Thèse soutenue

Amélioration de la disponibilité opérationnelle des systèmes de stockage de l'énergie électrique multicellulaires

FR  |  
EN
Auteur / Autrice : Christophe Savard
Direction : Eric Niel
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 28/11/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : AMPERE - Génie Electrique, Electromagnétisme, Automatique, Microbiologie Environnementale et Applications (Rhône) - Ampère
Equipe de recherche : Ampère, Département Energie Electrique
Jury : Président / Présidente : Marie-Cécile Pera
Examinateurs / Examinatrices : Eric Niel, Marie-Cécile Pera, Hamid Gualous, Zineb Simeu-Abazi, Laurent Piétrac, Ali Sari, Armand Toguyeni, Pascal Venet
Rapporteurs / Rapporteuses : Hamid Gualous, Zineb Simeu-Abazi

Résumé

FR  |  
EN

Les systèmes de stockage de l'énergie électrique de forte capacité sont configurés en systèmes matriciels de cellules élémentaires. Les caractéristiques électriques de ces cellules n'évoluent pas toutes de manière identique, diminuant la disponibilité, à court terme par décharge rapide, à long terme en réduisant la durée de vie. Pour améliorer ces performances, des cellules redondantes et des circuits d'équilibrage sont insérés pour assurer une reconfiguration adéquate. Il devrait être possible d'accroître la disponibilité en reconfigurant les connexions internes. Nous comparons deux solutions classiques : série-parallèle (SP) et parallèle-série (PS) avec une nouvelle permettant de redistribuer le courant dans une batterie : le C-3C. Les performances sont évaluées en terme de fiabilité et de disponibilité. Nous proposons également un algorithme de pilotage adapté. La fiabilité est améliorable par redondance. Les cellules supplémentaires seront utilisées pour remplacer des cellules affaiblies. Le système peut également être conçu pour tolérer la défection d'une partie des cellules. Nous démontrons par des diagrammes de fiabilité et des chaînes de Markov que les architectures C-3C et PS présentent le même niveau de fiabilité, supérieur à celui d'une architecture SP. La durabilité des structures peut être améliorée en pilotant la mise en service des ressources disponibles selon différentes stratégies déclinées dans un algorithme de choix fondé sur les États de charge ou les États de Santé. Nous avons modélisé une cellule sous Matlab, en simulant les paramètres de vieillissement et leur évolution dynamique. Ainsi quelle que soit l'architecture, pour peu qu'elle comprenne une part minimale de redondance, une adéquate gestion différentiée des cellules permet une amélioration de la disponibilité de 40%. Par souci de reproductibilité, nous avons également modélisé ces structures par un réseau de Petri coloré, de manière à esquisser l'instrumentation et le dimensionnement de la commande.