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Résumé. Dans une première partie, nous étudions l’opérade SC2 « Swiss-Cheese » de
Voronov, qui gouverne l’action d’une algèbre D2 sur une algèbre D1. Nous construisons
un modèle en groupoïdes de cette opérade et nous décrivons les algèbres sur ce modèle
de manière similaire à la description classique des algèbres sur 𝐻∗(SC2). Nous étendons
notre modèle en un modèle rationnel dépendant d’un associateur de Drinfeld, et nous le
comparons au modèle qui existerait si l’opérade SC2 était formelle.

Dans une seconde partie, nous étudions les espaces de configurations des variétés
compactes, lisses, sans bord et simplement connexes. Nous démontrons sur ℝ une
conjecture de Lambrechts–Stanley qui décrit un modèle de tels espaces de configurations,
avec comme corollaire leur invariance homotopique réelle. En nous fondant sur la preuve
par Kontsevich de la formalité des opérades D𝑛, nous obtenons en outre que ce modèle
est compatible avec l’action de l’opérade de Fulton–MacPherson quand la variété est
parallélisée. Cela nous permet de calculer explicitement l’homologie de factorisation
d’une telle variété.

Enfin, dans une troisième partie, nous élargissons ce résultat à une large classe de
variétés à bord. Nous utilisons d’abord une dualité de Poincaré–Lefschetz au niveau
des chaînes pour calculer l’homologie des espaces de configurations de ces variétés,
puis nous reprenons les méthodes du second chapitre pour obtenir le modèle, qui est
compatible avec l’action de l’opérade Swiss-Cheese SC𝑛.
Mots-clés : opérades, espaces de configuration (topologie), variétés topologiques, topo-
logie algébrique

Abstract. In a first part, we study Voronov’s “Swiss-Cheese” operad SC2, which
governs the action of a D2-algebra on a D1-algebra. We build a model in groupoids of
this operad and we describe algebras over this model in a manner similar to the classical
description of algebras over 𝐻∗(SC2). We extend our model into a rational model which
depends on a Drinfeld associator, and we compare this new model to the one that we
would get if the operad SC2 were formal.

In a second part, we study configuration spaces of closed smooth simply connected
manifolds. We prove over ℝ a conjecture of Lambrechts–Stanley which describes a model
of such configuration spaces, and we obtain as corollary their real homotopy invariance.
Moreover, using Kontsevich’s proof of the formality of the operads D𝑛, we obtain that
this model is compatible with the action of the Fulton–MacPherson operad when the
manifold is framed. This allows us to explicitly compute the factorization homology of
such a manifold.

Finally, in a third part, we expand this result to a large class of manifolds with boundary.
We first use a chain-level Poincaré–Lefschetz duality result to compute the homology of
the configuration spaces of these manifolds, then we reuse the methods of the second
chapter to obtain our model, which is compatible with the action of the Swiss-Cheese
operad SC𝑛.
English title: Operadic Formality and Configuration Spaces
Keywords: operads, configuration spaces (topology), topological manifolds, algebraic
topology
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Organisation de cette thèse

Outre le Chapitre 0 qui sert d’Introduction, chacun des trois autres chapitres
est tirée d’un article :

• le Chapitre 1 est l’article « Swiss-Cheese Operad and Drinfeld Center »,
publié au Israel J. Math en 2017 [Idr17] ;

• le Chapitre 2 constitue la prépublication « The Lambrechts–Stanley Model
of Configuration Spaces » [Idr16] ;

• le Chapitre 3 est tiré d’un travail en cours, en collaboration avec Pascal
Lambrechts.

Tous ces chapitres sont en anglais. Un résumé substantiel en français de cette
thèse est disponible sur les pages qui suivent. Le Chapitre 1 est en grande partie
indépendant des Chapitres 2 et 3 et peut être lu séparément.

Organization of this thesis

Besides the Introduction in Chapter 0, each of the other three chapters is drawn
from an article:

• Chapter 1 is the article “Swiss-Cheese Operad and Drinfeld Center”, pub-
lished at the Israel J. Math in 2017 [Idr17];

• Chapter 2 is the preprint “The Lambrechts–Stanley Model of Configuration
Spaces” [Idr16];

• Chapter 3 is based on a current work-in-progress joint with Pascal Lam-
brechts.

All of these chapters are in English. A substantial summary of this thesis in
French can be found in the next pages. Chapter 1 is largely independent from
Chapters 2 and 3 and can be read separately.
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Résumé

Dans cette thèse, nous étudions le type d’homotopie des espaces de configu-
ration de variétés en utilisant des idées venant de la théorie des opérades. Ces
espaces de configuration consistent en des collections de points deux à deux
distincts dans une variété donnée. Nous répondons aux problèmes de l’inva-
riance homotopique et de la définition de modèles rationnels de ces espaces.
Nous adaptons et généralisons des constructions de Kontsevich, qui donnent la
formalité des espaces de configuration (compactifiés) des espaces euclidiens en
tant qu’opérade [Kon99].

La notion d’opérade fut initialement introduite dans le but d’étudier les espaces
de lacets itérés en théorie de l’homotopie [May72 ; BV73]. La théorie a connu une
renaissance considérable au milieu des années 90 quand, inspirés par un article
de Kontsevich [Kon93], Ginzburg et Kapranov [GK94] ont démontré dans des
travaux fondateurs que certains phénomènes de dualité en algèbre pouvaient
s’interpréter en termes d’opérades. Depuis, de nombreuses nouvelles applications
des opérades ont été découvertes dans plusieurs domaines des mathématiques.

Introduction

Opérades

Une opérade est un objet qui gouverne une catégorie d’algèbres. L’idée centrale
de la théorie peut s’expliquer par analogie avec la théorie des représentations de
groupes. Dans cette analogie, l’opérade correspond au groupe, et les algèbres
sur l’opérade correspondent aux représentations du groupe.

Si un groupe est défini par une présentation par générateurs et relations, alors
la catégorie de ses représentations peut se définir en termes des actions des géné-
rateurs sujettes aux relations. Dans notre analogie, une catégorie d’algèbres est
définie par des opérations génératrices et des relations. Par exemple, la structure
d’une algèbre associative se définit par une opération génératrice, le produit, et
une relation, l’associativité. La structure d’une algèbre commutative se définit
de façon similaire, avec la condition supplémentaire de symétrie du produit.
Les algèbres de Lie sont définies par un crochet antisymétrique et la relation de
Jacobi, etc. Nous pouvons interpréter chacune de ces définitions comme la défi-
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Résumé

nition d’une opérade par générateurs et relations qui gouvernerait la catégorie
d’algèbres en question.

Tout comme nous étudions les groupes, il est intéressant d’étudier l’opérade
elle-même, indépendamment de toute présentation par générateurs et relations.
Cette nouvelle perspective nous permet de parler de morphismes, de sous-
opérades, de quotients, d’extensions, etc., et de traduire des informations sur une
opérade en des informations sur la catégorie des algèbres sur cette opérade.

Expliquons plus précisément ce qu’est une opérade.

𝑝

1 … 𝑞

𝑖 … 𝑖 + 𝑙 − 1

… 𝑘 + 𝑙 − 1

Les structures algébriques associées aux opérades
sont celles qui peuvent être décrites en termes d’opéra-
tions avec un nombre fini d’entrées et exactement une
sortie. Une opérade1 P est une collection P = {P(𝑘)}𝑘≥0
« d’opérations » abstraites. On peut voir un élément de
P(𝑘) comme une opération à 𝑘 entrées et une sortie. Le

groupe symétrique Σ𝑘 agit sur P(𝑘), ce qui correspond à la permutation des
entrées d’une opération. Il faut également se donner des opérations d’insertion

∘𝑖 ∶ P(𝑘) ⊗ P(𝑙) → P(𝑘 + 𝑙 − 1), 1 ≤ 𝑖 ≤ 𝑘,

qui modélisent la composition des opérations (tout comme la multiplication dans
un groupe 𝐺 correspond à la composition des actions sur les représentations).
Enfin, une identité id ∈ P(1) est un élément neutre pour la composition.

Pour illustrer cette définition, considérons l’exemple prototypique, l’opérade des
endomorphismes. Étant donné un objet 𝑋 dans une catégorie monoïdale symétrique,
l’opérade des endomorphismes End𝑋 est définie par End𝑋(𝑛) ≔ Hom(𝑋⊗𝑛, 𝑋).
L’action du groupe symétrique permute les entrées :

(𝑓 ⋅ 𝜎)(𝑥1, … , 𝑥𝑛) ≔ 𝑓 (𝑥𝜎(1), … , 𝑥𝜎(𝑛)),

et les opérations d’insertion sont données par la composition des morphismes :

(𝑓 ∘𝑖 𝑔)(𝑥1, … , 𝑥𝑘+𝑙−1) ≔ 𝑓 (𝑥1, … , 𝑥𝑖−1, 𝑔(𝑥𝑖, … , 𝑥𝑖+𝑙−1), 𝑥𝑖+𝑙, … , 𝑥𝑘+𝑙−1).

Enfin, l’identité id ∈ End𝑋(1) est simplement l’identité de 𝑋. Une algèbre sur une
opérade P est, par définition, un morphisme d’opérades P → End𝑋, exactement
comme une représentation d’un groupe 𝐺 est la donnée d’un morphisme de
monoïdes 𝐺 → End(𝑉). Comme autre exemple, une opérade n’ayant que des
opérations d’arité 1 est exactement la même chose qu’un monoïde, et une algèbre
sur une telle opérade n’est autre qu’une représentation du monoïde associé. Nous
renvoyons aux livres [LV12 ; Fre17] pour un traitement plus détaillé des opérades.

1. Pour nous, une « opérade » sans autre qualificatif est une opérade symétrique à une couleur.
Il existe d’autres variantes : opérades non symétriques, opérades cycliques, opérades colorées,
etc.
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Introduction

Opérades des petits disques

Une famille d’opérades topologiques est d’un intérêt particulièrement grand :
les opérades des petits 𝑛-disques D𝑛 (ou, de manière équivalente, les opérades
des petits 𝑛-cubes). Ce sont les opérades qui ont fait leur apparition dans l’étude
originelle des espaces de configuration.

1

2 3

Un élément de D𝑛(𝑘) est une configuration ordonnée de 𝑘
petits 𝑛-disques aux intérieurs disjoints dans le disque unité
𝐷𝑛. Chaque disque de la configuration s’obtient comme l’image
d’un plongement de 𝐷𝑛 dans lui-même obtenu par la compo-
sition d’une translation et d’une homothétie. L’ensemble D𝑛(𝑘)
est muni de la topologie compacte-ouverte des plongements.
L’action du groupe symétrique réordonne les disques d’une
configuration, et l’insertion est donnée par la composition des
plongements.

1

2
3

∘2

1

2 =
1

4

2
3

Un espace de lacets itéré Ω𝑛𝑋 est, presque par définition, une algèbre sur D𝑛.
Le « principe de reconnaissance » [May72 ; BV73] dit que la réciproque est vraie :
sous des hypothèses techniques, une D𝑛-algèbre « group-like » est faiblement
équivalente à un espace de 𝑛-lacets.

Les opérades des petits disques se sont révélées, depuis cette première appli-
cation, être utiles dans de nombreux contextes. Mentionnons la conjecture de
Deligne [KS00 ; MS02], qui dit que les cochaînes de Hochschild 𝐶∗(𝐴 ; 𝐴) d’une
algèbre associative sont munies d’une action de D2 ; le théorème de formalité des
cochaînes de Hochschild et ses applications à la quantification des variétés de
Poisson [Kon99 ; Tam98 ; Kon03] ; le calcul de Goodwillie–Weiss et le calcul des
espaces de plongements et des espaces de longs nœuds [Sin06 ; LTV10 ; AT14 ;
DH12 ; BW13], ainsi que l’homologie de factorisation, en quelque sorte la « version
covariante » du calcul des plongements [BD04 ; Lur09 ; Lur16 ; AF15 ; CG17].

Un résultat fondamental au sujet des opérades des petits disques est qu’elles
sont formelles sur ℚ [Kon99 ; Tam03 ; LV14 ; FW15], c.-à-d. que l’opérade des
chaînes 𝐶∗(D𝑛 ; ℚ) est quasi-isomorphe à son homologie e𝑛 ≔ 𝐻∗(D𝑛 ; ℚ). Il suffit
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Résumé

donc, sur ℚ, d’étudier les opérades e𝑛, qui ont une description combinatoire
simple : e1 = Ass gouverne les algèbres associatives, et pour 𝑛 ≥ 2, e𝑛 gouverne
les (𝑛 − 1)-algèbres de Poisson [Coh76]. Quand 𝑛 = 2, la formalité de l’opérade D2
dépend du choix d’un associateur de Drinfeld, un objet qui définit une manière
universelle de construire une catégorie monoïdale tressée à partir de données
qui viennent de la théorie de Lie (voir p.ex. [Fre17, Chapter I.10] pour plus de
détails).

Opérades « Swiss-Cheese »

Les opérades colorées (aussi connues sous le nom de multicatégories) géné-
ralisent les opérades et sont utilisées pour décrire des structures algébriques à
plusieurs objets. Dans ce contexte, les entrées et la sortie d’une opération sont
toutes étiquetées par une « couleur », et l’insertion n’est définie que si les couleurs
correspondent. Dans la définition d’une algèbre sur une opérade colorée, chaque
couleur correspond à un objet donné.

23

1

L’opérade « Swiss-Cheese » SC = SC2 [Vor99] est une
opérade à deux couleurs qui gouverne l’action d’une
algèbre D2 sur une algèbre D1 par un morphisme central.
Une opération de SC est donné par le plongement de
disques et de demi-disques dans le demi-disque unité
supérieur. Ces opérades sont liées aux OCHA de Kajiu-

ra et Stasheff [KS06b ; Hoe09], et il existe une version Swiss-Cheese de la conjecture
de Deligne [DTT11]. Des variantes en dimension supérieur SC𝑛 gouvernent l’ac-
tion d’une algèbre D𝑛 sur une algèbre D𝑛−1. Contrairement aux opérades des petits
disques, les opérades Swiss-Cheese ne sont pas formelles [Liv15].

Espaces de configuration

Soit 𝑀 une variété. Son 𝑘ième espace de configuration est donné par :

Conf𝑘(𝑀) ≔ {𝑥 ∈ 𝑀𝑘 ∣ ∀𝑖 ≠ 𝑗, 𝑥𝑖 ≠ 𝑥𝑗}.

Les espaces de configuration sont intimement liés aux opérades des petits disques.
Par exemple, l’application D𝑛(𝑘) → Conf𝑘(ℝ𝑛) qui associe à une configuration de
disques la configuration constituée des centres des disques est une équivalence
d’homotopie.

Cette construction n’est évidemment pas un invariant d’homotopie pour les
variétés ouvertes dès que 𝑘 ≥ 2. Par exemple, pour 𝑛 ∈ ℕ, Conf2(ℝ𝑛) ≃ 𝑆𝑛−1.
Même en se restreignant aux variétés compactes sans bord, Conf𝑘(−) n’est pas
un invariant d’homotopie [LS05b]. Le contre-exemple (donné par des espaces
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Résultats du Chapitre 1

lenticulaires) n’est pas simplement connexe, et la question de savoir si Conf𝑘(−) est
un invariant d’homotopie pour les variétés compactes, sans bord et simplement
connexes reste ouverte.

