g is convex. 
 

In order to prove the reverse implication, assume that g is convex, then again by Lemma 1.2.2, 
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we get 
 

f (t x Å(1 ¡ t)y) Æ g (t x Å(1 ¡ t)y) Å 
¹
kt x Å(1 ¡ t)yk2 2 

 
· t g (x) Å(1 ¡ t)g (y) Å ¹ ³t kxk2 Å(1 ¡ t)°y

°2 ¡ t(1 ¡ t)°x ¡ y°2´ 
° °°   ° 

 

     2        

Æ t 
³ ¹ ´

Å(1¡ t)
³ ¹ 

´

¹ 

g (x) Å 
 

kxk2 
g (y) Å 

 

kyk2 
¡

 

t(1 ¡ t)kx ¡ yk2 
2 2 2

Æ t f (x) Å(1 ¡ t) f (y) ¡ 
¹
 t(1 ¡ t)kx ¡ yk2, 2 

 

 

which shows that f is strongly convex with convexity parameter ¹. 
 

 

 

With this result in mind, Proposition 1.2.4 should now be apparent. Also, from the above 

characterization, we can now state the following observation. 

 

Remark 1.2.6 It is clear from the definitions that strong convexity implies usual convexity, but 

the converse is not true in general. For example, the function f defined by 
 

f (x) Æ x4,¡1 · x · 1, 
 

is convex but is not strongly convex. To show this, assume, to the contrary, that f is strongly 

convex on I :Æ [¡1,1]. Then, by Theorem 1.2.5, there exists a convex function g and a scalar 
 

¹ È 0 such that for any x 2 I , function f can be expressed as 
 

f (x) Æ g (x) Å 
¹
 x2. 

2 
 

 

But then, at x Æ 0, we must clearly have 
 

0 Æ f 00(0) Æ g 00(0) Å¹, 
 

and therefore g 00(0) Æ ¡¹ Ç 0. This is a contradiction since we know that by the classical 

second-order characterization of convexity, see Theorem 1.1.21, g 00(0) ¸ 0. Hence, f is not 
strongly convex on I . In fact, a similar argument may be used to show that for any p È 2 the 

function fp (x) Æ xp is convex but not strongly convex on I . 

 

1.2.2 Uniqueness of minimum for strongly convex functions 
 

The following theorem illustrates why strongly convex functions are of fundamental impor-

tance in optimization. It shows that strong convexity is sufficient to guarantee the uniqueness 

of minimizers. The concepts of the strongly convex functions have played very important role 

in the development of convex programming, see [6]. Relaxation of ordinary convexity by 

imposing a restricted strong convexity condition is also commonly used in economic models, 

see, e. g., [11]. 
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Theorem 1.2.7 (Uniqueness of Global minimum) Let f : C ! R be a strongly convex function 

defined on a convex set C ½ Rd . Then f attains its minimum, at most, one point. 

 

Proof Assume to the contrary that the set of minimal points M is not empty and contains two 

distinct points x and y. Then, for any 0 Ç ¸ Ç 1, since M is convex, we have (1 ¡¸)x Å¸y 2 M. 

But f is strongly convex, hence 
 

f (x) Æ f 
¡
(1 ¡¸)x Å¸y

¢
· (1 ¡¸) f (x) Å¸f (y) ¡ 

¹
2 ¸(1 ¡¸)kx ¡ yk2 

  

Æ f (x) ¡ 
¹
2 ¸(1 ¡¸)kx ¡ yk2 Ç f 

(x), 
 

which is a contradiction. 
 

 

 

1.2.3 The first-order condition for strongly convex functions 
 

When the function is differentiable, an alternative characterization of strong convexity is in 

terms of the gradient inequality. Geometrically, the following theorem means that at any x 2 C 

, there exists a convex quadratic function 
 

flow(y) Æ f (x) Å hrf (x), y ¡ xi Å 
¹
kx ¡ yk2, 2 

 

 

that bounds from below the graph of f , that is such that 
 

f (y) ¸ flow(y), 
 

holds for all y 2 C . It is obviously seen that this lower bound is better than its first order 
(linear) approximation, which is implied by usual convexity. Indeed, we always have the 
following inequalities 

 

f (y) ¸ flow(y) ¸ f (x) Å hrf (x), y ¡ xi. 
 

 

Theorem 1.2.8 Let f be a continuously differentiable function defined on an open convex set 

C ½ Rd . Then f is strongly convex with parameter ¹ È 0 if and only if for any x, y 2 C we have 

f (y) ¸ f (x) Å hrf (x), y ¡ xi Å 
¹ 
kx ¡ yk2. 

   

(1.13)
      

2    

Proof Let f be strongly convex on C with parameter ¹, then for any x, y 2 C 
     ¹  

f 
¡
t y Å(1 ¡ t) x

¢
· t f (y) Å(1 ¡ t) f (x) ¡

 

 

t (1 ¡ t)kx ¡ yk2. 2 
Hence     ¹  

      

t f (y) Å(1 ¡ t) f (x) ¸ f 
¡
t y Å(1 ¡ t) x

¢
Å

 

 

t (1 ¡ t)kx ¡ yk2, 2 
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but then 
t f (y) Å f (x) ¡ t f (x) ¸ f 

¡
t y Å(1 ¡ t) x

¢
Å 

¹
 t (1 ¡ t)kx ¡ yk2. 

 

2 
 

 

t 
¡
f (y) ¡ f (x)

¢
¸ f 

¡
t y Å(1 ¡ t) x

¢
¡ f (x) Å 

¹
2 t (1 ¡ t)kx ¡ yk2. 

Dividing the above inequality by t gives 
 

¡ ¢       

 f  t y Å(1 ¡ t) x ¡ f (x) ¹  2 

f (y) ¡ f (x) ¸ 

  

Å

 

 

(1 ¡ t)kx ¡ yk . t 2
 

Therefore, letting t # 0 yields the desired result (1.13). To prove the converse implication, let 

us assume that (1.13) holds. Let us fix x, y 2 C , t 2 [0, 1], and write z Æ t x Å(1 ¡ t)y. Then 

it can be expressed as 
  f (z) Æ f (z) Å

-
rf (z), t(x ¡ z) Å(1 ¡ t)(y ¡ z)

®
,  

             

 f (z) Æ f (z) Å t 
-
rf (z), x ¡ z

®
Å(1 ¡ t)

-
rf (z), y ¡ z

®
,  

or equivalently as              

 f (z) Æ t 
¡
f (z) Å

-
rf (z), x ¡ z

®¢
Å(1 ¡ t)

¡
f (z) Å

-
rf (z), y ¡ z

®¢
,  

hence identity (1.13) implies           

f (z) · t 
³ 

f (x) ¡ 

¹

kx ¡ zk2´
Å(1 ¡ t)

³
f (y) ¡ 

¹ 

ky ¡ zk2´
. (1.14)

     

2 2 

This can be rewritten as           

f (z) · t f (x) Å(1 ¡ t) f (y) ¡ 

¹
tkx ¡ zk2 ¡ 

¹ 
(1 ¡ t)ky ¡ zk2. (1.15)

    

2 2 

 

On the other hand, by Lemma 1.2.2 and making the substitutions 
 

u :Æ x ¡ z 

v :Æ y ¡ z 
 

u ¡ v Æ x ¡ y 
 

tu Å(1 ¡ t)v Æ 0, 
 

we get 

0 Æ t kx ¡ zk2 Å(1 ¡ t)
°
y ¡ z

°2 ¡ t(1 ¡ t)
°
x ¡ y

°2 .  
° °°   ° 

 

This identity, combined with (1.15), implies that f is ¹-strongly convex as required. 
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Another and direct proof consists of observing that by Theorem 1.2.5 the function g Æ f ¡ ¹2 k 

¢k2 is still convex, and thus to obtain (1.13), it is enough to apply the first-order condition for 
convexity to the function g , see Theorem 1.1.18.   

 
 

1.2.4 Characterization via the strong monotonicity of the gradient 
 

Theorem 1.2.9 Let f be a continuously differentiable function defined on an open convex set 

C ½ Rd . Then f is strongly convex with parameter ¹ È 0 if and only if its gradient rf is uniformly 
monotone i.e., 

 

hrf (x) ¡ rf (y), x ¡ yi ¸ ¹kx ¡ yk2, x, y 2 C . (1.16)

 

Proof Let f be ¹¡strongly convex on C , and let x, y 2 C . Define g Æ f ¡ ¹2 k.k2, and note that 

rg (x) Æ rf (x) ¡¹x hence 
 

- ® - ® - ®  
rf (x), x ¡ y  Æ rg (x), x ¡ y Å¹ x, x ¡ y . 

 
Thus, since f is ¹¡strongly convex, then by Theorem 1.2.5 g is a convex function, and so it 

follows 
-
r 

f (x) 
¡r 

f (y), x 
¡ ®Æ 

-
¹r x, x  ¡yr  ¹ y, x ®y

(1.17)    y  g (x)    g (y), x ¡ y 

      Å - ¡ 2
®

¡ - ¡ ® 
      ¸ ¹ ° x ¡ y

° 
 .   (1.18) 

       °   °      

This shows that the desired inequality (1.16) is satisfied.  
Conversely, assume that (1.16) holds. Then, from identity (1.17) we deduce, for all x 2 C , 

 

hrg (x) ¡ rg (y), x ¡ yi ¸ 0, (1.19) 
 

which shows that rg is monotone on C . Therefore by Theorem 1.1.20 it follows that g is 

convex. Now Theorem 1.2.5 implies that f is strongly convex.  
 

 

Let C be a non-empty convex open subset of Rd . By S¹
1 (C ), we denote the set of all 

continuously differentiable strongly convex functions with convexity parameter ¹ È 0. 
 

The following theorem compliments the results of Theorems 1.2.8 and 1.2.9, providing , in 
particular, a way to find an upper bound on the error in the (linear) Taylor approximation of a 
strongly convex function. 

 

Theorem 1.2.10 If f 2 S¹
1 (C ), then for any x and y from C we have  

f (y) · f (x) Å hrf (x), y ¡ xi Å 

1  

2¹krf (x) ¡ rf (y)k2, (1.20)
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1  

hrf (x) ¡ rf (y), x ¡ yi · ¹krf (x) ¡ rf (y)k2. (1.21)
 

 

Proof Let us fix some point x 2 C and consider the function g defined for all y 2 C by 

 

g (y) Æ f (y) ¡ hrf (x), yi. 
 

Since ¡hrf (x), .i is an affine function and is therefore convex, then by Remark 1.2.3 g 2 S¹
1 (C 

). Thus Theorem 1.2.8 guarantees that for any y, v 2 C we have 

g (v) ¸ g (y) Å hrg (y), v ¡ yi Å 

¹
kv ¡ yk2. (1.22)2

 

 

We observe that for any y 2 C 

 

rg (y) Æ rf (y) ¡ rf (x), 
 

rg (x) Æ 0. 
 

Since g is also convex on C , it attains its global minimum at the critical point x, see Theorem 

1.1.13. In light of inequality (1.22) for any y 2 C , there holds 

g (x) Æ min g (v) ¸ min h(v), 
v2Cv2C 

 

where h is the function defined on C by 
 

h(v) Æ g (y) Å hrg (y), v ¡ yi Å 
¹
kv ¡ yk2. 

 

2 
 

Since h is convex, then it attains its global minimum over C at its critical point v Æ y ¡ ¹
1 rg 

(y). Then we conclude that 

g (x) ¸ g (y) Åhrg (y),¡¹rg (y)iÅ 2 ° ¡ ¹rg (y)
°

2 
       1    ¹   1    

°

 

               °      

  

1 

           

°

     

°

 

         ¹     2  

 g (y)     g (y),   g (y)      ° g (y)   ° 

¸ ¡ ¹hr r 
      

k 
  

    

iÅ
 2¹2 

kr
     

¸ g (y) 

1 

krg (y)k2 
1 

krg (y)k2 
     

¡ 
 

Å 
      

¹ 2¹      

¸ g (y) 

1 

krg (y)k2. 

             

¡ 
              

2¹              

 

Thus we have shown that 

g (x) ¸ g (y) ¡ 
1

 krg (y)k2, 2¹ 
 

 

which is exactly the desired inequality (1.20). 
 

By switching the role of x and y in (1.20), we finally get, by adding and rearranging, the 

required inequality 1.21.  
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To understand the usefulness of strong convexity, note that by Theorems 1.2.8 and 1.2.10 it 

provides better error estimates in the linear approximation 

 

R[ f ](x, y) Æ f (y) ¡ f (x) ¡ hrf (x), y ¡ xi. 

 

Indeed, these theorems allow us to control the error R[ f ] as follows. 
 

 

Corollary 1.2.11 Let f be a continuously differentiable function defined on an open convex set 
 

C ½ Rd . Then the following assertions hold true: 

 
1. f is convex on C then for all x, y 2 C there holds R[ f ](x, y) ¸ 0. 

 
2. f is ¹-strongly convex on C then for all x, y 2 C there holds 

 

¹ kx ¡ yk2 · R[ f ](x, y) ·
 

2 
 

 

1 krf (x) ¡ rf (y)k2.
 

2¹ 
 

 

 

1.2.5 The second-order condition for strongly convex functions 
 

Strong convexity can also be characterized by a second-order condition. 
 

 

Theorem 1.2.12 Let C µ Rd be a nonempty open convex set, and let f : C ! R be twice continu-

ously differentiable in C . Then f is strongly convex with parameter ¹ È 0 if and only if for all 
 

x 2 C , y 2 Rd
 

-
y,r2 f (x) y

®
¸ ¹ °y 

°
2 . (1.23)

 ° °  

Proof Let f be strongly convex on C with parameter ¹, then again, Theorem 1.2.5 says that the 

function g Æ f ¡ ¹2 k ¢ k2 is convex, and thus its Hessian matrix is positive semi-definite 
 

-
y,r2g (x) y

®
¸ 0, (x 2 C , y 2 Rd

 ). (1.24)
But we have 

-
y,r2g (x) y®Æ 

-
y,r2 f (x) y®¡¹°y°2 , 

° ° 
 

and finally positive definiteness of r2g yields the desired inequality (1.23). 
To prove the converse, let us fix x 2 C , y 2 C . By Taylor’s Theorem we have 

 

f (y) Æ f (x) Å
-
rf (x), y ¡ x

®
Å 

1
 
-
y,r2 f 

¡
x Å¸(y ¡ x)

¢
y
®

 
2 

 

 

for some ¸ 2 [0,1]. Clearly, if the Hessian satisfies (1.23), then we obtain the first-order con-

dition for strong convexity of f . Thus, Theorem 1.2.8 implies that f is strongly convex on C .  
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1.3 Convex functions with Lipschitz continuous gradients 
 

In order to obtain better bounds for the linear approximation, instead of strong convexity, now 

consider the case when the gradient is Lipschitz continuous. In this setting, we will also get 

better bounds, see Theorem 1.3.4 below. 
 

 

1.3.1 Lipschitz-continuous gradient 
 

Definition 1.3.1 (L-Lipschitz-continuous gradient) Let D be an open subset of Rd . A differ-
entiable function f : D ! R has a Lipschitz-continuous gradient with constant L ¸ 0 if and only if 
 

 

krf (x) ¡ rf (y)k · Lkx ¡ yk,  8x, y 2 D. (1.25)

 

If the gradient of f is Lipschitz-continuous, we can obtain quadratic upper and lower bounds 

on the function. This result, known as “the descent lemma,” is fundamental in convergence 

proofs of gradient-based methods. 
 

 

 

 

 

 

 

Theorem 1.3.2 (quadratic upper and lower bounds) Let f be a differentiable function de-

fined on an open set C ½ Rd . Assume that rf is Lipschitz-continuous with constant L, then 8x, 

y 2 C 

jf (y) ¡ f (x) ¡ hrf (x), y ¡ xij · 
L

 ky ¡ xk2 
 

2 
 

 

 

 

 

 

 

 

 

Proof By the fundamental theorem for line integrals, 
Z 1 

 

f (y) Æ f (x) Å  hrf (x Å t(y ¡ x)), y ¡ xid t. 
0 

 

Therefore 
Z 1 

 

f (y) ¡ f (x) ¡ hrf (x), y ¡ xi Æ  hrf (x Å t(y ¡ x)) ¡ rf (x), y ¡ xid t. 
0 

 

Then it holds that 
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jf (y) ¡ f (x) ¡hrf (x), y ¡ xij Æ ¯ Z 0
1hrf (x Å t(y ¡ x)) ¡rf (x), y ¡ xid t ¯  

 ¯    ¯  

 ¯    ¯  
 ¯    ¯  

· ky ¡ xk
Z

 1 krf (x Å t(y ¡ x)) ¡ rf (x)kd t 
    0  

· ky ¡ xk
Z

 1 Ltky ¡ xkd t  

    0  

Æ 

 L 
ky ¡ xk2. 

 

    

2   

 

 

 

 

 

Note that the proof of the theorem actually shows both upper and lower bounds on the 

function. 
 

 

Theorem 1.3.3 (Characterizaion of quadratic upper bound) Let f be a differentiable func-

tion defined on an open convex set C ½ Rd . Assume that rf is Lipschitz-continuous with 
constant L, then the following properties hold and follow from each other. 

 

 

(1) The function g (x) Æ L2 kxk2 ¡ f (x) is convex on C . 
 

(2) The function f satisfies the upper bound property: 
 

f (y) · f (x) Å hrf (x), y ¡ xi Å 

L 
ky ¡ xk2, (8x, y 2 C ). (1.26)

  

2 

Proof Cauchy-Schwarz inequality and Lipschitz continuity of rf imply  

hrf (x) ¡ rf (y), x ¡ yi · Lky ¡ xk2,    (1.27)

and since f (x) Æ 
L 

kxk2 ¡ g (x), we deduce that 
 

2  

hrf (x) ¡ rf (y), x ¡ yi Æ Lky ¡ xk2 ¡ hrg (x) ¡ rg (y), x ¡ yi. (1.28)

Inserting this into (1.27) yields     

hrg (x) ¡ rg (y), x ¡ yi ¸ 0.    (1.29)
 

Hence, by Theorem 1.1.20, we can conclude that g is indeed convex. 
 

Furthermore, by Theorem 1.3.2, it follows that f satisfies the upper bound property (1.26). 

Next we show that (1) and (2) are equivalent. Since rf (x) Æ Lx ¡ rg (x) and consequently 

- ® - ® - ® 
 

rf (x), x ¡ y  Æ L x, x ¡ y ¡ rg (x), x ¡ y , 
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note also that the following holds true: 
 

1 °y°2
 Æ 

1
 kxk2 ¡

-
x, x ¡ y

®
Å 

1
 
°
x ¡ y

°2
 ,
 

° °°   ° 
 

2 2 2 
 

then substituting in (1.26), and then rearranging we obtain that the upper bound property is 

equivalent to the first order condition for convexity of g , 

 

g (x) Å hrg (x), y ¡ xi · g (y), (8x, y 2 C ). 

 

Hence, the two properties are equivalent. 
 

 

 

1.3.2 Sandwiching smooth convex functions 
 

In the case of convex function, we can use the first-order property to lower bound f 

 

f (x) Å hrf (x), y ¡ xi · f (y). 

 

Moreover, if f has L¡Lipschitz continuous gradient, then we can use the upper bound property, 

to upper bound f 
 

f (y) · f (x) Å hrf (x), y ¡ xi Å 

L
ky ¡ xk2. (1.30)2

 

 

Hence, combining convexity and using L¡Lipschitz continuity of the gradient, we get the 

following error estimates for the linear approximation 
 

0 · f (y) ¡ f (x) ¡ hrf (x), y ¡ xi · 

L
ky ¡ xk2. (1.31)2

 

 

The following result gives a better lower bound of f than in (1.31) using the quantity krf (x) ¡ rf 

(y)k. It also provides error estimates in the linear approximation for convex, differentiable 

functions with Lipschitz continuous gradients. 

 

Theorem 1.3.4 (Co-coercivity of gradient) Let f : Rd ! R be a differentiable convex with L-

Lipschitz continuous gradient (L È 0), then for all x, y 2 Rd 
 

1
krf (x) ¡ rf (y)k2 · f (y) ¡ f (x) ¡ hrf (x), y ¡ xi · 

L 
ky ¡ xk2. (1.32)

   

2L 2 

 

Proof By Theorem 1.3.2, it remains to prove the left inequality. Let x, y, z 2 Rd . Let us 
approxi-mate f (z) from below by f (y) and from above by f (x), respectively. Using (1.31), then 
it holds that 

 

f (z) ¡ f (x) ¡ hrf (x), z ¡ xi ¸ 0,  (1.33)

f (z) ¡ f (y) ¡ hrf (y), z ¡ yi · 

L 
kz ¡ yk2. (1.34)

   

2 
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Multiplying inequality (1.33) by ¡1 and adding it to the inequality (1.34), we get 
 

f (x) ¡ f (y) Å hrf (x), z ¡ xi ¡ hrf (y), z ¡ yi · 
L

 kz ¡ yk2. 2 
 

 

The above inequality can also be written as 
 

hrf (x), z ¡ yi ¡ hrf (y), z ¡ yi ¡ 
L

 kz ¡ yk2 · f (y) ¡ f (x) ¡ hrf (x), y ¡ xi. 
 

2 
 

Let us take z Æ y Å®(rf (x) ¡ rf (y)) for any ® 2 R, then it follows from the above inequality 
 

µ
® ¡ 

®2L
 
¶

krf (y) ¡ rf (x)k2 · f (y) ¡ f (x) ¡ hrf (x), y ¡ xi, (8® 2 R). 
 

2 
 

Now, the desired result follows since the lower bound is a concave quadratic function in ®, 

then its maximum value is attained at stationary point ® Æ 1/L.  

 

1.3.3 Error estimates for linear approximation 
 

Combining Theorem 1.3.4 with Corollary 1.2.11, the following result tells us that if a function 

has both strong convexity and Lipschitz assumption of its gradient, the linear approximation 

may be bounded both from below and above by quadratic functions. 

 

Theorem 1.3.5 Let f : Rd ! R be a differentiable ¹-strongly convex function with L-Lipschitz 

continuous gradient (L È 0), then for all x, y 2 Rd 
 

1
krf (x) ¡ rf (y)k2

· f (y) ¡ f (x) ¡ hrf (x), y ¡ xi · 

1
krf (x) ¡ rf (y)k2 

(1.35) 
  

2L 2¹ 
¹

kx ¡ yk2
· f (y) ¡ f (x) ¡ hrf (x), y ¡ xi · 

L
kx ¡ yk2. (1.36) 

   

2 2
 

 

1.3.4 Characterization of Lipschitz continuity of the gradient 
 

We need a property of the gradient called co-coercivity. 

 

Definition 1.3.6 (Co-coercive mapping) A mapping F : Rd ! Rd is co-coercive with parame-

ter c if for all x, y 2 Rd , 
 

hF (x) ¡F (y), x ¡ yi ¸ C kF (x) ¡F (y)k2. (1.37)

 

The next result offers simple ways to characterize differentiable functions with Lipschitz 

continuous gradients. 

 

Theorem 1.3.7 Let f be a differentiable convex function defined on Rd . Then the following 
properties are equivalent. 
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(1) rf is Lipschitz-continuous with constant L. 
 
 
 

(2) The function f satisfies for all x, y 2 Rd 
 

 

f (x) Å hrf (x), y ¡ xi · f (y) · f (x) Å hrf (x), y ¡ xi Å 

L
ky ¡ xk2. (1.38)

  

 2

(3) The function f satisfies for all x, y 2 Rd 
   

 1 
krf (x) ¡ rf (y)k2 Å f (x) Å hrf (x), y ¡ xi · f (y). 

  

(1.39)
     

  2L   

(4) rf is co-coercive mapping with constant 
1 

. That is 
   

L    

 1 

krf (x) ¡ rf (y)k2,  8x, y 2 Rd . 

 

 

hrf (x) ¡ rf (y), x ¡ yi ¸ 
 

(1.40) L 
 

 

 

Proof By Theorems 1.3.2 and 1.3.4, it remains to show that  

  (3) ) (4), and (4) ) (1).  

Assume that (3) holds, then for all x, y 2 Rd , we have  

1 
krf (x) ¡ rf (y)k2 · f (y) ¡ f (x) ¡ hrf (x), y ¡ xi. (1.41)

  

 2L 

Similarly, but with the roles of x and y interchanged, we have  

1 
krf (x) ¡ rf (y)k2 · f (x) ¡ f (y) ¡ hrf (y), x ¡ yi. (1.42)

  

 2L 

Then, by adding inequalities (1.41) and (1.42), the co-coercivity of rf with constant 1/L
follows. 
 

Finally, assume that rf is co-coercive with constant 1/L. Then the Cauchy-Schwarz inequality, 

applied to the left-hand side of (1.40), implies that rf is Lipschitz continuous with Lipschitz 

constant L.  
 

 

1.3.5 Strong convex functions with Lipschitz continuous derivatives 
 

Definition 1.3.8 Let ¹ be a positive number. A differentiable function f : C ! R with a convex 

domain C belongs to the class S¹,L (C ) if f is ¹-strongly convex and the gradient rf is Lipschitz 

continuous with Lipschitz constant L. The quotient Q Æ ¹
L is called the condition number of 

the class S¹,L (C ). 
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If we know that f belongs to the class S¹,L (C ), then due to Theorem 1.2.9 f satisfies the 

following two inequalities for all x, y 2 C : 

hr 
f (x) ¡

f 
f y , x ¡ yi ¸ ¹kx ¡ yk2, (1.43) 

 

r(x)¡ ¢ f y  · L k x ¡y k . (1.44) 
 °r ¡ r  ¡ ¢°

     

 °       °         

Using Cauchy-Schwarz inequality on the first term of (1.43), we obtain the inequality ¹kx ¡ 
° ¡ ¢

°
 

yk · rf (x) ¡ rf y , then according to (1.44) we conclude that ¹ · L and therefore the
°  °¸

1. Hence, ¹ should be less than or equal to L if the function is both condition number Q  

 

¹-strongly convex and its gradient is L-Lipschitz continuous. 
 

