Thèse soutenue

Optimisation à deux niveaux : Résultats d'existence, dualité et conditions d'optimalité

FR  |  
EN
Auteur / Autrice : Fatima Ezzarha Saissi
Direction : Samir AdlyAbdelmalek Aboussoror
Type : Thèse de doctorat
Discipline(s) : Mathematiques et applications
Date : Soutenance le 06/07/2017
Etablissement(s) : Limoges
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : XLIM
Jury : Examinateurs / Examinatrices : Elena L. del Mercato, Mounir Haddou, Paul Armand
Rapporteur / Rapporteuse : Jean-Marc Bonnisseau, Ahmed Roubi, Ouayl Chadli

Résumé

FR  |  
EN

Depuis son introduction, la programmation mathématique à deux niveaux suscite un intérêt toujours croissant. En effet, vu ses applications dans une multitude de problèmes concrets (problèmes de gestion, planification économique, chimie, sciences environnementales,...), beaucoup de recherches ont été effectuées afin de contribuer à la résolution de cette classe de problèmes. Cette thèse est consacrée à l'étude de quelques classes de problèmes d'optimisation à deux niveaux, à savoir, les problèmes à deux niveaux forts, les problèmes à deux niveaux forts-faibles et les problèmes à deux niveaux semi-vectoriels. Le premier chapitre est consacré aux rappels de quelques définitions et résultats de topologie et d'analyse convexe que nous avons utilisé dans la suite. Dans le deuxième chapitre, nous avons rappelé quelques résultats théoriques et algorithmiques établis dans la littérature pour la résolution de quelques classes de problèmes d'optimisation à deux niveaux. Le troisième chapitre est consacré à l'étude d'un problème à deux niveaux fort-faible (SWBL). Vu la difficulté que présente cette classe de problèmes dans l'étude de l'existence de solutions, et afin de donner de nouvelles perspectives à leur résolution, nous avons procédé à une régularisation du problème. Sous des conditions suffisantes et via cette régularisation, nous avons montré que le problème (SWBL) admet au moins une solution. Dans le quatrième chapitre, nous avons donné une approche de dualité à un problème d'optimisation à deux niveaux fort (S). Cette approche est basée sur l'utilisation d'une régularisation et la dualité de Fenchel-Lagrange. En utilisant cette approche, nous avons donné des conditions nécessaires d'optimalité pour le problème (S). Enfin, des conditions suffisantes d'optimalité sont obtenues pour (S) sans utiliser l'approche. Une application concrète est donnée sur l'allocation de ressources. Dans le cinquième chapitre, nous avons étudié un problème à deux niveaux semi-vectoriel (SVBL). Pour ce problème, nous avons donné une approche de dualité en utilisant une régularisation, une scalarisation et la dualité de Fenchel-Lagrange. Puis, via cette approche et sous des hypothèses appropriées, nous avons donné des conditions nécessaires d'optimalité pour une classe de solutions du problème (SVBL). Finalement, des conditions suffisantes d'optimalité sont établies sont établies sans utiliser l'approche de dualité.