Quelques résultats sont connus. Le type d’homotopie de Ω Conf𝑘(𝑀) ne dépend
que de celui de (𝑀, 𝜕𝑀) pour les variétés compactes connexes [Lev95]. Les espaces
de configuration sont des invariants stables d’homotopie des variétés compactes
sans bord [AK04]. Si 𝑀 est une variété projective lisse, alors le type d’homotopie
rationnel de Conf𝑘(𝑀) ne dépend que de celui de 𝑀. Le même résultat est valable
avec 𝑘 = 2 pour les variétés compactes sans bord qui sont soit 2-connexes [LS04],
soit simplement connexes et de dimension paire [Cor15].

Résultats du Chapitre 1

Comme mentionné précédemment, l’opérade Swiss-Cheese SC = SC2 n’est pas
formelle. En d’autres termes, il n’est pas possible de récupérer le type d’homotopie
de SC à partir de son homologie sc = 𝐻∗(SC). Le but du premier chapitre de cette
thèse est de trouver un modèle de SC qui corrige ce défaut de formalité.

Les trois opérades D1, D2 et SC sont asphériques, c.-à-d. que l’homotopie de
chacun des espaces qui les composent est concentrée en degrés 0 et 1. Il y a
donc, pour chacune de ces opérades (notons les P), une équivalence d’homotopie
canonique P

∼ 𝐵𝜋P, où 𝐵 est le foncteur « espace classifiant » et 𝜋 le foncteur
« groupoïde fondamental » (les deux étant fortement monoïdaux, ils préservent
la structure d’opérade). À homotopie près, il suffit donc d’étudier le groupoïde
fondamental 𝜋P de chacune de ces trois opérades P ∈ {D1, D2, SC} à « équivalence
catégorique » (morphisme d’opérade induisant une équivalence de catégorie en
chaque arité) près.

Il existe des descriptions classiques de modèles en groupoïdes des deux opé-
rades D1 et D2.

• En chaque arité, D1(𝑟) est discret à homotopie près (avec 𝑟 ! composantes
connexes), et il est facile de voir que l’opérade 𝜋D1 est faiblement équivalente
à l’opérade PaP des permutations parenthésées. La catégorie PaP(𝑟) = Σ𝑟
est discrète, avec comme objets les permutations de {1, … , 𝑟}, et la structure
d’opérade est donnée par la composition par blocs des permutations.

• Les composantes D2(𝑟) de l’opérade D2 sont des espaces classifiants des
groupes de tresses pures 𝑃𝑟. L’opérade 𝜋D2 est ainsi faiblement équivalente
à l’opérade PaB des tresses parenthésées (cf. [Fre17, Chapter I.3], voir aus-
si [Fie96]). Les objets de PaB(𝑟) sont encore les permutations de {1, … , 𝑟}.
Les morphismes entre deux permutations 𝜎, 𝜎 ′ ∈ PaB(𝑟) sont les tresses
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Résumé

colorées à 𝑟 brins entre ces deux permutations : chacun des brins de la tresse
est « coloré » par un des nombres {1, … , 𝑟}, et l’ordre des brins au début
(resp. à la fin) de la tresse est donné par 𝜎 (resp. 𝜎 ′). La composition des
tresses est donnée par l’insertion d’une tresse dans un voisinage tubulaire
d’un brin.

Le premier résultat de ce premier chapitre (Theorem A) est la définition d’une
opérade en groupoïdes PaPB des tresses et permutations parenthésées. Cette
opérade combine, en quelque sorte, les deux opérades PaP et PaB pour obtenir
une opérade colorée, et est faiblement équivalente au groupoïde fondamental
𝜋SC.

La définition de PaPB est motivée par le résultat suivant. L’homologie de l’opé-
rade Swiss-Cheese se scinde en un « produit de Voronov » sc = e2 ⊗ e1, où
e1 = 𝐻∗(D1) = Ass gouverne les algèbres associatives et e2 = 𝐻∗(D2) = Ger gou-
verne les algèbres de Gerstenhaber [Vor99]. Concrètement, cela signifie qu’une
algèbre sur sc est la donnée d’un triplet (𝐴, 𝐵, 𝑓 ) où 𝐴 est une algèbre associative,
𝐵 est une algèbre de Gerstenhaber, et 𝑓 ∶ 𝐵 → 𝑍(𝐴) est un morphisme d’algèbres
de 𝐵 dans le centre de 𝐴.

Les algèbres (dans la catégorie des catégories) sur l’opérade PaP ≃ 𝜋D1 sont
les catégories monoïdales, et les algèbres sur PaB ≃ 𝜋D2 sont les catégories
monoïdales tressées. En analogie avec le théorème de Voronov, nous démontrons
que les algèbres (toujours dans la catégorie des catégories) sur PaPB ≃ 𝜋SC
sont les triplets (M,N, 𝐹) où M est une catégorie monoïdale, N est une catégorie
monoïdale tressée, et 𝐹 ∶ M → 𝒵(N) est un foncteur monoïdal tressé de M dans
le centre de Drinfeld de N – un analogue catégorique du centre d’une algèbre
associative. Ce résultat est la contrepartie pour les opérades en groupoïdes de
résultats ∞-catégoriques sur les algèbres à factorisation du demi-plan supérieur
(cf. [Gin15, Proposition 31] et [AFT17, Example 2.13])

Dans une deuxième étape, nous fixons un associateur de Drindeld, que nous
pouvons voir comme une équivalence rationnelle (au sens de la théorie de l’ho-
motopie rationnelle) PaB+ → ĈD+ où ĈD+ = B 𝕌̂𝔭̂+ est l’opérade complétée des
diagrammes de cordes. À partir de cette donnée, nous construisons une opérade
PaPĈD

𝜑
+ rationnellement équivalente à la complétion de l’opérade Swiss-Cheese.

Cette opérade étend la construction utilisée par Tamarkin [Tam03] pour démon-
trer la formalité de l’opérade D2 et peut s’interpréter informellement comme un
produit de Voronov tordu d’un modèle pour D2 et d’un modèle pour D1.

Résultats du Chapitre 2

Dans le second chapitre, nous étudions les espaces de configuration des varié-
tés compactes sans bord simplement connexes. Dans la suite, on note 𝑀 une telle
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Résultats du Chapitre 2

variété. Nous nous plaçons dans le cadre de la théorie de l’homotopie rationnelle
de Sullivan, où les espaces sont modélisés par des algèbres différentielles gra-
duées commutatives (CDGA en anglais) et nous cherchons à obtenir un modèle
de Conf𝑘(𝑀) pour 𝑘 ≥ 0.

La cohomologie d’une variété orientée compacte sans bord satisfait la dualité
de Poincaré, il y a un accouplement non dégénéré 𝐻𝑘(𝑀) ⊗ 𝐻𝑛−𝑘(𝑀) → ℚ donné
par 𝛼 ⊗ 𝛽 ↦ 𝛼𝛽 ⌢ [𝑀]. Lambrechts et Stanley [LS08b] démontrent que si la
variété est simplement connexe, alors cette propriété peut se traduire sur les
modèles : 𝑀 admet un modèle rationnel 𝐴 à « dualité de Poincaré », c.-à-d. il y a
un accouplement non-dégénéré 𝐴𝑘 ⊗ 𝐴𝑛−𝑘 → ℚ induit par une « augmentation »
𝜀𝐴 ∶ 𝐴𝑛 → ℚ. À partir d’un tel modèle à dualité de Poincaré, ils introduisent une
CDGA G𝐴(𝑘) et démontrent que les nombres de Betti rationnels de G𝐴(𝑘) coïn-
cident avec ceux de Conf𝑘(𝑀) [LS08a]. Ils conjecturent que cette CDGA est en fait
un modèle rationnel de Conf𝑘(𝑀), ce qui est connu pour les variétés projectives
lisses complexes [Kri94], ainsi que quand 𝑘 = 2 et que 𝑀 est 2-connexe [LS04] ou
de dimension paire [Cor15].

Cette CDGA avait déjà été étudiée dans certains cas particuliers [CT78 ; BG91 ;
Kri94 ; Tot96 ; FT04]. Elle admet une description simple pour les premières valeurs
de 𝑘 : G𝐴(0) = ℚ et G𝐴(1) = 𝐴, ce qui est cohérent avec le fait que Conf0(𝑀) = {∗}
et Conf1(𝑀) = 𝑀, et G𝐴(2) est quasi-isomorphe au quotient de 𝐴⊗2 par l’idéal
engendré par la « classe diagonale » de 𝐴 (le dual de Poincaré de 𝑀 ⊂ 𝑀 × 𝑀).
Plus généralement, G𝐴(𝑘) est en quelque sorte une version « étiquetée par 𝐴 » de
la description classique de la cohomologie de Conf𝑘(ℝ𝑛) [Arn69 ; Coh76].

La formalité de l’opérade des petits disques entraîne en particulier que les
espaces de configuration Conf𝑘(ℝ𝑛) sont formels : la CDGA 𝐻∗(Conf𝑘(ℝ𝑛)) ≕
e∨

𝑛 (𝑘) (avec la différentielle nulle) est un modèle rationnel de Conf𝑘(ℝ𝑛). La preuve
par Kontsevich de cette formalité fournit des morphismes explicites [Kon99 ;
LV14]. L’idée de ce chapitre est d’adapter cette preuve aux espaces de configura-
tion de 𝑀 pour obtenir le fait que G𝐴(𝑘) est un modèle.

Cette preuve fait intervenir la compactification de Fulton–MacPherson des
espaces de configuration [FM94 ; AS94]. Étant donnée une variété 𝑀, l’espace
FM𝑀(𝑘) est une variété stratifiée dont l’intérieur est Conf𝑘(𝑀). Le bord de FM𝑀(𝑘)
est obtenu en autorisant les points d’une configuration à devenir infinitésima-
lement proches les uns des autres. Il est possible de compactifier Conf𝑘(ℝ𝑛) de
manière similaire en un espace FM𝑛(𝑘), en tenant compte du fait que ℝ𝑛 lui-même
n’est pas compact.

La preuve passe par la définition d’un certain complexe de graphes intermé-
diaires Graphs𝑛(𝑘). On peut voir 𝐻∗(Conf𝑘(ℝ𝑛)) = 𝐻∗(FM𝑛(𝑘)) comme un quo-
tient de Graphs𝑛(𝑘) par un idéal acyclique. Dans l’autre direction, il est nécessaire
d’introduire le complexe des formes semi-algébriques par morceaux Ω∗

PA(FM𝑛(𝑘)),
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qui est un modèle sur ℝ de FM𝑛(𝑘). Un quasi-isomorphisme de Graphs𝑛(𝑘) dans
Ω∗

PA(FM𝑛(𝑘)) est alors donné par des intégrales le long des fibres des projections ca-
noniques FM𝑛(𝑘 + 𝑙) → FM𝑛(𝑘). Nous adaptons toutes ces constructions à Conf𝑘(𝑀)
pour obtenir un zigzag explicite de quasi-isomorphismes, pour 𝑀 une variété
lisse compacte sans bord simplement connexe de dimension au moins 4 :

G𝐴(𝑘) ∼
Graphs𝑅(𝑘) ∼ Ω∗

PA(FM𝑀(𝑘)),

ce qui démontre que G𝐴(𝑘) est un modèle sur ℝ de FM𝑀(𝑘) ≃ Conf𝑘(ℝ𝑛) (première
partie du Theorem C). Le point clé de la preuve consiste à démontrer que pour
les variétés simplement connexes de dimension ≥ 4, la fonction de partition Z𝜑,
définie à l’aide d’intégrales sur FM𝑀, est (presque) triviale, ce qui s’obtient à l’aide
d’un argument de comptage de degré.

Si 𝐴 et 𝐴′ sont deux modèles de 𝑀, nous démontrons directement que G𝐴(𝑘) ≃ℝ
G𝐴′(𝑘), d’où l’invariance homotopique réelle de Conf𝑘(𝑀) par rapport à 𝑀 (Co-
rollary 2.4.36).

On peut insérer une configuration de FM𝑛 dans une autre, ce qui donne une
structure d’opérade faiblement équivalent à l’opérade des petits disques D𝑛. De
même, quand 𝑀 est parallélisée, on peut insérer une configuration de FM𝑛 dans
une configuration de FM𝑀 et obtenir ainsi une structure de FM𝑛-module à droite
sur FM𝑀. Quand 𝜒(𝑀) = 0 (en particulier quand 𝑀 est parallélisée), il est facile
d’observer que la collection G𝐴 = {G𝐴(𝑘)} est dotée d’une structure de como-
dule de Hopf à droite sur 𝐻∗(FM𝑛) = e∨

𝑛 . Nous démontrons que le zigzag de
quasi-isomorphismes que nous construisons est compatible avec la structure de
comodule quand 𝑀 est parallélisée (deuxième partie du Theorem C). En d’autres
termes, nous obtenons un modèle réel du FM𝑛-module à droite FM𝑀.

Cela nous permet de calculer l’homologie de factorisation, un invariant des
variétés. Étant données une 𝑛-variété parallélisée 𝑀 et une FM𝑛-algèbre 𝐵, l’ho-
mologie de factorisation de 𝑀 à coefficients dans 𝐵 peut se calculer comme le
produit de composition relatif dérivé (cf. [AF15] et [Tur13, Section 5.1]) :

∫
𝑀

𝐵 ≔ FM𝑀 ∘𝕃
FM𝑛

𝐵.

Notre résultat implique que si 𝑀 est une variété lisse compacte sans bord sim-
plement connexe de dimension au moins 4 et que 𝐵 est une e𝑛-algèbre, alors
l’homologie de factorisation de 𝑀 à coefficients dans 𝐵 est donnée, sur ℝ, par un
complexe explicite :

∫
𝑀

𝐵 ≃ G∨
𝐴 ∘𝕃

e𝑛
𝐵.

Dans le cas où 𝐵 = 𝑆(Σ1−𝑛𝔤) est l’algèbre enveloppante supérieure d’une algèbre
de Lie, nous reprenons des arguments de Félix et Thomas [FT04] pour démontrer
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que ∫
𝑀

𝑆(Σ1−𝑛𝔤) se calcule avec un complexe de Chevalley–Eilenberg (Propo-
sition 2.5.6), un résultat précédemment obtenu par Knudsen [Knu16] par des
méthodes complètement différentes.

Enfin, en utilisant la preuve de Giansiracusa et Salvatore [GS10] de la formalité
de l’opérade des petits disques à repère, nous généralisons notre résultat à 𝑆2, la
seule surface simplement connexe (Theorem 2.6.6).

Résultats du Chapitre 3

Dans le troisième chapitre, nous étendons les résultats précédents à une large
classe de variétés à bord.

Nous nous concentrons sur le cas des variétés admettant un « modèle à dualité
de Poincaré–Lefschetz ». Cette notion est une généralisation de « joli modèle
surjectif » (“surjective pretty model” en anglais), une notion due à Cordova Bulens,
Lambrechts et Stanley [CLS15a] (voir aussi [LS05a]). L’intuition derrière cette
notion provient de la dualité de Poincaré–Lefschetz. Soit 𝑁 une variété orientée
compacte sans bord de dimension 𝑛 et 𝐾 ⊂ 𝑁 un sous-polyhèdre, et soit 𝑀 =
𝑁 − 𝐾̃ est la variété à bord obtenue en retirant un épaississement de 𝐾. Alors
la cohomologie de 𝑀 se calcule à partir de la cohomologie de 𝑁 en « tuant » les
classes duales des classes d’homologie provenant de 𝐾. Concrètement, un joli
modèle surjectif est construit à partir des données suivantes :

• une CDGA à dualité de Poincaré 𝑃 (correspondant à un modèle de 𝑁) ;

• une CDGA connexe 𝑄 satisfaisant 𝑄≥𝑛/2−1 = 0 (correspondant à un modèle
de 𝐾) ;

• un morphisme surjectif de CDGAS 𝜓 ∶ 𝑃 → 𝑄.