 

 

 

1.3.6 Co-coercivity property for strongly convex functions 
 

The next result is a co-coercivity version for strongly convex functions. Its proof is based on 

Theorem 1.3.7. 
 

 

Theorem 1.3.9 If f 2 S¹,L (Rd ), then     

   ¹L 1   

hrf (x) ¡ rf (y), x ¡ yi ¸ 

 

kx ¡ yk2 
Å

 

krf (x) ¡ rf (y)k2 
(1.45) ¹ ÅL ¹ ÅL 

for all x, y 2 Rd .         

Proof Let f 2 S¹,L (Rd ). Define     

g (x) Æ f (x) ¡ 

¹ 
kxk2, 

   

(1.46) 
    

2    

 

then 
 

hrg (x), y ¡ xi Æ hrf (x), y ¡ xi ¡¹hx , y ¡ xi. 

 

Hence, in view of Theorem 1.3.2 we get 

g (y) Æ f (y) ¡ ¹ °y 
°

2            
  °  °            

 2   

L °
 °

2 
    

°
 °

2 · f (x) Å hrf   y ¡ x ¡ ¹ y (x), y ¡ xi Å 2 2  
      °  °     °  ° 

 

Æ g (x) Å 
¹
 kxk2 Å hrg (x), y ¡ xi Å¹hx, y ¡ xi Å 

L
 
°
y ¡ x

°2 
° ° 

22 
 

¹ ° °2 
¡ °y° 

2 
 

Æ g (x) Å hrg (x), y ¡ xi Å L ¡¹ °y ¡ x ° 2 .
2   

   
°
 

°
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On the other hand we have (again from convexity)          

g (x) Å hrg (x), y ¡ xi · g (y),         (1.47)

then we get the following bounds          

g (x) Å hrg (x), y ¡ xi · g (y) · g (x) Å hrg (x), y ¡ xi Å L ¡¹ ° y ¡ x ° 2 . (1.48)
2   

    °  °    

 

 

This shows that g satisfies condition (2) of Theorem 1.3.7 with L ¡¹ instead of L. Then, rg is 

Lipschitz continuous with constant L ¡¹. If L ¡¹ Æ 0, then it follows from equation (1.48) that 
 

g (y) Æ g (x) Å hrg (x), y ¡ xi. (1.49)
 

Since x, y are arbitrary in (1.49), then there exists a constant vector a 2 Rd such that for all 

y 2 Rd ,rg (x) Æ a. This means that g is an affine function: 
 

- ® 
g (y) Æ a, y Åc, 

 

where c is some real constant. Now from (1.46), we deduce that f is a quadratic polynomial of 

the form 
 

f (y) Æ 

¹

kyk2 Å
-
a, y

®
Åc. (1.50)2

 

A simple inspection shows that inequality (1.45) holds for all quadratic polynomials of the form 
(1.50). 
 

We now prove that (1.45) is also valid if L È ¹. Again we can apply Theorem 1.3.7, condition 

(4), to get that rg is co-coercive with constant L¡
1

¹ , which means 
 

hrg (x) ¡ rg (y), x ¡ yi ¸ 1 krg (x) ¡ rg (y)k2 
, (1.51)  

  

 L ¡¹   

 

this, by the definition of g , is of course just a reformulation of the required result (this is 

ensured by the transformation (1.46)).  
 

 

In particular, for ¹ Æ 0, we obtain the usual co-coercivity property for convex functions. 
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2 Approximations of differentiable con-
vex functions on arbitrary convex 
polytopes 

 

 

 

 

 

We begin this chapter with giving two equivalent definitions of a prototype and then state 
some well-known fundamental theorems and properties of such a geometric object. In Section 
2.2, we define the notion of generalized barycentric coordinates with respect to an arbitrary 

set of points in Rd , or equivalently, with respect to a (convex) polytope. We then show that 

such coordinates always exist for any finite point set. This existence result is due to Kalman in 
the sixties [26, Theorem 2]. Section 2.2 also introduces Delaunay triangulation as duals of 
Voronoi diagrams. It summarizes basic properties of such a widely-used triangulation. Under 
the convexity assumption, Section 2.3 provides an approximation method, which we call it a 
barycentric approximation. This class of (linear) operators approximate all convex functions 
from above. We then give a characterization result for these operators in terms of their error 
estimates. Such a characterization theorem is due to Guessab in his recent paper [2]. 

 
 

2.1 Convex polytopes 
 

Convex polytopes are fundamental geometric objects. To a large degree or widely the 

geometry of polytopes is just that of Rd itself. In the following, we give two different versions of 

the definition of a polytope. (We speak of polytopes without including the word convex, we do 
not consider non-convex polytopes). The two versions are mathematically, but not 
algorithmically, equivalent. The proof of equivalence between the two concepts is nontrivial, 
see [12, Lecture 1]. The two concepts have also proved to be fundamental in a new field 
called “computational convexity"; see [27, 28] 

 

Definition 2.1.1 (polytope) A º¡ polytope is the convex hull of a finite set of points in some Rd 

. An H ¡ polyhedron is an intersection of finitely many closed halfspaces in some Rd . An H ¡ 

polytope is an H ¡ polyhedron that is bounded in the sense that it does not contain a ray 
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{x Å t y : t ¸ 0} for any y 6Æ0. 
 

 

This definition of ‘bounded’ has the advantage over others that it does not rely on a metric or 
scalar product, and that it is obviously invariant under affine change of coordinates. The 

second concept, an H ¡polyhedron, denotes an intersection of closed halfspaces: a set P µ Rd 

presented in the form 
 

P Æ P(A, z) Æ {x 2 Rd : Ax · z} for some A 2 Rm£d , z 2 Rm . 
 

Here“Ax · z" is the shorthand for a system of inequalities, namely ha1, xi · z1, ...,ham , xi · zm 

, where a1, ..., am are the rows of A, and z1, ..., zm are the components of z. 
 

A compact convex set K ½ Rd is a polytope provided extK (the set of all extreme points of K ) 

is a finite set. From the results of [11, section 2.4 and theorem 2.3.4] it follows that polytopes 
may equivalently be defined as convex hulls of finite sets. For a polytope K , it is customary to 
call the points of extK vertices. We denote them by vertK . 
 

The dimension of a polytope is the dimension of its affine hull. A d ¡polytope is a polytope of 

dimension d in some Re (e ¸ d). 
 

For examples, zero-dimensional polytopes are points, one-dimensional polytopes are line 
segments, two-dimensional polytopes are called polygons. A polygon with n vertices is called 
an n¡gon. Convexity here requires that the interior angles (at the vertices) are all smaller than 
¼. The following drawing shows a convex 6-gon, or hexagon, also, the tetrahedron is a 

familiar geometric object (a 3-dimensional polytope) in R3. Similarly, its d¡dimensional 

generalization forms the first (and simplest) infinite family of higher-dimensional polytopes we 
want to consider. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – 6-gon or hexagon. 
 

 

46 



2.1. Convex polytopes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – the tetrahedron in R3. 

 

Our following sketches try to illustrate the two concepts: the left figure shows a pentagon 
constructed as a º¡ polytope as the convex hull of five points; the right figure shows the same 
pentagon as an H ¡ polytope, constructed by intersecting five lightly shaded halfspaces 
(bounded by the five fat lines). Usually we assume (without loss of generality) that the poly-
topes we study are full-dimensional, so that d denotes both the dimension of the polytope we 

are studying, and the dimension of the ambient space Rd . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Polytope which presented in two ways either as a º¡ polytope or as an H ¡ 
polytope. 
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2.1.1 Fundamental theorems and properties of polytopes 
 

One of the main tasks for polytope theory is to develop tools to analyze and, if possible, 

visualize the geometry of higher-dimensional polytopes. Now we start with a basic version of 

the representation theorem for polytopes. See [12, Theorem 1.1] 
 

 

Theorem 2.1.2 (Main theorem for polytopes) A subset P µ Rd is the convex hull of a finite 

point set (a º¡ polytope ) 

 

P Æ conv (V ) for some V 2 Rd£n , 

 

if and only if it is a bounded intersection of halfspaces (an H ¡ polytope) 
 

P Æ P(A, z) for some A 2 Rm£d , z 2 Rm . 
 

 

This result contains two implications, which are equally (geometrically clear) and which in a 

certain sense are equivalent. This theorem is important because it provides two independent 

characterizations of polytopes that are of different power, depending on the problem we are 

studying. For example, consider the following four statements. 
 

 

 

• Every intersection of a polytope with an affine subspace is a polytope. 
 

• Every intersection of a polytope with a polyhedron is a polytope. 
 

• Every projection of a polytope is a polytope. 
 

• The Minkowski sum of two polytopes is polytope,  
where the vector sum (or Minkowski sum) of two sets P,Q µ Rd is defined to be 

 

P ÅQ :Æ {x Å y : x 2 P, y 2 Q}. 
 

 

The first two statements are trivial for a polytope presented in the form P Æ P (A, z) ( where 

the first is a special case of the second), but both are nontrivial for the convex hull of a finite 

set of points. Similarly the last two statements are easy to see for the convex hull of a finite 

point set, but are nontrivial for bounded intersections of halfspaces. 
 

 

For more details about the proofs of the following theorem and its corollary see [13, Theorem 

2.8 and corollary 2.9]. 
 

 

Theorem 2.1.3 For any compact subset M of Rd , the convex hull conv(M ) is again compact. 
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Since any finite set is compact, theorem 2.1.3 immediately implies: 
 

 

Corollary 2.1.4 Any convex polytope P in Rd is a compact set. 

 

In the following proposition we give some simple but basic facts about polytopes and its 

vertices. See [12, proposition 2.2] 

 

Proposition 2.1.5 The following statements hold: 
 

 

(i) Every polytope P is the convex hull of its vertices: P Æ conv (ver t(P)), 
 

(ii) If a polytope P can be written as the convex hull of a finite point set, then the set 

contains all the vertices of the polytope: P Æ conv(V ) implies that ver t(P) µ V . 

 

2.2 Barycentric coordinates 
 

One of the important concepts related to the concept of polytope, that we need in this chapter, 

is the notion of barycentric coordinates, which were first introduced by August Ferdinand 

Möbius (1790-1816) in his book the barycentric calculus [30].These coordinates are useful for 

simply representing a point in a triangle as a convex combination of its vertices, and frequently 

occur in computer graphics, modelling geometry triangular meshes, terrain modelling and the 

finite element method. 
 

For simplices, barycentric coordinates are very common tool in many computations. Basically, 
they are defined as follows: let X d Æ {v0, ..., vd } be any linearly independent set of d Å1 

points in Rd , the simplex T with the set of vertices X d is the convex hull of X d , (e.g., a 

triangle in 2D or a tetrahedron in 3D). Let Ai (x) be the signed volume (or area) of the simplex 

created with the vertex vi replaced by x. 
 

Then the barycentric coordinate functions {¸i ,i Æ 0, ...,d} of the simplex T with respect to its 
vertices are uniquely defined by: 

 

 

Ai (x)   

¸
i 
(x)

 
Æ

 vol (T ) , (2.1) 
 

where vol (T ) will mean the volume measure of T . Since {v0, ..., vd } are linearly independent, 

then each point x of T has a (unique) representation, that is x Æ 
Pd

iÆ0 ¸i (x)vi and the barycen-

tric coordinates ¸0, ...,¸d are nonnegative affine functions (linear polynomials) on T , see [25, 
 

p. 288]. The uniqueness of this representation allows the weights ¸i (x) to be interpreted as an 
alternative set of coordinates for point x, the so-called barycentric coordinates. Note that a  
simplex is a special polytope given as the convex hull of d Å1 vertices, each pair of which is 
joined by an edge. In our study we need to deal with polytope in higher dimension, thus we 

need to generalize these coordinates to any polytope in Rd . 
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2.2.1 Generalized barycentric coordinates on polytopes 
 

Since perhaps not every reader of this topic is familiar with these coordinates, we wish to give a 
brief overview of the basic elements of barycentric coordinates in d-dimension, see, e. g.,[15, 

pp.132-135] for more details. For a (convex) polytope P ½ Rd we will use generalized barycentric 

coordinates (They are often called generalized barycentric coordinates to distinguish them from the 
original barycentric coordinates, which were only defined with respect to simplices.) While 
barycentric coordinates are unique for simplices, there are many possible solutions for polygons 
with more sides. In recent years, the research on barycentric coordinates has been intensified and 
led to a general theory and extensions to higher dimensions [16, 17, 18, 19, 20, 1]. Usual 
Barycentric coordinates are natural coordinates for meshes, and their generalizations over 
polytopes are a very common tool in many computation. They have many useful applications 
including parameterization [21, 22], free form deformations [23, 18] and finite elements applications 

[24]. From now on let - ½ Rd be a polytope generated from a finite subset of points in Rd , W :Æ 

{x0, ..., xn }, i.e., - Æ conv(W ). Given a polytope 

- Æ conv({x0, ..., xn }), we wish to construct one coordinate function ¸i (x) per point xi for all 

x 2 -. These functions are called barycentric coordinates with respect to {x0, ..., xn } (or -) if 
they satisfy three properties. First, the coordinate functions are nonnegative on -, 
 
 

 

¸i (x) ¸ 0, (2.2)

 
for all x 2 -. Second, the functions form a partition of unity, which means that the equation 
 

n 
X 

¸i (x) Æ 1 (2.3)
i Æ0 

 
is verified for all x 2 -. 

weighting each point xi 

 
Finally, the functions act as coordinates in that, given a value of x, by 

¸i (x) return back x, i.e., 
 

n  

x Æ 
X

 ¸i (x)xi . (2.4)
i Æ0 

 
This last property is also sometimes referred to as linear precision since the coordinate func-

tions can reproduce linear functions. For most potential applications, it is also preferable that 

these coordinate functions are as smooth as possible. Constructing the barycentric coordi-

nates of a point x with respect to some given points in a polytope - is often not a trivial task. 

The first result on the existence of barycentric coordinates for more general types of polytopes 

was due to Kalman (1961), and will be a crucial ingredient in what follows. Indeed, we have, 

see [26, Theorem 2]: 

 

Theorem 2.2.1 Let W Æ {x0, ..., xn } be a set of finite points of Rd and let the polytope - Æ 

conv(W ). Then there exist nonnegative real-valued continuous functions ¸0,¸1, ...,¸n defined 
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on - such that   

n n  

X X  

x Æ  ¸i (x)xi   and ¸i (x) Æ 1,  for each x 2 -. (2.5)
i Æ0 i Æ0  

 

Thus, from now on, it proves useful to work with barycentric coordinates. Therefore, unless 

otherwise indicated, throughout the our study it is assumed that ¸i (x),i Æ 0, ...,n, are the 

barycentric coordinates of x with respect to a set of finite fixed points {x0, ..., xn } of the polytope 
 

- Æ conv({x0, ..., xn }). 

 

We shall not always trouble to repeat this at each stage. Furthermore, they need not be the 

vertices of -, of course, the polytope - may be generated by another different set of points {y0, 

..., yk } on -. 
For completeness, we give a result and its proof which taken from [2]. 

 

Theorem 2.2.2 Let P be a polytope in Rd , {v0, v1, ..., vm } its vertices. Then there are linearly 

independent nonnegative real continuous functions on P , 
 

¸ Æ {¸0, ...,¸m } 

 

defined on P such that 
 

m m   

X X 

for each x 2 P. 
 

x Æ  ¸i (x)vi   and ¸i (x) Æ 1, (2.6) 
i Æ0 i Æ0   

 

Proof The existence of a set of continuous barycentric coordinates ¸ is assured by Theorem 

2.2.1. So it remains to show that the functions ¸i , i Æ 0, ...,m are linearly independent. Linear 
precision (2.6) shows in particular that each x may be represented as a convex combination of 

v0, v1, ..., vm . Since each vi is an extreme point of P, we conclude by substituting x Æ vi in 

(2.6) that ¸i (v j ) Æ ±i j . Hence, the functions ¸0, ...,¸m satisfy the delta function property. Now, 
it is easy to see that this property implies that the set of function ¸ must be linearly 
independent.  

 
 

Barycentric coordinates provide a basis for linear finite elements on simplices, and 

generalized barycentric coordinates naturally produce a suitable basis for linear finite 

elements on general polytope. The underlying principle is that one triangulates the polytope 

into simplices and then use the standard barycentric coordinate functions of these simplices. 
 
 

Now, we present a very useful tool in our study which is triangulations of a point set and the 

Delaunay triangulation. 
 

The word triangulation usually refers to a simplicial complex, but it has multiple meanings 
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when we discuss triangulation of some geometric entity that is being triangulated. There are 

triangulations of point sets, polygons, polyhedra, and many other structures. Consider points 

in the plane (or in any Euclidean space). 
 

 

Definition 2.2.3 (triangulation of a point set) Let S be a finite set of points in the plane. A 

triangulation of S is a simplicial complex T such that S is the set of vertices in T , and the 

union of all the simplices in T is the convex hull of S, that is, jT j Æ conv (S). 

 

Where a simplicial complex is a collection of simplices that intersect only in mutual faces. i.e., 

any face of a simplex from simplicial complex T is also in T and the intersection of any two 

simplices ¾1, ¾2 2 T is either Á or a face of both ¾1 and ¾2. 

 

 

Definition 2.2.4 (Simplicial decomposition) A polytope can be decomposed into a simplicial 

complex, or union of simplices, satisfying certain properties. Given a d¡dimensional polytope 

P, a subset of its vertices containing (d Å1) affinely independent points defines an d¡simplex. It 

is possible to form a collection of subsets such that the union of the corresponding simplices is 

equal to P, and the intersection of any two simplices is either empty or a lower-dimensional 

simplex. This simplicial decomposition is the basis of many methods for computing the 

volume of a polytope, since the volume of a simplex is easily given by a formula [31] 

 

Definition 2.2.5 (triangulation of a point set in Rd ) The definition (2.2.3) defines a triangu-lation 
of a set of points to be simplicical complex whose vertices are the points and whose union is the 
convex hull of the points. With no change, the definition holds in any finite dimension d, i.e., a 

simplex in Rd is a d¡dimensional simplex (d¡simplex), which is defined by its (d+1) vertices, and a 

triangulation of a set of points in Rd is a simplicial decomposition of the convex hull of the point 
set where the vertices of the triangles are contained in the point set. 
 

 

Every finite point set in Rd has a triangulation see[14, 2.1]; for example, the lexicographic 
triangulation of [14, section 2.1] also generalizes to higher dimensions with no change. 
 

Let S be a set of n points in Rd . As we know from [14, section 2.1] that if all the points in S are 
collinear, they have one triangulation having n vertices and n ¡1 collinear edges connecting 
them. This is true regardless of d; the triangulation is one-dimensional, although it is embed-

ded in Rd . More generally, if the affine hull of S is k¡dimensional, then every triangulation of S 

is a k¡dimensional triangulation embedded in Rd : the simplicial complex has at least one 
k¡simplex but no (k Å1)-simplex. The complexity of triangulation is its total number of simplices 
of all dimensions. 
 

 

One of the famous and optimal triangulation is the Delaunay triangulation which is a geomet-

ric structure that engineers have used for meshes since mesh generation was in its infancy. 
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The Delaunay triangulation of a point set S, introduced by Boris Nikolavich Delaunay in 1934, 

is characterized by the empty circumdisk property: no point in S lies in the interior of any 

triangle’s circumscribing disk; see [14, definition 1.17]. 
 

 

Delaunay triangulations can be generalized easily to higher dimensions (Rd ). Let S be a finite 

set of points in Rd , for d ¸ 1. Let ¾ be a k¡simplex (for any k · d) whose vertices are in S. The 
simplex ¾ is Delaunay if there exists an open circumball of ¾ that contains no point in S. 
Clearly, every face of a Delaunay simplex is Delaunay too. 

 

 

Definition 2.2.6 (The Delaunay triangulation in Rd ) Let S be a finite point set in Rd , and let 
k be the dimension of its affine hull. A Delaunay triangulation of S Del (S) is a triangulation  
of S in which every k¡simplex is Delaunay and therefore, every simplex is Delaunay. i.e., the 

Delaunay triangulation of a set of points in Rd is defined to be the triangulation such that the 
circumsphere of every triangle in the triangulation contains no point from the set in its interior. 

 

 

Also we can present the last definition with more easy way as following: 
 

Let S ½ Rd be a finite set of points. A Delaunay triangulation of S is a triangulation, denoted 

Del (S), such that for each simplex ¾ 2 Del (S) there is an open d¡ball that has the vertices of 
¾ on its boundary and which contains no elements of S. 

 

Such a triangulation exists for every point set in Rd see[14, section 2.2], and it is the dual of 
the Voronoi diagram [29] (which demonstrate later). The triangulation is unique if the points 
are in general position. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 – Every triangle in a Delaunay triangulation has an empty open circumdisk. 

 

The Delaunay triangulation of S is unique if and only if no four points in S lie on a common 

empty circle, a fact proved in [14, Section 2.7]. Otherwise, there are Delaunay triangles and 

edges whose interiors intersect as illustrated in the following figure. 
 

Perhaps the most important result concerning Delaunay triangulation is the Delaunay lemma 

which proved by Boris Delaunay himself. It provides an alternative characterization of the 

Delaunay triangulation: a triangulation whose edges are locally Delaunay. 
 

Many properties of planar Delaunay traingulation generalize to higher dimensions. A few of 

them are summarized below. 
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Figure 2.5 – Delaunay triangles and edges whose interiors intersect. 
 

 

The forthcoming Delaunay lemma provides an alternative definition of a Delaunay triangu-
lation : a triangulation of a point set in which every facet is locally Delaunay. A facet f in a 
triangulation T is said to be locally Delaunay if it is a facet of fewer than two d¡simplices in T , 

or it is a face of exactly two d¡simplices ¿1 and ¿2 and it has an open circumball that contains 

no vertex of ¿1 nor ¿2. Equivalently, the open circumball of ¿1 contains no vertex of ¿2. 

Equivalently, the open circumball of ¿2 contains no vertex of ¿1. The proofs of the following 
lemma are omitted, but each of them is a straightforward extension of the corresponding proof 
for two dimension. See [14, Lemma 2.3] 
 

 

Lemma 2.2.7 (Delaunay Lemma) Let T be a triangulation of a finite d¡dimensional set S of 

points in Rd . The following three statements are equivalent. 

 

• Every d¡simplex in T is Delaunay (i.e. T is Delaunay). 
 

• Every facet in T is Delaunay. 
 

• Every facet in T is locally Delaunay. 
 

 

The Voronoi diagram is easy to describe and, via a duality relationship, it facilitates the 

description of the Delaunay triangulation. Given a set P of n points in Rd , the Voronoi diagram 

partitions Rd into n cells: one cell is associated with each point in P. For p 2 P, we denote the 

associated Voronoi cell by V (p). The extent of V (p) is simply the entire region of Rd whose 
distance to P is realized by the distance to p. That is, the set of points that is at least as close to 
 

p as it is to any other q 2 P. Formally, we have: 
 

 

Definition 2.2.8 (Voronoi diagram) The Voronoi cell of p 2 P is defined by 
 

V (p) Æ {x 2 Rd jdRd (p, x) · dRd (q, x),8q 2 P}, 
 

where dRd (p, q) denotes the Euclidean distance between p and q in Rd . The set of Voronoi 

cells forms a covering of Rd called the Voronoi diagram of P . 
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Figure 2.6 – Voronoi diagram. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Voronoi diagram. 
 

 

 

2.3 Approximations of differentiable convex functions on arbitrary 
 

convex polytopes 
 

In this section we try to approximate any arbitrary differentiable convex function on arbitrary convex 

polytope by using barycentric approximation. Let Xn :Æ {xi }
n

iÆ0 be a given set of (n Å1) pairwise 

distinct points in Rd (called nodes or sample points), let P Æ conv(Xn ), let f be a convex function 

with Lipschitz continuous gradient on P and ¸ :Æ {¸i }
n

iÆ0 be a set of barycentric coordinates with 

respect to the point set Xn . We will use the operator Bn which defined by 
 

n 
X 

Bn [ f ](x) Æ ¸i (x) f (xi ), (x 2 P ), 
i Æ0 

 

to approximate a convex function f which was given and analyze the error estimate between 
 

f and its barycentric approximation. Moreover, we present the best possible pointwise error 

estimates of f . To confirm and understand many essential and necessary steps, we starting by 

studying the one-dimensional case since its simplicity allows us to analyse all the necessary steps 

through very simple computation. In the univariate approximation, say on an interval 
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[a,b], a simple way of approximating a given real function f : [a,b] ! R is to choose a partition 
 

P :Æ {x0, x1, . . . , xn } of the interval [a,b], such that a Æ x0 Ç x1 Ç . . . Ç xn Æ b, and then to 
fit to f using a spline Sn of degree 1 at these points in such a way that: 
 
 

1. The domain of Sn is the interval [a,b]; 

 

2. Sn is a linear polynomial on each subinterval [xi , xi Å1]; 

 

3. Sn is continuous on [a,b] and S interpolates the data, that is, Sn (xi ) Æ f (xi ), i Æ 0, . . . ,n. 
 

 

This is a convenient class of interpolants because every such interpolant can be written in a 

barycentric form 
 

n  

Sn (x) Æ 
X

 ¸i (x) f (xi ),  (x 2 [a,b]), (2.7)
i Æ0 

 

where 
 

8 
> x¡x

i ¡1 , 
 

>
xi ¡xi ¡1 

> 
< 

¸i (x) Æ 
x

i Å1
¡x , xi 

Å1
¡x

i 
 

> 
> 
>0, 

: 

 

if xi ¡1 · x · xi ; 
 

if xi · x · xi Å1; 
for all other x. 

