Application de catalyseurs encapsulés à base de nickel au réformage d’un gaz modèle issu de la gazéification de la biomasse

par David Laprune

Thèse de doctorat en Chimie

Sous la direction de Frédéric Meunier et de David Farrusseng.

Soutenue le 05-07-2017

à Lyon , dans le cadre de École Doctorale de Chimie (Lyon) , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de Institut de Recherches sur la Catalyse et l'Environnement de Lyon (Villeurbanne, Rhône) (laboratoire) .

Le président du jury était Pascal Fongarland.

Le jury était composé de Laurent Bedel.

Les rapporteurs étaient Anne-Cécile Roger, Bénédicte Prélot.


  • Résumé

    L'Europe est confrontée à des défis climatiques et énergétiques et vise à accroître l'utilisation de la biomasse dans la production d'énergies renouvelables. De nombreuses difficultés technologiques persistent, par exemple, la gazéification de la biomasse produit un gaz de synthèse riche en goudrons et H2S qui peuvent conduire à une désactivation des catalyseurs dans les réacteurs en aval. Notre objectif a été de développer des catalyseurs stables qui peuvent réformer complètement ces hydrocarbures contenus dans le gaz de synthèse. Des nanoparticules de nickel encapsulées dans des monocristaux de silicalite-1 creusée formant une cavité unique ("single-hollow") ont été étudiées. L'encapsulation a pour but de limiter le frittage des particules et le cokage dans des conditions de reformage difficiles. Le frittage de ces particules au sein de chaque monocristal a cependant été observé. La synthèse d'une nouvelle structure creusée (c'est-à-dire un monocristal de zéolites avec de multiples cavités mésoporeuses, nommé "multi-hollow") a été développée. L'exclusion en taille de composés aromatiques larges par la membrane l'échantillon a été démontré. Ce matériau a également permis d'améliorer la dispersion initiale des nanoparticules métalliques. L'activité de l'échantillon a cependant été affectée par deux facteurs principaux associés aux étapes de préparation, c'està- dire la formation d'une couche de silice à la surface des particules et d'un empoisonnement au phosphore. Au cours du réformage d'un gaz de synthèse model riche en hydrocarbures, la membrane silicalite-1 n'a pu empêcher la désactivation due aux goudrons des particules de nickel encapsulées, car ceux-ci craquent aux températures typiques de reformage en composés aromatiques plus petits, susceptibles de se diffuser à travers la paroi de type MFI. La préparation de matériaux analogues à base de Rh n'a pas pu être réalisée. Des catalyseurs à base de Rh et de Ni supportés sur alumine ont ensuite été testés. Nous avons montré que le H2S induit une chute significative de l'activité en reformage et que les catalyseurs au Rh sont les moins influencés par le cokage et l'empoisonnement au S. L'activité en reformage du méthane était proportionnelle à la surface spécifique en Rh. Une température de réaction élevée (> 875 °C) a été jugée nécessaire pour limiter la désactivation par cokage

  • Titre traduit

    Application of encapsulated nickel nanoparticle catalysts to the reforming of a model producer gas derived from biomass gasification


  • Résumé

    Europe is facing climate and energy challenges and aims at increasing the utilization of biomass in the production of renewable fuels. Many technological difficulties remain, for instance, biomass gasification produces a syngas rich in tars and H2S that can lead to catalyst poisoning in downstream reactors. Our goal was to develop stable catalysts that could fully reform producer gas. Nickel nanoparticles encapsulated inside hollow silicalite-1 single crystals were studied. The encapsulation was expected to limit particle sintering and coking under harsh reforming conditions. These particles could still sinter within each single crystal. The synthesis of a novel hollow structure ("multi-hollow", i.e. a single zeolite crystal with multiple mesoporous cavities) was developed. The size-exclusion of large aromatic compounds from the sample was demonstrated. This material also enabled improving the initial dispersion of metal nanoparticles. The sample activity was yet adversely affected by two main factors associated with the preparation steps, i.e. the formation of a silica over-layer and phosphorus-poisoning. During the reforming of a simulated producer gas, the silicalite-1 membrane could not prevent tar-related deactivation of embedded nickel particles, because those were cracked at typical reforming temperatures into smaller aromatic compounds, which could diffuse throughout the MFI-type layer. The preparation of Rh-based multi-hollow analogues could not be achieved. Alumina-supported Rh and Ni-based catalysts were then tested. H2S induced a large drop of the reforming activity and Rh catalysts were the least impacted by coking and S-poisoning. Methane reforming rate were proportional to the Rh metal surface area. The use of high reaction temperatures (>875°C) was shown to be necessary to limit deactivation by coking


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.