La dualité de Poincaré de 𝑃 induit un isomorphisme 𝜃𝑃 ∶ 𝑃 → 𝑃∨[−𝑛] entre 𝑃
et la désuspension de son dual. On définit l’application 𝜓! ∶ 𝑄∨[−𝑛] → 𝑃 comme
la composition 𝜃−1

𝑃 ∘ 𝜓∨[−𝑛]. Notons que 𝜓𝜓! = 0 pour des raisons de degré. Le
joli modèle surjectif (correspondant à un modèle de l’inclusion 𝜕𝑀 ⊂ 𝑀 = 𝑁 − 𝐾)
associé à 𝜓 ∶ 𝑃 → 𝑄 est alors donné par :

𝜆 = 𝜓 ⊕ id ∶ 𝐵 = 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛] → 𝐵𝜕 = 𝑄 ⊕ 𝑄∨[1 − 𝑛],

où 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛] est le cône (conoyau homotopique) de 𝜓!. La CDGA 𝐵𝜕 est
une CDGA à dualité de Poincaré de dimension formelle 𝑛 − 1, et 𝐵 est quasi-
isomorphe au quotient 𝐴 = 𝑃/𝐼 de la CDGA à dualité de Poincaré 𝑃 par son
idéal 𝐼 = im 𝜓!. La dualité de Poincaré–Lefschetz se traduit en l’existence d’un
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isomorphisme 𝐴 ≅ 𝐾∨[−𝑛], où 𝐾 = ker 𝜓 ≅ ker 𝜆 est un modèle des formes
relatives sur (𝑀, 𝜕𝑀).

Un exemple éclairant de joli modèle surjectif est celui de (𝑀, 𝜕𝑀) = (𝐷𝑛, 𝑆𝑛−1).
On peut voir 𝑀 = 𝐷𝑛 comme une sphère 𝑁 = 𝑆𝑛 à laquelle on a retiré l’épaississe-
ment d’un point 𝐾 = {∗}. En appliquant le dictionnaire ci-dessus, on prend donc
𝑃 = 𝐻∗(𝑆𝑛) = 𝑆(vol𝑛)/(vol2𝑛) comme modèle de 𝑁 et 𝑄 = 𝐻∗({∗}) = ℝ comme
modèle de 𝐾, l’application 𝜓 ∶ 𝑃 → 𝑄 étant simplement l’augmentation. L’appli-
cation 𝜓! ∶ 𝑄∨[−𝑛] → 𝑃 est donnée par 𝜓!(1∨

𝑄) = vol𝑛. Le modèle 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛]
est de dimension 3, engendré par 1𝑃 en degré 0, 1∨

𝑄 en degré 𝑛 − 1 et vol𝑛 en degré
𝑛. Tous les produits non-triviaux sont nuls et 𝑑(1∨

𝑄) = vol𝑛.
Nous ne savons pas si toutes les variétés orientées à bord admettent un joli

modèle surjectif, contrairement aux variétés simplement connexes (donc orien-
tées) sans bord qui admettent toutes un modèle à dualité de Poincaré. Si 𝑀 et 𝜕𝑀
sont simplement connexes, nous pouvons, sous l’hypothèse supplémentaire que
dim 𝑀 ≥ 7, construire ce que nous appelons un « modèle à dualité de Poincaré–
Lefschetz » 𝜆 ∶ 𝐵 → 𝐵𝜕 de (𝑀, 𝜕𝑀). La caractéristique principale de ces modèles est
l’existence d’un accouplement non-dégénéré entre un quotient 𝐴 ≔ 𝐵/ ker 𝜃 ≃ 𝐵
et le noyau de 𝜆 qui modélise l’accouplement entre 𝐻∗(𝑀) et 𝐻∗(𝑀, 𝜕𝑀), comme
pour les jolis modèles surjectifs. L’existence d’un modèle à DPL est suffisante
pour reprendre toutes les constructions précédentes et obtenir le même modèle
G𝐴(𝑘) de Ω∗

PA(Conf𝑘(𝑀)), ainsi que le modèle SGraphs𝜑
𝑅 de Ω∗

PA(SFM𝑀) (tout en
étant compatible avec les structures de comodule si 𝑀 est parallélisée).

À partir d’un tel joli modèle surjectif, il est possible de reprendre presque mot
pour mot la définition de G𝐴(𝑘) du Chapitre 2. Si par exemple 𝑀 = 𝐷𝑛, nous
obtenons G𝐴 ≅ e∨

𝑛 vu comme un comodule à droite sur lui-même. En réutilisant
les techniques du Chapitre 2, nous démontrons que G𝐴(𝑘) a les mêmes nombres de
Betti sur ℚ que Conf𝑘(𝑀). Nous définissons également une version « perturbée »
G̃𝐴 de G𝐴, qui est isomorphe à G𝐴 comme dg-module mais pas comme algèbre, et
nous montrons que G𝐴(𝑘) est un modèle sur ℝ de Conf𝑘(𝑀).

Il est possible d’adapter la compactification de Fulton–MacPherson FM𝑀 aux
variétés compactes à bord, en autorisant des points à devenir infinitésimalement
proches les uns des autres, mais aussi en autorisant des points de l’intérieur de
la variété à devenir infinitésimalement proches du bord. On obtient ainsi une
compactification de l’espace de configuration coloré :

Conf𝑘,𝑙(𝑀) ≔ {(𝑥1, … , 𝑥𝑘, 𝑦1, … , 𝑦𝑙) ∈ Conf𝑘+𝑙(𝑀) ∣ 𝑥𝑖 ∈ 𝜕𝑀, 𝑦𝑗 ∈ 𝑀̊}
∼
↪−→ SFM𝑀(𝑘, 𝑙).

Si 𝑀 est parallélisée, la collection SFM𝑀 = {SFM𝑀(𝑘, 𝑙)}𝑘≥0,𝑙≥0 est un module à
droite sur une opérade SFM𝑛 qui est construite de manière similaire à FM𝑛 et est
faiblement équivalent à l’opérade Swiss-Cheese 𝑛-dimensionnelle.
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Willwacher [Wil15] a construit un modèle en graphes SGraphs𝑛 de l’opérade
SFM𝑛, similaire au modèle Graphs𝑛 de Kontsevich pour l’opérade FM𝑛. Comme
dans le Chapitre 2, nous adaptons la construction de Willwacher au « cas étiqueté »
pour construire un comodule de Hopf à droite SGraphs𝑐𝜑,z𝑆

𝜑
𝑅 sur SGraphs𝑛, et nous

obtenons des quasi-isomorphismes de CDGAs (compatibles avec les structures
de comodule le cas échéant) :

SGraphs𝜑
𝑅(𝑘, 𝑙) ∼ Ω∗

PA(SFM𝑀(𝑘, 𝑙)),

G𝐴(𝑙) ∼
SGraphs

𝑐𝜑,z𝑆
𝜑

𝑅 (0, 𝑙) ∼ Ω∗
PA(SFM𝑀(0, 𝑙)) ≃ Ω∗

PA(Conf𝑙(𝑀)).
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0 Introduction and Context

In this thesis, we study the homotopy of configuration spaces of manifolds using
ideas coming from the theory of operads. These configuration spaces consist
of collections of pairwise distinct points in a given manifold. We address the
problems of their homotopy invariance and the definition of rational models for
them. We adapt constructions of Kontsevich [Kon99], who proved the formality
of (compactified) configuration spaces of Euclidean spaces as an operad.

The notion of an operad was initially introduced for the study of iterated loop
spaces in homotopy theory [May72; BV73]. The theory of operads has been
considerably renewed since the mid-nineties, when, after insights of Kontse-
vich [Kon93], Ginzburg and Kapranov [GK94] proved in a seminal work that
some duality phenomena in algebra could be interpreted in terms of operads.
Since then, a number of new applications of operads have been discovered in
several fields of mathematics.

In this introduction, we first explain what operads are in Section 0.1. Then we
describe two important families of operads, the little disks operads (Section 0.1.1)
and the Swiss-Cheese operads (Section 0.1.2). In Section 0.2, we turn to configu-
ration spaces of manifolds. Section 0.2.1 is devoted to closed manifolds, whereas
Section 0.2.2 is about compact manifolds with boundary.

0.1 Operads

Roughly speaking, an operad is an object that governs a category of algebras. The
central idea can be understood by analogy with the theory of group represen-
tations. In this analogy, the operad corresponds to the group, and the algebras
over the operad correspond to the representations of the group.

If a group is given with a presentation by generators and relations, then the
associated category of representations can also be defined in terms of the actions
of the generators, which have to satisfy the relations. In our analogy, a category of
algebras is defined in terms of generating operations and relations. For example,
the structure of an associative algebra is defined in terms of a product as a
generating operation together with associativity as a relation. The structure of
a commutative algebra is defined similarly, with the condition that the product
is symmetric, Lie algebras are defined in terms of an antisymmetric Lie bracket

1



0 Introduction and Context

and the Jacobi relation, and so on. Each of these definitions can be interpreted as
the definition of an operad by generators and relations which governs the given
category of algebras.

It is interesting to study the operad itself, independently of any presentation by
generators and relations, just like we study groups. This new perspective enables
us to consider morphisms, sub-operads, quotients, extensions… Knowledge
about an operad then translates into knowledge about algebras over that operad.

Let us explain more precisely what operads are.

𝑝

1 … 𝑞

𝑖 … 𝑖 + 𝑙 − 1

… 𝑘 + 𝑙 − 1

The algebraic structures governed by operads are
those that can be described in terms of operations with
a finite number of inputs and exactly one output. An
operad1 P is a collection P = {P(𝑘)}𝑘≥0 of abstract “oper-
ations”. An element of P(𝑘) can be viewed as a opera-
tion with 𝑘 inputs (“of arity 𝑘”) and one output. There

is an action of the symmetric group Σ𝑘 on P(𝑘) which models the permutations
of the input of an operation. There are insertion morphisms:

∘𝑖 ∶ P(𝑘) ⊗ P(𝑙) → P(𝑘 + 𝑙 − 1), 1 ≤ 𝑖 ≤ 𝑘,

which model composition of operations, similarly to how multiplication in a
group 𝐺 corresponds to composition of operations on representations. Finally,
there is an identity id ∈ P(1) which is a neutral element for composition.

To illustrate this definition, one can look at the prototypical example, the
endomorphism operad. Given some object 𝑋 in a symmetric monoidal category,
the endomorphism operad End𝑋 is defined by End𝑋(𝑛) ≔ Hom(𝑋⊗𝑛, 𝑋). The
symmetric group action acts by permuting inputs:

(𝑓 ⋅ 𝜎)(𝑥1, … , 𝑥𝑘) = 𝑓 (𝑥𝜎(1), … , 𝑥𝜎(𝑘)),

and the insertion operation is given by composition of morphisms:

(𝑓 ∘𝑖 𝑔)(𝑥1, … , 𝑥𝑘+𝑙−1) = 𝑓 (𝑥1, … , 𝑥𝑖−1, 𝑔(𝑥𝑖, … , 𝑥𝑖+𝑙−1), 𝑥𝑖+𝑙, … , 𝑥𝑘+𝑙−1).

Finally, the identity id ∈ End𝑋(1) is simply the identity of 𝑋. An algebra 𝑋 over
an operad P is by definition a morphism of operads P → End𝑋, just like a group
representation is a morphism 𝐺 → End(𝑉). As another example, an operad with
only operations of arity 1 is the same thing as a monoid, and an algebra over such
an operad is the same thing as a representation of the corresponding monoid.
We refer to the books [LV12; Fre17] for a more extensive treatment of operads.

1. To be precise, by an “operad” we mean a symmetric, one-colored operad. There exists other
variants: non-symetric operads, cyclic operads, colored operads, etc.
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0.1 Operads

0.1.1 Little disks operads

There exists a certain family of topological operads of particular interest, the little
𝑛-disks operads D𝑛 (or equivalently, the little 𝑛-cubes operads). These are precisely
the operads which appeared in the original study of iterated loop spaces.

1

2 3

An element of D𝑛(𝑘) is an ordered configuration of 𝑘 little
𝑛-disks with disjoint interiors in the unit disk 𝐷𝑛. Each disk
of the configuration represents an embedding of 𝐷𝑛 into itself,
obtained by the composition of a translation and a positive
homothety. The set D𝑛(𝑘) is endowed with the compact-open
topology of embeddings. The symmetric group action renum-
bers the disks in a configuration, and insertion is given by
composition of embeddings.

1

2
3

∘2

1

2 =
1

4

2
3

Figure 0.1.1: Composition of embeddings

Almost by definition, an 𝑛-fold loop space Ω𝑛𝑋 is a D𝑛-algebra. The “recogni-
tion principle” [May72; BV73] asserts that the converse is true: under technical
conditions, a (grouplike) D𝑛-algebra is weakly homotopy equivalent to an 𝑛-fold
loop space.

Since this first homotopy-theoretical application, the little disks operads have
proved to be useful in a number of settings. Let us mention the Deligne conjec-
ture [KS00; MS02], which asserts that the Hochschild cochains 𝐶∗(𝐴; 𝐴) of an
associative algebra are equipped with an action of D2; the formality theorem for
Hochschild cochains and its application to deformation quantization of Poisson
manifolds [Kon99; Tam98; Kon03]; Goodwillie–Weiss calculus and the compu-
tation of embedding spaces and long knots [Sin06; LTV10; AT14; DH12; BW13],
as well as the “covariant version” of embedding calculus that is factorization
homology [BD04; Lur09; Lur16; AF15; CG17].

A fundamental result about the little disks operads is that they are formal
over ℚ [Kon99; Tam03; LV14; FW15]: the operad of chains 𝐶∗(D𝑛; ℚ) is quasi-
isomorphic to its homology e𝑛 ≔ 𝐻∗(D𝑛; ℚ). Thus it suffices to study the operads

3



0 Introduction and Context

e𝑛, which have a simple combinatorial description: e1 = Ass governs associative
algebras, and for 𝑛 ≥ 2, e𝑛 governs (𝑛 − 1)-Poisson algebras [Coh76]. When 𝑛 = 2,
the formality of D2 depends on the choice of a Drinfeld associator, something
which gives a universal way to build a braided monoidal category out of some
Lie-algebraic data (see e.g. [Fre17, Chapter I.10] for details).

0.1.2 The Swiss-Cheese operads

Colored operads (a.k.a. multicategories), a generalization of operads, are used
to describe algebraic structures shaped on multiple objects. In this setting, the
inputs and the output of an operation are all labeled by “colors”, and composition
is only defined if the colors match. In the definition of an algebra over such a
colored operad, each color corresponds to a given object.

23

1

The Swiss-Cheese operad SC = SC2 [Vor99] is
a 2-colored operad which governs the action of a
D2-algebra on a D1-algebra by a central morphism. An
operation in SC is given by the embedding of disks and
upper half-disks in the unit upper half-disk. It is re-
lated to the OCHAs of Kajiura–Stasheff [KS06b; Hoe09]

and there is a Swiss-Cheese version of the Deligne conjecture [DTT11]. Higher
dimensional variants SC𝑛 govern the action of a D𝑛-algebra on a D𝑛−1-algebra.