 

Here, by a little abuse of notation, we set x¡1 :Æ a and xnÅ1 :Æ b. One of the main features of 

the usual linear spline approximation, in its simplest form (2.7), is that {¸i }
n

iÆ0 form a (unique) 
set of (continuous) barycentric coordinates. This means that they satisfy, for all x 2 [a,b], three 
important properties: 
 

 

i
n 

¸i (x) ¸ 0,  i Æ 0, . . . ,n;
 0 ¸i (x) Æ 1; 
 iP0  i̧ (x)xi   x.  

P 

n Æ

Æ 

 

Æ  

This simple approach can be generalized to general polytopes. Indeed, consider a given finite 

set of pairwise distinct points Xn Æ {xi }
n

iÆ0 in P ½ Rd , with P Æ conv(Xn ) denoting the 

convex hull of the point set Xn . We are interested in approximating an unknown scalar-valued 

continuous convex function f : P ! R from given function values f (x0), . . . , f (xn ) sampled at 

Xn . In order to get a simple and stable global approximation of f on P, we may take into 
consideration a weighted average of the function values at data points of the following form: 
 

n  

Bn [ f ](x) Æ 
X

 ¸i (x) f (xi ), (2.8)
i Æ0 

 

or, equivalently, a convex combination of the data values f (x0), . . . , f (xn ). This means that we 

require that the system of functions ¸ :Æ {¸i }
n

iÆ0 forms a partition of unity, that is, for all x 2 P, 
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we have     

n¸i (x) ¸ 0, ,i Æ 0, . . . ,n, (2.9) 

X ¸i (x) Æ 1. (2.10) 
i Æ0 

 

In view of these properties, we shall refer to the approximation schemes Bn as barycentric 

approximation (schemes). It should be mentioned that one of the main difficulties in obtain-ing 
all barycentric approximations of functions, in dimensions higher than one, lies in the fact that 
their construction still remains a very difficult task in the general case. However, it should be 
emphasized, that as in the univariate case, one possible natural approach to con-struct an 
interesting class of particular barycentric coordinates would be to simply construct a 

triangulation of the polytope P - the convex hull of the data set Xn - into simplices such that the 

vertices vi of the triangulation coincide with xi . After that, one can use the standard 

barycentric coordinates for these simplices. As a result, each triangulation of the data set 
 

X n generates a set of barycentric coordinates. Hence, there exists at least one barycentric 

approximation of type (2.8) which is generated by a triangulation. Let us summary shortly how 
triangulations and barycentric approximations are connected. It is known that every polytope 
can be triangulated into simplices, and the triangulation of a polytope may not be unique. To 
better illustrate this phenomenon, let us consider the simple example of a two-dimensional 
square S. Then two different triangulations are possible for S. Now every convex combination 
of the two associated coordinates provides a set of barycentric coordinates. This allows us to 
generate new families of barycentric approximations which are not generated by a triangula-
tion. We refer to reference [1] for details.  
A difficulty in minimizing the error estimate using the barycentric approximations arises from 

the possible existence of many barycentric coordinates. This yields the problem of selecting 

the barycentric coordinates as to minimize the approximation error. It will be interesting to  
have a way of selecting favourable ones among all barycentric approximations associated 

with the data set Xn .  
Convex functions appear naturally in many specialties of science such as physics, biology, 

medicine and economics, and they comprise an important part of mathematics. A natural and 

important question is: can these functions be well approximated by simpler functions and 

how?  
Several research discussing various methods to approximate arbitrary function, but very few  
ones has been done subject to the usual convexity. For instance, if some smoothness is allowed  
for the function f which is to be approximated, say C 2(P ), this will play a crucial role in the 
determination of the "best" (or "optimal") cubature formulas, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. 

An important part of this study is finding a barycentric approximation Bn [ f ] of the form  
(2.8), which approximates f well at the points x 2 P , distinct from the data, given that f is a 

convex function with a Lipschitz continuous gradient. Error bounds and quality measures are 

provided, which estimate the influence of the barycentric coordinates on accuracy of the 
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approximants Bn . 
 

 

When defining the set of barycentric approximants, there are two main issues to be 

considered. These issues are very natural and also necessary for an approximation of a given 

convex function f defined on an arbitrary convex polytope: 

 

1. Since a barycentric approximation is not unique in general, it is of great interest to have 

a general method of constructing possible barycentric coordinates, in hope of finding 

the "best" barycentric approximation for a given convex function. 
 

2. The resultant approximant, generated by this method, should not be "complicated" to 

implement numerically. 

 

Our contribution in this study consists mainly of the following aspects. Firstly, under the 

assumption of convexity and the standard Lipschitz continuity of the gradient, we prove some 

results that pertain to sharp estimates of the error arising from such approximations. The most 

important property of barycentric approximations is that they fit into the framework of 

operators, since they approximate any convex function from above. Indeed, let f : P ! R be a 

convex function. Then, for all x 2 P, the Jensen’s inequality implies 
 

f (x) · Bn [ f ](x). 

 

Hence, secondly, our results also provide new upper bounds for the Jensen’s inequality on an 
arbitrary polytope. 
 

We knew from the previous chapter by theorem 1.3.7(4), we have that if f 2 C 1,1(P ) with L È 

0 and, in addition, f be convex. Then rf satisfies the following property: 

1 °rf (y) ¡ rf (x) 
°

2 · 
-
rf (y) ¡ rf (x), y ¡ x

®
, 8x, y 2 P, (2.11)

L 
 °  °   

 

 

 

where C 1,1(P) denote the subclass of all functions f which are continuously differentiable on 
P with Lipschitz continuous gradients, i.e., there exists a constant L, which cannot be replaced 
by smaller one, such that 

 

krf (x) ¡ rf (y)k · Lkx ¡ yk, (8x, y 2 P). 
 

 

The Lipschitz continuity of rf will play a crucial role in our analysis. This lead to the following 

result which taken from [32, see proposition 2.2]. 

 

Proposition 2.3.1 If f 2 C 1,1(P) with Lipschitz constant L f È 0, then the functions defined by 
 

g § :Æ 
L

 f k.k2 § 
f 2 
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are both convex and belong to C 1,1(P ). If in addition f is convex, then Lg¡ · L f . 
 

 

 

 

 

 

 

 

 

Proof The proof is similar to that in [32], but here we give more details. 
 

We need to show that the functions g§ also belong to C 1,1(P). Indeed, they are obviously 
differentiable and it is easy to check that 

 

krg§(y) ¡ rg§(x)k Æ kL f (y ¡ x) §(rf (y) ¡ rf (x))k (2.12)

which implies, using the triangle inequality,  

krg§(y) ¡ rg§(x)k  · L f ky ¡ xk Å krf (y) ¡ rf (x)k  

· 2L f ky ¡ xk.  

 

Hence, we have Lg§ · 2L f . Moreover, since f 2 C 1,1(P), then by the Cauchy-Schwartz 

inequal-ity we have 
 

 

¨hrf (y) ¡ rf (x), y ¡ xi  ·  jhrf (y) ¡ rf (x), y ¡ xij ·  krf (y) ¡ 

rf (x)kky ¡ xk 
 

·  L f ky ¡ xkky ¡ xk 

 

then,      

¨hrf (y) ¡ rf (x), y ¡ xi · L f ky ¡ xk2 
  (2.13)

and so 
°2 §

-
rf (y) ¡ rf (x), y ¡ x

® 
    

L f 
°
y ¡ x ¸ 0.  (2.14)

° °     

From this, it immediately follows 

°2 §-rf (y) ¡ rf (x), y ¡ x
® 

 

-
rg§(y) ¡ rg§(x), y ¡ x

®
Æ L f 

°
y ¡ x ¸ 0, 

 ° °    

which means that g§ are both convex.     

 

What remains to be shown is that if f is in addition convex, we have Lg¡ · L f . Since function g¡ 

has a Lipschitz continuous gradient, then from the convexity of f together with equation 
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2.11, it follows                             

 g¡(y)  g¡(x) 2 
·

  
L

g¡ 

-

rg¡(y) g¡(x), y ¡ x       

kr  ¡r k  Æ L g¡ L f (y ¡ x
¡
)
r

( r f (y) ¡ r f
®

(x)), y ¡ x   

      -   ¡      ®  

     

Æ 
L  

¢
L  y  x 2

¡ 
L 

g¡ 
-
r 

f (y) 
¡ r 

f (x), y
¡

x 

     L g¡ L f 
k
y 

¡
 x k2        ®

     ·  
g¡ 

¢ 
 

f 
k 

¡ k               

then,                              

krg¡(y) ¡ rg¡(x)k  · q 

 

ky ¡ xk

              

L
g¡ 

¢L
 f               

 Lg¡ ky ¡ xk  · q 
L

g¡ 
¢L

 f ky ¡ xk              

 

This allows us to conclude that Lg¡ · L f , since Lg¡ is the smallest possible Lipschitz constant. 

This completes the proof of Proposition 2.3.1.  
 

 

We are now in a position to state and prove our announced simple and elegant 

characterization of all upper approximation operators. For completeness, we now give another 

result and its proof from [32, see Theorem 2.3]. 

 

Theorem 2.3.2 Let A : C 1(P) ! C (P) be a linear operator. The following statements are 
equiva-lent: 
 

 

(i ) For every convex function g 2 C 1,1(P), we have   

 g (x) · A[g ](x), (x 2 P).  (2.15)

(i i ) For every f 2 C 1,1(P) with a Lipschitz constant L f , we have  

 ¯  f (x) ¡ A[ f ](x)
¯

· 
L

2f 
¡
A[k.k2](x) ¡kxk2¢ 

. (2.16)
 

¯  ¯  
    

 Equality is attained for all functions of the form  

 f (x) Æ a(x) Åckxk2,  (2.17)

 where c 2 R and a(¢) is any affine function.   
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Proof The proof is similar to that in [32], but we give more details. 
 

Let f 2 C 1,1(P) with a Lipschitz constant L f and suppose that (i ) holds. Define the two 
following functions 

 

g§ :Æ 
L

 f k.k2 § f 
. 2 

 
 

Due to proposition 2.3.1, we know that both of these functions are convex and belong to C 
1,1(P). Therefore, since A is linear, statement (i ) implies that 

 

A 
·L

 
f
 k.k2 § f 

¸
¸ 
L

 
f
 k.k2 § f 

 

2 2 
 

A 
·L

 
f
 k.k2

¸
§ A £f ¤¸ 

L
 
f
 k.k2 § f 

 

2 2 

 

L f A[k.k2] § A[ f ] ¸ 
L

 f k.k2 § f ,
 

 

2 2 
 

which gives the error estimate in statement (i i ). The case of equality is easily verified. 

Conversely, let g 2 C 1,1(P) be a convex function, and suppose that statement (i i ) holds. Let 
the function f be defined by 

 

f :Æ 
Lg k.k2 ¡ 
g . 2 

 
 

and set E :Æ A ¡I , where I is the identity on C 1,1(P). Applying proposition 2.3.1 again, we have 

f 2 C 1,1(P ) with L f · Lg . Now, the error estimate in statement (i i ), applied to f , implies that 
 

E 
·Lg

 k.k2 ¡ g 
¸
 · 

L f E £k.k2¤ 
 

2 2 
 

· Lg E 
£
k.k2

¤
 2 

 

 

L
2g E 

£
k.k2

¤
¡E 

£
g 

¤
·  

L
2g E 

£
k.k2

¤ 
 

 

 

This shows that E[g ] ¸ 0, as was to be proved. 
 

 

 

Note that in the error estimate established in Theorem 2.3.2 below, it is not required that the 
function f be convex as long as statement (i ) holds. The latter condition, as mentioned 

previously, is always satisfied by our barycentric approximation operator Bn . Hence, Jensen’s 

inequality and Theorem 2.3.2 imply the following error estimate see [32, Corollary 2.4]. 
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Corollary 2.3.3 Let Bn be the barycentric approximation given by (2.8). Then for every 

function f 2 C 1,1(P) with a Lipschitz constant L f , we have 

 

¯ f (x) ¡Bn [ f ](x) ¯
· 
L
2f 

¡
Bn [k.k2](x) ¡kxk2¢

. (2.18)
¯
 

¯
    

 

 

Equality is attained for all functions of the form (2.17). 
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3 On the approximation of strongly con- 
 

vex functions by an upper or 
lower operator 

 

 

 

This chapter is based on our paper [14], however, here, we choose to give new proofs of our 

main results, based on completely different technique such as some simple characterizations 

of positive linear operators in the set of convex functions, see Lemma 3.1.1. The aim of this 

chapter is to find a convenient and practical method to approximate a given real-valued func-

tion of multiple variables by linear operators, which approximate all strongly convex functions 

from above (or from below). Our main contribution is to use this additional knowledge to derive 

sharp error estimates for continuously differentiable functions with Lipschitz contin-uous 

gradients. More precisely, we show that the error estimates based on such operators are 

always controlled by the Lipschitz constants of the gradients and the error associated with 

using the quadratic function, see Theorems 3.2.1 and 3.2.3. Moreover, assuming the function, 

we want to approximate, is also strongly convex, we establish sharp upper as well as lower 

refined bounds for the error estimates, see Corollaries 3.2.2 and 3.2.4. As an application, we 

define and study a class of linear operators on an arbitrary polytope, which approximate 

strongly convex functions from above. Finally, we present a numerical example illustrating the 

proposed method. 
 
 

3.1 Some background and motivation 
 

Let - ½ Rd be a nonempty compact convex set and let Á : - ! R be a given function. We would 

like to find an easier and good approximation to compute Á. We sometimes know beforehand 
that the function Á satisfies various known structural and regularity properties. For example, it 
may be known that Á has some additional kind of convexity, therefore we would wish to use 
this information in order to get a good approximation of Á. Approximating an arbitrary function 
is, in general, very difficult, but if we restrict our attention to the class of strongly convex 
functions and if the linear operator, we wish to use, approximates all strongly convex functions 
from above (or from below) then things become simpler. The strongly convex 
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functions are used widely in economic theory (see [1]), and are also central to optimization 

theory (see [2]). Indeed, in the framework of function minimization, this convexity notion has 

important and well-known implications. As we will see, the key advantage of dealing with such 

an operator is that an estimate of its approximation error is always controlled by the error 

associated with using the quadratic function. 
 

In order to illustrate this idea more precise, we start by describing briefly a specific one-
dimensional example, since its simplicity allows us to analyze all the necessary steps through 
very simple computation. Suppose that ¹ is a fixed nonnegative real number. In the univariate 
approximation, say on an interval [a,b], a simple way of approximating a given real ¹-strongly 

convex function Á : [a,b] ! R is first to choose a partition P :Æ {x0, x1, . . . , xn } of the interval 

[a,b], such that a Æ x0 Ç x1 Ç . . . Ç xn Æ b, and then to fit to Á using a linear interpolant Bn at 

these points in such a way that: 

 

1. The domain of Bn is the interval [a,b]; 
 

2. Bn is a linear polynomial on each subinterval [xi , xi Å1]; 
 

3. Bn is continuous on [a,b] and it interpolates the data, that is, Bn (xi ) Æ Á(xi ), i Æ 0, . . . ,n. 
 

 

This is a convenient class of interpolants because every such interpolant can often be written 

for all i Æ 0, . . . ,n ¡1 in a barycentric form: 

Bn [Á](x) Æ xi Å1 ¡ x Á(xi ) Å x ¡ xi Á(xi Å1),  (x 2 [xi , xi Å1]). (3.1)
  

 

x
i Å1 

¡
 
x

i 
x

i Å1 
¡
 
x

i  
 

One of the main features of the usual linear interpolant, in its simplest form (3.1), is that the 

error in approximating the quadratic function (.)2 by Bn is simply given by: 
 

Bn [(.)2](x) ¡ x2 Æ (x ¡ xi )(xi Å1 ¡ x), (x 2 [xi , xi Å1]), 
 

and also that Bn approximates all ¹-strongly convex functions from above. More precisely, Bn 

satisfies for any ¹-strongly convex function the following estimates: 

¹ (x ¡ xi )(xi Å1 ¡ x) · Bn [ f ](x) ¡ f (x), (x 2 [xi , xi Å1]).
  

2 
 

 

Moreover, as it can be derived from our multivariate general results, see Remark 3.3.5, if we 
also know that the first derivative of f is a Lipschitz function with a local Lipschitz constant 
 

L i ( f 
0) in the subintervals [xi , xi Å1], then the error Bn [ f ] ¡ f can often be estimated at any x 

2 [xi , xi Å1] as: 
 

¹ 
(x ¡ xi )(xi Å1 ¡ x) · Bn [ f ](x) ¡ f (x) · 

Li ( f 
0) 

(x ¡ xi )(xi Å1 ¡ x). (3.2)2   2  

 

Hence, the lower and upper bounds of the approximation error for this class of functions can 

be controlled by the Lipschitz constants of the first derivatives, the convexity parameter (of 

 

68 



3.1. Some background and motivation 
 

 

 

the strong convexity) and the error associated with using the quadratic function. It should be 

noted that equalities in (3.2) are attained for all ¹-strongly convex functions of the form 
 

f (x) Æ a(x) Å 

¹
x2, (3.3) 2

 

 

where a(¢) is any affine function. Therefore, in this sense, the error estimates (3.2) are sharp 

for the class of ¹-strongly convex functions having Lipschitz continuous first derivatives. This 

provides the starting point of the forthcoming results. 
 

 

This chapter deals with the problem of approximation of functions of multiple variables by 

using linear operators, which approximate from above (or from below) all strongly convex 

functions with Lipschitz-continuous gradients. Geometrically, if a function f belongs to such a 

class, then its gradient rf cannot change too quickly and it cannot change too slowly either. 

Functions satisfying these conditions are widely used in the optimization literature, we refer to 

Nesterov’s book [2]. A natural question is: can these functions be well approximated by 

simpler functions and how? 
 

There are several studies investigating various methods to approximate arbitrary functions, 
very little research has been done subject to some kind of additional convexity assumption. 
For instance, if some smoothness is allowed for the function, which is to be approximated, say 

C 2(-), this will play a crucial role in the determination of the "best" (or "optimal") cubature 

formulas, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. This chapter builds on the previous work [5, 6], 

where a theoretical framework for approximating C 2(-)¡convex functions was developed. 

 

The motivation for such an approach is that the general sharp error estimates, that we derive, 

permit us to study a multivariate version defined on an arbitrary (convex) polytope of the 

univariate interpolation operators given by (3.1). Throughout the chapter, a linear operator is 

said to be upper (resp. lower) operator for strongly convex functions, if it approximates from 

above (resp. from below) strongly convex functions. 
 

For any differentiable f with Lipschitz continuous gradient, there exists a smallest possible L(rf 
) such that (1.25) holds. The smallest constant L(rf ) :Æ Li p(rf ) satisfying the inequality (1.25) 
is called the Lipschitz constant for rf . While the Lipschitz constant provides an upper bound 
for the “curvature” of the function, the convexity parameter determines a lower bound. By C 
1,1(-) we will denote the subclass of all functions f which are continuously differentiable on - 

with Lipschitz continuous gradients. 
 

 

The chapter is organized as follows: In Section 3.1 we give some background, motivation and 

state the idea more precise of approximate strongly convex function in one-dimensional case 

also give very important lemma see (Lemma 3.1.1). The main theorems of Section 3.2 

establish, in terms of sharp error estimates, simple and elegant characterizations of upper or 

lower approximation operators for strongly convex functions with Lipschitz-continuous 
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gradients. In this way, we offer sharp error estimates which only depend on the Lipschitz 

constants of the gradients and the error associated with using the quadratic function, see 

Theorems 3.2.1 and 3.2.3. A particularly interesting situation arises, when the function, we 

want to approximate, is also strongly convex. In this case, we establish sharp upper as well as 

lower refined bounds for the error estimates, see Corollaries 3.2.2 and 3.2.4. In Section 3.3, 

we will introduce and study a multivariate version defined on an arbitrary polytope of the 

univariate interpolation operators given by (3.1). Finally, Section 3.4 will provide a numerical 

example to illustrate the efficiency of this approach. 
 

In what follows, we continue to denote by S¹
1,1(-) the set of ¹-strongly convex continuously  

differentiable functions with Lipschitz-continuous gradients. Note that, as we have mentioned 

before, for any f 2 S¹
1,1(-) we always have ¹ · L(rf ). It is also quite easy to see that for a  

convex quadratic f (x) Æ 1
2 x

T H x, the Lipschitz constant of the gradient is given by the 

maximal eigenvalue of the Hessian H while the parameter of strong convexity is given by its 

minimal eigenvalue. Hence, for any nonnegative ¹, the function f (x) Æ ¹
2 kxk2 defines a ¹-

strongly convex function with a Lipschitz gradient constant L(rf ) equal to ¹.  
 
The following Lemma provides simple characterizations of positive linear operators in the set 

of convex functions. This result implies in particular that in order to prove that a linear operator 

E : C (-) ! C (-) is positive in the set of convex functions, it suffices to verify that E is positive in 

a given set of strongly convex functions with a certain strong convexity parameter. 
 
 
Lemma 3.1.1 Let ¹ be a arbitrary fixed positive number and let E : C (-) ! C (-) be a linear 

operator. Then the following statements are equivalent: 

 
(i) For every convex function f 2 C (-), we have 

 
E( f ) ¸ 0. 

 
(ii) For every ¹¡strongly convex function f 2 C (-), we have  

E( f ) ¸ 
¹
E(k.k)2 ¸ 0.  
2 

 
(iii) For every ¹¡ strongly convex function f 2 C (-), we have 

E( f ) ¸ 0. 

(iv) For every " È 0 and every "¡strongly convex function f , we have 

E( f ) ¸ 0. 
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Proof To prove (i) implies (ii), assume that (i) holds. Let f be ¹¡strongly convex function. Set 
 

g :Æ f ¡ ¹2 k.k2. By Theorem 1.2.5, we know that g is convex. Therefore, applying property (i) 
we get: Hence, by linearity of E, we deduce that 

  

E( f ) ¸ 
¹
E(k.k2). 

 

2 
 

Since k.k2 is convex, then again by (i) we have E(k.k2) ¸ 0. This shows that (ii) holds. 
 

Now, (ii) implies (iii) is obvious. Next assume that (iii) holds. Let " be a positive real number. 

Let f be a "¡strongly convex function. Then, by Theorem 1.2.5 
 

g Æ f ¡ 
"
k.k2, 
2 

 

 

is convex. Observe that: 
¹ g Æ 

¹
 f ¡ 

¹
k.k2. " 

" 2
 

 

¹ ¹ 

Furthermore, since " g is convex, then " f is ¹¡strongly convex. Hence, by (iii) we can conclude 
that 

 

¹ 

E( " f ) ¸ 0. 
 
 

Thus it follows that 
 

E( f ) ¸ 0. 
 

This shows that (iv) holds. 
 

Finally, assume that the property (iv) holds and take any convex function f . Since f Å 2
" k.k2 

is "¡strongly convex, then by (iv), we have 

E( f Å 
"
k.k2) ¸ 0, 

 

2 
 

or equivalently 
E( f ) ¸ ¡

"
E(k.k2). 

 

2 
 

In view of the fact that this inequality holds for all " È 0, then by letting " # 0, it follows that 

 

E( f ) ¸ 0. 
 

Hence, the four statements are equivalent. 
 

 

 

3.2 Characterizations of upper or lower approximation operators 
 

In this section, the first main results, Theorems 3.2.1 and 3.2.3 are on simple characterizations, in 

terms of sharp error estimates, of approximation operators, which approximate from below or 

above strongly convex functions with Lipschitz continuous gradients. It is shown that the error 

estimates using these operators can often be controlled by the Lipschitz constants of the gradients 

and the error associated with using the quadratic function. The second 
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ones, which are their Corollaries 3.2.2 and 3.2.4, are on the establishment of sharp upper as 

well as lower refined bounds for the error estimates, assuming that the function, which is to be 

approximated, is also strongly convex. Here, we continue to assume that the strong convexity 

parameter ¹ is given (possibly null). Our characterization of linear operators, which 

approximate all ¹-strongly convex functions from above, is as follows: 

 

Theorem 3.2.1 Let ¹ be a positive real number and let A : C 1(-) ! C (-) be a linear operator. 
Then, the following two statements are equivalent: 

 

(i) For every ¹¡strongly convex function g 2 C 1,1(-), we have   

 g (x) · A 
£

g 
¤

(x),  (x 2 -).       (3.4)

(ii) For every function f 2 C 1,1(-), we have      

 

jA 
£

f 
¤

(x) ¡ f (x)j · 

L(rf )  

£
k.k 

2

¤

2   

  

(A 

 

(x) ¡ kxk),  (x 2 -). (3.5) 2  

 

Proof Assume that (i) holds and let E be the linear operator defined by 
 

£ ¤ £ ¤ 
E  f Æ A  f  ¡ f . 

