Numerical simulation of axisymmetric turbulence

par Bo Qu

Thèse de doctorat en Mécanique des fluides

Sous la direction de Wouter Bos.

Soutenue le 14-02-2017

à Lyon , dans le cadre de Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique (MEGA) (Villeurbanne) , en partenariat avec École centrale de Lyon (établissement opérateur d'inscription) et de Laboratoire de mécanique des fluides et acoustique (Rhône) (laboratoire) .

Le président du jury était Claude Cambon.

Le jury était composé de Wouter Bos, Aurore Naso, Antoine Venaille, Kai, Bernd Schneider.

Les rapporteurs étaient Eric Serre.

  • Titre traduit

    Simulation numérique de la turbulence axisymétrique

  • Résumé

    Pas de résumé

  • Résumé

    Axisymmetric turbulence is investigated using direct numerical simulations. A fully spectral method is implemented using Chandrasekhar-Kendall eigenfunctions of the curl-operator. The numerical domain is a periodic cylinder with no-penetration and partial slip conditions at the wall. Numerical simulations are first carried out for freely decaying axisymmetric turbulence, starting from a variety of initial conditions. The simulations indicate that the global angular momentum is the most robust invariant of the system. It is further observed that large-scale coherent structures emerge, as in 2D isotropic turbulence. Energy decays more slowly than helicity, and the toroidal kinetic energy decays faster than its poloidal part. In the case where the toroidal kinetic energy becomes negligible, a quasi-two dimensional turbulence in the poloidal plane is obtained, with a behavior compatible with predictions of statistical mechanics theories. Forced and decaying simulations are then carried out to assess the cascade-behavior of the different invariants. The existence of an inverse cascade is shown to explain the robustness of the angular momentum and the possible ‘spontaneous generation’ of this quantity and of circulation in the flow. In helical flows, the existence of a dual cascade is confirmed, with a scenario compatible with the existence of an inverse energy cascade towards the large scales, and a direct cascade of helicity towards the small scales. The inverse energy cascade seems to be mainly associated with the poloidal velocity field. Using a helical decomposition of the flow, it is shown that the direct cascade of helicity seems to subsist even in the absence of net helicity, when the ‘cascade’ of the helicity contained in oppositely polarized modes is considered individually. The scaling of the energy spectra associated with the energy cascade is compatible with elementary dimensional arguments, whereas the scaling of the inverse (presumably helicity) cascade yields an anomalously steep slope. It is shown that this slope adjusts to the value predicted by dimensional analysis when the spectra are computed from a filtered velocity field in which strong intermittent regions of velocity are not accounted for. Finally, a preliminary (but unfortunately unfruitful) attempt is presented to apply a variational principle to the description of turbulent scalar mixing in three-dimensional turbulence.

Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication

Numerical simulation of axisymmetric turbulence

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?