Unlike the little disks operads, the Swiss-Cheese operads are not formal [Liv15]
and one cannot recover SC𝑛 from sc𝑛 = 𝐻∗(SC𝑛) over ℚ. Our first goal in this
thesis was to find a model for the Swiss-Cheese operad SC2 that fixes this lack of
formality. The homology sc2 splits as a “Voronov product” e2 ⊗ e1 and governs
the action of a Gerstenhaber algebra on an associative algebra via a central map.
Theorem A describes a model in groupoids for SC2 which governs the action
of a braided monoidal category on a monoidal category via a central monoidal
functor. Theorem B describes a model over ℚ for SC2, which uses a Drinfeld
associator to construct a kind of “twisted” Voronov product between a rational
model for e2 (built out of chord diagrams) and a model for e1.

0.2 Configuration spaces

0.2.1 Closed manifolds

Let 𝑀 be an 𝑛-dimensional manifold; its 𝑘th configuration space is:

Conf𝑘(𝑀) = {𝑥 ∈ 𝑀𝑘 ∣ ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑘, 𝑥𝑖 ≠ 𝑥𝑗}.

4



0.2 Configuration spaces

This construction is obviously not homotopy invariant for open manifolds
when 𝑘 ≥ 2, as for example Conf2(ℝ𝑛) ≃ 𝑆𝑛−1 for 𝑛 ∈ ℕ. Even if we restrict our
attention to closed manifolds, Conf𝑘(−) is still not a homotopy invariant [LS05b].
The counterexample (lens spaces) is not simply connected, and the homotopy
invariance for simply connected closed manifolds remains an open question.

Some results are known. The homotopy type of Ω Conf𝑘(𝑀) only depends
on the homotopy type of (𝑀, 𝜕𝑀) for connected compact manifolds [Lev95].
Configuration spaces are also known to be a stable homotopy invariant [AK04] of
closed manifolds. If 𝑀 is a smooth projective complex manifold, then the rational
homotopy type of Conf𝑘(𝑀) only depends on the one of 𝑀 [Kri94]. The same
result holds for 𝑘 = 2 when 𝑀 is a closed manifold and either 2-connected [LS04]
or simply connected and even dimensional [Cor15].

We prove, as a corollary of the main result of Chapter 2 (Theorem C), that the
real homotopy type of Conf𝑘(𝑀) only depends on the real homotopy type of 𝑀
when the manifold is closed, smooth, simply connected and of dimension at least
4.

When working over ℚ (or ℝ) with simply connected manifolds, we can use
Sullivan’s [Sul77] theory of rational models to study topological spaces up to
rational equivalence. Closed, simply connected manifolds are known to have
models satisfying a kind of chain-level Poincaré duality [LS08b]. Out of a Poincaré
duality model of 𝑀, we give an explicit real model for Conf𝑘(𝑀). This model had
been conjectured by Lambrechts–Stanley [LS08a] in the general case, and had
previously been studied in some special cases [CT78; BG91; Kri94; Tot96; FT04;
LS04; Cor15].

Our proof relies on Kontsevich’s proof of the formality of the little disks oper-
ads. The configuration spaces Conf𝑘(ℝ𝑛) admit compactifications FM𝑛(𝑘) due to
Fulton–MacPherson [FM94] (and Axelrod–Singer [AS94] in the real case). An
element of FM𝑛(𝑘) can roughly be seen as a configuration of 𝑘 points in ℝ𝑛, where
the points are allowed to become “infinitesimally close”. One can insert such
an infinitesimal configuration into another, and the spaces FM𝑛(−) assemble into
an operad weakly equivalent to the little disks operads. Kontsevich’s proof uses
piecewise semi-algebraic (PA) forms and integrals along the fiber to build an
explicit equivalence between 𝐶∗(FM𝑛) and e𝑛.

Similarly, if 𝑀 is a closed manifold, then Conf𝑘(𝑀) can be compactified into
FM𝑀(𝑘). If 𝑀 happens to be framed, then the spaces FM𝑀(−) assemble to form
a right module over the operad FM𝑛. This extra structure is what allows us to
prove Theorem C. When 𝑀 is framed, we then obtain that the action of the
little disks operad on the configuration spaces is compatible with our model.
We are able, using this additional result and a comparison statement between
the Cohen–Taylor spectral sequence [CT78] and the Bendersky–Gitler spectral
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0 Introduction and Context

sequence [BG91] established by Félix–Thomas [FT04], to recover a theorem of
Knudsen [Knu16] about the factorization homology of a framed manifold with
coefficients in the higher enveloping algebra of a Lie algebra.

0.2.2 Compact manifolds with boundary

In the last chapter, we study configuration spaces of compact manifolds with
boundary. As for closed manifolds, homotopy invariance of configuration spaces
of compact manifolds with boundary is an open question. It is known that if
the manifold and its boundary are both 2-connected, then the rational homo-
topy type of Conf2(𝑀) only depends on the rational homotopy type of the pair
(𝑀, 𝜕𝑀) [CLS15b].

The manifolds we consider are those which admit a “Poincaré–Lefschetz du-
ality model” These are a generalization of surjective pretty models as defined
in [CLS15a]. Briefly, if 𝑁 is a closed manifold and 𝐾 ⊂ 𝑁 is a sub-polyhedron, to
obtain a model for 𝑀 = 𝑁 − 𝐾 one takes a Poincaré duality model for 𝑁 and then
“kills” (using a mapping cone) the cohomology classes coming from 𝐾. We can
apply these ideas to manifolds with boundary which are obtained by removing
an open neighborhood of a sub-polyhedron from a closed manifold. Manifolds
admitting a surjective pretty model include closed manifolds, 2-connected man-
ifolds with 2-connected boundary satisfying an algebraic retraction property,
disk bundles of even rank of simply connected closed manifolds, and spaces
obtained by removing a high-codimensional sub-polyhedron from a 2-connected
manifold [CLS15a; CLS15b] (see Theorem 3.1.12 for details). More generally, if
𝑀 is simply connected with simply connected boundary, we can prove that it
admits a Poincaré–Lefschetz duality model as soon as 𝑛 ≥ 7, and we recover the
same results.

We first use a kind of chain-level Poincaré–Lefschetz duality and cubical dia-
grams to compute the Betti numbers of Conf𝑘(𝑀), as was done for closed mani-
folds in [LS08a]. We then reuse the methods of Chapter 2 to provide an explicit
real model for Conf𝑘(𝑀). One must adapt the Fulton–MacPherson compactifi-
cations to deal with the boundary of 𝑀, and we obtain as Theorem D that the
model conjectured in [CLS15b] is a real model for Conf𝑘(𝑀). This model only
depends on a model of 𝑀, therefore, as a corollary, we obtain the real homo-
topy invariance of Conf𝑘(−) for smooth simply connected manifolds with simply
connected boundary of dimension ≥ 5 (either admitting a pretty model or of
dimension ≥ 7).

The compactified configuration spaces on a framed manifold with boundary
inherit an action of an operad SFM𝑛, weakly equivalent to the Swiss-Cheese operad
SC𝑛. In Theorem F, we describe a model for the resulting module over SFM𝑛, using
a graphical model of SC𝑛 found by Willwacher [Wil15].

6



1 Swiss-Cheese Operad and
Drinfeld Center

The little disks operads D𝑛 of Boardman–Vogt and May [BV73; May72] govern
algebras which are associative and (for 𝑛 ≥ 2) commutative up to homotopy. For
𝑛 = 2, one can see that the fundamental groupoid of D2 forms an operad 𝜋D2
equivalent to an operad in groupoids PaB, called the operad of parenthesized
braids, which governs braided monoidal categories [Fre17, §I.6]. Since the ho-
motopy of D2 is concentrated in degrees ≤ 1, this is enough to recover D2 up to
homotopy. For 𝑛 = 1, one can also easily see that 𝜋D1 is equivalent to an operad
PaP, called the operad of parenthesized permutations, which governs monoidal
categories.

The Swiss-Cheese operad SC = SC2 of Voronov [Vor99] governs the action of a
D2-algebra on a D1-algebra by a central morphism. As explained by Hoefel [Hoe09],
the Swiss-Cheese operad is intimately related to the “Open-Closed Homotopy
Algebras” (OCHAs) of Kajiura and Stasheff [KS06a], which are of great interest
in string field theory and deformation quantization.

We aim to study the fundamental groupoid of SC, which is still an operad. This
fundamental groupoid is again enough to recover SC up to homotopy. In a first
step, we established the following theorem:
Theorem A (See Theorem 1.2.11 and Corollary 1.3.4). The fundamental groupoid
operad 𝜋SC is equivalent to an operad PaPB whose algebras (in the category of categories)
are triples (M,N, 𝐹), where N is a monoidal category, M is a braided monoidal category,
and 𝐹 ∶ M → 𝒵(N) is a strong braided monoidal functor from M to the Drinfeld center
𝒵(N) of N.

In this theorem, the monoidal categories have no unit. We also consider the
unitary version SC+ of the Swiss-Cheese operad, and we obtain (Proposition 1.3.9)
an extension PaPB+ of the model where the monoidal categories have a strict unit
and the functor strictly preserves the unit.

The result of Theorem A is a counterpart for operads in groupoids of statements
of [Gin15, Proposition 31] and [AFT17, Example 2.13] about the ∞-category of
factorization algebras on the upper half plane.

Based on “Swiss-Cheese Operad and Drinfeld Center”, Israel J. Math. (to appear), arXiv:
1507.06844.
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1 Swiss-Cheese Operad and Drinfeld Center

In a second step, we rely on the result of Theorem A to construct an operad
rationally equivalent (in the sense of rational homotopy theory) to the completion
of the Swiss-Cheese operad. To this end, we use Drinfeld associators, which
we see as morphisms PaB+ → ĈD+, where ĈD+ is the completed operad of chord
diagrams. The existence of such a rational Drinfeld associator is equivalent to
the rational formality of D2, but the inclusion D1 → D2 is not formal; equivalently,
the constant morphism PaP+ → ĈD+ does not factor through a Drinfeld associator.
We prove the following theorem:

Theorem B (See Theorem 1.4.21). Given a choice of Drinfeld associator 𝜙, there is an
operad in groupoids PaPĈD𝜙

+ built using chord diagrams, parenthesized permutations,
and parenthesized shuffles, which is rationally equivalent to 𝜋SC+.

The Swiss-Cheese operad is not formal [Liv15], thus it cannot be recovered
from its homology 𝐻∗(SC). We use the splitting of 𝐻∗(SC) as a product [Vor99] to
build an operad in groupoids ĈD ×+ PaP, and we compare it to our rational model
of SC.

Independently of the author, Willwacher [Wil15] found a different model for
the Swiss-Cheese operad in any dimension 𝑛 ≥ 2 that uses graph complexes.
His model extends Kontsevich’s [Kon99] quasi-isomorphism Graphs𝑛

∼ Ω∗(D𝑛)
from the proof of the formality of D𝑛, whereas our model extends (after passing
to classifying spaces) Tamarkin’s [Tam03] model B 𝕌̂𝔭̂ = B ĈD of D2. Thus, in
contrast to Willwacher’s model, our own model is related to Drinfeld’s original
approach to quantization. It would be interesting to compare the two, as was
done by Ševera and Willwacher [ŠW11] for the little 2-disks operad.

This paper is organized as follows: in Section 1.1, we recall some background
on the Swiss-Cheese operad and relative operads; in Section 1.2, we construct two
algebraic models for the Swiss-Cheese operad; in Section 1.3, we describe what
the algebras over these models are, using Drinfeld centers; and in Section 1.4,
we construct a rational model in groupoids for the Swiss-Cheese operad using
chords diagrams and Drinfeld associators.

1.1 Background

The little 𝑛-disks operad D𝑛 is built out of configurations of embeddings of little
𝑛-disks (whose images have disjoint interiors) in the unit 𝑛-disk, and operadic
composition is given by composition of such embeddings – see [BV73; May72]
for precise definitions.

The fundamental groupoid 𝜋D2 of the little disks operads is weakly equivalent
to an operad in groupoids called CoB, the operad of colored braids [Fre17, §I.5],
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1.1 Background

which we now recall. Given an integer 𝑟 ≥ 0, the object set of CoB(𝑟) is the
symmetric group Σ𝑟. For 𝜎, 𝜎 ′ ∈ Σ𝑟, the morphisms in HomCoB(𝑟)(𝜎, 𝜎 ′) are given
by isotopy classes of braids with 𝑟 strands which respect the permutations, i.e.
if we label the beginning of each strand as 𝜎(1), 𝜎(2), … , 𝜎(𝑟) and the end of
each strand with 𝜎 ′(1), 𝜎 ′(2), … , 𝜎 ′(𝑟), then the labelings match (see Figure 1.1.1
for an example). This way, given a source permutation and a braid, the target
permutation is fixed and we will not draw it on pictures.

1

1

2

2

Figure 1.1.1: Example of element in CoB(2)

We will also consider colored operads, which are also called multicategories.
These are used to study several algebraic structures at once, together with possible
relations between them. Compared with standard operads, a colored operad has
an extra data, the set of its “colors”, and for a given operation, each input and the
output is assigned a color. There is an identity for each color, and composition is
only possible if the input and output match. An “algebra” over a colored operad
is in fact given by several objects, one for each color, and the operations act on
them according to how their inputs and outputs are colored. For example, given
an operad P, there is a canonical operad P⃗ with two colors, whose algebras are
triplets (𝐴, 𝐵, 𝑓 ) where 𝐴 and 𝐵 are P-algebras and 𝑓 ∶ 𝐴 → 𝐵 is a morphism of
P-algebras.

The Swiss-Cheese operad SC is an operad with two colors, 𝔠 and 𝔬 (standing
for “closed” and “open”). The space of operations SC(𝑥1, … , 𝑥𝑛; 𝔠) with a closed
output is equal to D2(𝑛) if 𝑥1 = … = 𝑥𝑛 = 𝔠, and it is empty otherwise. The
space SC(𝑥1, … , 𝑥𝑛; 𝔬) is the space of configurations of embeddings of full disks
(corresponding to the color 𝔠) and half disks (corresponding to the color 𝔬), with
disjoint interiors, inside the unit upper half disk (see Figure 1.1.2 for an example).
Composition is again given by composition of embeddings.

The Swiss-Cheese operad is an example of a relative operad [Vor99]: it can be
seen as an operad in the category of right modules (in the sense of [Fre09]) over
another operad.
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1 Swiss-Cheese Operad and Drinfeld Center

1 2 3

1
2

Figure 1.1.2: Example of an element in SC(3, 2)

Definition 1.1.1. Let P be a (symmetric, one-colored) operad. A relative operad
over P is an operad Q in the category of right modules over P. Equivalently, it is a
two-colored operad Q (where the two colors are called 𝔠 and 𝔬) such that:

Q(𝑥1, … , 𝑥𝑛; 𝔠) =
⎧{
⎨{⎩

P(𝑛), if 𝑥1 = … = 𝑥𝑛 = 𝔠;
∅, otherwise.

Q(𝑛, 𝑚) ∶= Q(𝔬, … , 𝔬⏟
𝑛

, 𝔠, … , 𝔠⏟
𝑚

; 𝔬) = (Q(𝑛))(𝑚).

If Q is such a relative operad, we will write Q𝔠(𝑚) ≔ P(𝑚).