 

Then, by (i), we have 
£ ¤ 

E f  ¸ 0, 
 

for all ¹¡strongly convex function. By Lemma 3.1.1, we have 
 

£ ¤ 
E f  ¸ 0, 

 

for all convex function, therefore by Theorem 2.3.2 (ii) holds. Now, assume that (ii) holds. 
Then, by Theorem 2.3.2, we have 

£ ¤ 

E  f ¸ 0 
 

for all convex functions. Thus, by Lemma 3.1.1, we have 
 

£ ¤ 
E  f ¸ 0 

 

for all ¹¡strongly convex functions. 
 

 

 

Theorem 3.2.1 extends a result given in [5, Theorem 2.3] for convex functions to the case of 

strongly convex functions. 
 

 

We already know how one can estimate the approximation error A[ f ] ¡ f for a function 

possessing Lipschitz continuous gradient; what happens if we know in advance that the 
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function is, moreover, strongly convex? 
 

The answer is given by the following Corollary, which is a direct consequence of Theorem 

3.2.1. 
 

 

Corollary 3.2.2 Let ¹ be a positive real number and let A : C 1(-) ! C (-) be a linear operator. 

Assume that for every convex function g 2 C 1,1(-), we have 
 

A[g ](x) ¸ g (x), (x 2 -). (3.6)
 

Then the following error estimates hold for every ¹-strongly convex function f 2 S¹
1,1(-) : 

 

¹ 2

](x) · A[ f ](x) ¡ f (x) · 

L(rf ) 2

](x),  (x 2 -), 

 

 

EÅ[k.k

 

EÅ[k.k (3.7)2 2 

where EÅ[k.k2] :Æ A[k.k2] ¡k.k2. Equalities in (3.7) are attained for all functions of the form 
 

f (x) Æ a(x) Å 

¹
kxk2, (3.8)2

 

 

where a(¢) is any affine function. 
 

 

Proof The error upper bound is a direct consequence of Theorem 3.2.1. So it remains to 
check that the error lower bound holds, too. Assume that the statement (i ) holds for every 

convex function and let us fix a ¹-strongly convex function f . Then, since g Æ f ¡ ¹
2 k.k2 is 

convex, statement (i ) and the linearity of A imply 
 

f ¡ 
¹
 k.k2 · A[ f ] ¡ 

¹
 A[k.k2],  

22 
 

 

or equivalently 
¹
 
¡
A[k.k2] ¡k.k2¢

· A[ f ] ¡ f . 
 

2 
 

This shows that ¹
2 EÅ[k.k2] estimates A[ f ] ¡ f from below and completes the proof of the 

lower bound. Finally, since A reproduces linear and constant functions, the case of equality 
can be confirmed by a little algebra.  

 

 

 

According to the error estimates (3.5) and (3.7), Corollary 3.2.2 provides a better error lower 

bound than Theorem 3.2.1 for strongly convex functions with Lipschitz continuous gradients. A 

slight modification of Theorem 3.2.1 given below addresses the case in which the linear 

operator A, we wish to use, approximates all convex functions from below. Indeed, in this 

setting our characterization of those operators can be stated as follows: 
 
 

Theorem 3.2.3 Let ¹ be a positive real number and let A : C 1(-) ! C (-) be a linear operator. 
The following statements are equivalent: 
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(i ) For every ¹-strongly convex function g 2 C 1,1(-), we have   

 A[g ](x) · g (x),  (x 2 -).      (3.9)

(i i ) For every function f 2 C 1,1(-), we have    

 

¯
A[ f ](x) ¡ f (x) ¯  ·L(rf ) 

¡
kxk 2 2 ](x)

¢
,  (x 2 -). (3.10)

 2   ¡ A[k.k  
 ¯  ¯           

 

 

 

Note that in the error estimates (i i ), established in Theorems 3.2.1 and 3.2.3, are valid for all 

functions in C 1,1(-), as long as statements (i ) hold for the class of ¹-strongly convex functions. 

We remark here that similar arguments to those used in Corollary 3.2.2 will derive the 
following refined error estimates: 
 
 

Corollary 3.2.4 Let ¹ be a positive real number and let A : C 1(-) ! C (-) be a linear operator. 

Assume that for every convex function g 2 C 1,1(-), we have 
 

A[g ](x) · g (x),  (x 2 -).       (3.11)

Then the following error estimates hold for every ¹-strongly convex function f 2 S¹
1,1(-) : 

¹ 2 

](x) · f (x) ¡ A[ f ](x) · 

L(rf )  2 

](x),  (x 2 

  

  

E¡[k.k 

   

E¡[k.k 

 

-), (3.12) 2  2  

where E¡[k.k2] :Æ k.k2 ¡ A[k.k2]. Equalities in (3.12) are attained for all functions of the form 
 

f (x) Æ a(x) Å 

¹
kxk2, (3.13)2 

 
where a(¢) is any affine function. 
 

 

3.3 Applications to the barycentric approximation schemes 
 
In this section, we are going to consider a multivariate version different from the tensor product 
construction that in the univariate case, d Æ 1, yields the operator defined by (3.1). Indeed, 
the simple univariate operator (3.1) can be extended to arbitrary higher-dimensional 

polytopes. To this end, let Xn Æ {xi }
n

iÆ0 be a given finite set of pairwise distinct points in 

- ½ Rd , with - Æ conv(Xn ) denoting the convex hull of the point set Xn . We are interested in 
approximating an unknown scalar-valued continuous ¹-strongly convex function f : - ! R 
 

from given function values f (x0), . . . , f (xn ) sampled at Xn . In order to obtain a simple and 
stable global approximation of f on -, we may consider a weighted average of the function 
values at data points of the following form: 
 

n  

Bn [ f ](x) Æ 
X

 ¸i (x) f (xi ), (3.14)
i Æ0 
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or, equivalently, a convex combination of the data values f (x0), . . . , f (xn ). This means that 

we require the system of functions ¸ :Æ {¸i }
n

iÆ0 to form a partition of unity, that is, for all x 2 -
, we have 

 

n ¸i (x) ¸ 0, ,i Æ 0, . . . ,n, (3.15) 

X ¸i (x) Æ 1. (3.16) 
i Æ0 

 

In addition, we shall also impose the set of functions ¸ to satisfy the first-order consistency 

condition: 
 

n  

x Æ 
X

 ¸i (x)xi ,  (x 2 -). (3.17)
i Æ0 

 

We will call any set of functions ¸i : - ! R, i Æ 0, . . . ,n, barycentric coordinates if they satisfy 
the three properties (3.15), (3.16) and (3.17) for all x 2 -. In view of these properties, we shall 

refer to the approximation schemes Bn as barycentric approximation (schemes). Recall that 
these coordinates exist for more general types of polytopes. The first result on their existence 
was due to Kalman [13, Theorem 2] (1961). Let us go back now to the simple case of a 
univariate function f for the computation of a barycentric approximation function created in this 

manner. To do this, we consider a subinterval [xi , xi Å1], then it is easily seen that the 

barycentric coordinates of a point x of [xi , xi Å1] with respect to v0 :Æ xi , v1 :Æ xi Å1 are 
given respectively as follows: 

 

¸i ,0(x) Æ 
xi Å1 ¡ x 

,x
i Å1 

¡
 
x

i 

¸i ,1(x) Æ 
x ¡ xi 

.
x

i Å1 
¡
 
x

i     
This shows that in one dimension the barycentric approximation function (3.14) is nicely 
reduced to the simple form given in (3.1). Hence, our proposed method of approximation 
scheme (3.14) can be viewed as a multivariate generalization of the approach in the 
univariate case.  
For a ¹-strongly convex function f 2 S¹

1,1(-), the symbol 
 

n  

En [ f ](x) :Æ En [ f ,¸](x) Æ 
X

 ¸i (x) f (xi ) ¡ f (x), (x 2 -), (3.18)
i Æ0 

 
will be reserved exclusively to denote the incurred approximation error between f and its 

barycentric approximation Bn [ f ]. 
 

 
We begin our analysis by giving general identities, which show simple expressions of the error 
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En [k.k2] in terms of barycentric coordinates. 

 

Lemma 3.3.1 The error En [k.k2] when approximating the quadratic function k.k2 by the 

barycen-tric approximation operator Bn [k.k2] can be expressed in terms of the barycentric 
coordinates as: 
 

En [k.k2](x)  Æ 1  n   n °xi ¡ x j ° 2 (3.19)
2  i̧ (x) j̧ ( x)  

    
X X 

   

    

i Æ0 j Æ0 
°

 

°
  

  n    

         

Æ
X

 ¸i (x)kx ¡ xi k
2 .     (3.20)

 i Æ0      

 

Proof In order to show (3.19), we use the affine precision property of the barycentric coordi-

nates. Indeed, from (3.16) and (3.17) we immediately deduce 
 

n   n (x)¸j (x)  xi ¡ x j ° 2    

i̧    

X X  °      

n n °  °    

i Æ0 j Æ0   

kxi k
2 ¡2 xi , x j Å x j 2

´
Æ

 i Æ0 j Æ0 
¸
i 
(x)¸

j 
(x)³

X X 
   

- ® ° ° 

       ° ° 
* + 

n ¡2 n n n  2
Æ  ¸i (x) kxi k2 ¸i (x)xi ,  ¸j (x)x j  Å   ¸j (x)  x j

X 
 

X X X ° °  

i Æ0 
 

i Æ0 j Æ0 j Æ0 
° ° 

   

Ã ! 

Æ 2

n 
X

 ¸i (x)kxi k
2 ¡kxk2  Æ 2En [k.k2](x). 

i Æ0 

 
Moreover, it is easily verified that 
 

°xi ¡ x j 
°

2 Æ kx ¡ xi k
2 Å2

-
xi ¡ x, x ¡ x j ®Å °x ¡ x j 

°
2 . 

° °   ° ° 
Applying this, yields (3.20) and completes the proof of the Lemma.  
 
 

The following Lemma shows that the operator Bn approximates every strongly convex function 

from above. Moreover, it now allows us to prove a sharp lower bound for the error of any 
strongly convex function. 
 
 
Lemma 3.3.2 Let ¹ be a positive real number. Then, the barycentric approximation operator 

Bn approximates every ¹-strongly convex function from above. Moreover, for every ¹-strongly 
convex function f , it holds 
 

 n  

¹ X
 ¸i (x)kx ¡ xi k2 · Bn [ f ](x) ¡ f (x),  (x 2 -). (3.21)

 

2
 i Æ0   
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Equality in (3.21) is attained for all functions of the form  

f (x) Æ a(x) Å 

¹ 
kxk2, (3.22)

  

2 

 

where a(¢) is any affine function. 
 

 

Proof Let us fix f a ¹-strongly convex function and define h :Æ f ¡ ¹2 k.k2 . Since, h is convex 
then by the Jensen-convexity of h, we get 

 

 

n 
X 

h(x) · ¸i (x)h(xi ), (x 2 -). 
 

i Æ0 
 

Or equivalently 

f (x) ¡ 
¹
 kxk2 · 

Xn ¸i (x) 
2

i Æ0 
 

Thus, we get 
2  

Ãi Æ0 i̧ kxi k2 ¡kxk2 

¹ n  

  X  

 

 

³

¹ 

´
,  (x 2 

 

f (xi ) ¡ 2 kxi k
2

-).
  

! 
n 

X 

· ¸i (x) f (xi ) ¡ f (x). 
i Æ0 

 

This inequality, combined with Lemma 3.3.1, implies that the required identity is satisfied. The 

case of equality is easily verified.  
 

 

The following Lemma gives an upper bound for the absolute value of the error of any function 

possessing Lipschitz continuous gradient: 
 

 

Lemma 3.3.3 The following error estimate holds for every function f 2 C 1,1(-) : 

¯      ¯  L(rf ) n i i  
2 

 

¯  Bn [ f ](x) ¡ f (x) ¯ · 2 

i Æ0 

¸ (x)kx ¡ x k ,  (x 2 -). (3.23) 

           

Equality in (3.23) is attained for all functions of the form  

f (x) Æ a(x) Å 

¹ 
kxk2, 

   

(3.24) 
     

2    

 

where a(¢) is any affine function. 
 

 

Proof This Lemma an immediate consequence of Corollary 3.2.4 and Lemma 3.3.1. The case 

of equality is easily verified.  
 

 

Now everything is set for giving an upper bound and a lower bound for the error estimate Bn [ 

f ] ¡ f of any ¹-strongly convex function f , having Lipschitz continuous gradient. 
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Theorem 3.3.4 Let ¹ be a positive real number. Then, for every ¹-strongly convex function f 2 

S¹
1,1(-) and any x 2 -, it holds: 

 ¹ n 
  2 L(rf ) n 2  

  X 

¸i (x)kx ¡ xi k · Bn [ f ](x) ¡ f (x) ·

   X 

¸i (x)kx ¡ xi k . (3.25) 

2
 i Æ0 2  i Æ0 

Equality in (3.25) is attained for all functions of the form   

f (x) Æ a(x) Å 

¹ 
kxk2, 

     

(3.26)
      

2      

 

where a(¢) is any affine function. 
 

 

 

Proof This is an immediate consequence of Lemmas 3.3.2, 3.3.3 and Corollary 3.2.4. The 

case of equality is easily verified.  
 

 
Remark 3.3.5 In the univariate case, a simple inspection of the error estimates (3.25) reveals 

that (3.25) is nicely reduced to the simple form given in (3.2). 
 
 

3.4 Numerical experiments 
 
One possible natural approach to construct an interesting class of particular barycentric 
approximations would be to simply construct a triangulation of the polytope - - the convex hull 

of the data set Xn Æ {xi }niÆ0- into simplices such that the vertices vi of the triangulation 

coincide with the data points xi . After that, one can use the standard barycentric coordinates 

for these simplices. As a result, each triangulation of the data set Xn generates a barycentric 
approximation. Hence, there exists at least one barycentric approximation of type (3.14) which 
is generated by a triangulation. A very natural triangulation DT (-) of - is the one which uses 

only the points of Xn as triangulation vertices and such that no point in Xn lies inside the 
circumscribing ball of any simplex of DT (-). Such a triangulation exists and is called a 

Delaunay triangulation of - with respect to Xn . 

 

Let T (-) be any triangulation of the point set Xn . Then ¸T (-) :Æ ¸i
T (-) 

n  

i  0 denotes the set 

of barycentric coordinates associated with each xi of Xn . We now
n

list the
o 

basicÆ 
properties of 

¸
T

 
(-)

 of which the following are particularly relevant to us: 
 
 

(1) They are well-defined, piecewise linear and nonnegative real-valued continuous func-

tions. 
 

(2) The function ¸Ti 
(-) has to equal 1 at xi and 0 at all other points in X n \ {xi }, that is, ¸Ti 

(-

)(x j ) Æ ±i j ( ± is the Kronecker delta). 
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3.4. Numerical experiments 
 

 

 

We denote by 
n 

E n
T (-)[ f ](x) :Æ 

X
 ¸Ti 

(-)(x) f (xi ) ¡ f (x). 
i Æ0 

 

As regard the error estimates (3.25), it was shown that Delaunay triangulation is the triangu-

lation that minimizes the approximation error En
T (-)[k.k2] among all triangulations with the 

same number of vertices, see [5, Theorem 4.10]. This optimality condition also characterizes 
Delaunay triangulation. 

 

© ªN 

Suppose a set of scattered data (xi , yi , fi ) i Æ1, which are assumed to be sampled from a 

strongly convex function f : - ½ R2 ! R. Taking the N scattered points as nodes, a barycentric 
approximation is constructed in domain - using Delaunay triangulation. We now illustrate this 
approach by the following numerical example: 

 

 

Example 3.4.1 We take the following strongly convex function: 
 

f (x, y) :Æ 100((x ¡0.4)2 Å(y Å0.5)2) Å400 exp((x ¡0.5)2 Å(y ¡0.5)2), 
 

with the restriction of domain D :Æ [0, 1] £[0, 1]. The data is generated from the above 

function and it is based on 21 equally spaced nodes on each edge of the boundary of square 

D and 216 nodes in the square D. The nodes in the domain are placed randomly selected 

from D while the nodes on the boundary is equally spaced. From Figure 3.1 it is clear that the 

strong convexity of f has been preserved and there is no visual difference between the test 

function and its piecewise-linear interpolant. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – The figure on the left shows the graph of f produced by MAPLE, and using 
MAT-LAB the graph on the right is for the piecewise-linear interpolation of the data 
generated from f . 
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On the approximation of strongly convex functions by an upper or lower operator 
 

 

 

3.5 Numerical examples and MSE error 
 

In order to give numerical illustrations of the performance of our implementation of barycen-tric 

approximation, we apply the method to the reconstruction of four test functions fk ,k Æ 1, . . . 

,4, when the domain - is a square or a cube, and the function fk exhibits the following features: 
it is sufficiently regular, it is strongly convex, and can be evaluated at any point of the domain. 
In addition to these, as has been mentioned above, the barycentric approximation gives in 
practice also a polynomial interpolation technique. For each of the four test functions 
 

f k , we take N scattered points {xi }i
N

Æ1, which are randomly selected from -, and construct 

the operator BN [ fk ]. We then determine the mean square error (M SE) by evaluating 
 

v 
N

W  fk (yi ) ¡BN [ fk ](yi )  2 ,
 1 ¡ NW ¢

  

ui    

u Æ 
       

t X       

at NW other randomly chosen points 
©

yi 
ª
i
N

ÆW1 from -. The results are shown in Tables 3.1, 

3.2, 3.3 and 3.4 clearly demonstrate that for all test functions fk the MSE decreases with 
increasing numbers of nodes as N increases. It can also be observed from Figures 3.2 and 

3.3, that the strong convexity of f1 and f2 has been preserved and there is almost no visual 
difference between the test function and its piecewise-linear interpolant. These examples are 
designed to follow the exact steps of methodology in this chapter. 
 
 
 
Example 3.5.1 In the two following numerical tests for our barycentric approximation we will 

take the following two strongly convex functions. 
 

f1(x, y) Æ 0.2
¡
(x ¡0.4)2 Å(y Å0.5)2

¢
Å0.3exp 

¡
(x ¡0.5)2 Å(y ¡0.5)2

¢
, 

 
and 
 
 

f 2(x, y) Æ 0.2
¡
(x ¡0.4)2 Å(y Å0.5)2

¢
, 

 
 
 
with the restriction of domain D :Æ [0, 1] £[0, 1]. In both numerical tests, the data are generated 
from the above functions. However, the scattered points are chosen such that there exist 21 
equally spaced nodes on each edge of the boundary of square D and 216 nodes in the square D. 
The nodes in the domain are positioned randomly chose from D while the nodes on the boundary 

is equally spaced. Figures 3.2 and 3.3 on the left are presented the graphs of f1 and f2 

respectively, while Figures 3.2 and 3.3 on the right are described the graphs for linear interpolation 

of scattered data generated from the functions f1 and f2 respectively. 
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3.5. Numerical examples and MSE error 
 

 

Table 3.1 – MSE for a function f1. 
 

 

 

Function Number of scatter data Nw M SE 
f1(x, y) 50 9 5.8 £10¡3 

 250 9 6.8005£10¡4 

 1300 9 5.6326£10¡5 

 Table 3.2 – MSE for a function f2. 

    

Function Number of scatter data Nw M SE 
f2(x, y) 50 9 1.8£10¡3 

 300 9 1.9338 £10¡4 

 700 9 6.4765£10¡5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 – The figure on the left shows the graph of f1 and the graph on the right for 

the piecewise-linear interpolation of the data generated from f1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – The figure on the left shows the graph of f2 and the graph on the right for 

the piecewise-linear interpolation of the data generated from f2. 
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On the approximation of strongly convex functions by an upper or lower operator 
 

 

From Figs. 3.2 and 3.3 it is clear that the strong convexity of f1 and f2 has been preserved 

and there are no visual differences between the test functions and their linear interpolants. 
 

 

 

 

 

Example 3.5.2 We take the following strongly convex function: 
 

f 3(x, y, z) Æ 0.1
¡
(x ¡0.4)2 Å(y Å0.5)2 Å(z Å0.3)2

¢
, 

 

the single-valued multivariate function above is defined in domain (D :Æ [0,1] £[0,1] £[0,1]), 
the accuracy of our approach illustrated here only by the tables (see the tables 3.3 and 3.4) of 

mean square error (MSE) for different numbers of scattered data for approximated functions. 

Note that the number of required scattered points increases in higher dimensions, in order to 

maintain the accuracy of the interpolated value. 

 

Table 3.3 – MSE for a function f3. 
 

 

 

Function Number of scatter data Nw M SE 
f3(x, y, z) 200 1 1.193£10¡1 

 400 1 8.26 £10¡2 

 8500 1 3£10¡3 

 

 

 

 

 

Example 3.5.3 In the fourth example the data points is generated from the following test 
function: 
 

f 4(x, y, z) Æ 0.1
¡
(x ¡0.4)2 Å(y Å0.5)2 Å(z Å0.3)2

¢
Åexp(x ¡0.5)2 

Table 3.4 – MSE for a function f4. 

 

 

Function Number of scatter data Nw M SE 
f4(x, y, z) 98 1 2.418£10¡1 

 700 1 3.77£10¡2 

 8500 1 3.5£10¡3 
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4 Numerical integration under certain 
type of convexity 

 

 

In this chapter, we shall extend some results of the papers [1, 2, 3, 4] by introducing a new 
class of cubature formulas for numerical integration (or multidimensional quadrature), that 
approximate from above (or from below) the exact value of the integrals of every function 
having a certain type of convexity. First, we would like to mention that all these papers were 
established in the context of the classical notion of convexity. Here, our objective is to extend 
the ideas given there under certain types of generalized convexity. To this end, this chapter is 
organized as follows: In Section 4.1, we first present some definitions, notations and then 

state two characterization results of any linear functional C 1,1(-) ! R, which is nonegative on 

the set of convex functions. We define two new classes of cubature formulas, which we call 
them strongly positive, respectively negative, definite cubature formulas. We then apply our 
general results to the case when the functional is the error functional of our cubature formulas. 

More precisely, we show that, for functions belonging to C 1,1(-), the error estimates based on 

such cubature formulas may always controlled by the Lipschitz constants of the gradients, the 
different types of convexity and the error associated with using the quadratic function. In 
addition, knowing whether the function to be integrate satisfies the classical convexity or 
strong convexity, we establish sharp upper as well as lower refined bounds for the error 
estimates. In Section 4.2, for strongly positive definite cubature formulas, we establish 
characterization results between them and the partition of unity of the integration domain, but 
also show how we can construct them using decomposition method for domain integration. In 
Section 4.3, for strongly negative definite cubature formulas, we characterize them in two 
different ways: the first one by certain partitions of unity and the second one by a class of 
positive linear operators. Further, we show that there is a main difference between them and 
strongly positive definite cubature formulas. Indeed, we will show that the latter (strongly 
negative definite cubature formulas) can exist only if the domain of integration is a convex 
polytope. Finally, Section 4.4 will provide some numerical examples to illustrate the efficiency 
of our cubature formulas. 
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Numerical integration under certain type of convexity 
 

 

 

4.1 Notation, Terminology and preliminary results 
 

We first introduce some notations, which follow closely those of [1, 2, 3]. Let - be a subset of 

Rd . As usual, we mean by -± the interior of -. We say that - is measurable if it has a finite 

Lebesgue measure, which we denote by j- j. For measurable -, the class L1(-) comprises all 
Lebesgue integrable functions f : - ! R. A property holds almost everywhere (abbreviated by 
a.e.) on - if it holds on - except for a set of measure zero. Furthermore, we denote by C (-) the 

class of all real-valued continuous functions on - and by C k (-), where k 2 N, the subclass of 

all functions which are k times continuously differentiable. It is convenient to agree that C 0(-) 

:Æ C (-). We continue to denote by k.k the Euclidean norm in Rd and hx, yi the standard inner 

product of x, y 2 Rd . 

 

We start by providing two characterization results of any linear functional C 1,1(-) ! R, which is 

nonnegative (or nonpositive) on the set of convex functions. We will be mainly interested in 
the case where the functional R is the remainder of our cubature formulas, as we will see later 
in this chapter. The first characterization is given in the following: 
 

 

Lemma 4.1.1 Let - ½ Rd be a compact convex set. Let R : C k (-) ! R, where k 2 {0,1}, be a 
linear functional, ¾ 2 {¡1,1} and let ¹ be a positive real number. The two following statements 
are equivalent: 
 

 

(i) For every convex function f 2 C (-), we have  

 ¾R 
£

f 
¤

¸ 0 (4.1)

(ii) For every ¹-strongly convex function g 2 C (-), we have  

  ¹  

 

¾R 
£

g 
¤

¸ 

 

¾R 
£
k.k2

¤ 
(4.2) 2

Equalities are attained for all functions of the form 
 

g (x) :Æ a(x) Å 
¹
k.k2, 

 

2 
 

where a(¢) is any affine function. 
 

 

Proof First we prove that (i) implies (ii). Let g 2 C (-) be any ¹-strongly convex function, since 
by Theorem 1.2.5, we know that 

g ¡ 
¹
k.k2 
2 

 
 

is convex function, then we can apply (4.1) to this function to immediately get 
 

¾R 
h

g ¡ 
¹
k.k2

i
¸ 0. 

 

2 
 

86 



4.1. Notation, Terminology and preliminary results 
 

 

 

Hence from linearity of R, we have 
 

¾R 
£
g 

¤
¡ 
¹
¾R 

£
k.k2

¤
¸ 0, 

 

2 
 

or equivalently 

¾R 
£
g 

¤
¸ 
¹
¾R 

£
k.k2

¤
. 

