Transgenic mosquitoes for controlling transmission of arboviruses

par Pei-Shi Yen

Thèse de doctorat en Virologie et Entomologie Médicale

Sous la direction de Anna-Bella Failloux.

Soutenue le 15-12-2017

à Paris 6 , dans le cadre de École doctorale Complexité du vivant (Paris) , en partenariat avec Arbovirus et Insectes Vecteurs (laboratoire) et de Arbovirus et Insectes Vecteurs (laboratoire) .

Le président du jury était Dominique Higuet.

Le jury était composé de Chu-Hong Chen, Claire Valiente-Moro.

Les rapporteurs étaient Frédéric Simard, Stéphanie Becker.

  • Titre traduit

    Moustiques transgéniques pour contrôler la transmission des arbovirus


  • Résumé

    Les arbovirus (virus transmis par des arthropodes) sont à l'origine de maladies humaines telles que la dengue, le chikungunya ou encore le Zika. Le moustique Aedes aegypti, est le vecteur majeur de ces trois arbovirus. La faible efficacité des méthodes de contrôle des populations de moustiques, principalement réalisées au moyen d'insecticides chimiques ouvre un champ de développement de nouvelles approches en lutte antivectorielle. Le moustique, hôte vecteur, contrôle la réplication virale en limitant les réponses immunitaires antivirales. La machinerie RNA interférence (RNAi) est la voie jouant un rôle majeur dans l'immunité antivirale chez le moustique. Alors que le rôle des deux voies, siRNA (" small interfering RNA ") et piRNA (" piwi-interfering RNA "), est de mieux en mieux compris dans les réactions antivirales du vecteur, peu de connaissances sont disponibles à ce jour en ce qui concernent les interactions entre la voie miRNA (" micro RNA ") et les arbovirus. Ainsi, nous proposons une analyse détaillée des mécanismes par lesquels les miARN tentent de réguler la réplication virale chez le moustique. Dans la première partie de la thèse, nous avons effectué une analyse génomique pour identifier les miRNAs pouvant interagir chez Ae. aegypti avec divers lignées/génotypes des virus chikungunya (CHIKV), de dengue (DENV) et de Zika. Avec l'aide d'outils de prédiction faisant appel à divers algorithmes, plusieurs sites de liaison de miARN avec différents lignées/génotypes de chaque arbovirus ont été identifiés. Nous avons ensuite sélectionné les miARN pouvant cibler plus d'un arbovirus et nécessitant un faible seuil d'énergie lors de la formation des complexes entre l'ARNm.


  • Résumé

    Mosquito-borne arboviruses cause some of the world’s most devastating diseases and are responsible for recent dengue, chikungunya and Zika pandemics. The yellow-fever mosquito. Aedes aegypti, plays an important role in the transmission of all three viruses. The ineffectiveness of chemical control methods targeting Ae. aegypti makes urgent the need for novel vector-based approaches for controlling these diseases. Mosquitoes control arbovirus replication by triggering immune responses. RNAi machinery is the most significant pathway playing a role on antiviral immunity. Although the role of exogenous siRNA and piRNA pathways in mosquito antiviral immunity is increasingly better understood, there is still little knowledge regarding interactions between the mosquito cellular miRNA pathway and arboviruses. Thus further analysis of mechanisms by which miRNAs may regulate arbovirus replication in mosquitoes is pivotal. In the first part of the thesis, we carried out genomic analysis to identify Ae. aegypti miRNAs that potentially interact with various lineages and genotypes of chikungunya (CHIKV), dengue (DENV) and Zika viruses. By using prediction tools with distinct algorithms, several miRNA binding sites were commonly found within different genotypes/and or lineages of each arbovirus. We further analyzed the miRNAs that could target more than one arbovirus and required a low energy threshold to form miRNA-vRNA (viral RNA) complexes and predicted potential RNA structures using RNAhybrid software. Thus, we predicted miRNA candidates that might participate in regulating arboviral replication in Ae. aegypti. In the second part of the thesis, we developed a miRNA-based approach that results in a dual resistance phenotype in mosquitoes to dengue serotype 3 (DENV-3) and chikungunya (CHIKV) viruses for stopping arboviruses spreading within urban cycles. The target viruses are from two distinct arboviral families and the antiviral mechanism is designed to function through the endogenous miRNA pathway in infected mosquitoes. Ten artificial antiviral 4 miRNAs capable of targeting ~97% of all published strains were designed based on derived consensus sequences of CHIKV and DENV-3. The antiviral miRNA constructs were placed under control of either an Aedes PolyUbiquitin (PUb) or Carboxypeptidase A (AeCPA) gene promoter triggering respectively expression ubiquitously in the transgenic mosquitoes or more locally in the midgut epithelial cells following a blood meal. Challenge experiments using viruses added in blood meals showed subsequent reductions in viral transmission efficiency in the saliva of transgenic mosquitoes as a result of lowered infection rate and dissemination efficiency. Several components of mosquito fitness, including larval development time, larval/pupal mortality, adult lifespan, sex ratio, and male mating competitiveness, were examined: transgenic mosquitoes with the PUb promoter showed minor fitness costs at all developing stages whereas those based on AeCPA exhibited a high fitness cost. Further development of these strains with gene editing tools could make them candidates for releases in population replacement strategies for sustainable control of multiple arbovirus diseases.



Le texte intégral de cette thèse sera accessible librement à partir du 16-12-2019

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.