The Swiss-Cheese operad SC is a relative operad over the little disks operad D2.
We also consider the unitary version of the Swiss-Cheese operad SC+, which is a
relative operad over the unitary version of the little disks operad D+

2 , and which
satisfies SC+(0, 0) = ∗. Composition with the nullary elements simply forgets
half disks or full disks of the configuration.
Remark 1.1.2. We consider a variation of the Swiss-Cheese operad, where we allow
operations with only closed inputs and an open output, whereas in Voronov’s
definition these configurations are forbidden. We write SCvor for Voronov’s
version, so that SCvor(0, 𝑚) = ∅ while SC(0, 𝑚) ≃ D2(𝑚) ≠ ∅.

1.2 Permutations and braids

1.2.1 Colored version

We first define an operad in groupoids CoPB, the operad of colored permutations
and braids. It is an operad relative over CoB, the operad of colored braids [Fre17,
§I.5].

Let 𝐷+ = {𝑧 ∈ ℂ ∣ ℑ𝑧 ≥ 0, |𝑧| ≤ 1} be the upper half disk, and let

Conf(𝑛, 𝑚) = {(𝑧1, … , 𝑧𝑛, 𝑢1, … , 𝑢𝑚) ∈ 𝐷+ ∣ ℑ𝑧𝑖 = 0, ℑ𝑢𝑗 > 0, 𝑧𝑖 ≠ 𝑧𝑗, 𝑢𝑖 ≠ 𝑢𝑗}
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1.2 Permutations and braids

be the set of configurations of 𝑛 points on the real interval [−1, 1] and 𝑚 points
in the upper half disk.

The disk-center mapping 𝜔 ∶ SC(𝑛, 𝑚) ∼ Conf(𝑛, 𝑚), sending each disk to its
center, is a weak equivalence [Vor99]. Let Σ𝑘 be the 𝑘th symmetric group, and let
Sh𝑛,𝑚 be the set of (𝑛, 𝑚)-shuffles:

Sh𝑛,𝑚 = {𝜇 ∈ Σ𝑛+𝑚 ∣ 𝜇(1) < … < 𝜇(𝑛), 𝜇(𝑛 + 1) < … < 𝜇(𝑛 + 𝑚)}.

For every 𝜇 ∈ Sh𝑛,𝑚, we choose a configuration 𝑐0
𝜇 ∈ Conf(𝑛, 𝑚) with 𝑛 “ter-

restrial” points (on the real axis) and 𝑚 “aerial” points (with positive imaginary
part), in the left-to-right order given by the (𝑛, 𝑚)-shuffle 𝜇. For example we can
choose:

𝜇 = (14|235) ∈ Sh2,3  𝑐0
𝜇 =

1

1 2

2

3 ∈ Conf(2, 3), (1.2.1)

We consider the set:

𝐶0(𝑛, 𝑚) = {𝜎 ⋅ 𝑐0
𝜇}𝜎∈Σ𝑛×Σ𝑚, 𝜇∈Sh𝑛,𝑚

⊂ Conf(𝑛, 𝑚),

where Σ𝑛 × Σ𝑚 acts by permuting labels.
Example 1.2.2. For example, 𝐶0(2, 1) can be chosen to be:

𝐶0(2, 1) =

⎧{{{{{{
⎨{{{{{{⎩

1
1 2

1
2 1 1

1
2

2
1

1 1 2
1

2 1
1

⎫}}}}}}
⎬}}}}}}⎭

The precise position of the points does not matter for our purposes, only their
left-to-right order.

Definition 1.2.3. The groupoid CoPB(𝑛, 𝑚) is the restriction of the fundamental
groupoid of Conf(𝑛, 𝑚) to the set 𝐶0(𝑛, 𝑚) ⊂ Conf(𝑛, 𝑚) (i.e. it is its full subcate-
gory with these objects):

CoPB(𝑛, 𝑚) ≔ 𝜋 Conf(𝑛, 𝑚)|𝐶0(𝑛,𝑚).

11



1 Swiss-Cheese Operad and Drinfeld Center

The set ob CoPB(𝑛, 𝑚) = 𝐶0(𝑛, 𝑚) is isomorphic to Sh𝑛,𝑚 ×Σ𝑛 ×Σ𝑚. We represent
these objects by sequences of 𝑛 “terrestrial” points (drawn in white and labeled
by {1, … , 𝑛}) and 𝑚 “aerial” points (drawn in black and labeled by {1, … , 𝑚}) on
the interval 𝐼 = [−1, 1]; the order in which terrestrial and aerial points appear is
given by the shuffle. For example, the element in Equation (1.2.1) is represented
by:

1 1 2 2 3 .

Morphisms between two such configurations are given by isotopy classes of
bicolored braids, where strands between terrestrial points never go behind any
other strand, including other terrestrial strands (indeed, they represent paths in
the interval [−1, 1], and points cannot move over one another in Conf𝑛([−1, 1]),
nor can they go behind the paths in the open upper half disk). See Figure 1.2.1
for an example of an element in CoPB(2, 3), and Figure 1.2.2 for the corresponding
path in Conf(2, 3).

1 23 1 2

Figure 1.2.1: Element in CoPB(2, 3) Figure 1.2.2: Corresponding path in
Conf(2, 3)

To not confuse objects of CoPB and objects of CoB, and to be coherent with the
graphical representation of ΩΩ in Section 1.2.2, we draw the objects of CoB with
ends in the shape of chevrons:

1 2 ∈ ob CoB(2).

The symmetric sequence CoPB(𝑛) = {CoPB(𝑛, 𝑚)}𝑚≥0 is a right module over
CoB by inserting a colored braid in a tubular neighborhood of an aerial strand
(Figure 1.2.3). Similarly, the operad structure inserts a colored braid in a tubular
neighborhood of a terrestrial strand (Figure 1.2.4). One can easily check that this
gives a relative operad over CoB (in the same manner that one checks that CoB
itself is an operad, cf. [Fre17, §I.5]).

12



1.2 Permutations and braids

1 23 1 2

CoPB(2, 3)

∘𝔠
1

1 2

CoB(2)

=

1 21 2 34

CoPB(2, 4)

Figure 1.2.3: Definition of the right CoB-module structure

1 23 1 2

CoPB(2, 3)

∘𝔬
1

1 1

CoPB(1, 1)

=

1 23 1 24

CoPB(2, 4)

Figure 1.2.4: Definition of the operad structure

13
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1.2.2 Magmas

Definition 1.2.4. Let Ω be the magma operad (as in [Fre17]), defined as the free
symmetric operad 𝕆(𝜇𝔠) on a single generator 𝜇𝔠 = 𝜇𝔠(𝑥1, 𝑥2) of arity 2 (where
Σ2 acts freely on 𝜇𝔠). Its algebras are sets endowed with a product satisfying no
further conditions.

Elements of Ω(𝑛) are parenthesizations of a permutation of 𝑛 elements, for
example (((𝑥1𝑥3)(𝑥2𝑥4))𝑥5) ∈ Ω(5). The index 𝔠 of 𝜇𝔠 is there to be coherent with
the following definition:

Definition 1.2.5. Let ΩΩ = 𝕆(𝜇𝔠, 𝑓 , 𝜇𝔬) be the free colored operad on the three
generators 𝜇𝔠 ∈ ΩΩ(𝔠, 𝔠; 𝔠), 𝑓 ∈ ΩΩ(𝔠; 𝔬) et 𝜇𝔬 ∈ ΩΩ(𝔬, 𝔬; 𝔬). It is a relative operad
over Ω.

An algebra over ΩΩ is the data of two magmas 𝑀, 𝑁, and of a mere function
𝑓 ∶ 𝑀 → 𝑁 (not necessarily preserving the product).

Lemma 1.2.6. The suboperad of SC generated by the following three elements is free on
those generators:

𝜇𝔠 = 1 2 , 𝜇𝔬 = 1 2 , 𝑓 = 1 .

Proof. We would like to show that the induced morphism 𝑖 ∶ ΩΩ → SC, sending
the three generators of ΩΩ to the elements depicted in the lemma, is an embed-
ding, i.e. an isomorphism onto its image. The image of this induced morphism is
by definition the suboperad generated by the three elements, hence the lemma.

The fact that the suboperad of D2 generated by 𝜇𝔠 is free is given by [Fre17,
Proposition I.6.2.2(a)]. Let 𝛼 ∈ SC(𝑛, 𝑚) be a configuration, as in Figure 1.2.5. We
will build an element of ΩΩ which is sent to 𝛼 under 𝑖. This set-level retraction is
not necessarily a morphism of operads but still shows that 𝑖 is injective, which
will prove the lemma.

We first regroup the 𝑚 full disks into connected components 𝐶1, … , 𝐶𝑟. For
each 𝐶𝑖, we consider the center of the middle horizontal interval (in blue on the
figure), which we project onto the real line (in red). These points, together with
the centers of the 𝑛 half disks, make up a dyadic configuration on the horizontal
diameter of the ambient half disk. By [Fre17, Proposition I.6.2.2(a)], such a dyadic
configuration is equivalent to an element 𝑢 ∈ Ω(𝑛 + 𝑟) (which we see as an iterate
of 𝜇𝔠).

14



1.2 Permutations and braids

1 2
3

1

Figure 1.2.5: Example element of ΩΩ(1, 3)

For each 𝐶𝑖 (corresponding to an input of 𝑢), we apply the same proposition
[Fre17, Proposition I.6.2.2(a)] to get an element 𝑣𝑖 ∈ Ω(𝑘𝑖) (which we see as a
iterate of 𝜇𝔬), and ∑ 𝑘𝑖 = 𝑚. If we plug 𝑓 (𝑣𝑖) in the corresponding inputs of 𝑢, we
get an element of ΩΩ(𝑛, 𝑚), and by construction this elements gets sent to 𝛼 by
𝑖.

We consider the following graphical representation for elements of ΩΩ with
open output, where the generators are represented as follows:

𝜇𝔠  
1 2 , 𝜇𝔬  

1 2 , 𝑓 1 .

For example, this is the representation of the element of Figure 1.2.5:

𝜇𝔬(𝑓 (𝜇𝔠(𝑥1, 𝑥2)), 𝜇𝔬(𝑓 (𝑥3), 𝑦1)) 1 2 3 1 ∈ ΩΩ(1, 3)

Each 𝜇𝔬 is represented by cutting in half the interval; 𝑓 is represented by paren-
theses, and 𝜇𝔠 is again represented by cutting the interval inside the parentheses
in half. Closed inputs are represented by black points, while open inputs are
represented by white points.

Remark 1.2.7. The parentheses separating the aerial points are really necessary in

15



1 Swiss-Cheese Operad and Drinfeld Center

the representation. For example these are two different objects:

𝑓 (𝜇𝔠(𝑥1, 𝑥2)) = 1 2 = 1 2

𝜇𝔬(𝑓 (𝑥1), 𝑓 (𝑥2)) = 1 2 =
1 2

1.2.3 Parenthesized version

We now define PaPB, the operad of parenthesized permutations and braids, a
relative operad over PaB. The definition of PaPB is given as a pullback of CoPB,
similarly to how PaB is a pullback of CoB.

Definition 1.2.8. We consider the morphism 𝜔 ∶ ΩΩ → ob CoPB, given on gener-
ators by:

𝜇𝔠 ↦ 1 2 , 𝑓 ↦ 1 , 𝜇𝔬 ↦ 1 2 ,

and we define PaPB ≔ 𝜔∗CoPB, the pullback of CoPB along 𝜔. It is an operad in
groupoids such that ob PaPB = ΩΩ and

HomPaPB(𝑛,𝑚)(𝑢, 𝑣) ≔ HomCoPB(𝑛,𝑚)(𝜔(𝑢), 𝜔(𝑣))

for 𝑢, 𝑣 ∈ ΩΩ(𝑛, 𝑚).

Definition 1.2.9. A categorical equivalence is a morphism of operads in group-
oids which is an equivalence of categories in each arity. Two operads P and Q are
said to be categorically equivalent (and we write P ≃ Q) if they can be connected
by a zigzag of categorical equivalences:

P
∼ ⋅ ∼ … ∼ ⋅ ∼

Q.

Recall that the fundamental groupoid functor 𝜋 ∶ (Top, ×) → (Gpd, ×) is mono-
idal, thus the fundamental groupoid of a topological operad is an operad in
groupoids.
Remark 1.2.10. Since each arity of the operad SC has homotopy concentrated
in degrees ≤ 1, it follows that its fundamental groupoid is enough to recover
the homotopy type of the operad through the classifying space construction:
SC

∼ B 𝜋SC.

16
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Theorem 1.2.11. The operad PaPB is isomorphic to the fundamental groupoid of SC
restricted to the image of ΩΩ ↪ SC, and we get a zigzag of categorical equivalences:

𝜋SC ∼ 𝜋SC|ΩΩ ≅ PaPB
∼

CoPB.

Proof. The proof of the first part of the proposition is a direct adaptation of the
proof of [Fre17, Proposition I.6.2.2(b)]. We note that ΩΩ ⊂ ob 𝜋SC is a suboperad,
thus 𝜋SC|ΩΩ is also a suboperad of 𝜋SC. For the second part, we note that ΩΩ(𝑛, 𝑚)
meets all the connected components of SC(𝑛, 𝑚) ∼ Σ𝑛 ×D2(𝑚), so the first inclusion
is a categorical equivalence. Since 𝜔 ∶ ΩΩ → ob CoPB is surjective, the second
morphism is also a categorical equivalence.

1.3 Drinfeld center

1.3.1 Algebras over PaPB

Definition 1.3.1. Let C be a (non-unitary) monoidal category. Its suspension ΣC
is a bicategory with a single object. The Drinfeld center [Maj91; JS91] of C is the
braided monoidal category 𝒵(C) = End(idΣC). Explicitly, it is given as follows
(see also [nLa16] for the more abstract point of view):

• Objects are pairs (𝑋, Ψ), where 𝑋 is an object of C and Ψ ∶ (𝑋 ⊗−) → (−⊗𝑋)
is a half-braiding, i.e. a natural isomorphism such that for all 𝑌, 𝑍 ∈ C the
following diagram commutes:

𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑌 ⊗ 𝑍) ⊗ 𝑋

(𝑋 ⊗ 𝑌) ⊗ 𝑍 𝑌 ⊗ (𝑍 ⊗ 𝑋)

(𝑌 ⊗ 𝑋) ⊗ 𝑍 𝑌 ⊗ (𝑋 ⊗ 𝑍)

Ψ𝑌⊗𝑍

𝛼𝛼

Ψ𝑌⊗1

𝛼

1⊗Ψ𝑍

• Morphisms between (𝑋, Ψ) and (𝑌, Ψ′) are morphisms 𝑓 ∶ 𝑋 → 𝑌 of C such
that, for all 𝑍 ∈ C, the following diagram commutes

𝑋 ⊗ 𝑍 𝑌 ⊗ 𝑍

𝑍 ⊗ 𝑋 𝑍 ⊗ 𝑌

𝑓 ⊗1

Ψ𝑍 Ψ′
𝑍

1⊗𝑓

17
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• The tensor product of two objects (𝑋, Ψ) ⊗ (𝑋′, Ψ′) is given by (𝑋 ⊗ 𝑋′, Ψ″),
where Ψ″

𝑍 is defined by the following diagram (that can be rearranged as
an hexagon by inverting both vertical 𝛼’s, see Figure 1.3.6):

(𝑋 ⊗ 𝑋′) ⊗ 𝑌 𝑌 ⊗ (𝑋 ⊗ 𝑋′)

𝑋 ⊗ (𝑋′ ⊗ 𝑌) 𝑋 ⊗ (𝑌 ⊗ 𝑋′) (𝑋 ⊗ 𝑌) ⊗ 𝑋′ (𝑌 ⊗ 𝑋) ⊗ 𝑋′

Ψ″
𝑌

𝛼

1⊗Ψ′
𝑌 𝛼−1 Ψ𝑌⊗1

𝛼

• The braiding (𝑋, Ψ) ⊗ (𝑋′, Ψ′) → (𝑋′, Ψ′) ⊗ (𝑋, Ψ) is given by Ψ𝑋′ and the
associator is given by the associator of C.