 

2 
 

This shows that (ii) holds. Conversly, we now prove that (ii) implies (i). Let f 2 C (-) be any 
convex function, since 

g :Æ f Å 
¹
k.k2, 

2 
 
 

is ¹-strongly convex function, then we can apply (4.2) for this function to obtain 
 

¾R 
h

f Å 
¹
k.k2

i
¸ 
¹
¾R 

£
k.k2

¤
, 

 

2 2 
 

thus, again using linearity of R, we have 
 

¾R 
£
f 
¤
Å 

¹
¾R 

£
k.k2

¤
¸ 
¹
¾R 

£
k.k2

¤
. 

 

2 2 
 

Hence, the desired result of (ii) follows. 
 

 

 

If in addition, the functions belong to C 1,1(-), then our second characterization result is given 
in the following: 

 

 

Lemma 4.1.2 Let - ½ Rd be a compact convex set. Let R : C k (-) ! R, where k 2 {0,1}, be a 

linear functional and let ¾ 2 {¡1, 1}. The two following statements are equivalent 

 

(i) For every convex function g 2 C 1,1(-), we have  

 ¾R 
£

g 
¤

¸ 0.      (4.3) 

(ii) For every f 2 C 1,1(-) with L(rf )¡ Lipschitz gradient, we have  

 

jR 
£

f 
¤

j · ¾R 
£

k.k 

2

¤
.

L(rf ) 

. (4.4)   2  

 Equality is attained for all functions of the form  

 f (x) :Æ a(x) Åck.k2,  (4.5) 

 where c 2 R and a(¢) is any affine function.  

 

 

Proof First we prove (i) implies (ii). Let f be any function from C 1,1(-) with Lipschitz constant 
 

87 



Numerical integration under certain type of convexity 
 

 

 

L(rf ). Define the following two functions 
 

g § :Æ k.k2 
L(rf

 
)
 § f . 2 

 

 

 

Then, according to [4, proposition 2.2], we know that both of these functions belong to C 1,1(-) 
and are also convex. Hence, by (4.3), we have 
 

£ ¤ 

¾R g§ ¸ 0. 
 

Then, by linearity of R and a simple manipulation we find that 
 

¡¾R 
£

k.k 

2 

¤

L(rf ) 

· R 
£

f 
¤

· ¾R 
£

k.k 

2

¤

L(rf ) 

.  2   2  

This is equivalent to (4.4). 
 

 

For the statement on the occurrence of equality, it is enough to note that a linear functional R 

satisfying (4.3) for all convex functions must vanish for affine functions. Now, let us assume 

that (ii) holds. Then, we deduce that 
 

¾R 
£

k.k2¤
¸ 0, (4.6)

and that 
 

¾R 
·
k.k 

2 L(rf )

¡ f 
¸
¸ 0. (4.7)2 

 
 

Let g 2 C 1,1(-) be any convex function and set 
 

f :Æ 
L(rg

 
)
 k.k2 ¡ g 

. 2 
 

 

Then, according to [4, proposition 2.2], we have 
 

f 2 C 1,1(-) and L(rf ) · L(rg ). (4.8)

 

Since 

g Æ 
L(rg

 
)
 k.k2 ¡ f , 

2 
 
 

it can be written as follows 
 

g Æ 
µ

k.k2 
L(rf

 
)

 ¡ f 
¶
Å k.k2 

µL(rg
 
)

 ¡ 
L(rf

 
)

 
¶
, 

 

2 2 2 
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4.1. Notation, Terminology and preliminary results 
 

 

 

we therefore obtain                

¾R g  Æ ¾R 
·
k.k 2 L(rf ) ¡ f 

¸
Å¾R k.k 2 ¤ µ L(rg ) ¡ L(rf ) 

¶
.

2   2  2 

£ ¤      £        

 

 

Finally, by combining (4.6), (4.7) and (4.8) we can conclude that (i) is valid. 
 

 

 

We now define our new general class of cubature formulas, which we formulate as follows: 

 

Definition 4.1.3 Let - ½ Rd be a compact set and let ¹ be a positive real number. For n points 
 

x 1, ..., xn 2 -, called nodes, and associated positive numbers A1, ..., An , we say that 
© ª  

 (Ai , xi ) : i Æ 1, ...,n , (4.9)
 

defines the ¹-strongly definite cubature formula 
Z n

 
 

- f (x)d x Æ Ai f (xi ) ÅR f  , (4.10) 
   

i Æ1 

£ ¤ 
 

   X  

if there exists ¾ 2 {¡1, 1} such that   

¾R 
£

f 
¤

¸ 

¹ 

¾R 
£
k.k2

¤
, 

 

(4.11) 

   

2   

for all ¹-strongly convex functions f 2 C (-). 

 

In the case of ¾ Æ 1, we say that (4.10) is a ¹-strongly positive definite cubature formula or a 
¹-strongly pd-formula for short. We also call (4.9) a ¹-strongly pd-system, which is said to be of 

length n if the points x1, ..., xn are distinct. 
 

For ¾ Æ ¡1, a corresponding terminology is used with ‘positive’ replaced by ‘negative’ and ‘pd’ 

replaced by ‘nd’. 
 

 

Remark 4.1.4 Note that a ¹-strongly positive or negative definite cubature formula as specified in 

Definition 4.1.3 is always of order two. In fact, by Lemma 4.1.2 inequality (4.4) the functional 
 

R vanishes for affine functions and so the order is at least two. However, if the order were 

greater than two, then (4.4) would imply that R 
£

f 
¤

Æ 0 for all f 2 C 1,1(-). Recall that, in the 
univariate case, a quadrature rule is strongly positive definite or strongly negative definite if 
and only if its second Peano kernel is greater than zero or less than zero, respectively; see 
[5,C hap.I I .4] or [6,C hap.4.3].  
In the theory of inequalities, inequality (4.11), with R defined by (4.10) and valid for all ¹-

strongly convex functions, has also been called lower (resp., an upper) Hermite-Hadamard 

inequality when ¾ Æ 1 (resp., ¾ Æ ¡1). It is clear, because every strongly convex function is 

convex function, by using [7, Theorem 2.3] that the upper Hermite-Hadamard inequalities or, 

equivalently, ¹-strongly negative definite cubature formulas, can exist only when - is a compact 

convex polytope. 
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We now present a characterization of our class of cubature formulas in terms of their 

associated error functionals. Indeed, we show that for functions in C 1,1(-), the error estimates 

based on such cubature formulas are always controlled by the Lipschitz constants of the 
gradients, the strong convexity parameter and the error associated with using the quadratic 
function. This result is a direct consequence of Lemmas 4.1.1 and 4.1.2. 
 

 

Theorem 4.1.5 Let - ½ Rd be a compact convex set. A cubature formula (4.10) is ¹-strongly 

positive or negative definite if and only if for all f 2 C 1,1(-), the error functional associated to 
the cubature formula satisfies 
 

¹ 

¾R 
£

k.k 

2

¤
· ¾R £f 

¤
· ¾R 

£
k.k 

2

¤.

L(rf ) 

, (4.12)2    2  

with ¾ Æ 1 or ¾ Æ ¡1, respectively. In (4.12), equality is attained for all functions of the form 
 

f (x) :Æ a(x) Å 
¹
k.k2, 

2 
 

 

where a(¢) is any affine function. 
 

 

4.2 Strongly positive definite cubature formulas 
 

4.2.1 Construction and Characterization of Strongly Positive Definite Cubature 
Formulas 

 

Our first construction method of strongly positive definite cubature formulas is based on 

domain decomposition of the domain of integration, which we define as follows: 

 

Definition 4.2.1 Let - ½ Rd be a measurable set of finite positive measure. A system {-1, ...,-n 

} of subsets is called a decomposition of - if : 

 

(i ) -i is measurable and j-i j È 0 for i Æ 1, ...,n; 
 

(i i ) j-i \-j j Æ 0 if i 6Æj ; 
 

(i i i ) -1 [... [-n Æ -. 
 

 

Our first construction method is given by the following Theorem. 

 

Theorem 4.2.2 Let - ½ Rd be a compact convex set of positive measure and let {-1, ...,-n } be 

a decomposition of -. Set 
 

1 

Z
-i 

 

Ai :Æ j-i j  and  xi :Æ 

 

xd x  (i Æ 1, ...,n). j-i j 
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Then, for any ¹ È 0, {(Ai , xi ) : i Æ 1, ...,n} defines a ¹-strongly positive definite cubature 

formula on -. 
 

 

 

 

Proof Since - is convex, it is easy to see that xi 2 -±; however, xi need not lie in -i . Now, let f 2 

C (-) be ¹-strongly convex function. Then at each point y 2 -±, the graph of f is supported from 

below by hyperplane [8, Definition 2.1.2, p.63]. In particular, there exist vectors a1, a2, ..., an 2 

Rd such that 
 

f (x) ¸ f (xi ) Å hai , x ¡ xi i Å
¹ 

kx ¡ xi k
2, (i Æ 1, ...,n). 

 

(4.13)
   

2  

Integrating both sides over -i and noting that   

 

Z
-i f (x)d x ¸ 

Z
-i f (xi )d x Å hai ,

Z 

¹ 

Z
-i kx ¡ xi k

2d x, 

 

-i 
(x

 
¡

 
x

i 
)d

 
xi Å 

 

 

 2
and because, we have     

Z
-i (x ¡ xi )d x Æ 0, 

  

         

then, we conclude that            

Z
-i f (x)d x ¸ f (xi )

Z
-i d x Å

¹ 
Z

-i kx ¡ xi k
2d x. 

 

(4.14)

   

2  

 

In view of the fact that 
 

 

kx ¡ xi k
2 Æ kxk2 ¡2hx, xi i Å kxi k

2. 
 

it follows that        

Z
-i kx ¡ xi k

2d x  Æ
Z

-i kxk2d x ¡2 
Z

-i hx, xi id x Å
Z

-i kxi k
2d x (4.15) 

 Æ
Z

-i kxk2d x ¡2h
Z

-i xd x, xi i Å
Z

-i kxi k
2d x  

 Æ
Z

-i kxk2d x ¡2hxi j-i j, xi i Å
Z

-i kxi k
2d x  

 

Æ
Z 

kxk2d x ¡2j-i jkxi k
2 Å kxi k

2j-i j 
 

 -i  

 

Æ
Z 

kxk2d x ¡ j-i jkxi k
2. 

   

 -i    

 

Thus from (4.14), we have 
 

Z
-i 

¹

(
Z

-i kxk2d x ¡ j-i jkxi k
2). f (x)d x ¸ j-i jf (xi ) Å 2
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Hence, summing over i from 1 to n, we arrive at 

Z- n ¹ (
Z

- 
f (x)d x ¸  i  1 Ai f ( xi )  Å 2  

 X    

 Æ    

or, equivalently,     

Z
- n ¹ (

Z
- 

f (x)d x ¡i  1 Ai f ( xi )  ¸ 2  

 X    

 Æ    

 

 

 

 

n 

kxk2d x ¡ 
X

 Ai kxi k
2), 

i Æ1 
 

 

 

n 

kxk2d x ¡ 
X

 Ai kxi k
2). 

i Æ1 

 

Finally, we may conclude as required that 
 

R 
£
f 
¤
¸ 
¹
R 

£
k.k2

¤
. 

 

2 
 

 

 

 

 

In order to describe the second constructive method, we introduce the following notion. 

 

Definition 4.2.3 Let - ½ Rd be a measurable set of finite positive measure. A system {'1, ...,'n 

} of real-valued functions is called a partition of unity on - if: 

 

(i) 'i 2 L1(-) and 
R

- 'i (x)d x È 0 for i Æ 1, ...,n; 
 

(ii) 'i (x) ¸ 0 a.e. on -, for i Æ 1, ...,n;  

(iii) '1(x) Å... Å'n (x) Æ 1 a.e. on -. 
 

 

Our second construction method is given by the following Theorem. 

 

Theorem 4.2.4 Let - ½ Rd be a compact convex set of positive measure and let {'1, ...,'n } be 

a partition of unity on -. Set 
 

Ai :Æ 
Z

- 'i (x)d x 

1

Z
- x'i (x)d x  (i Æ 1, ...,n). and  xi :Æ 

 

Ai 

Then {(Ai , xi ) : i Æ 1, ...,n} defines a ¹-strongly positive definite cubature formula on -. 
 

 

Proof The proof is very similar to that of Theorem 4.2.2. Again, we first observe that xi 2 -± for 
i Æ 1, ...,n. Hence, for any ¹-strongly convex function f 2 C (-), there hold n inequalities of the 

form (4.13). They are preserved if we multiply both sides by 'i and integrate over -. Actually, in 
the present case we immediately get 
 

Z - f (x)'i (x)d x ¸ 
Z 

- f (xi )'i (x)d x Å hai ,
Z 

¹ 

Z
- 'i (x)kx ¡ xi k

2d x. -(x ¡ xi )'i (x)d xi Å 

 

 

2
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  4.2.  Strongly positive definite cubature formulas
       

In view of 

Z
-(x ¡ xi )'i (x)d x Æ 0, 

 

then, 
 

  

¹ 
 

    

Z
- f (x)'i (x)d x ¸ f (xi )

Z
- 'i (x)d x Å 

 

Z
- 'i (x)kx ¡ xi k

2d x, 

 

2  

or equivalently       

Z
- f (x)'i (x)d x ¸ Ai f (xi ) Å 

¹ 
Z

- 'i (x)kx ¡ xi k
2d x. (4.16)

 

2 

Since, we know that       

kx ¡ xi k
2 Æ kxk2 ¡2hx, xi i Å kxi k

2,  

then       

Z
- kx ¡ xi k

2'i (x)d x Æ 
Z

- kxk2'i (x)d x ¡2 
Z

-hx, xi i'i (x)d x Å
Z

- kxi k
2'i (x)d x (4.17)

 

Z Z Z 

Æ kxk2'i (x)d x ¡2h x'i (x)d x, xi i Å kxi k
2'i (x)d x 

- - - 

 

Z Z 
Æ kxk2'i (x)d x ¡2hxi Ai , xi i Å kxi k

2
 'i (x)d x 

- - 
Z 

Æ kxk2'i (x)d x ¡2Ai kxi k
2 Å kxi k

2 Ai 
- 

Z 
Æ kxk2'i (x)d x ¡ Ai kxi k

2. 
- 

 

Then (4.17) may simply rewritten as follows 
 

 

Z
- kx ¡ xi k

2'i (x)d x Æ 
Z

- kxk2'i (x)d x ¡ Ai kxi k
2. 

Hence, from (4.16), we conclude  

Z 

¹ 

(
Z

- kxk2'i (x)d x ¡ Ai kxi k
2). - f (x)'i (x)d x ¸ Ai f (xi ) Å 

 

 

2
 

Finally, summing over i from 1 to n, we arrive at 
 

Z 
 

f (x).1d 
- 

 

We conclude that 
 

Z 
 

f (x)d 
- 

 

n ¹ (
Z

-  n 
x

 
¸

 i  1 
A

i 
f

 
(x

i 
)

 
Å kxk2.1d x ¡i  1 Ai kxi k2). 

2  

X     X 

Æ      Æ 

n ¹ (
Z

- n  
x

 
¡
i  1 

A
i 
f

 
(x

i 
)

 
¸ kxk2d

 
x

 
¡
i  1 

A
i  
kx

i 
k2). 

2  

X     X 

Æ     Æ  
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Or equivalently as required 

R 
£
f 
¤
¸ 
¹
R 

£
k.k2

¤
. 

 

2 
 

 

 

 

Remark 4.2.5 The function 'i of a partition of unity can be interpreted physically as a distri-

bution of mass on -. Then Ai of Theorem 4.2.4 is the total mass and xi is the center of mass or 

center of gravity with respect to 'i . 
 

 

Remark 4.2.6 Note that every ¹-strongly positive definite cubature formula which is generated 

by a decomposition of the domain - can also be obtained by a partition of unity. In fact, let {-1, 

...,-n } be a decomposition of -. For i Æ 1, ...,n, define 
 

'i (x) :  80 1 if x 2-\ -i , (4.18)
 Æ < 

 if x 

2

-i ,  

 m(x)   

  :       

where m(x) is the number of subsets -1, ...,-n that contain x. Then 
 

n  

X
 'i (x) Æ 1  f or  x 2 -, (4.19)

i Æ1 
 

and so {'1, ...,'n } is a partition of unity that generates the same ¹-strongly positive definite 

cubature formula as {-1, ...,-n }. Moreover, instead of (4.18), we can define 'i to be the charac-

teristic function of -i with respect to - since it suffices that (4.19) holds almost everywhere on -. 
In view of the last observation, it seems to be reasonable to identify two partitions of unity that 
differ on sets of measure zero only. 
 

 

Remark 4.2.6 shows that by partitions of unity we can construct at least as many ¹-strongly 

positive definite cubature formulas as by decompositions of -. We may therefore ask whether 

there are still ¹-strongly positive definite cubature formulae that cannot be generated by a 

partition of unity. The answer is no. In fact, the following converse of Theorem 4.2.4 is true. Of 

course, it also gives another justification of Remark 4.2.6. The proof of this result is essentially 

based on [2, Theorem 3.8, p.269]. 

 

Theorem 4.2.7 Let - ½ Rd be a compact convex set of positive measure. Suppose that {(Ai , xi ) :  
i Æ 1, ...,n} defines a ¹-strongly positive definite cubature formula on -. Then there exists a 

partition of unity {'1, ...,'n } on - such that 
 

Ai :Æ 
Z

- 'i (x)d x 

1
Z

- x'i (x)d x  (i Æ 1, ...,n). and  xi :Æ 

 

Ai 
 
Proof Let us assume that  

{(Ai , xi ) : i Æ 1, ...,n} 
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defines a ¹-strongly positive definite cubature formula on -. Then by definition, for any ¹-

strongly convex function f , we have 
 

R 
£

f 
¤

¸ 

¹

R 
£
k.k2

¤
, (4.20)2

 

where 
Z n 

X 

£ ¤ 

f (x)d x Æ Ai f (xi ) ÅR  f  . 
- i Æ1

 
 

According to Lemma 4.1.1, we have, for every convex function g 2 C (-), 
 

£ ¤ 
R g  ¸ 0. (4.21) 

 

This means that, for every convex function g 2 C (-), 
 

Z n 
X 

g (x)d x ¸ Ai g (xi ). 
- i Æ1

 
 

Hence, by [2, Theorem 3.8, p.269], there exists a partition of unity {'1, ...,'n } on - such that 
 

Ai :Æ 
Z

- 'i (x)d x 

1

Z
- x'i (x)d x  (i Æ 1, ...,n). and  xi :Æ 

 

Ai 
 

This shows the required property and completes the proof. 
 

 

 

4.3 Strongly Negative Definite Cubature Formulas 
 

In this section, we will emphasize on some valuable results about strongly negative definite 
cubature formulas (see Definition 4.1.3). We also show the main difference between them and 
strongly positive definite cubature formulas. As we will see, compared to the latter, here the 

domain of integration - ½ Rd must be a compact convex polytope with positive measure. In 

particular, we characterize such a class of cubature formulas by certain partitions of unity or, 
alternatively, by a class of positive linear operators. 

 

 

However, one might suspect that the results on ¹-strongly pd-formulas can be easily trans-ferred to 

results on ¹-strongly nd-formulas but, apart from the fact that their respective error terms can be 

controlled from above and below ( see Theorem 4.1.5) , there is not much analogy between the two 

types of cubature formulas. As we will see below, already the question of existence shows 

significant differences while ¹-strongly pd-formulas exist for all compact convex sets -, the existence 

of an ¹-strongly nd-formula requires - to be a convex polytope whose vertices are among the nodes. 

This result can be derived from (4.22) of Theorem 4.3.1 
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4.3.1 Characterization of Strongly Negative Definite Cubature Formulas 
 

From now on let - ½ Rd be a compact convex polytope of positive measure, and let X :Æ {x1, 

..., xn } be a finite subset that includes the vertices of -. Thus, the convex hull of X must be 
equal to -. Now, we can characterize strongly nd-formulas by using some arguments 
essentially based on the paper [3, Theorem 2.1a, p.97 and Theorem 2.1b, p.99]. 

 

Theorem 4.3.1 A set a Æ {(Ai , xi ) : i Æ 1, ...,n} defines a ¹-strongly negative definite 

cubature formula on - if and only if there exists a partition of unity {Á1, ...,Án } on - such that 
 

n  

x Æ 
X

 Ái (x)xi   (a.e. on -), (4.22)
i Æ1 

 

and 
 

Z 

Ai Æ Ái (x)d x (i Æ 1, ...,n). (4.23) 
- 

 

Proof Let {(Ai , xi ) : i Æ 1, ...,n} defines a ¹-strongly negative definite cubature formula on -. 

Then, according to the definition the error functional R satisfies, for any ¹-strongly convex 
function f , we have 
 

R 
£

f 
¤

· 

¹ 

£
k.k2

¤
. 

   

 

R 

  

(4.24)2   

We deduce then from Lemma 4.1.1 that, for every convex function g 2 C (-), we have 

R 
£

g 
¤

· 0.    (4.25)
This means that the estimate 

g (x)d x · 
 

Ai g (xi ), 
   Z n 

     X  
-
 i Æ1 

 

holds for every convex function g 2 C (-). Hence by [3, Theorem 2.1a, p.97], there exists a 

partition of unity {Á1, ...,Án } on -, which satisfies the required conditions (4.22) and (4.23). 

Conversely, assume that there exists a partition of unity {Á1, ...,Án } on -, such that conditions 
(4.22) and (4.23) hold. Let f be convex on -. Then, from (4.22) and convexity of f we deduce 
that 
 

n 
X 

f (x) · Ái (x) f (xi ).  
i Æ1 

 
Integrating both sides over - and using (4.23), we obtain the inequality 

Z n
 

 
X 

£ ¤ 

R  f :Æ f (x)d x ¡ Ai f (xi ) · 0. 
- i Æ1

 
 
Since the above inequality holds for every convex function, then according to Lemma 4.1.1 we 
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also have, for every ¹-strongly convex function,  

R 
£

f 
¤

· 

¹ 

R 
£
k.k2

¤
. (4.26)

  

2  

This shows that {(Ai , xi ) : i Æ 1, ...,n} defines a ¹-strongly negative definite cubature formula 
on -. 

 

 

Remark 4.3.2 Comparing Theorem 4.3.1 with Theorem 4.2.7, we see an essential difference 

between ¹-strongly nd- and pd-formulas. Indeed, while every partition of unity produces a ¹-

strongly pd-formula, we need the additional condition (4.22) for producing an ¹-strongly nd-

formula. Moreover, If (4.22) and (4.23) hold, and we introduce 
 

yi Æ 
   

xÁi (x)d x Æ 
P 

 

n 
R

Á (x)Á (x)d x (i Æ 1, ...,n), A 
i 

-  

  

Z 
 

n j  1 - j i 

1 
   

j Æ1 j  - j i 

     P Æ R     
then yi 2 -, since it has been represented as convex combination of points of -. Then, It can be 

easily verified that, for all ¹-strongly convex functions f 2 C (-), the following estimates hold: 
i n 1 Ai f (yi ) · 

Z 
- f (x)d x · i n 1 

A
i 
f
 
(x

i 
). 

X  X 
 Æ    Æ  

 
Hence, every ¹-strongly nd-formula generates a ¹-strongly pd-formula. 

 
 

Recall that a linear operator L that maps C (-) into a linear space of functions f : - ! R is 
£ ¤ 

called positive if f ¸ 0 implies L  f ¸ 0 almost everywhere on -. Furthermore, L is said to be  
of linear precision if for each affine function a, we have L [a](x) Æ a(x) almost everywhere on  
-. 

 

 
The following result provides another characterization of a ¹-strongly negative definite cuba-

ture formula in terms of the existence of a certain positive linear operator, which satisfies the 

linear precision property. 
 

 

Theorem 4.3.3 A set a Æ {(Ai , xi ) : i Æ 1, ...,n} defines a ¹-strongly negative definite 

cubature formula on - if and only if there exists a positive linear operator L of linear 
precision, of the form 

n  
X 

£ ¤ 

L f  (x) Æ  Ái (x) f (xi ), 
i Æ1  

with Ái 2 L1(-) and Ai Æ 
R

- Ái (x)d x È 0 for i Æ 1, ...,n. 
 

Proof The proof is very similar to the proof of Theorem 4.3.1. Then {(Ai , xi ) : i Æ 1, ...,n} 
defines a negative definite cubature formula on -. Hence by [3, Theorem 2.1b, p.99], there 
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exists a positive linear operator L of linear precision, of the form 
 

n 
X 

£ ¤ 

L f  (x) Æ  Ái (x) f (xi ), 
i Æ1 

 

with Ái 2 L1(-) and Ai Æ - Ái (x)d x È 0 for i Æ 1, ...,n.   

Conversely, assume that thereR exists a positive linear operator L of linear precision, of the form
that  £ ¤ 
above. Let f be convex on -. Then, from the form of L f (x) and convexity of f we deduce
 

 

n 
X 

f (x) · Ái (x) f (xi ). 
 

i Æ1 
 

Integrating both sides over -, we obtain the inequality 
Z n

 
 

X 

£ ¤ 

R  f :Æ f (x)d x ¡ Ai f (xi ) · 0. 
- i Æ1

 
 

Since the above inequality holds for every convex function, then according to Lemma 4.1.1 

we also have, for every ¹-strongly convex function, 

R 
£
f 
¤
·  
¹
R 

£
k.k2

¤
. 

 

2 
 

This shows that {(Ai , xi ) : i Æ 1, ...,n} defines a ¹-strongly negative definite cubature formula 

on -. 
 

