Thèse soutenue

Contacteurs à membranes composites pour le captage du CO2 en postcombustion dans des solutions ammoniacales en vue de sa valorisation sur site industriel : étude expérimentale et modélisation des étapes d'absorption et de désorption

FR  |  
EN
Auteur / Autrice : Kévin Villeneuve
Direction : Denis RoizardSabine Rode
Type : Thèse de doctorat
Discipline(s) : Génie des procédés et des produits
Date : Soutenance le 09/10/2017
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement
Partenaire(s) de recherche : Laboratoire : Laboratoire réactions et génie des procédés
Jury : Président / Présidente : Diane Thomas
Examinateurs / Examinatrices : Elsa Jolimaitre, Valéry Chaudron, Emilie Carretier
Rapporteurs / Rapporteuses : Diane Thomas, Elsa Jolimaitre

Résumé

FR  |  
EN

L'objectif de ces travaux vise à évaluer les performances d'un contacteur membranaire à fibres creuses utilisé pour réaliser l'absorption chimique du CO2 dans une solution ammoniacale ainsi que la régénération de cette dernière. Les membranes utilisées sont composites, c'est-à-dire composées d'une fine couche dense recouverte sur un support microporeux, la couche dense permettant d'éviter le mouillage par pénétration de liquide dans la membrane. Pour réaliser ces études, une approche combinant expérimentation et modélisation a été adoptée. Lors de la réalisation de l'absorption chimique avec un contacteur membranaire, des chutes importantes d’efficacité de captage du CO2 au cours du temps ont été observées et confirment les résultats obtenus lors de travaux ultérieurs. Cette baisse des performances est attribuée à la précipitation de sels d’ammonium en phase gaz. Lors de l'utilisation d’un gaz saturé en vapeur d'eau, comme le seraient les fumées industrielles, les performances du procédé se sont révélées stables. Un modèle 1D multi-composant adiabatique du contacteur a été développé sur Aspen Custom Modeler® et validé à partir des résultats expérimentaux. Les simulations réalisées avec ce modèle ont confirmé le potentiel d'intensification volumique de la technologie, toutefois, la réduction des pertes de NH3, grâce à l'utilisation d’une couche dense sélective moins perméable à NH3 qu’au CO2, n’a pas été satisfaisante. Les phénomènes de condensation dans les contacteurs membranaires ont été étudiés par expérimentation et modélisation. Il a ainsi été montré que le mouillage par condensation de la membrane ne devrait pas survenir, par contre, la condensation dans le lumen des fibres creuses entraîne une augmentation importante de la perte de charge pouvant conduire à des coûts de compression des gaz à traiter plus élevés. Des expériences et des simulations sur la régénération de solutions ammoniacales chargées avec des contacteurs membranaires ont été effectuées et des disparités importantes ont été trouvées entre les flux de CO2 mesurés et simulés. Une réduction volumique de trois par rapport à la colonne à garnissage a pu être calculée laissant entrevoir un potentiel intéressant de la technologie pour l’étape de régénération. En collaboration avec les partenaires du projet C2B, dans lequel s’intègre cette thèse, des essais d’absorption de CO2 ont été réalisés sur site avec un contacteur de taille industrielle. Les résultats de ce pilote sont conformes aux résultats obtenus au laboratoire et encourageants quant au transfert de la technologie vers l’échelle industrielle