Example 1.3.2. Let 𝐻 be a Hopf algebra and consider the category Rep(𝐻) of
its representations. Then the Drinfeld center 𝒵(Rep(𝐻)) is equivalent to the
category Rep(𝐷(𝐻)) of representations of the “Drinfeld double” 𝐷(𝐻) of 𝐻, which
is roughly speaking obtained as a semi-direct product of 𝐻 with its dual 𝐷(𝐻) ≈
𝐻 ⋊ 𝐻∨ [Dri87].

We consider the following elements of PaPB:

𝜇𝔠 ∈ ob PaB(2) 𝜇𝔬 ∈ ob PaPB(2, 0) 𝑓 ∈ ob PaPB(0, 1) 𝜏 ∈ PaB(2)

1 2 1 2 1

1 2

𝑝 ∈ PaPB(0, 2) 𝜓 ∈ PaPB(1, 1) 𝛼𝔠 ∈ PaB(3) 𝛼𝔬 ∈ PaPB(3, 0)
1 2 1 2 1 2 3 1 2 3

Theorem 1.3.3. Let P be a {𝔠, 𝔬}-colored operad1 in the category of categories, let 𝑚𝔠 ∈
ob P𝔠(2), 𝑚𝔬 ∈ ob P(2, 0), 𝐹 ∈ ob P(0, 1) be objects, and let

𝑎𝔠 ∶ 𝑚𝔠(𝑚𝔠(𝑥1, 𝑥2), 𝑥3) → 𝑚𝔠(𝑥1, 𝑚𝔠(𝑥2, 𝑥3)), 𝜋 ∶ 𝑚𝔬(𝑓 (𝑥1), 𝑓 (𝑥2)) → 𝑓 (𝑚𝔠(𝑥1, 𝑥2)),
𝑡 ∶ 𝑚𝔠(𝑥1, 𝑥2) → 𝑚𝔠(𝑥2, 𝑥1), Ψ ∶ 𝑚𝔬(𝑓 (𝑥1), 𝑦1) → 𝑚𝔬(𝑦1, 𝑓 (𝑥1)),

𝑎𝔬 ∶ 𝑚𝔬(𝑚𝔬(𝑦1, 𝑦2), 𝑦3) → 𝑚𝔬(𝑦1, 𝑚𝔬(𝑦2, 𝑦3)),

1. The operad will not necessarily be a relative operad, but we will still use the notation
P(𝑛, 𝑚) = P(𝔠𝑚, 𝔬𝑛; 𝔬) and P𝔠(𝑚) = P(𝔠𝑚; 𝔠).
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be isomorphisms. Then there exists a morphism 𝜃 ∶ PaPB → P such that

𝜃(𝜇𝔠) = 𝑚𝔠, 𝜃(𝜇𝔬) = 𝑚𝔬, 𝜃(𝑓 ) = 𝐹, 𝜃(𝛼𝔠) = 𝑎𝔠,
𝜃(𝛼𝔬) = 𝑎𝔬, 𝜃(𝜏) = 𝑡, 𝜃(𝑝) = 𝜋, 𝜃(𝜓) = Ψ,

(in which case this morphism is unique) if, and only if, the coherence diagrams of Fig-
ures 1.3.1 to 1.3.6 commute.

𝑚(𝑚(𝑚(𝑥1, 𝑥2), 𝑥3), 𝑥4)

𝑚(𝑚(𝑥1, 𝑚(𝑥2, 𝑥3)), 𝑥4)

𝑚(𝑚(𝑥1, 𝑥2), 𝑚(𝑥3, 𝑥4))

𝑚(𝑥1, 𝑚(𝑚(𝑥2, 𝑥3), 𝑥4))

𝑚(𝑥1, 𝑚(𝑥2, 𝑚(𝑥3, 𝑥4)))

𝑚(𝑎,id)

𝑎

𝑎

𝑎

𝑚(id,𝑎)

Figure 1.3.1: Pentagon for (𝑚, 𝑎) = (𝑚𝔠, 𝑎𝔠) and (𝑚𝔬, 𝑎𝔬)

𝑚𝔠(𝑚𝔠(𝑥1, 𝑥2), 𝑥3)

𝑚𝔠(𝑚𝔠(𝑥2, 𝑥1), 𝑥3) 𝑚𝔠(𝑥1, 𝑚𝔠(𝑥2, 𝑥3))

𝑚𝔠(𝑥2, 𝑚𝔠(𝑥1, 𝑥3)) 𝑚𝔠(𝑚𝔠(𝑥2, 𝑥3), 𝑥1)

𝑚𝔠(𝑥2, 𝑚𝔠(𝑥3, 𝑥1))

𝑚𝔠(𝑡,id) 𝑎𝔠

𝑎𝔠 𝑡

𝑚𝔠(id,𝑡)

𝑎𝔠

𝑚𝔠(𝑥1, 𝑚𝔠(𝑥2, 𝑥3))

𝑚𝔠(𝑥1, 𝑚𝔠(𝑥3, 𝑥2)) 𝑚𝔠(𝑚𝔠(𝑥1, 𝑥2), 𝑥3)

𝑚𝔠(𝑚𝔠(𝑥1, 𝑥3), 𝑥2) 𝑚𝔠(𝑥3, 𝑚𝔠(𝑥1, 𝑥2))

𝑚𝔠(𝑚𝔠(𝑥3, 𝑥1), 𝑥2)

𝑚𝔠(id,𝑡)

𝑎−1
𝔠

𝑎−1
𝔠 𝑡

𝑚𝔠(𝑡,id) 𝑎−1
𝔠

Figure 1.3.2: Hexagons

Recall that an algebra over a colored operad Q is a morphism Q → End(𝐴,𝐵),
where

End𝔠
(𝐴,𝐵)(𝑛, 𝑚) = hom(𝐵⊗𝑛 ⊗ 𝐴⊗𝑚, 𝐴), End𝔬

(𝐴,𝐵)(𝑛, 𝑚) = hom(𝐵⊗𝑛 ⊗ 𝐴⊗𝑚, 𝐵).

Given a morphism PaPB → End(M,N) with the names as in Theorem 1.3.3 for
the images of the generators, the previous coherence diagrams are exactly the
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1 Swiss-Cheese Operad and Drinfeld Center

𝑚𝔬(𝑚𝔬(𝑓 (𝑥1), 𝑓 (𝑥2)), 𝑓 (𝑥3))

𝑚𝔬(𝑓 (𝑚𝔠(𝑥1, 𝑥2)), 𝑓 (𝑥3)) 𝑚𝔬(𝑓 (𝑥1), 𝑚𝔬(𝑓 (𝑥2), 𝑓 (𝑥3)))

𝑓 (𝑚𝔠(𝑚𝔠(𝑥1, 𝑥2), 𝑥3)) 𝑚𝔬(𝑓 (𝑥1), 𝑓 (𝑚𝔠(𝑥2, 𝑥3)))

𝑓 (𝑚𝔠(𝑥1, 𝑚𝔠(𝑥2, 𝑥3)))

𝑚𝔬(𝜋,id) 𝑎𝔠

𝜋 𝑚𝔬(id,𝜋)

𝑓 (𝑎𝔠) 𝜋

Figure 1.3.3: 𝐹 is monoidal

𝑚𝔬(𝑚𝔬(𝑓 (𝑥1), 𝑥2), 𝑥3)

𝑚𝔬(𝑚𝔬(𝑥2, 𝑓 (𝑥1)), 𝑥3) 𝑚𝔬(𝑓 (𝑥1), 𝑚𝔬(𝑥2, 𝑥3))

𝑚𝔬(𝑥2, 𝑚𝔬(𝑓 (𝑥1), 𝑥3)) 𝑚𝔬(𝑚𝔬(𝑥2, 𝑥3), 𝑓 (𝑥1))

𝑚𝔬(𝑥2, 𝑚𝔬(𝑥3, 𝑓 (𝑥1)))

𝑚𝔬(Ψ,id) 𝑎𝔬

𝑎𝔬 Ψ

𝑚𝔬(id,Ψ) 𝑎𝔬

Figure 1.3.4: Ψ is a half-braiding

𝑚𝔬(𝑓 (𝑥1), 𝑓 (𝑥2)) 𝑚𝔬(𝑓 (𝑥2), 𝑓 (𝑥1))

𝑓 (𝑚𝔠(𝑥1, 𝑥2)) 𝑓 (𝑚𝔠(𝑥2, 𝑥1))

Ψ

𝜋 𝜋

𝑓 (𝑡)

Figure 1.3.5: 𝐹 is braided

𝑚𝔬(𝑓 (𝑥1), 𝑚𝔬(𝑓 (𝑥2), 𝑥3))

𝑚𝔬(𝑓 (𝑥1), 𝑚𝔬(𝑥3, 𝑓 (𝑥2))) 𝑚𝔬(𝑚𝔬(𝑓 (𝑥1), 𝑓 (𝑥2)), 𝑥3)

𝑚𝔬(𝑓 (𝑚𝔠(𝑥1, 𝑥2)), 𝑥3)

𝑚𝔬(𝑥3, 𝑓 (𝑚𝔠(𝑥1, 𝑥2)))

𝑚𝔬(𝑚𝔬(𝑓 (𝑥1), 𝑥3), 𝑓 (𝑥2)) 𝑚𝔬(𝑥3, 𝑚𝔬(𝑓 (𝑥1), 𝑓 (𝑥2)))

𝑚𝔬(𝑚𝔬(𝑥3, 𝑓 (𝑥1)), 𝑓 (𝑥2))

𝑚(id,Ψ) 𝑎−1
𝔬

𝑎−1
𝔬

𝑚𝔬(𝜋,id)

Ψ

𝑚𝔬(id,𝜋−1)

𝑚𝔬(Ψ,id) 𝑎−1
𝔬

Figure 1.3.6: 𝐹 is monoidal w.r.t. half-braidings
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1.3 Drinfeld center

diagrams encoding the fact that (𝑚𝔠, 𝑎𝔠, 𝑡𝔠) is a braided monoidal structure on M,
(𝑚𝔬, 𝑎𝔬) is a monoidal structure on N, and 𝐹 is a braided monoidal functor to the
Drinfeld center.

Corollary 1.3.4. An algebra over PaPB is the data of a (non-unitary) monoidal cate-
gory (N, ⊗), a (non-unitary) braided monoidal category (M, ⊗, 𝜏), and a strong braided
monoidal functor 𝐹 ∶ M → 𝒵(N).

Definition 1.3.5. Between two objects 𝑥, 𝑦 ∈ PaPB(𝑛, 𝑚) such that the terrestrial
(resp. aerial) points of 𝑥 are numbered in the same order as the terrestrial (resp.
aerial) points 𝑦, there is a unique morphism 𝜇 ∈ homPaPB(𝑛,𝑚)(𝑥, 𝑦), called a
shuffle-type morphism, such that the aerial strands do not cross each other (see
Figure 1.3.7).

Figure 1.3.7: Example of shuffle-type morphism

Proof of Theorem 1.3.3. It is clear (a simple exercise in drawing braid diagrams)
that the morphisms of PaPB satisfy the corresponding relations, thus we get the
“only if” part of the theorem.

Let 𝑌 ∈ homPaPB(𝑛,𝑚)(𝑥1, 𝑥2) be a morphism. We want to decompose it as in
Figure 1.3.8:

• We first arbitrarily choose two objects 𝑥′
1, 𝑥′

2 which are in the image of the
product PaP(𝑛) × PaB(𝑚) by 𝜇𝔬(−, 𝑓 (−)). In other words, 𝑥′

𝑖 = 𝜇𝔬(𝑥𝔬
𝑖 , 𝑓 (𝑥𝔠

𝑖 ))
is the concatenation of an object 𝑥𝔬

𝑖 ∈ PaP(𝑛) = PaPB(𝑛, 0) and of the image
by 𝑓 of an object 𝑥𝔠

𝑖 ∈ PaB(𝑚). We also require that the aerial points (resp.
the terrestrial points) of 𝑥′

𝑖 are numbered in the same order as those of 𝑥𝑖.

• We take the unique shuffle-type morphism 𝜇 ∶ 𝑥1 → 𝑥′
1.

• We build a morphism 𝑋 = 𝜇𝔬(𝑋𝔬, 𝑓 (𝑋𝔠)) ∶ 𝑥′
1 → 𝑥′

2. It is the concatenation
of 𝑋𝔬 ∈ PaP(𝑛), and 𝑋𝔠 ∈ PaB(𝑚). Explicitly, 𝑋𝔬 is the colored permutation
where all the aerial strands of 𝜔∗(𝑌) have been forgotten, and 𝑋𝔠 is the
colored braid where all the terrestrial strands of 𝜔∗(𝑌) have been forgotten.
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1 Swiss-Cheese Operad and Drinfeld Center

=

𝑥1

𝑥′
1

𝑥′
2

𝑥2

𝜇

𝜇′

𝜇𝑜(𝑋′,𝑓 (𝑋″))

Figure 1.3.8: Decomposition in PaPB(2, 3)

• Finally, we take the unique shuffle-type morphism 𝜇′ ∶ 𝑥′
2 → 𝑥2.

By construction, 𝑌 = 𝜇′ ∘ 𝑋 ∘ 𝜇. Besides, this decomposition is unique given the
specified intermediary objects 𝑥′

1, 𝑥′
2, so it suffices to show that 𝜃 can be defined

unequivocally on each part, that it doesn’t depend on the choice of 𝑥′
1 and 𝑥′

2, and
that it is compatible with operadic composition.

The shuffle-type morphisms are all in the suboperad of PaPB generated by 𝛼±1
𝔬 ,

𝑝±1, 𝜓±1: first one can cut the objects of PaB in the smallest possible pieces with
𝑝−1, the 𝛼±1

𝔬 and 𝜓±1 can be used to bring all the aerial points at their positions, and
finally 𝑝 is used to glue back all the aerial pieces. By the theorems I.6.1.7 and I.6.2.4
of [Fre17], the two morphisms 𝑋𝔬 ∈ PaP(𝑛) and 𝑋𝔠 ∈ PaB(𝑚) are respectively in
the suboperads generated by 𝜇±1

𝔬 , 𝛼±1
𝔬 and by 𝜇±1

𝔠 , 𝛼±1
𝔠 , 𝜏±1. It follows that every

morphism 𝑌 of PaPB is in the suboperad generated by all these elements, thus
the morphism 𝜃 ∶ PaPB → P, if it exists, is unique.