 

4.3.2 Practical Construction of Strongly Negative Definite Cubature Formulas 
 

We now turn to a practical construction of strongly negative definite cubature formulas. To this 

end, let us first consider the case where - is a non-degenerate simplex in Rd with 

x i ,i Æ 1, . . . ,d Å1, being the set of its vertices. Then each x 2 - has a unique representation as 
a convex combination 

d Å1 
X 

x Æ ¸i (x)xi , 
 

i Æ1 
 

where ¸i is the restriction to - of the affine function that attains the value 1 at xi and is zero at 
all the other vertices of -. The value ¸i (x) is the barycentric co-ordinate of x with respect to 
xi . According to [7, Theorem 2.2]), we know that for every convex function f on -, it holds 
 

Z- f (x)d x · i d 1 j-j f (xi ). 
  

Æ Å 
 

 X 

Consequently, by Lemma 4.1.1, the system ¸1, ...,¸dÅ1 produces the strongly nd-system 

½µ j-j , xi 
¶

: i Æ 1, ...,d Å1 ¾.d  1 

Å   
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It is the only strongly nd-system on - which has no other nodes than the vertices. 
 

 

Now let X Æ 
©

xi 2 Rd ,i Æ 1, . . . ,n
ª
 be an arbitrary set of points of Rd . The previous approach 

can be generalized when - Æ conv (X ) is an arbitrary polytope in Rd . A triangulation T of 
- with respect to X is a decomposition of - into d¡dimensional simplices such that X is the set 
of all their vertices, and the intersection of any two simplices consists of a common lower-

dimensional simplex or is empty. Triangulations of compact convex polytopes exist.1 
 

Indeed, given any finite set X of points that do not all lie on a hyperplane, Chen and Xu [9, p. 
301] describe a lifting-and-projection procedure which results in a triangulation of the convex 
hull of X with respect to X . For an explicit statement on the existence of triangulations with a 
proof based on an algorithmic method, see [10, Theorem 3, part a]. 

 

Now let S1, ...,Sl be the simplices of T , and let Ni be the set of all integers j such that xi is a 

vertex of Sj . If x 2 Sj and j 2 Ni , then we denote by ¸i j (x) the barycentric co-ordinate of x with 

respect to xi for the simplex Sj . It is easily verified that if x 2 Sj 
T

Sk , then ¸i j (x) Æ ¸i k (x) if j 

,k 2 Ni and ¸i j (x) Æ 0 if j 2 Ni ,k Ý Ni . Therefore, setting 
 

Ái (x) : 
Æ 8¸i j (x) if x 2 Sj  and  j 2 Ni 

 <0 otherwise 

  :  

for i Æ 1, ...,n, we obtain a well-defined partition of unity Á1, ...,Án that satisfies (4.22). This 
obviously produces the strongly nd-formula 

 

Ã ! 
Z

- f (x)d x Æ i d 1 j  Ni d
jS

j 
j
1 f (xi ) ÅR[ f ]. (4.27)

 X X     

  Æ  2 Å   

 

 

4.4 Numerical Examples 
 

In order to give numerical illustrations of the effectiveness of our application of the strongly nd-
formula (4.27) with triangulations created using Delaunay Triangulation. We apply it to ap-

proximate the integrals of three real-valued (test) functions of multiple variables fk ,k Æ 1,2,3, 

when the domain - is a square, and fk possess the following features: it is sufficiently regular, it 
is strongly convex or convex, and can be evaluated at any point of the domain. For each of the 
three test functions fk , we take N scattered points {xi }

N , which are randomly selected from
  

N 
  i Æ1  

- and construct the cubature formula A f (x ) given as in (4.27). We then determine
£ ¤ 

P
i Æ1 

    

the
,
 error R  f by evaluating i k i  

Z N 

R  fk  Æ j - 
f
k 
(x)d x

 
¡ 

Ai fk (xi )j 

£ ¤ 
 

i Æ1 
 X 

The results are shown in Tables 4.1, 4.2 and 4.3 clearly demonstrate that for all test functions 

fk the error R 
£

f 
¤

 decreases with increasing numbers of nodes as N increases. It can also be
 1  

 It seems that in dimension d Æ 3 the existence was already known to mathematicians like Euler and Dirichlet.
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£ ¤ 
observed from Figures 4.7, 4.8 and 4.9 the “best fit" lines for the error R  fk  which were found 
 

by using least squares regression or linear regression. These examples are designed to follow 
 

the exact steps of methodology in this chapter. 
 

 

Example 4.4.1 In the two following numerical tests for our cubature formula (numerical inte-

gration) we will take the following two strongly convex functions. 
 

f1(x, y) Æ 0.2
¡
(x ¡0.4)2 Å(y Å0.5)2

¢
Å0.3exp 

¡
(x ¡0.5)2 Å(y ¡0.5)2

¢
, 

 

and 

f 2(x, y) Æ 0.2
¡
(x ¡0.4)2 Å(y Å0.5)2

¢
, 

 

with the restriction of domain D :Æ [0, 1] £[0, 1]. In both numerical tests, the data are 
generated from the above functions. However, the scattered points are chosen such that 
there exist 2 equally spaced nodes on each edge of the boundary of square D and N nodes in 
the square D. The nodes in the domain are positioned randomly chose from D while the 
nodes on the boundary is equally spaced. Figures 4.1 and 4.3 are presented the error of 

numerical integration of f1 and f2 respectively. While Figures 4.2 and 4.4 are presented the 

error of numerical integration of f1 and f2 in terms of the log scale respectively. 
 
 

The exact value of the integration to the function f1(x, y) is equal to 0.591746465805074 
 

Table 4.1 – The error of numerical integration for function f1. 
 
 
 

 

Function Number  of  scattered Numerical integration values Error 
 points   

    

f
1 54 0.606048591515064 1.43021257099898 £10¡2 

 504 0.593436541476951 1.69007567187685 £10¡3 

 1004 0.592681353963911 9.34888158837022 £10¡4 

 10004 0.591841309865544 9.48440604706668 £10¡5 

 
 
 
 
Now, we take the second strongly convex function: 
 

f 2(x, y) Æ 0.2
¡
(x ¡0.4)2 Å(y Å0.5)2

¢
. 

 

The exact value of the integration to the function f2(x, y) is equal to 
0.235333333333333 
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Table 4.2 – The error of numerical integration for function f2. 
 

 

 

 

Function Number  of  scattered Numerical integration values Error 
 points   

    

f2 54 0.239885403766284 4.55207043295111 £10¡3 

 504 0.235867353761321 5.34020427987864 £10¡4 

 3004 0.235430304103746 9.69707704125411 £10¡5 

 

 

 

Example 4.4.2 In the following numerical test for our cubature formula (numerical integra-tion) 

we will take the following convex function. 
 

f 3(x, y) Æ x3 Å5(y2 ¡0.6)2 Å1. 
 

 

with the restriction of domain D :Æ [0, 1] £[0, 1]. In the following numerical test, the data are 

generated from the above function. However, the scattered points are chosen such that there exist 

2 equally spaced nodes on each edge of the boundary of square D and N nodes in the square 
 

D. The nodes in the domain are positioned randomly chose from D while the nodes on the 

boundary is equally spaced. Figure 4.5 is presented the error of numerical integration of f3 while 

Figure 4.6 presented the error of numerical integration of f3 in terms of the log scale respectively. 
 
 

The exact value of the integration to the function f3(x, y) is equal to 2.05 
 

Table 4.3 – The error of numerical integration for function f3. 
 
 
 

 

Function Number  of  scattered Numerical integration values Error 
 points   

    

f3 54 2.07229894505087 2.22989450508679 £10¡2 

 504 2.0574447965105 7.44479651050156 £10¡3 

 5004 2.05094790837777 9.47908377769924 £10¡4 

 
 
 

 
The results, displayed in the last three Figures (4.7, 4.8 and 4.9), shows that the best-fit is a 

£ ¤ 

reasonable representation of the error R  fk  . 
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Figure 4.1 – Illustrate the error generated from using cubature formula to approximate 

the integral of f1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – Illustrate the error generated from using cubature formula to approximate 

the integral of f1 in the log scale. 
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Figure 4.3 – Illustrate the error generated from using cubature formula to approximate 

the integral of f2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – Illustrate the error generated from using cubature formula to approximate 

the integral of f2 in the log scale. 
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Figure 4.5 – Illustrate the error generated from using cubature formula to approximate 

the integral of f3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – Illustrate the error generated from using cubature formula to approximate 

the integral of f3 in the log scale. 
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Figure 4.7 – Illustrate the error of numerical integration for function f1 and linear regres-
sion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 – Illustrate the error of numerical integration for function f2 and linear regres-
sion. 

 

 

 

105 



Numerical integration under certain type of convexity 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 – Illustrate the error of numerical integration for function f3 and linear regres-
sion. 
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5 New Cubature formulas and Hermite-
Hadamard type inequalities using 
integrals over some hyperplanes in 
the d-dimensional hyper-rectangle 

 

 

 

 

 

 

 

This chapter is based on our paper [19] which submitted (2016), however, here, this chapter 
focuses on the problem of approximating a definite integral of a given function f when, rather 
than its values at some points, a number of integrals of f over certain hyperplane sections of a 

d-dimensional hyper-rectangle Cd are only available. We develop several families of 

integration formulas, all of which are a weighted sum of integrals over some hyperplane 

sections of Cd , and which contain in a special case of our result multivariate analogues of the 

midpoint rule, the trapezoidal rule and Simpson’s rule. Basic properties of these families are 
derived, in particular, we show that they satisfy a multivariate version of Hermite-Hadamard 
inequality. This latter does not require the classical convexity assumption, but it has weakened 
by a different kind of generalized convexity. As an immediate consequence of this inequality, 
we derive sharp and explicit error estimates for twice continuously differentiable functions. 
More precisely, we present explicit expressions of the best constants, which appear in the 
error estimates for the new multivariate versions of trapezoidal, midpoint, and Hammer’s 
quadrature formulas. It is shown that, as in the univariate case, the constant of the error in the 
trapezoidal cubature formula is twice as large as that for the midpoint cubature formula, and 
the constant in the latter is also twice as large as for the new multivariate version of Hammer’s 
quadrature formula. Numerical examples are given comparing these cubature formulas among 
themselves and with uniform and non-uniform centroidal Voronoi cubatures of the standard 
form, which use the values of the integrand at certain points. 
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5.1 Introduction 
 

The central question about which our study revolves is the following one. Assume that f is a 

function from a hyper-rectangle Cd of dimension greater than one to R, and that the only 
available data are a number of integrals of f over certain prescribed hyperplane sections of 
 

C d . A relevant question, then, is: how can we get a lower and upper estimate of the exact value of 

the integral of f over Cd ?  
This problem arises in many applications, especially in experimental physics and engineering, 

where the standard discrete sample values from functions are not available, but only their mean 

values are accessible. For instance, this data type appears naturally in computer to-mography with 

its many applications in medicine, radiology, geology, amongst others. The mathematical 

foundation behind these techniques is the work of Johann Radon on the so-called Radon transform 

[16]. But they also have important applications, especially where the aim is to derive efficient 

numerical methods for PDEs using the so-called non-conforming Crouzeix–Raviart element. We 

refer to the recent paper [3] where we have exploited estimators of this type to characterize the 

enrichment of such element. For more discussion, including potential applications, see [15]. Let us 

first recall that, under the convexity condition of f , the 
 
one dimensional case has a simple solution. Let f be an integrable real-valued function on the 

closed real interval [a,b], the midpoint rule for estimating b¡
1

a 
R

a
b f (t)d t is M( f ) Æ f ((aÅb)/2), 

and the trapezoid rule is T ( f ) Æ ( f (a) Å f (b))/2. An important fundamental property shared by 
these two rules is the well-known Hermite-Hadamard (double) inequality, which ensures a lower 
and an upper estimate for the exact value of the integral of any convex function:   

M( f ) · 
 1 Z

a
b f (t)d t · T ( f ), (5.1)b 

¡
a 

     

 
where the signs of equality being achieved if f is an affine function. The midpoint rule and the 

trapezoidal rule are the simplest, most well-known and widely used quadrature formulas. They 

actually served as basic ingredients for constructing more accurate and adaptive formulas by using 

certain types of their convex combinations or by dividing the interval [a,b] into subintervals and 

apply these rules to each subinterval (see [17] and [18, § 3.2, §4.2]). For these reasons, these rules 

together with their fundamental inequality (5.1) have been an effective starting point for several 

subsequent investigations, see [8, 11]. From the upper and lower bounds (5.1) a better estimate 

would be to average M( f ) and T ( f ). However, we can do better, in this case, than the simple 

average of these two rules. Indeed, by simply taking the particular convex combination ®M( f ) Å(1 

¡®)T ( f ), with ® Æ 23 , we get a more accurate rule. In fact, the approximation obtained in this 

manner is the very-well known Simpson’s rule, and is exact for all polynomials of degree 3. 

Furthermore, in the error analysis of the rules M( f ) and T ( f ) : 
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E M( f ) Æ
  1 Z

a
b f (t)d t ¡ M( f ), 

 b 
¡
a 

       

1
 

Z
a

b f (t)d t, E T ( f ) Æ T ( f ) ¡ 
  

b 
¡
a 

          

 

estimates (5.1) are very useful tools. Indeed, let (.)2 denote the square function t ! t2, and 

assume that the first derivative of f is a Lipschitz function with a Lipschitz constant L( f 0) in 
[a,b], then the following important implications hold: 

 

 

(a) The left-hand side of the Hermite-Hadamard inequality implies that for every f 2 C 2[a,b] 
we have 

¯ E M( f ) ¯  · E M 2
¡(.)2¢

L( f 0)  
¯

 
¯  

           

   

Æ
T 

µ³
. ¡ aÅ2 b 

´2¶
L( f 0) (5.2)

     6      

            

   

Æ
 

(b ¡ a)2 
L( f 0), (5.3)

    

   24        

 

 

where equality is attained for all quadratic functions. 
 

(b) The right-hand side of the Hermite-Hadamard inequality implies that for every f 2 C 
2[a,b] we have 

 

¯ E T ( f ) ¯  · 
E T

 
¡
2
(.)2¢

L( f 0)  
¯

 
¯  

         

   

Æ 
T 

µ³
. ¡ aÅ2 b 

´2¶
L( f 0) (5.4)

   3       

          

   

Æ 

(b ¡ a)2 
L( f 0), (5.5)

    

   12        

 

 

where equality is attained for all quadratic functions. 
 

 

The literature contains a number of variations of these estimations, some statements employ-

ing the largest absolute value of the second derivative over the interval [a,b], see, e. g.,[11, 

20]. One of the interesting aspects of the error estimates (5.3) and (5.5) is that they also 

charac-terize the Hermite–Hadamard inequality (5.1), indeed the reverse statements of the 

above two implications (a) and (b) are valid. In short, equality (5.1) should hold if and only if 

error estimates (5.3) and (5.5) are satisfied. In fact, they can be easily derived from our 

multivariate general results given in (5.63) and (5.64). 
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As for the Hermite-Hadamard inequality for multivariate convex functions, we may refer to [4, 

7, 8, 9]. 
 

 

The main objective of this chapter is to establish natural multivariate versions of the midpoint and 

trapezoidal rules, when the only available data are a number of integrals of f over some hyperplane 

sections of Cd . In addition, we also give a multivariate version of Simpson’s rule in this general 

setting. Let us mention here that a multivariate version of Simpson’s rule also exists for a function f 

when certain of its values are only available, see [21]. We have however observed that cubature 

formulas, which use the values of the integrand at certain points, give the worst results. Basic 

properties of our new cubature formulas are derived, in particular, we show that they satisfy a 

multivariate version of Hermite-Hadamard inequality. This latter does not require the classical 

convexity assumption, but it has weakened by a different kind of generalized convexity. We shall 

also see, as we did for the one dimensional case in (5.2) and (5.4) that for such integration 

formulas, we can also establish a characterization result in terms of sharp error estimates. In 

addition, we particularly pay attention to the explicit expressions of the best constants, which 

appear in the error estimates for the new multivariate versions of trapezoidal, midpoint, and 

Hammer’s quadrature formulas [14]. It is shown that, as in the univariate case see (5.2) and (5.4), 

the constant of the error in the trapezoidal cubature formula is twice as large as that for the 

midpoint cubature formula, and the constant in the latter is also twice as large as for the new 

multivariate version of Hammer’s quadrature formula. 
 

 
Let us give a short outline of the chapter. In Section 5.2, we introduce our multivariate version 

of the trapezoidal rule and present some its important properties. Section 5.3 deals with a 

multivariate analogue of the midpoint rule, together with some of its properties. In Section 5.4, 

we introduce and discuss a class of cubature formulas, obtained by averaging the trapezoidal 

and the midpoint cubature formulas. In particular, it is shown that any cubature formula from 

this class is always superior to the trapezoidal cubature formula for either componentwise 

convex or concave functions. In Section 5.5, we generalize Simpson’s rule to d dimensions 

and also provide multivariate versions of perturbed midpoint and trapezoidal rules. Section 5.6 

derives sharp error bound with explicit constant for any cubature formula, which is assumed to 

satisfy an upper or a lower Hermite–Hadamard inequality for any convex functions. In 

particular, we present explicit expressions of the best constants, which appear in the error esti-

mates for the new multivariate versions of trapezoidal, midpoint, and Hammer’s quadrature 

formulas. In Section 5.7, numerical examples are given comparing these cubature formulas 

among themselves, and also with uniform and non-uniform centroidal Voronoi cubatures 

developed in [4]. These latter are of the standard form, since they use a set of numerical 

values of the integrand at the center of gravity of each element in a subdivision. Finally, 

concluding remarks, extensions and implications are given in the last section. 
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Throughout this chapter, we adopt the following notation: Let ¯ 11, . . . ,¯ d1 and ¯ 12, . . . ,¯ d2 

be given real numbers such that ¯ i 1 Ç ¯ i 2 for each i . We let Cd denote the d-dimensional 

hyper-rectangle in Rd defined by 
 

© ª 

Cd :Æ x Æ (x1, . . . , xd ),¯ i 1 · xi · ¯ i 2,i Æ 1, . . . ,d . 
 

To simplify notation, we let Ltr
1, . . . ,Ltr

2d denote the linear functionals 
 

Ltr
i( f ) Æ 

1 Z
Fi f d¾, i Æ 1, . . . , 2d, 

 

jFi j 

Ltr
2dÅ1( f ) Æ 1  

Z
Cd f (x)d x.   

Cd  

  j j   

 

Here F1, . . . ,F2d are the 2d facets of Cd . We will also need a special enumeration of the 

facets of Cd , for each j Æ 1, . . . ,d, F j and F j Åd are subsets of the hyperplanes x j Æ ¯ j 1 

and x j Æ ¯ j 2, respectively. Note that F j and F j Åd are two opposite facets of Cd . Here and 

subsequently, jCd j and jFi j denote the d–dimensional volume and the (d ¡1)–dimensional 
volume respectively. The following identities hold 

 

jCd j  Æ 
d        

Y
(¯ i 2 ¡¯ i 1)       

 i Æ1       

  d   

jCd j 

 

jFi j  Æ  jFi 
j Æ

Y
6Æ 

¡¯ j 1) Æ .¯
i 2 

¡¯
i 1 Åd j Æ (¯ j 2  

  1, j i      

 

For any i Æ 1, . . . ,d, we write Cd i for the (d ¡1)-dimensional hyper-rectangle in Rd¡1 defined 
by 

 

© ª Cd i :Æ u Æ (u1, . . . ,ui ¡1,ui Å1, . . . ,ud ),¯ j 1 · u j · ¯ j 2, j Æ 

1, . . . ,d, j 6Æi . 
 

Let us now introduce the definition of componentwise convexity, which is a weaker version of 

the classical convexity, see e.g., [12, 13]. This is made precise by the following: 

 

Definition 5.1.1 A function f : Cd ! R is called componentwise convex if it is convex in each 
coordinate when the other coordinates are held fixed, that is, for each i Æ 1, . . . ,d, and for 

arbitrarily fixed x j 2 [¯ j 1,¯ j 2] ( j 6Æi), the real function f
˜
 : [¯ i 1,¯ i 2] ! R, defined by 

 

f
˜
(xi ) :Æ f (x1, . . . , xi ¡1, xi , xi Å1, . . . , xd ) 

 

is convex. 
 

 

Let us note that classical convexity implies componentwise convexity, but the converse is not 

necessarily true. Indeed, let d ¸ 2 and let the function f : [0,1]d ! [0,1) defined by 
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f (x) Æ 
Qd

iÆ1 xi
2. Since 

 

@2 f (x) d 
 

Æ 2 x2
j, @x2 

i j ÆY6Æ  

  1, j  i 
 

then f is componentwise convex but f is not convex on [0,1]d . Indeed, if x Æ (0, x2, . . . , xd ), 

y Æ (x1, 0, x3, . . . , xd ) 2 (0, 1)d and ® 2 (0, 1), we have: 
 

d 

f (®x Å(1 ¡®)y) Æ ®2(1 ¡®)2 
Y

 xi
2  and ®f (x) Å(1 ¡®) f (y) Æ 0. 

i Æ1 
 

Thus, for all ® 2 (0,1) we have f (®x Å(1¡®)y) È ®f (x)Å(1 ¡®) f (y), which shows that f is not 

convex on [0,1]d . It is obvious that, in the particular case d Æ 1, the two notions of convexity 
coincide. 
 

 

5.2 A multivariate version of the trapezoidal rule 
 

The goal of this section is to introduce a new family of a multivariate version of the well-known 

trapezoidal rule. We also establish multivariate analogues of the right hand side of the 

Hermite-Hadamard inequality. We first define a special class of linear functionals, for each 
 

i Æ 1, . . . ,d, we set 
 

Ei
tr( f ) :Æ Ltr

2dÅ1( f ) ¡Qi
tr( f ),           (5.6)

where                     

Qi
tr( f )  Æ 

1
Ltr

i( f ) ÅLtr
i d ( f ) 

         

(5.7)
          

2          

 1 ¡  1  Å  ¢           

Æ  µ     Z
Fi  f d¾ Å  1  ZFi Åd f d¾¶.    (5.8)2  Fi 

j 

 Fi d

j 

   

  j   j Å         

Functional Etr can be viewed as the approximation error when approximating 
i 

jC
1

d j 
Z

Cd 
      µ

jFi j 
Z

Fi f d¾ Å jFi Åd j 
Z  

f d¾
¶

. 
 f (x)d x with 2 

F
i Åd 

           1 1   1    

                     

 

 

The main observation we first need to make is the following Lemma: 
 

 

Lemma 5.2.1 For each i Æ 1, . . . ,d, the approximation error Ei
tr as defined in equation (5.6) 

vanishes for all affine functions. 
 

 

Proof Since all functionals Ltr
i,i Æ 1, . . . ,2d Å1, preserve constants, then obviously Ei

tr neces-

sarily vanishes for all constants. Since Ei
tr is linear, it remains to show that, for all j Æ 1, . . . ,d, 
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we have Ei
tr(x j ) Æ 0. Now, we can immediately obtain the following identities: 

 

 

Ltr
i(x j ) Æ

Ltr
iÅd (x j ) Æ

 

Ltr
2dÅ1(x j )

 Æ 

 

¡ ¢ 
¯

j 1 
Å¯

j 2 
Å

 
¯

j 1 
¡¯

j 2
±

i j 

, i , j Æ 1, . . . ,d, 2  

¡ ¢ 

¯
j 1 

Å¯
j 2 

Å
 
¯

j 2 
¡¯

j 1
±

i j 

, i , j Æ 1, . . . ,d, 2  
 ¯  j 1 

Å¯ j 2 , j Æ 1, . . . 
,d. 2

 
 

 

 

 

Hence it follows that 
 

tr  Ltr
i(x j ) ÅLtr

iÅd (x j )  

L
2dÅ1

(x
 j 
)

 
Æ 

   

, i , j Æ 1, . . . ,d. (5.9)2  

or equivalently      

Ei
tr(x j ) Æ 0, i , j Æ 1, . . . ,d.   (5.10)

 

We can immediately conclude that for any i Æ 1, . . . ,d, the approximation error Ei
tr vanishes 

for all affine functions.  
 

 

We are now ready to define our multivariate version of the trapezoidal rule. To this end, let us 

introduce the following error functional: 

 

Etr( f )  :Æ  Ltr
2dÅ1( f ) ¡Qtr( f ), (5.11) 

 

with 

 

1 d (5.12) 
Qtr( f )  :Æ  d Qitr( f ) ,  

  X  

 

i Æ1 

 

where Qi
tr( f ) is defined by (5.7). We observe that for the one-dimensional case, d Æ 1, the 

trapezoidal cubature formula Qtr( f ) reduces to the trapezoidal rule. Moreover, as in the one-
dimensional case, the following theorem shows that the multivariate version (5.12) also enjoys 
a property of affine functions vanishing similar to the trapezoidal rule. 

 

 

Theorem 5.2.2 The approximation error Etr of the trapezoidal cubature formula as defined in 
equation (5.11) vanishes for all affine functions. 

 

 

Proof Indeed, just observe that the approximation error of the the trapezoidal cubature 
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formula (5.11) can simply be written as 
 

 

Etr( f ) :Æ Ltr
2dÅ1( f ) ¡Qtr( f ) 

1 d Ltr
2dÅ1 ( f ) ¡Qi

tr( f ) 
Æ  d  

X   ¡ ¢

  i Æ1   

Æ 1
 
Xd

 Eitr( f ), 
d

 i Æ1 
 

 

where Ei
tr( f ) is the error functional define in Lemma 5.2.1. We now apply the latter, which 

asserts that, for any i Æ 1, . . . ,d,Ei
tr vanishes for all affine functions, then our desired result 

follows immediately.  
 