By the same theorems of [Fre17], the pentagons (Figure 1.3.1) and the hexagons
(Figure 1.3.2) show that the morphism 𝜃 can be defined with no ambiguity on the
two pieces 𝑋𝔠 and 𝑋𝔬. The possible choices for 𝑥′

1 and 𝑥′
2 are all related by associ-

ators, so the pentagons (Figure 1.3.1) and MacLane’s coherence theorem [Mac98]
for monoidal categories show that the image does not depend on the choice of 𝑥′

1
and 𝑥′

2.
Let 𝜇 ∈ PaPB(𝑛, 𝑚) be a shuffle-type morphism; we saw that it could be decom-

posed in terms of 𝑝±1, 𝜓±1 and 𝛼±1. The coherence theorem of MacLane [Mac98]
and the coherence theorem of Epstein [Eps66] on monoidal functors (non-sym-
metric version) show that, thanks to the pentagons (Figure 1.3.1) and the fact
that 𝐹 is monoidal (Figure 1.3.3), the image 𝜃(𝜇) neither depends on the choice of
associator decomposition, nor on the choice of decomposition of 𝑝±1, nor on the
way the 𝜓±1 are gathered in the parenthesizing. It thus suffices to define 𝜃 on the
underlying morphism of CoPB.

This last morphism is actually an element of the braid group 𝐵𝑛+𝑚 (of course
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1.3 Drinfeld center

not all the elements of the braid group can given a morphism: terrestrial strands
cannot cross any other strand). By seeing 𝜓 as a braiding, and by interpreting
the relations of Figures 1.3.4 and 1.3.6 as two hexagon relations, we can adapt
the proof of the step 2 of [Fre17, Theorem 6.2.4] to see that the image by 𝜃 of this
braid does not depend on its representation. Finally, 𝜃 is well-defined on every
morphism. It remains to show that it respects operad composition.

By adapting the fourth step of the proof of the same theorem of [Fre17] and by
using the relation of Figure 1.3.5, we can see that 𝜃 respects operadic composition.
Indeed, shuffle-type morphism are sent by construction on elements decomposed
in terms of associators, their inverses, 𝑝±1 and 𝜓±1, while for example 𝜓 ∘𝔬

1 id𝑓 =
𝑓 (𝜏); but thanks to the relation of Figure 1.3.5, both elements are equal in the
image.

By dropping all mentions of parenthesizing, we get:

Proposition 1.3.6. An algebra over CoPB consists of a strict non-unitary monoidal
category N, a strict braided non-unitary monoidal category M, and of a strict braided
monoidal functor 𝐹 ∶ M → 𝒵(N).

1.3.2 Unitary versions

We are going to define unitary versions CoPB+ and PaPB+ of the operads we are
studying, satisfying CoPB+(0, 0) = PaPB+(0, 0) = {∗𝔬}. For consistency we will
denote ∗𝔠 the element of the one-colored unitary operads we will consider (CoB+,
PaB+, etc.).

Definition 1.3.7. Let CoPB+ be the relative operad over CoB+, defined as a unitary
extension of CoPB+. Composition with ∗𝔠 ∈ CoB+(0) forgets aerial strands, while
composition with ∗𝔬 forgets terrestrial strands.

Definition 1.3.8. Let ΩΩ+ be the relative operad over Ω+, a unitary extension
of ΩΩ. Composition with nullary elements is given on generators by (it is not
necessary to specify 𝑓 (∗𝔬) as ΩΩ+(0, 0) is a singleton anyway):

𝜇𝔠(∗𝔠, id𝔠) = 𝜇𝔠(id𝔠, ∗𝔠) = id𝔠, 𝜇𝔬(∗𝑜, id𝔬) = 𝜇𝔬(id𝔬, ∗𝔬) = id𝔬 .

Let also PaPB+ = 𝜔∗
+CoPB+ be the pullback of CoPB+ along 𝜔+, where 𝜔+ is

defined as the 𝜔 of Definition 1.2.8 (it is compatible with the unitary extensions).

Proposition 1.3.9. There is a zigzag of categorical equivalences, where ΩΩ′
+ ⊂ SC+ is

the sub–operad generated by 𝑚𝔠, 𝑚𝔬, 𝑓 and the nullary elements:

𝜋SC+
∼ 𝜋SC+|ΩΩ′

+

∼
PaPB+ ≔ 𝜔∗

+CoPB+
∼

CoPB+,
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1 Swiss-Cheese Operad and Drinfeld Center

Remark 1.3.10. In ΩΩ′
+, we have for example:

𝜇𝔬(id𝔬, ∗𝔬) = 1 ≠ 1 = id𝔬,

but 𝜇𝔬(∗𝔬, ∗𝔬) = ∗𝔬. In other words, ∗𝔬 (and similarly ∗𝔠 for 𝜇𝔠) is not a strict unit
for ∗𝔬, but is still idempotent.

Proof. There is an evident morphism 𝜔′
+ ∶ ΩΩ′

+ → ΩΩ+ sending generators on
generators, and we check directly that 𝜋SC+|ΩΩ′

+
is identified with the pullback

𝜔′
+PaPB

′. Since 𝜔+ and 𝜔′
+ are both surjective, we obtain the two categorical

equivalences
𝜋SC+|ΩΩ′

+

∼
PaPB+

∼
CoPB+.

And since ΩΩ′
+ meets all connected components of SC+ we also have that the

inclusion 𝜋SC+|ΩΩ′
+

↪ 𝜋SC+ is a categorical equivalence.

The proof of the following proposition is a direct unitary extension of the proof
of Corollary 1.3.4 (one also needs to extend the definition of the Drinfeld center
to unitary monoidal categories, cf. the given references):

Proposition 1.3.11. An algebra over PaPB+ is given by:

• a monoidal category (N, ⊗, 1N) with a strict unit;

• a braided monoidal category (M, ⊗, 1M, 𝜏) with a strict unit;

• a monoidal functor 𝐹 ∶ M → 𝒵(N) satisfying 𝐹(1M) = 1N.

An algebra over CoPB+ is given by the same data, but where the two tensors products
are strictly associative, strictly braided for the second, and the functor is strict braided
monoidal.

1.4 Chord diagrams

Let P an operad in groupoids. Its completion P̂ is defined by the Malcev comple-
tion arity by arity:

P̂(𝑟) = 𝔾 ̂ℚ[P(𝑟)],

and it is an operad in complete groupoids [Fre17, §I.9]. Here, ℚ[𝐺] is the Hopf
algebroid of the groupoid 𝐺; it has the same objects as 𝐺, and homℚ[𝐺](𝑥, 𝑦) =
ℚ[hom𝐺(𝑥, 𝑦)] is the free ℚ-module on the hom-set, equipped with a coalgebra
structure where every generator is grouplike. It is completed at the augmentation
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ideal, and then the functor 𝔾 extracts the grouplike elements to define an operad
in complete groupoids. This completion is equipped with a canonical completion
morphism P → P̂.

Definition 1.4.1. A morphism of operads in groupoids P → Q is called a rational
categorical equivalence (denoted P

∼ℚ Q) if the induced morphism P̂ → Q̂ is a
categorical equivalence. We write P ∼ℚ Q if P and Q can be connected by a zigzag
of rational categorical equivalences.

This definition is motivated by the following remark: if 𝐴 is an abelian group,
then 𝐴 = 𝐴 ⊗ℤ ℚ. Examples of rational categorical equivalences include categor-
ical equivalences and the canonical completion morphisms P → P̂. We refer to
[Fre17, §I.9] for more details.

1.4.1 Drinfeld associators and chord diagrams

Definition 1.4.2. The Drinfeld–Kohno operad 𝔭 is an operad in Lie algebras.2 In
each arity we have the presentation by generators and relations:

𝔭(𝑟) = Lie(𝑡𝑖𝑗)1≤𝑖≠𝑗≤𝑟 / ([𝑡𝑖𝑗, 𝑡𝑘𝑙], [𝑡𝑖𝑘, 𝑡𝑖𝑗 + 𝑡𝑗𝑘]),

and operadic composition is given by explicit formulas [Fre17, §I.10.2].

The universal enveloping algebra functor 𝕌 being monoidal, 𝕌𝔭 is an operad
in associative algebras. The algebra 𝕌𝔭(𝑟) is generated by chord diagrams with 𝑟
strands, and composition is given by insertion of a diagram (cf. ibid. for precise
definitions). We can complete 𝔭 with respect to the weight grading (the weight
of 𝑡𝑖𝑗 is defined to be 1) to get an operad 𝔭̂ in complete Lie algebras, and we can
consider its completed universal enveloping algebra:

Definition 1.4.3. The operad of completed chord diagrams, ĈD, is the operad
in groupoids given by ob ĈD(𝑟) = ∗ and HomĈD(𝑟)(∗, ∗) = 𝔾𝕌̂𝔭̂(𝑟). Operadic
composition is induced by the one of 𝔭.

These operads have unitary extensions: restriction operations forget strands
of the chord diagrams, and if a chord was attached to the strand, the diagram is
sent to 0. We thus get unitary operads 𝔭+, 𝔭̂+, and ĈD+.

Definition 1.4.4. A Drinfeld associator (with parameter 𝜇 ∈ ℚ×) is a morphism
𝜙 ∶ PaB+ → ĈD+ of operads that sends the braiding 𝜏 ∈ PaB+(2) to 𝑒𝜇𝑡12/2 ∈ ĈD+(2).
We let Ass𝜇(ℚ) be the set of such associators.

2. The monoidal product in the category of Lie algebras is the direct sum.
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1 Swiss-Cheese Operad and Drinfeld Center

If 𝜙 ∈ Ass𝜇(ℚ), then the formal series in two variables

Φ(𝑡12, 𝑡13) ≔ 𝜙(𝛼𝔠) ∈ ĈD+(3) ≅ ℚ[[𝑡12, 𝑡13]]

is a Drinfeld associator in the usual sense, satisfying the usual equations (pen-
tagon, hexagon), and vice versa. A Drinfeld associator 𝜙 extends to a categorical
equivalence 𝜙 ∶ P̂aB+

∼
ĈD+, i.e. 𝜙 is a rational equivalence. The set Ass𝜇(ℚ) is

a torsor under the action of the Grothendieck–Teichmüller group 𝐺𝑇1(ℚ), the
group of automorphisms of P̂aB+ fixing 𝜇𝔠 and 𝜏. A theorem of Drinfeld [Dri90]
states that the set of associators Ass1(ℚ) is nonempty.

We can also consider the operad P̂aCD+, which is the pullback of ĈD+ along
the terminal morphism Ω → ob ĈD+ = ∗. It is used to define the pro-unipotent
version of the Grothendieck–Teichmüller group 𝐺𝑅𝑇1(ℚ), under which Ass𝜇(ℚ)
is a pro-torsor. We recall the following statement [Fre17], which is actually a
general fact about pullback along morphisms from a free operad: each morphism
𝜙 ∶ P̂aB+ → ĈD+ admits a unique lifting

P̂aCD+

P̂aB+ ĈD+

𝜙̃+

𝜙

which is given by the identity on the level of objects. If the morphism 𝜙 came from
a Drinfeld associator, then this defines an isomorphism of operads in groupoids:

̃𝜙+ ∶ P̂aB+
≅

P̂aCD+.

1.4.2 Shuffle of operads

By analogy with the decomposition of Figure 1.3.8, we define a new rational
model in groupoids for 𝜋SC+ that involves the operad of chord diagrams.

Other description of CoPB+

Definition 1.4.5. Let Π be the permutation operad: Π(𝑛) = Σ𝑛, and operadic
composition is given by bloc composition of permutations. We also denote Π
the same operad seen as an operad in discrete groupoids. We also let Π+ be its
obvious unitary extension.

The following operad is meant to represent the shuffle-type morphisms of
Definition 1.3.5:
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1.4 Chord diagrams

Definition 1.4.6. We define the relative (unitary) operad in groupoid Sh+ over
Π+. The set of objects of Sh+(𝑛, 𝑚) is Sh𝑛,𝑚 × Σ𝑛 × Σ𝑚, the same as CoPB+ (with the
same graphical representation). Operadic composition on the object level is the
same as that of CoPB+. On the level of morphisms:

HomSh+(𝑛,𝑚)((𝜇, 𝜎, 𝜎 ′), (𝜈, 𝜏, 𝜏′)) =
⎧{
⎨{⎩

∗ 𝜎 = 𝜏, 𝜎 ′ = 𝜏′,
∅ otherwise,

and we check that this gives a well-defined relative operad over Π+ (i.e. there are
no maps ∗ → ∅ to define, and all the maps ⋅ → ∗ are terminal maps).

Graphically, we simply represent morphisms of Sh+ by an arrow between two
bicolored configurations on the interval. Such an arrow exists iff the terrestrial
(resp. aerial) points of the first configuration are in the same order as the terrestrial
(resp. aerial) points of the second configuration, so we do not write the labels for
the second configuration:

2 1 1 3 2

Remark 1.4.7. The symmetric groups Σ𝑛 and Σ𝑚 act on the left and on the right
on Sh+(𝑛, 𝑚) (by multiplication on respective factors).
Lemma 1.4.8. The groupoid CoPB+(𝑛, 𝑚) is isomorphic to

(CoP+(𝑛) × CoB+(𝑚)) ×Σ𝑛×Σ𝑚
Sh+(𝑛, 𝑚).

Proof. We define:
𝜁 ∶ (CoP+(𝑛) × CoB+(𝑚)) ×Σ𝑛×Σ𝑚

Sh+(𝑛, 𝑚) → CoPB+(𝑛, 𝑚)

by a graphical calculus:

× ×

2 1 31 2 1 2 3 1 2

2 2 3 1 1
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Concretely, on objects, we define:

𝜁 ∶ ob(CoP+(𝑛) × CoB+(𝑚) ×Σ𝑛×Σ𝑚
Sh+(𝑛, 𝑚))

= (Σ𝑛 × Σ𝑚) ×Σ𝑛×Σ𝑚
ob CoPB(𝑛, 𝑚)

≅ ob CoPB(𝑛, 𝑚).

On morphisms, 𝜁[𝑢, 𝑥, 𝜇] (for 𝑢 ∈ CoP+(𝑛), 𝑥 ∈ CoB+(𝑚), 𝜇 ∈ Sh+(𝑛, 𝑚)) is
the composition of the unique shuffle type morphism that brings all terrestrial
points to the left, then the concatenation of 𝑢 and 𝑥, then the unique shuffle-type
morphism that brings ground point to their places. We thus get a well-defined (up
to isotopy) braid, and it is easy to see that this gives a bijection on morphisms.

On can thus transport the operadic composition, which will serve as inspiration
for Equation (1.4.15) to come.

A variation on PaPB+

We first define a new operad PaPB′
+, a minor variation on PaPB+.

Definition 1.4.9. Let 𝜔+ ∶ ΩΩ+ → ob CoPB+ ≅ ob Sh+ be the morphism of Defini-
tion 1.2.8. We define PaSh+ to be the pullback of Sh+ along 𝜔.
Remark 1.4.10. There is a function of sets 𝑈 ∶ ob PaPB+(0, 𝑚) → ob PaB+(𝑚) that
forgets the second level of parenthesizing.
Definition 1.4.11. Let

PaPB′
+(𝑛, 𝑚) ⊂ (PaP+(𝑛) × PaB+(𝑚)) ×Σ𝑛×Σ𝑚

PaSh+(𝑛, 𝑚),

be the full subgroupoid whose objects [𝑢, 𝑥, 𝜇] such that there exists a permutation
𝜏 ∈ Σ𝑚 satisfying 𝑈(𝜇(∗𝔬, … , ∗𝔬)) = 𝑥 ⋅ 𝜏 (this does not depend on the choice of a
representative for the coinvariants).
Example 1.4.12. For example,

[ 1 × 2 1 3 × 1 1 2 3 ] ∈ ob PaPB′(1, 3), but

[∗𝔬 × 2 1 3 × 1 2 3 ] ∉ ob PaPB′(0, 3).