 

We now establish our multivariate version of right hand side of Hermite-Hadamard’s inequality 

(5.1) for componentwise convex functions. 

 

Theorem 5.2.3 Let f be a componentwise convex on Cd . Then    

1 
Z

Cd f (x)d x · Qtr( f ) :Æ 1  d 
µ 1 Z Fi 1  

Z
Fi Åd f d¾

¶
. (5.13)

 jCd j  2d i  Æ1  jFi j f d¾  Å j Fi Åd j  

     X            

 

 

 

Proof Fix x Æ (x1, . . . , xi ¡1, xi , xi Å1, . . . , xd ) and define f
˜
i : [¯ i 1,¯ i 2] ! R, f

˜
i (t) Æ f (x1, . . . , xi ¡1, t, xi 

Å1, . . . , xd ). But, since by assumption f is componentwise convex on Cd , then it follows that the function 
 

f
˜
i is convex on [¯ i 1,¯ i 2] for all (x1, . . . , xi ¡1, xi Å1, . . . , xd ) 2 Cd i . Then by Hermite-

Hadamard inequality (5.1) we get 
 

Z 

¯
i 2  ˜  

¯
i 2 

¡¯
i 1 

¡

˜ ˜ 

¢, 

 

¯
i 1 fi (t)d t · 2 fi (¯ i 1) Å fi (¯ i 2) (5.14)

or, equivalently, for every (x1, . . . , xi ¡1, xi Å1, . . . , xd ) 2 Cd i , we have 

 

Z ̄ i 2 f (x1, . . . , xi ¡1, t, xi Å1, . . . , xd )d t · 
¯ i 2 

¡¯ i 1 
2¯

 
 

i 1 

( f (x1, . . . , xi ¡1,¯ i 1, xi Å1, . . . , xd ) Å f (x1, . . . , xi ¡1,¯ i 2, xi Å1, . . . , xd )). 

 

Integrating this inequality on Cd i , and using Fubini’s theorem we immediately arrive at 
 

1 

Z
Cd f (x)d x · 

1 

¡
Ltri ( f ) ÅLtr

iÅd ( f )
¢

. (5.15)

   

jCd j 2 
Now, summing these inequalities over 1 · i · d, then divide by d yields the assertion. This 

completes the proof.  
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5.3 A multivariate version of the midpoint rule 
 

We now define our multivariate version of the midpoint rule. To this end, we need the 

following linear functionals 
 

Qi
mid( f )  Æ 

1  
Z

Mi  f d¾, i Æ 1, . . . ,d, 

 

(5.16)
 

    

jMi j  

where, for each i , Mi is the hyperplane section of Cd defined by  

Mi :Æ 
½

x Æ (x1 ,..., xd ) 2 Cd , xi Æ 2 ¾. (5.17)
       

¯
i 1 Å¯ i 2   

Setting           

Emid( f )  :Æ  Ltr
2dÅ1( f ) ¡Qmid( f ),   (5.18)

with           

Qmid( f )  :Æ 1  d   (5.19)
 

d 
 

Qimi d( f ),  
  

     X    

 

i Æ1 

 

where Qi
mid( f ) is defined by (5.16). It is easy to check that for the one-dimensional case, 

 

d Æ 1, the midpoint cubature formula (5.19) reduces to the midpoint rule. Moreover, as in the 
one-dimensional case, it satisfies: 

 

 

Theorem 5.3.1 The approximation error Emid of the midpoint cubature formula as defined in 
equation (5.18) vanishes for all affine functions. 

 

 

Proof An alternative expression of the approximation error Emid is 
 

Emid( f )  :Æ Ltr
2dÅ1( f ) 1  d  

¡ d  Qimi d( f )   

       X  

       i Æ1  

Æ  1  d 
³
Ltr2dÅ1( f ) ¡Qi

mid( f )
´
, (5.20)

d i Æ1  

   X       

  1  d mid    

Æ 

  X 

Ei ( f ), 

 

(5.21)
d

 i Æ1  

 

where Ei
mid( f ) is the error in approximating Ltr

2dÅ1( f ) with Qi
mid( f ). As can be seen from (5.21), it 

will now suffice to show that Ei
mid( f ) vanishes for all affine functions. In order to prove this 
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assertion, note that the following identities hold, for every i Æ 1, . . . ,d, 
 

Ltr
2d  1 (x j ) Æ Qi

mid(x j ) Æ 

¯
j 1 

Å¯
j 2 

, j Æ 1, . . . ,d, (5.22)
 

Å   2   

and for every c 2 R, we have  

Ltr
2dÅ1 (c) Æ Qi

mid(c) Æ c. (5.23)

Hence, combining (5.22) and (5.23), we get, for every affine function f ,  

Ltr
2dÅ1 ( f ) Æ Qi

mid( f ), (i Æ 1, . . . ,d), (5.24)
 

which together with (5.20) implies that the desired result holds. 
 

 

 

We now present our multivariate version of left hand side of Hermite-Hadamard’s inequality 

(5.1) for componentwise convex functions. 
 

 

Theorem 5.3.2 Let f be a componentwise convex on Cd . Then  

 1  d    1 
Z

Mi f d¾ · jC
1

d j 
Z

Cd f (x)d x. (5.25)
Q mi d( f  ) :Æ  d i Æ1 jMi j  

  X        

 

 

 

Proof Fix x Æ (x1, . . . , xi ¡1, xi , xi Å1, . . . , xd ) and define f
˜
i : [¯ i 1,¯ i 2] ! R, f

˜
i (t) Æ f (x1, . . . , xi ¡1, t, xi 

Å1, . . . , xd ). According to the fact that f is componentwise convex on Cd , it follows that the function f
˜
i is 

 

convex on [¯ i 1,¯ i 2] for all (x1, . . . , xi ¡1, xi Å1, . . . , xd ) 2 Cd i . Then by Hadamard’s 
inequality (5.1) we get 
 

(¯ i 2 ¡¯ i 1) f
˜
i 
¡
(¯ i 1 Å¯ i 2)/2

¢
· 
Z

 ¯ i 2 f
˜
i (t)d t (5.26) 

 

¯
i 1 

or, equivalently, for every (x1, . . . , xi ¡1, xi Å1, . . . , xd ) 2 Cd i , we have 

 

(¯ i 2 ¡¯ i 1) f (x1, . . . , xi ¡1, (¯ i 1 Å¯ i 2)/2, xi Å1, . . . , xd )) · 
Z ¯ i 2

 

f (x1, . . . , xi ¡1, t, xi Å1, . . . , xd )d t. 
¯

i 1 

 

Integrating this inequality on Cd i , and using Fubini’s theorem we immediately arrive at 
 

1  Z
Cd 

  

Qi
mid( f ) ·   f (x)d x, (i Æ 1, . . . ,d). (5.27)

Cd  

j j   
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Now, summing these inequalities over 1 · i · d, then divide by d yields the assertion. This 

completes the proof.  
 

 

5.4 Average cubature formulas 
 

In this section, we consider a class of cubature formulas that can be expressed as convex 

combinations of the trapezoidal cubature (5.12) and the midpoint cubature formulas (5.19), 

that is, for any ® 2 [0, 1], we have 

1 

Z
Cd f (x)d x Æ ®Qmid( f ) Å(1 ¡®)Qtr( f ) ÅE®( f ). (5.28)

Cd  

j j   

 

The idea is to choose ® so that the resulting cubature formula approximates from above, or 

from below, the integral of every componentwise convex function f on Cd . Note that family 

(5.28) gives the trapezoidal cubature formula when ® Æ 0 and the midpoint cubature formula 
when ® Æ 1. The following lemma can be easily deduced from a general result in [8, 
Theorem 4.1]. 

 

 

Lemma 5.4.1 For every convex function f : [a,b] ! R and every ® 2 [0,1/2] the following 

inequality holds true 
 

 1 Z
a

b f (t)d t · ®f ((a Åb)/2) Å(1 ¡®)( f (a) Å f (b))/2. (5.29)b 
¡
a 

    

 

As a function of ®, the right-hand side of (5.29) is non-increasing on [0,1]. Moreover, for every 
 

® È 1/2, there exists a convex function f for which (5.29) is false. 
 

 

As extensions of Theorems 5.2.3 and 5.3.2 we obtain the following result: 

 

Theorem 5.4.2 Let Qtr and Qmid be the cubature formulas given respectively by (5.12) and 

(5.19). Then, for every componentwise convex function f on Cd , and ® 2 [0, 1/2] we have 

1 

Z
Cd f (x)d x · ®Qmid( f ) Å(1 ¡®)Qtr( f ). (5.30) 

Cd  

j j   

 

As a function of ®, the right-hand side of (5.30) is non-increasing on [0,1]. Moreover, for every 
 

® È 1/2, there exists a componentwise convex function f for which (5.30) is false. 
 

Proof Fix x Æ (x1, . . . , xi ¡1, xi , xi Å1, . . . , xd ). Since, f is componentwise convex on Cd then f
˜
i : 

[¯ i 1,¯ i 2] ! R, f
˜
i (t) Æ f (x1, . . . , xi ¡1, t, xi Å1, . . . , xd ), is convex on [¯ i 1,¯ i 2] for all (x1, . . . , xi ¡1, xi Å1, . . . , xd ) 2 

C d i . Hence by Lemma 5.4.1 we get, for any ® 2 [0, 1/2], 

1 

Z 

¯
i 2  ˜ ˜  1 ¡® ˜ ˜  

¯
i 2 

¡¯
i 1 

¯
i 1 fi (t)d t · ®fi ((¯ i 1 Å¯ i 2)/2) Å 2 ( fi (¯ i 1) Å fi (¯ i 2)). (5.31) 
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Integrating this inequality on Cd i , and using Fubini’s theorem we immediately arrive at 
 

1 
Z

Cd f (x)d x · ®Qi
mid( f ) Å(1 ¡®)Qi

tr( f ), (i Æ 1, . . . ,d) (5.32)  

C
d  

j j   

 

Finally, summing these inequalities over 1 · i · d, and then dividing both sides by d yields the 

required inequality. By standard considerations, the rest of the proof is easy using another 

application of Lemma 5.4.1.  

 

We are now in a position to show that the midpoind cubature Qmid and more generally the 

average cubature formulas Q®( f ) Æ ®Qmid( f ) Å(1 ¡®)Qtr( f ),® 2 [0,1] are always superior 

to Qtr if f is componentwise convex or concave on Cd . An improvement of this result will be 
obtained for differentiable functions with Lipschitz continous gradients, see Section 5.6. In one 
dimension, inequality (5.33) is due to Hammer [14]. 

 

Corollary 5.4.3 Let f be a function either componentwise concave or convex on Cd . Then 

¯  C
1

d 
j 

Z
Cd f (x)d x ¡Qmid( f ) ¯  · 

¯
Qtr( f ) ¡ C

1
d 

Z
Cd f (x)d x ¯ . (5.33)

¯ j     ¯   ¯   j   j     ¯   

¯        ¯   ¯           ¯   

¯        ¯   ¯           ¯   

More generally, for any ® 2 [0, 1], we have 
C

1
d 

 Z
Cd 

  

¯

    

¯  C
1

d j 
Z

Cd f (x)d x ¡Q®( f ) ¯  ·
¯

Qtr( f ) ¡  f (x)d x .  (5.34)
¯ j   ¯    ¯   j j    ¯     

¯
     

¯  
  

¯  
        

¯
    

¯      ¯    ¯          ¯    

Proof We begin with the first statement. We only give the proof in the case when f is compo-
nentwise convex, the case of the concavity can be obtained similarly by replacing f by ¡f , so 
we omit the details. To this end, we will prove the following equivalent inequalities 
 

0 · 1 

Z
Cd f (x)d x ¡Qmid( f ) · Qtr( f ) ¡ 1 

Z
Cd f (x)d x. (5.35)

Cd 

j 

Cd  

 j  j j    
The left-hand inequality follows directly from Theorem 5.3.2. For the right-hand inequality it 

suffices to observe that (5.35) is equivalent to 
 

1 
Z

Cd f (x)d x · 1 Qmid( f ) Å 1Qtr( f ), (5.36)     

Cd  2 2

j j        

 

which is satisfied by choosing ® Æ 1
2 and applying Theorem 5.4.2. As a consequence of 

(5.33), we may now prove the general inequality (5.34). Indeed, an easy calculation shows 
that the following estimate holds:  

¯ C
1

d  
Z

Cd f (x)d x ¡Q®( f ) ¯  · ® ¯ C
1

d   
Z

Cdf (x)d x ¡Qmid( f ) ¯  

¯

     

¯  

  

¯
          

¯  j j     j  j       

¯     ¯    ¯      1    tr ̄  
¯      ¯  Å (1

¯  ®) ¯
  f (x)d x ¡Q  ¯

( f ) . 
      

Cd
  

        ¡   

Z
Cd   ¯  

             

¯ j j 
   

¯  

             

¯
      

¯  

             ¯       ¯  
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Thus, combining the above inequality and (5.33), we obtain the required general inequality. 
 

 

 

 

 

5.5 A multivariate version of perturbed midpoint, trapezoidal, and 
 

Simpson’s rule 
 

We shall now generalize Simpson’s rule to d dimensions. We also provide multivariate 

versions of perturbed midpoint and trapezoidal rules. Recall that, for any i Æ 1, . . . ,d, Mi is 

the hyper-plane section defined as in (5.17). Here, we continue to denote by Qi
tr and Qi

mid 
the functionals given respectively by (5.7) and (5.16). Throughout the rest of this section, for 

nonnegative integer n, Pn will denote the vector space of polynomials on Cd with real 
coefficients of degree at most n. We start with the following key remark. 

 
 
 
 
 

 
Remark 5.5.1 Let us also observe the following surprising result. By Theorem 5.2.2 and 5.3.1, 
we know that the trapezoidal and midpoint cubature formulas are each only exact for linear 
functions. However, it can be easily verified that, for each i Æ 1, . . . ,d, the approximation 

errors Ei
tr and Ei

mid given respectively by (5.6) and (5.18) vanish on the space 
 

Q :Æ P1 © ( 1, j  i 
x®

j j ,®j 2 N, j Æ 1,...,d, j 6Æi
)
. (5.37) 

      d          

     j Æ
Y

6Æ         

Moreover, if we denote by         

I 
  d   ®j 1  ®j 1

´ , 
  

 d j Æ1, j 6Æi³¯ j 2 Å ¡¯ j 1 Å   

 Æ Q              

  

Q
j Æ1, j 6Æi(®j Å1)

¡
¯ j 2 ¡¯ j 1

¢ 
   

then the following key identities hold, for any ®j 2 N, j Æ 1, . . . ,d, j 6Æi and ®i Æ 0, 1, 2, 3,  

  Qi Ã d x j  
! 
 Æ  ®i 2 ®i I , (5.38) 

   tr Y 
®

j    
¯ i 1Å¯ i 2   

                 
j Æ1 

Ã ! 

 Qi    d  x
 j Æ µ ¯ i 1 2  ¶®i I ,        (5.39) 

   j  1           

   
mid 

 

Y 
 

®j 
   

Å¯ i 2 
          

                            

Cd     

d 
 Æ   d x Æ 3 

Q
i Ã 

d 
x j !Å 3

Q
i Ã

d 
x j !, (5.40) 

  Cd   x j  

1  Z j 1 ®j   1 tr j  ®j  2 mid  ®j   

     1   j  1    

    Y           Y         Y    

j j   Æ             Æ         Æ    

 

It should be mentioned that the requirements ®i Æ 0, 1, 2, 3 concern only equality (5.40). 
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Let us now define, for each i Æ 1, . . . ,d, the integration formula. 
 

1 
Z

Cd f (x)d x  Æ 1 Qi
tr( f ) Å 2 Qi

mid( f ) ÅEi
Sim( f )        

(5.41)             

Cd  3 3        

j j Æ 3 µ2
µ

jFi j 
Z

Fi f d¾ Å jFi Åd j 
Z F

i Åd f d¾ 
¶¶

Å 3
µ

jMi j 
Z 

Mi f d¾
¶ 

    1 1 1     1    2 1    

                          

   Å Ei
Sim( f ).               (5.42)

 

 

For the cubature formula (5.41), the following result holds. 
 

 

Lemma 5.5.2 For each i Æ 1, . . . ,d, the approximation error Ei
Sim as defined in (5.42) 

vanishes for all functions belonging to P3. 
 

 

Proof Let us first observe that the approximation error Ei
Sim can be written as 

 

Sim  1 tr  2 mid   

Ei Æ

 

Ei Å

  

Ei , i Æ 1, . . . ,d, (5.43)3 3 
 

where Ei
tr and Ei

mid are respectively defined by (5.6) and (5.18). Remark 5.5.1 tells us that, for 

each i Æ 1, . . . ,d, these latter vanish on the space Q, where Q is defined by (5.37). Then, since  
E i

Sim is a convex combination of these two approximation errors, it consequently vanishes on the same 

space. Hence, Ei
Sim vanishes identically for any f 2 P3 provided that 

Ã ! 
d 

Ei
Sim  

Y
 x®

jj Æ 0, 
j Æ1 

 

for any ®j 2 N, j Æ 1, . . . ,d, j 6Æi,®i Æ 1,2,3, such that 
Pd

jÆ1 ®j · 3. This required equality 

now follows from identity (5.40).  

 
Let us now define the integration formula. 
 

1 
Z

Cd f (x)d x :Æ 2 Qmid( f ) Å 1Qtr( f ) ÅESim( f ), (5.44)     

Cd  3 3

j j         

 

where Qtr and Qmid are the cubature formulas given respectively by (5.12) and (5.19). Recall 
that Simpson’s rule can be expressed on the interval [a,b] as: 

b ¡ a 
Z 

b f (t)d t Æ 3 f 
µ 

2 
¶

Å3 µ 2 
¶

ÅE 
Sim 

( f ). (5.45)
a 

1     2 a Åb  1 f (a) Å f (b)    

 

 

Hence, the cubature formula (5.44) appears as a natural extension to higher dimensions of the 

classical Simpson’s rule. For the Simpson cubature formula (5.44), the following result holds. 
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Theorem 5.5.3 Let Qtr and Qmid be the cubature formulas given respectively by (5.12) and 
(5.19). Then, the approximation error ESim as defined in (5.44) vanishes for all functions 

belonging to P3. 
 
 
 

 

Proof Indeed, it is obvious that the approximation error ESim can be expressed as follows: 

 
Sim 1 d Sim 
  X  

E
 

(
 
f
 
)
 

Æ
 d i Æ1 

E
i   ( f ),  

 
Hence, it remains to apply Lemma 5.5.2 to get the required result.  

 
 
 

 
Let us also introduce another class of cubature formulas via   

 1  Z
Cd f (x)d x Æ Qmid( f ) ÅQmper( f ) ÅEmper( f ),   (5.46) 

 Cd   

 j  j                  

where Qmid is the cubature formula defined by (5.25) and    

Q mper ( f ) :Æ 1 d (¯ i 2 ¡¯ i 1)2 Z
Cd @

2 f (x) d x.   (5.47) 
    24d i Æ1   jCd j   @xi2   

          X             

Atkinson [2] defined the corrected or perturbed midpoint rule on the interval [a,b] by  

  

1
   b   

Æ f 
µ 

a Åb 

¶Å

b ¡ a  
  

mper 
  

     

Za f (t)d t 
¡
f 0(b) ¡ f 0(a)

¢
ÅE ( f ), (5.48)  b ¡ a 2  24   

and so the cubature formula (5.46) is a natural extension of the perturbed midpoint rule in 
higher dimensions. 

 

 

It also holds that the cubature formula (5.46) satisfies the following exactness condition. 
 

 

 

 

Theorem 5.5.4 The approximation error of the perturbed midpoint cubature formula Emper 

vanishes for all functions belonging to P2. 
 

 

 

 

Proof The proof simply follows from Remark 5.5.1. First, let us observe that 
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Emper( f )  Æ 1 

Z
Cd f (x)d x ¡Qmper( f )     

Cd      

 j   j     Z
Cd f (x)d x ¡Qi

mid( f )
¶

¡Qmper( f ) Æ 1  d 1  1 

d i   µ Cd  

  X              

Æ d 
 Æ   j  j  i24

¡
Cd

i 1 

Cd 
 @x2   d x

! 
    

Ã
Eimid( f ) ¡   

 1 i d 1      (¯  2 ¯  )2 Z @2 f (x) 
              i 

  X              

 

1 
 Æ        j j     

Æ  d  Ei
mper.         

             

d i Æ1 
        

  X              

To show the desired result, it suffices to show that 
 

                    Ei
mper( d ®j j ) Æ 0.        

                    x        

                         Y            

                        j Æ1            

for any 0 6 ®j 6 2, j Æ 1, . . . ,d, such that 
Pd

jÆ1 ®j · 2.         

Now, since we have the following identities              

     d      8 (¯ i 2¡¯ i 1)2 
                   

Eimi d(   x®j   

j )     12  I , if ®i Æ 2,           (5.49)

     Y     

Æ < 0,
    

otherwise, 
           

     j Æ1                    

and          :                         

 

(¯ i 2 ¡¯ i 1
) 

2
  @2( d 1 

x ®
j )    

8 
(¯ i 2¡¯ i 1)2 I ,  if ® 

 

2,
  

        i 
Æ

  

          j Æ j 

d x 
Æ  

12 
        

(5.50)
       C

d 
     2           

  24 Cd j        

Q@x i    

<0,      otherwise.  

     j   Z                  

for any ®j 
                 :       

P 

d  
1 

®
j 
 

2. Then, the desired result2 N, j Æ 1, . . . ,d, j 6Æi,®i Æ 0,1,2, such that j 

Æ ·follows immediately. 
                       

                       

We now turn to another perturbed version of the trapezoidal cubature formula: 

 1   ZCd f (x)d x Æ Qtr( f ) ¡Qtper( f ) ÅEtper( f ),       (5.51)
 Cd 

j 

      

 j                                   

where Qtr is the cubature formulas defined by (5.13) and Qtper defined as follows 

Q tper ( f ) :Æ  1  
d  (¯ i 2 ¡¯ i 1)2 Z

Cd @2 f (x)           (5.52)
   

12d i Æ1 
 

jCd j 
     

d x. 
       

            X                        

 @xi
2 



 

 

In this case we have the following result: 
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Theorem 5.5.5 The approximation error of the perturbed trapezoidal cubature formula Etper 

vanishes for all functions belonging to P2. 
 

 

Proof The proof is exactly the same as the proof above in the case of the perturbed midpoint 

cubature formula, but here we use the following identities 
 

1 
 

d 

 

x®
j j d x  Qi

tr( d x ®j j ) 
 

8¡ (¯ i 2¡¯ i 1)2 I ,  if ® i Æ 2,    

   
Y

      
Y 

              

  Z
Cd j Æ1

  

¡ 
  

j Æ1
    

Æ <0, 
   

otherwise,  jCd j            

and               :        

                       

 

(¯ i 2 ¡¯ i 1) 2
 @2( d 1 x®j ) 

  

8
(¯ i 2¡¯ i 1)2 I ,  if ® 

i 
Æ 2,

  

        

      j Æ j   

d x 
 

6
      

   

Cd 
  2           

 12 Cd j   

Q@x i      Æ 0,   otherwise.  

  

j 
 

Z 
         

<
   

                :         

which hold for any ®j 2 N, j Æ 1, . . . ,d, j 6Æi and ®i Æ 0, 1, 2. 
 

 

 

 

(5.53) 
 

 

 

 

 

 

(5.54) 

 

 

5.6 Cubature Error Bounds 
 

In this section, error estimates are established for cubature formulas of type 

C
1

d 
Z

Cd f (x)d x Æ i n 1
!
i 
Z

Hi f d° ÅE[ f ], (5.55) 
   X    

j  j   Æ     

 

which are assumed to satisfy an upper or a lower Hermite–Hadamard inequality for any 
convex function. It is shown that they always yields a sharp error bound for the associated 
integration formula. In particular, we present explicit expressions of the best constants, which 
appear in the error estimates for the new multivariate versions of trapezoidal, midpoint, and 
Hammer’s quadrature formulas. 

 

Here, for a twice differentiable function f : Cd ! R in d variables, we say that f is continuously 

differentiable on Cd if it is continuously differentiable on an open set containing Cd . Here, we 

continue to denote by k.k the Euclidean norm in Rd . 
 

Definition 5.6.1 A differentiable function f : Cd ! R is said to have a Lipschitz continuous 

gradient, if there exists a constant ½(rf ), such that 
°
rf (x) ¡ rf (y) ° · ½(rf ) °x ¡ y ° , (x, y 2 Cd ). (5.56) 

° °  ° °  

For any differentiable f with Lipschitz continuous gradient, there exists a smallest possible 
 

½ (rf ) such that (5.56) holds. The smallest constant L(rf ) :Æ Li p(rf ) satisfying inequality (5.56) is called the Lipschitz 

constant for rf . By C 1,1(Cd ) we will denote the subclass of all functions f which are continuously differentiable on Cd 

with Lipschitz continuous gradients. 
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Our characterization of an integration formula, which admits an upper or a lower Her-mite–

Hadamard inequality, can be phrased as follows: 

 

Theorem 5.6.2 Let Hi ,i Æ 1, . . . ,n, be some given hyperplane sections with positive 

measures of the d-dimensional hyper-rectangle Cd , and let !i ,i Æ 1, . . . ,n, be n positive real 
numbers. Define the integration formula via 

  C
1

d   
Z

Cd f (x)d x Æ i
n

1 
!
i 
Z

Hi f d° ÅE[ f ], 
         X  

 j   j    Æ  

and let ¾ 2 {¡1, 1}. Then, the two following statements are equivalent 

(i ) For every convex function g 2 C 1,1(Cd ), we have  

 ¾E 
£

g 
¤

¸ 0.         (5.57)

(i i ) For every f 2 C 1,1(Cd ) with L(rf )-Lipschitz gradient, we have 

 

jE 
£

f 
¤

j · ¾E 
£

k.k 

2 

¤

 L(rf )   

     

. 

 

(5.58)   2   

 Equality is attained for all functions of the form  

 f (x) :Æ a(x) Åck.k2,    (5.59)
 

where c 2 R and a(¢) is any affine function. 

 

Proof First we prove (i) implies (ii). Take f to be any continuous function from C 1,1(Cd ) with 

Lipschitz constant L(rf ), and define the two following functions 
 

g § :Æ k.k2 
L(rf

 
)
 § f . 2 

 

 

 

According to [7, proposition 2.2], we know that both of these functions are convex and clearly 

belong to C 1,1(Cd ). Hence, by applying (5.57) to g§, we immediately deduce 

¾E 
·
k.k2 

L(rf
 
)

 § f 
¸
¸ 0, 

 

2 
 

or equivalently, by using the linearity of E, 
 

¡¾E 
£

k.k 

2 

¤

L(rf ) 

· E 
£

f 
¤

· ¾E 
£

k.k 

2

¤

 L(rf ) 

. 2  2 
This is equivalent to the desired result (5.58). 
 

For the statement on the occurrence of equality, it is enough to note that if E satisfies (5.57) for 
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all convex functions from C 1,1(Cd ) then it must vanish for affine functions. 
 

Let us now prove that (ii) implies (i). It clearly follows from (5.58) that 
 

¾E 
£

k.k2¤
¸ 0,  (5.60)

and that, for any f 2 C 1,1(Cd ),  

¾E 
·
k.k 

2 L(rf ) 

¡ f 
¸
¸ 0. (5.61) 2  

 

Now, let us take an arbitrary convex function g 2 C 1,1(Cd ), and define 
 

f :Æ 
L(rg

 
)
 k.k2 ¡ g 

. 2 
 

 

Then, by [7, proposition 2.2], we have 
 

f 2 C 1,1(Cd ) with L(rf ) · L(rg ). (5.62)
 

Furthermore, since 

g Æ 
L(rg

 
)
 k.k2 ¡ f , 

2 
 
 

we obviously have 

g Æ 
µ

k.k2 
L(rf

 
)
 ¡ f 

¶
Å k.k2 

µL(rg
 
)
 ¡ 

L(rf
 
)
 
¶
, 

 

 2 2   2     

and hence we arrive at             

¾E 
£

g 
¤

Æ ¾E 
·
k.k 

2 L(rf )

¡ f 
¸
Å¾E 

£
k.k

2

¤ µ

L(rg ) 

¡

L(rf ) 

¶. 2  2  2  

Finally, (5.60), (5.61) together with (5.62) yield that (i) is valid. This shows the equivalence 
between these two statements.  

 

We will let c¤ denote the center of gravity of Cd defined by c¤ Æ ¯ i 2Å¯ i 1 ,i Æ 1. . . ,d. We may 
 

i 2 
 

now combine Theorems 5.2.3, 5.3.2, 5.4.2, 5.5.3, 5.6.2 together with the observation that  
Qmid(k. ¡c¤k2 Æ 0, to find the following estimations for the remainders: 

 

Corollary 5.6.3 Let f 2 C 1,1(Cd ) with L(rf )-Lipschitz gradient. Then, for the cubature formu-

las (5.13), (5.25), and (5.28), the following error estimates hold: 

 

¯ Emid( f ) ¯  · 
¯    ¯   

¯ ¯ E tr ( f ) ¯  · 
  ¯  

 ¯    ¯   

 

¯
E®( f ) ¯  · 

 ¯    ¯   

 
 

Qtr 

¡
k. ¡c¤k2 

¢ L(rf ) 
      

(5.63)   6        

Qtr 

¡
k. ¡c¤k2 

¢ L(rf ) 
      

(5.64)   3     

2
  

 1  6 1  ®  Qtr .  c     

           

¡ 

 

Å ¡

2 

¡ ¢¢12 ¡k ¡

 

¤k 

 

¢ L(rf ),® 2 [0, 1/2]. (5.65)     
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Corollary 5.6.3 indicates which one of the three cubature formulas (5.13), (5.25), and (5.28) has the 
smaller constant in its error estimate. We see that the best constant (minimal possible) in the error 

bound (5.65) is obtained by taking ® Æ 12 . This extremal value of the parameter 

® provides the following cubature formula, which satisfies the upper Hermite–Hadamard 
inequality: 
 

1 
Z

Cd f (x)d x · QHam( f ) :Æ 1Qmid( f ) Å 1Qtr( f ). (5.66)     

Cd  2 2

j j         
In the one-dimensional case (5.66) reduces to 
 

1 
b  

 1
 

µ

a Åb 

¶Å

1

µ

f (a) Å f (b) 

¶, 

 

Za f (t)d t · f (5.67)b ¡ a 2 2 2 2 
which was discovered by Hammer [14], but sometimes it is also attributed to Bullen [5], see [11, 

p. 11]. When Cd is the interval [a,b] (and k.k is the absolute value), a short calculation reveals 

that from (5.63) and (5.64) we easily get, as mentioned in the Introduction, the corresponding 
classical bounds (5.2) and (5.4). Finally, we should mention, as in the univariate case, that the 
constant of the error in the trapezoidal cubature formula is twice as large as that for the 
midpoint cubature formula. Also, we immediately see that the constant in the latter is twice as 
large as for the new multivariate version (5.66) of Hammer’s quadrature formula. 
 
 

5.7 Numerical tests 
 
In this section we provide some numerical tests, which we perform in order to validate our 

theoretical predictions and to compare the set of cubature formulas described in the previous 

sections. We also give another comparison with uniform and non-uniform centroidal Voronoi 

cubatures provided in the paper [4]. We should mention that these latter are cubature formulas 

of the standard form, which use a set of numerical values of the integrand at the center of 

gravity of each element in a subdivision. We shall abbreviate these cubature formulas as 

UCVC and CVC, respectively. Cubature formulas of this type have many useful general 

properties, see [4]. We have considered the following two bivariate test functions 

 

f 1(x, y) Æ (x2 Å y2)2, 
 

p 

f2(x, y) Æ x Å y Å1. 

 

Within each cubature formula a different behaviour is observed, depending on the characteris-

tics of the integrand. Note that f1 is componentwise convex but f2 is componentwise concave. 
Then from Corollary 5.4.3, we know that the midpoint and Hammer’s cubature formulas are 

superior to the trapezoidal cubature formula for f1 and f2. As we will see in the following, these 
theoretical predictions are confirmed by all our numerical tests. 
 

In these experiments the integration domain is the unit square [0, 1]2 , which we divide into 
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N 2 equal subsquares. Then we apply a cubature formula to each subsquare. In the following 

tables, we present the behavior of error corresponding to each cubature formula with respect 
to the number of subdivisions in each direction N . In Table 5.1 we have displayed the 
cubature errors of the first test function above, (the corresponding number of subdivisions in 
each direction N appears in the first column). For completeness sake here are the errors for 
some larger value of N . In the remaining part of the chapter, The absolute value of the errors 
of the trapezoidal, midpoint, Simpson’s, Hammer’s, uniform and non-uniform centroidal 
Voronoi cubatures will be denoted respectively by 

 

E N
tr , EN

mid, EN
Sim, EN

Ham, EN
UCVC, EN

CVC. 
 

All results in the tables given below were generated by using Matlab software. The two exam-

ples of a mesh for the uniform and non-uniform centroidal Voronoi cubature formula were 

generated by using the Matlab routine “PolyMesher.m”, included in [10]. 
 

 

 

N Etr Emid ESim EHam EUCVC ECVC 
 N N N N N N 

10 0.0044411 0.0022193 8.3333333e- 0.0011109 0.0044372 0.0044 
   07    

       

20 0.0011109 5.5537326e- 5.2083333e- 2.7776475e- 0.0011107 0.0011 
  04 08 04   

       

40 2.7776475e- 1.3887750e- 3.2552090e- 6.9443631e- 2.7774955e- 2.7317e-04 
 04 04 09 05 04  

       

80 6.9443631e- 3.4721510e- 2.0344926e- 1.7361061e- 6.9442678e- 6.8201e-05 
 05 05 10 05 05  

       

160 1.7361061e- 8.6805112e- 1.2714940e- 4.3402747e- 1.7361001e- 1.7027e-05 
 05 06 11 06 05  

       

320 4.3402747e- 2.1701362e- 8.0313534e- 1.0850692e- 4.3402711e- 4.2485349e- 
 06 06 13 06 06 06 
       

 

Table 5.1 – The behavior of the error corresponding to each cubature formula for the 

test function f1. 
 

 

Remark 5.7.1 As this table shows that this is close to theoretical predictions. It is clear from this 

example that the error of the centroidal Voronoi cubature formula is approximately the same as the 

trapezoidal cubature formula, which is approximately twice as large as the error of the midpoint 

cubature formula. This latter is also approximately twice as large as the error of the Hammer’s 

cubature formula. Table 5.1 obviously shows that Simpson’s cubature formula is very much better 

than all other cubature formulas. Finally, it is seen that whereas the Hammer’s, Simpson’s and the 

midpoint cubature formulas provide good errors, the centroidal Voronoi and the trapezoidal 

cubature formulas are far less accurate for small values of N . This shows that the choice of 

cubature formulas can result in orders of magnitude saving in computational time. 
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In the following graphs. We first draw the mesh corresponding to the centroidal Voronoi 

cubature formula for the uniform and non-uniform cases. We then draw the behavior’s error of 

each cubature formula with respect to the number of subdivisions in each direction (in the left 

side), and also the log scale graph for every case (in the right side). The last graph gathers 

the behavior of all cubature formulas in order to facilitate the comparison. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 – Mesh of the unit square corresponding to the uniform centroidal Voronoi 

cu-bature formula (left), and that corresponding to the non-uniform centroidal Voronoi 

cu-bature formula (right). N Æ 20 in these examples. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 – Graph of the error corresponding to the approximation with the non-
uniform centroidal Voronoi formula (left), and the error in the log scale (right). 
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Figure 5.3 – Graph of the error corresponding to the approximation with the uniform 
cen-troidal Voronoi formula (left), and the error in the log scale (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 – Graph of the error corresponding to the approximation with the Trapezoidal 
formula (left), and the error in the log scale (right). 
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Figure 5.5 – Graph of the error corresponding to the approximation with the Midpoint 
for-mula (left), and the error in the log scale (right). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 – Graph of the error corresponding to the approximation with the Hammer 
for-mula (left), and the error in the log scale (right). 
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Figure 5.7 – Graph of the error corresponding to the approximation with the Simpson 
for-mula (left), and the error in the log scale (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 – Graph of the error corresponding to the approximation of each formula 
(left), and the error in the log scale (right). 

 

 

The last graph confirms that Simpson’s cubature formula is significantly superior to the all 

other cubature formulas (see Remark 5.7.1). However, we note that the graph corresponding 

to the centroidal Voronoi cubature formula is superimposed with that of trapezoidal cubature 

 

133 



New Cubature formulas and Hermite-Hadamard type inequalities using integrals 
over some hyperplanes in the d-dimensional hyper-rectangle 
 

 

formula. We remark also that the graph’s error of Simpson’s cubature formula is 

superimposed with the x-axis in the left figure since this latter generates a much smaller error 

in comparison with the error of the other cubature formulas. 
 

Now, we present the second numerical test which will be carried out for the second function 

f 2. 
 

 

 

 

 

 

 

 

 

 

 

 

N Etr Emid ESim EHam EUCVC ECVC 
 N N N N N N 

10 8.0296770e- 4.0142077e- 4.2049058e- 2.0077347e- 8.0263169e- 7.6748e-05 
 05 05 09 05 05  

       

20 2.0077347e- 1.0038279e- 2.6318858e- 5.0195340e- 2.0075242e- 1.9698e-05 
 05 05 10 06 05  

       

40 5.0195340e- 2.5097424e- 1.6452173e- 1.2548959e- 5.0194026e- 4.9193e-06 
 06 06 11 06 06  

       

80 1.2548958e- 6.2744641e- 1.0100809e- 3.1372471e- 1.2548876e- 1.2245e-06 
 06 07 12 07 06  

       

160 3.1372474e- 1.5686227e- 7.3496764e- 7.8431242e- 3.1372423e- 3.0668e-07 
 07 07 14 08 07  

       

320 7.8431285e- 3.9215699e- 3.9523940e- 1.9607791e- 7.8431341e- 7.6624957e- 
 08 08 14 08 08 08 
       

 

Table 5.2 – The behavior of the error corresponding to each cubature formula for the 

test function f2. 
 

 

 

 

 

 

 

 

 

 

 

In contrast to the previous example, here already for small values of N all cubature formulas 

give significantly smaller errors. However, we see that the superiority of Simpson’s cubature 

formula over all other cubature formulas is still obvious. Note again that the trapezoidal 

cubature formula tends to be slightly closer to than the centroidal Voronoi cubature formula, 

but neither is as close with N Æ 320 as Simpson’s cubature formula is with N Æ 10. 
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Figure 5.9 – Graph of the error corresponding to the approximation with the non-
uniform centroidal Voronoi formula (left), and the error in the log scale (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 – Graph of the error corresponding to the approximation with the uniform 
cen-troidal Voronoi formula (left), and the error in the log scale (right). 
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Figure 5.11 – Graph of the error corresponding to the approximation with the 
Trapezoidal formula (left), and the error in the log scale (right). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 – Graph of the error corresponding to the approximation with the Midpoint 
formula (left), and the error in the log scale (right). 
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Figure 5.13 – Graph of the error corresponding to the approximation with the Hammer 
formula (left), and the error in the log scale (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 – Graph of the error corresponding to the approximation with the Simpson 
formula (left), and the error in the log scale (right). 
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Figure 5.15 – Graph of the error corresponding to the approximation of each formula 
(left), and the error in the log scale (right). 
 

 

We can deduce also from the graphs of this second numerical test the same interpretation as 

the first test. 
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 Conclusions, final remarks, 
implica-tions and extensions 

 

 

Because of the fact that our main results appeared in chapters three, four and five, therefore, 

we will talk about this chapters briefly and separately to mention the main results and final 

remarks of each chapter. Conclusions were arranged as follows: 
 

 

In chapter three, we are present a new and efficient way of approximating a given function of 

multiple variables by linear operators, which approximate all strongly convex functions from 

above (or from below). This additional information is used to characterize sharp error 

estimates for continuously differentiable functions with Lipschitz continuous gradients. All the 

proposed error estimates are controlled by the Lipschitz constants of the gradients and the 

error associated with using the quadratic function. Moreover, if the function to be approxi-

mated is also strongly convex then we establish sharp upper as well as lower refined bounds 

for the error estimates. Also, the numerical experiments in this chapter clearly demonstrate 

that the strong convexity of strongly convex function has been preserved and there is no 

visual difference between the test function and its piecewise-linear interpolant, as we have 

seen in Figs 3.1, 3.2 and 3.3. Furthermore, we have noticed the accuracy of our 

implementation of barycentric approximation, as we stated in section 3.5 (see the Tables 3.1, 

3.2, 3.3 and 3.4), where we have seen that, for all test functions, the MSE decreases with 

increasing numbers of nodes as N increases. Actually, the motivation that caused our 

attention to such class of functions is that these functions are used widely in economic theory 

(see [1]), and are also central to optimization theory (see [2]). Indeed, in the framework of 

function minimization, this convexity notion has important and well-known implications. 

 
In chapter four, we are present a new classes of cubature formulas ( which we call them 
strongly positive, respectively negative, definite cubature formulas) for numerical integration 
(or multidimensional quadrature), that approximate from above (or from below) the exact value 
of the integrals of every function of multiple variables having a certain type of convexity. In 

fact, we got two characterization results of any linear functional C 1,1(-) ! R, which is 

nonnegative on the set of convex functions, then we apply this results to the case when the 
functional is the error functional of our cubature formulas. We concluded that, for functions 
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belonging to C 1,1(-), the error estimates based on such cubature formulas may always con-

trolled by the Lipschitz constants of the gradients, the different types of convexity and the error 
associated with using the quadratic function. In addition, when we know that the function to be 
integrate satisfies the classical convexity or strong convexity, we use this additional 
information to establish sharp upper as well as lower refined bounds for the error estimates for 
these classes of functions. With regard to the strongly positive definite cubature formulas, we 
give characterization results between them and the partition of unity of the integration domain, 
also explain how we can construct them using decomposition method for domain integration. 
The same thing achieved for strongly negative definite cubature formulas, where we 
characterize them in two different ways: the first one by certain partitions of unity and the 
second one by a class of positive linear operators. We also present practical construction of 
strongly negative definite cubature formulas. Further, we show that there is a main difference 
between them and strongly positive definite cubature formulas. Indeed, we noted that the 
latter (strongly negative definite cubature formulas) can exist only if the domain of integration 
is a convex polytopre. By means of the numerical examples which provided in this chapter, we 
illustrated the efficiency of our cubature formulas. For more details we can see the tables and 
figures in section 4.4 which explains that clearly. 
 

 

In chapter five, according to the results given in the tables, Simpson’s cubature formula, i.e., 

average cubature formula with ® Æ 23 derived in this chapter, provides more accurate results, 

than the other average cubature formulas. This behavior has also been observed for 
numerous other integrands. This is not surprising, since Simpson’s cubature formula is of 
order 3 while the other average cubature formulas is of order 1. In comparing the numerical 
results, we have also observed that the non-uniform centroidal Voronoi cubatures of the 
standard form, which use the values of the integrand at certain points, give the worst results. 
Note however that the use of the non-uniform centroidal Voronoi cubature produces slightly 
better results than the uniform one. 
 

The cubature formulas we have presented have applications to the theory and practice of the 

numerical solution of PDEs using the so-called non-conforming Crouzeix–Raviart element. In 

a forthcoming paper, see [1], we have used cubature formulas of this type for the approximate 

solution of a planar elasticity problem. In fact, that there are many other applications, espe-

cially in experimental physics and engineering, where the standard discrete sample values 

from functions are not available, but only their mean values are accessible. For instance, this 

data type appears naturally in computer tomography with its many applications in medicine, 

radiology, geology, amongst others. 
 

We now allude briefly to further extensions which are possible. Throughout the work we have 

considered, cubature formulas, which use a number of integrals over certain hyperplane 

sections parallel to coordinate hyperplanes. We shall describe the general problem elsewhere 

when certain prescribed hyperplane sections are not necessary parallel to coordinate hyper-

planes. Let us note that our Theorem 5.6.2 provides in this general context sharp error bounds 

with explicit constants. 
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 Conclusions, remarques finales, 
impli-cations et extensions 

 

 

Dans la présente thèse, nous avons étudié plusieurs questions liées à l’approximation des 

fonctions de plusieurs variables par de nouveaux types d’opérateurs linéaires, qui gardent un 

signe constant pour toute fonction satisfaisant une certaine convexité généralisée. Les 

principaux résultats de ce travail apparaissent dans les chapitres trois, quatre et cinq. Dans 

ce chapitre nous allons faire une synthèse des chapitres précédents en présentant 

brièvement les principaux résultats et remarques finales de chaque chapitre. Les conclusions 

ont été disposées comme suit: 
 

 

Dans le chapitre trois, nous avons présenté des opérateurs linéaires, qui gardent un signe 

constant pour toutes les fonctions fortement convexes. Cette information supplémentaire a été 

utilisée pour caractériser la meilleure estimation de l’erreur pour les fonctions contin-ues 

différentiables ayant des gradients Lipschitz continus. Toutes les estimations d’erreur 

proposées sont contrôlées par les constantes de Lipschitz des gradients et l’erreur associée 
 

à l’utilisation de la fonction quadratique. De plus, si la fonction à approcher est également 

fortement convexe, nous avons établi des bornes supérieures et inférieures explicites pour les 

estimations d’erreur. Les expériences numériques présentées dans le chapitre montrent 

claire-ment que la convexité forte des fonctions tests a été préservée et qu’il n’y a pas de 

différence visuelle entre ces dernières et ses interpolants linéaires par morceaux. Nous nous 

référons aux figures 3.1, 3.2 et 3.3. De plus, nous avons remarqué la bonne qualité de 

l’approximation barycentrique, comme nous l’avons indiqué à la section 3.5 (voir les tableaux 

3.1, 3.2, 3.3 et 3.4). En fait, le point qui a attiré notre attention sur une telle classe de fonctions 

est que ces fonctions sont largement utilisées dans la théorie des mathématiques pour la 

compréhen-sion des phénomènes économiques (voir [1]), et sont également essentielles à la 

théorie de l’optimisation (voir [2]). En effet, dans le cadre de la minimisation des fonctions, 

cette notion de convexité a des implications importantes et bien connues. 
 
 

Dans le chapitre quatre, nous avons présenté une nouvelle classe de formules de quadrature 

multidimensionnelle (que nous avons appelées formules de quadrature fortement définies 

positives (respectivement définies négatives), qui conduisent à des valeurs approchées par 
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excès (respectivement par défaut) de l’intégrale des fonctions ayant un certain type de con-
vexité. Ainsi, nous avons obtenu deux résultats de caractérisation de toute fonctionnelle 

linéaire C 1,1(-) ! R, qui est positive sur l’ensemble des fonctions convexes. Nous avons 

appliqué ces résultats au cas où la fonctionnelle associée à de nos formules de quadrature. 

Nous avons montré que, pour les fonctions appartenant à C 1,1(-), les estimations d’erreur 

basées sur ces formules de quadrature peuvent toujours être contrôlées par les constantes de 
Lipschitz des gradients, les différents types de convexité et l’erreur associée à l’utilisation de 
la fonction quadratique. De plus, la fonction à intégrer satisfait la convexité classique ou la 
convexité forte, ceci nous permet d’établir des bornes supérieures et inférieures explicites 
pour les estimations d’erreur pour ces classes de fonctions. En ce qui concerne les formules 
de quadrature définies fortement positives, nous avons donné des résultats de caractérisation 
avec la partition de l’unité du domaine d’intégration. Nous avons aussi expliqué comment 
nous pouvons les construire en utilisant la méthode de décomposition pour l’intégration de 
domaine. Nous avons caractérisé les formules de quadrature définies fortement négatives de 
deux manières différentes: la première par certaines partitions d’unité et la seconde par une 
classe d’opérateurs linéaires positifs. Nous avons aussi proposé une méthode pour la con-
struction pratique de ses formules de quadrature. En effet, nous avons noté que ces dernières 
(formules de quadrature définies fortement négatives) ne peuvent exister que si le domaine 
d’intégration est un polytope convexe. À l’aide des exemples numériques présentés dans ce 
chapitre, nous avons illustré l’efficacité de nos formules de quadrature. Pour plus de détails, 
on renvoie aux tableaux et figures de la la section 4.4 qui montrent cela clairement. 
 

 

Dans le chapitre 5, en se basant sur les résultats des tests numériques, la formule de 
quadra-ture multidimensionnelle de Simpson, c’est-à-dire la formule de quadrature associée 

comme en dimension 1 au paramètre ® Æ 23 établie dans ce chapitre, produit des résultats 

plus précis que les autres formules de quadrature. Ce comportement a également été observé 
pour de nombreuses fonctions-test. Cela n’est pas surprenant, puisque la formule de 
quadrature de Simpson est d’ordre 3 alors que les autres formules cubiques sont d’ordre 1. 
En comparant les résultats numériques, nous avons également observé que les quadrature 
de type Voronoi centrées non uniformes donnent les résultats les moins satisfaisants. Notons 
cependant que l’utilisation de la quadrature non-uniforme de type Voronoi centrées produit 
des résultats légèrement meilleurs que celle basée sur une triangulation uniforme. 
 

Les formules de quadrature que nous avons présentées ont des applications pour la résolu-

tion des équations aux dérivées partielles connuee sous le nom de l’équation générale de 

comportement de l’élasticité linéaire. Ainsi c’est le cas des solutions numériques des EDP en 

utilisant l’élément fini de Crouzeix-Raviart non conforme, voir [1]. En fait, il existe de 

nombreuses autres applications, en particulier en physique expérimentale et en ingénierie, où 

les valeurs d’échantillons discrets standards de fonctions ne sont pas disponibles, mais 

seulement leurs valeurs moyennes sont accessibles. Par exemple, ce type de données appa-

raît naturellement dans la tomographie par ordinateur avec ses nombreuses applications en 

médecine, en radiologie, en géologie, entre autres. 
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Nous allons maintenant faire brièvement allusion à d’autres extensions possibles. Tout au long du 

travail que nous avons présentés, les formules de quadrature utilisent un certain nombre 

d’intégrales sur certaines sections hyperplanes d’un hyper-rectangle. Nous avons établi un résultat 

général de majoration d’erreur lorsque certaines sections d’hyperplanes prescrites ne sont pas 

nécessairement parallèles aux hyperplans de coordonnées. Notons que le théorème 5.6.2 fournit 

dans ce contexte général des bornes d’erreur avec des constantes explicites. 

 

 

Enfin, les principales perspectives de recherche, à plus court terme, qui apparaissent à l’issue 

de cette thèse concernent l’extension de ces résultats à d’autre type de convexité 

généralisée, par exemple, la convexité uniforme. Nous envisageons par la suite d’étendre les 

formules de quadrature multidimensionnelle au cas où certaines intégrales sont connues sur 

chaque facette d’une triangulation simpliciale. 
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