Lemma 1.4.13. The symmetric sequence PaPB′
+(𝑛) is a right module over PaB+, given

by:

∘𝔠
𝑖 ∶ PaPB′

+(𝑛, 𝑚) × PaB+(𝑘) → PaPB′
+(𝑛, 𝑚 + 𝑘 − 1)

[𝑢, 𝑥, 𝜇] × 𝑦 ↦ [𝑢, 𝑥 ∘𝑖 𝑦, 𝜇 ∘𝔠
𝑖 1Σ𝑘

],

where 1Σ𝑘
is seen as a morphism in 𝜔∗Π+(𝑘) between the source of 𝑦 and the target of 𝑦.
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Proof. The operad PaB+ is a right module over itself, and PaSh+(𝑛) is a right
module over Ω+. One can then directly check that the above formula defines a
right module structure over PaB+.

Definition 1.4.14. Let P be an operad in some symmetric monoidal category. The
shifted operad P[⋅] [Fre09, §10.1] is an operad in right modules over P (i.e. an
operad relative over P), given by P[𝑛](𝑚) = P(𝑛 + 𝑚), and the structure maps are
induced by the operad structure of P (cf. ibid. for explicit formulas).

To define the operad structure of PaPB′
+, we first define a morphism of colored

collections 𝜌 ∶ PaPB′
+ → PaB[⋅], that will be similar to the definition of 𝜁 1.4.8.

It is again defined in a graphical way, see Figure 1.4.1 (the starred numbers
correspond to shifted entries). The precise definition involves the inclusion
𝜄 ∶ PaP+ ↪ PaB+, concatenation, the functor PaSh+ → PaB+ (picking the unique
shuffle-type morphism when it exists), 𝜂 ∶ PaP+ → PaP+[⋅] (where 𝜂 ∶ PaP+(𝑛) ≅
PaP+[𝑛](0)), as well as 𝑈 on objects – see Equation (1.4.20).

× ×

1 2 1 2 3 1 2 3 1 2

1 2 3 1∗ 2∗

Figure 1.4.1: Definition of 𝜌 ∶ PaPB′
+(2, 3) → PaB+[2](3)

The operad structure is then defined by (where 𝜎 ∈ Σ𝑚 is such that

𝑈(𝜇(∗𝔬, … , ∗𝔬)) = 𝑥 ⋅ 𝜎,

and where 𝑦𝑖 is seen as an element of PaPB′
+[0](𝑙𝑖)):

𝛾 ∶ PaPB′
+(𝑟, 𝑠) × PaPB′

+(𝑘1, 𝑙1) × … × PaPB′
+(𝑘𝑟, 𝑙𝑟) → PaPB′

+(∑ 𝑘𝑖, 𝑠 + ∑ 𝑙𝑖)
[𝑢, 𝑥, 𝜇] × [𝑣1, 𝑦1, 𝜎1] × … × [𝑣𝑟, 𝑦𝑟, 𝜎𝑟]

↦ [𝑢(𝑣1, … , 𝑣𝑟), 𝜎−1 ⋅ 𝜌[𝑢, 𝑥, 𝜇]⏟⏟⏟⏟⏟
PaPB′

+[𝑟](𝑠)

(𝑦1, … , 𝑦𝑟), 𝜇(𝜎1, … , 𝜎𝑟)] (1.4.15)

and where the identity of the operad is id = [ 1 × ∗𝔠 × 1 ] ∈ PaPB′
+(1, 0).
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1 Swiss-Cheese Operad and Drinfeld Center

Proposition 1.4.16. Given this operadic composition, this identity and this right module
structure, PaPB′

+ is an operad relative over PaB+.

Proof. The 𝜎−1 in the formula ensures that this 𝛾 is well-defined (it does not
depend on the representative in the coinvariants). The fact that 𝛾 is equivariant
is a direct consequence of the fact that the operad structures of PaP+, PaSh+ and
PaB+[⋅] are equivariant.

Let [𝑢, 𝑥, 𝜇] ∈ PaPB′
+(𝑛, 𝑚). The identity id([𝑢, 𝑥, 𝜇]) = [𝑢, 𝑥, 𝜇] is immediate by

definition, and from the condition on the objects of PaPB′
+, one can also show the

identity [𝑢, 𝑥, 𝜇](id, … , id) = [𝑢, 𝑥, 𝜇].
To see that 𝛾 is a morphism of right PaB+-modules, it is enough to have the

identity

𝜌[𝑢, 𝑥, 𝜇](𝑦1, … , 𝑦𝑗 ∘𝑖 𝑧, … , 𝑦𝑟) = 𝜌[𝑢, 𝑥, 𝜇](𝑦1, … , 𝑦𝑟) ∘𝑙1+…+𝑙𝑗−1+𝑖 𝑧

for 𝑧 ∈ PaB+(𝑚); but since PaB+[⋅] is an operad, this identity is satisfied.
Finally, associativity of 𝛾 follows from the condition on objects (to show that

ob 𝛾 is associative), and from the fact that PaB+[⋅] is an operad (to show associa-
tivity on morphisms).

Proposition 1.4.17. There exists a categorical equivalence PaPB′
+

∼
CoPB+.

Proof. This equivalence is given in arity (𝑛, 𝑚) by the restriction to PaPB′
+(𝑛, 𝑚) of

the composite:

(PaP+(𝑛) × PaB+(𝑚)) ×Σ𝑛×Σ𝑚
PaSh+(𝑛, 𝑚)

→ (CoP+(𝑛) × CoB+(𝑚)) ×Σ𝑛×Σ𝑚
Sh+(𝑛, 𝑚)

≅
𝜁 CoPB+(𝑛, 𝑚)

By construction (the operad structure of PaPB′
+ is directly mimicked from the

operad structure of CoPB+), this yields a morphism of operads PaPB′
+ → CoPB+.

Since PaP+ → CoP+, PaB+ → CoB+ and PaSh+ → Sh+ are categorical, their product
is too, thus the above morphism yields a categorical equivalence.

An operad defined from chord diagrams

We choose a Drinfeld associator 𝜙 ∶ PaB+ → ĈD+; let ̃𝜙+ ∶ PaB+ → P̂aCD+ be its
unique lifting. Similarly to the definition of PaPB′

+, we will define a relative operad
PaPĈD

𝜙
+ over P̂aCD+, that will combine parenthesized shuffles, parenthesized

permutations and parenthesized chords diagrams.
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1.4 Chord diagrams

Definition 1.4.18. Let

PaPĈD
𝜙
+(𝑛, 𝑚) ⊂ (PaP+(𝑛) × P̂aCD+(𝑚)) ×Σ𝑛×Σ𝑚

PaSh+(𝑛, 𝑚)

be the full subgroupoid whose objects are classes [𝑢, 𝛼, 𝜇] such that there exists
𝜎 ∈ Σ𝑚 satisfying 𝑈(𝜇(∗𝔬, … , ∗𝔬)) = 𝛼 ⋅ 𝜎.

Remark 1.4.19. The objects of PaPĈD𝜙
+ are the same as the objects of PaPB′

+.
We also define a morphism 𝜌𝜙 ∶ PaPĈD𝜙

+ → P̂aCD+[⋅]. Its definition is similar
to that of Figure 1.4.1, but one cannot directly use graphical calculus anymore.
In the picture, concatenation in PaB+ and PaB+[⋅] corresponded to 𝑚𝔠. Pre- and
post-composition by shuffles in PaPB′

+ came from a morphism of operads 𝜎 ∶
PaSh+ → PaB+[⋅]. We have ob 𝜎 = id, and 𝜎(𝜇 → 𝜇′), denoted 𝜎𝜇

𝜇′ to simplify, is
the unique morphism PaB[⋅] of shuffle-type between the corresponding objects.

We also recall the canonical morphism 𝜂 ∶ P → P[⋅], given in arity 𝑚 by
P(𝑚) ≅ P[𝑚](0). Finally, we could define 𝜌 by the following formula (where
𝑥 ∈ PaB+(𝑚) is identified with 𝑥 ∈ PaB+[0](𝑚)):

𝜌[𝑢, 𝑥, 𝜇] = 𝜎𝑚𝔠(𝜄(𝜂(tgt(𝑢))),tgt(𝑥))
tgt(𝜇) ∘ 𝑚𝔠(𝜄(𝜂(𝑢)), 𝑥) ∘ 𝜎src(𝜇)

𝑚𝔠(𝜄(𝜂(src(𝑢))),src(𝑥)). (1.4.20)

By analogy, we define:

𝜌𝜙 ∶ PaPĈD𝜙
+(𝑛, 𝑚) → P̂aCD+[𝑛](𝑚)

To simplify, we let ̃𝜙+(𝑚𝔠) = 𝑚̃𝔠, ̃𝜙+ ∘ 𝜎 = 𝜎̃, ̃𝜙+𝜄𝜂 = ̃𝜄, and we again identify
𝛼 ∈ P̂aCD+(𝑚) with 𝛼 ∈ P̂aCD+[0](𝑚). Then 𝜌𝜙 is given by:

[𝑢, 𝛼, 𝜇] ↦ 𝜎̃𝑚̃𝔠( ̃𝜄(tgt(𝑢)),tgt(𝛼))
tgt(𝜇) ∘ 𝑚̃𝔠( ̃𝜄(𝑢), 𝛼) ∘ ̃𝜙+(𝜎̃src(𝜇)

𝑚̃𝔠( ̃𝜄(src(𝑢)),src(𝛼))).

Graphically, 𝜌𝜙 looks like Figure 1.4.2, where the gray boxes represent applica-
tions of the associator. We then define an operadic composition in a similar man-
ner to Equation (1.4.15), replacing 𝜌 by 𝜌𝜙. We also define a right P̂aCD+-module
similar to that of PaPB′

+.

Theorem 1.4.21. The data PaPĈD𝜙
+, equipped with these structures, is a relative operad

over P̂aCD+, and the morphism PaPB′
+ → PaPĈD

𝜙
+ induced by ̃𝜙+ is a rational categorical

equivalence of operads. There is thus a zigzag:

𝜋SC+
∼ (𝜋SC+)

ΩΩ′
+

∼
PaPB+

∼
CoPB+

∼
PaPB′

+
∼ℚ PaPĈD

𝜙
+.

Proof. The proof that PaPĈD𝜙
+ is a relative operad is identical to the proof of

Proposition 1.4.16, and the fact that the morphism induced by ̃𝜙+ is a morphism
of operads follows by a direct inspection of the definitions.
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𝜙

𝜙

2 1 3 1∗ 2∗

𝜙

Figure 1.4.2: Graphical representation of 𝜌𝜙

The morphism ̃𝜙+ ∶ PaB+ → P̂aCD+ is not a categorical equivalence, but it factors
as:

PaB+ P̂aCD+

P̂aB+

𝜙̃+

∼ℚ ≅

where the morphism P̂aB+ → P̂aCD+ is an isomorphism of operads in groupoids.
It follows that ̃𝜙+ is a rational equivalence of operads in groupoids, thus PaPB′

+ →
PaPĈD

𝜙
+ is also a rational categorical equivalence. By combining this fact with

Propositions 1.3.9 and 1.4.17, we finally get the zigzag of the theorem.

1.4.3 Non-formality

A theorem of Livernet [Liv15, Theorem 3.1] states that the Swiss-Cheese operad
is not formal: its homology 𝐻∗(SC) is not equivalent to its operad of chains 𝐶∗(SC).
We give an interpretation of this fact here.

We consider a stronger version of formality, which involves the models of
rational homotopy theory of Sullivan (see [Fre17, §II] for the applications to
operads). Let

⟨−⟩𝕃 ∶ CDGAop
+ → 𝑠Set

be the derived Sullivan realization functor,3 that uses commutative dg-algebras as

3. The underived realization functor maps a commutative, unitary differential graded algebra
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1.4 Chord diagrams

rational models for spaces.
We rely on cohomological models to study rational homotopy theory, so we

consider dual structures of our objects and we use cooperads rather than operads.
For example, the cooperad Com∗ governing cocommutative coalgebras is dual to
the operad Com governing commutative algebras.

To encode the rational homotopy-theoretic information, we add commutative
structures to our objects, and we consider Hopf cooperads, i.e. cooperads in the
category of commutative algebras. The Sullivan realization of a Hopf cooperad
is a simplicial operad.

Splitting of 𝐻∗(SC) as a Voronov product

A theorem of Cohen [Coh76] describes the homology of the little disks operads
e𝑛 ≔ 𝐻∗(D𝑛). In low dimensions, e1 ≅ Ass is the operad governing associative
algebras, while e2 ≅ Ger is the operad governing Gerstenhaber algebras. These
are Hopf operads (i.e. operads in the category of cocommutative coalgebras): the
coproduct of the product of either Ass or Ger is Δ(𝜇) = 𝜇⊗𝜇, while the coproduct
of the bracket of Ger is Δ(𝜆) = 𝜇 ⊗ 𝜆 + 𝜆 ⊗ 𝜇. Their duals Ass∗ and Ger∗ are Hopf
cooperads.

The homology of the Swiss-Cheese operad sc ≔ 𝐻∗(SC) governs the action of
a Gerstenhaber algebra on an associative algebra. A theorem of Voronov [Vor99,
Theorem 3.3] (see also [HL12, Theorem 6.1.1] for this particular variant) states
that an algebra over 𝐻∗(SC) is a triple (𝐵, 𝐴, 𝑓 ) where 𝐵 is a Gerstenhaber algebra,
𝐴 is an associative algebra, and 𝑓 ∶ 𝐵 → 𝐴 is a central morphism of associative
algebras, which thus makes 𝐴 into an associative algebra over the commutative
algebra 𝐵. Let us note that Corollary 1.3.4 is a categorical analogue of Voronov’s
theorem, the Drinfeld center of a monoidal category replacing the center of an
associative algebra.

This theorem can be interpreted in the following way.

Definition 1.4.22. Given two operads P and Q and a morphism Com → P, one can
define the Voronov product P ⊗ Q [Vor99]. It is a relative operad over P, defined
by (P ⊗ Q)(𝑛, 𝑚) = P(𝑚) ⊗ Q(𝑛). Insertion of a closed-output operation:

∘𝔠
𝑖 ∶ (P(𝑚) ⊗ Q(𝑛)) ⊗ P(𝑚′) → P(𝑚 + 𝑚′ − 1) ⊗ Q(𝑛)

uses the operad structure of P, while insertion of an open-output operation:

∘𝔬
𝑗 ∶ (P(𝑚) ⊗ Q(𝑛)) ⊗ (P(𝑚′) ⊗ Q(𝑛′)) → P(𝑚 + 𝑚′) ⊗ Q(𝑛 + 𝑛′ − 1)

uses the operad structure of Q and the commutative product Com → P.

𝐴 to the simplicial set ⟨𝐴⟩ = homCDGA+
(𝐴, Ω∗

𝑃𝐿(Δ•)). The derived version takes a cofibrant
replacement first.
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1 Swiss-Cheese Operad and Drinfeld Center

Algebras over P⊗ Q are triplets (𝐵, 𝐴, 𝜈) where 𝐵 is a P-algebra, 𝐴 is a Q-algebra,
and 𝜈 ∶ 𝐵⊗𝐴 → 𝐴 is an action that makes 𝐴 into a Q-algebra over the commutative
algebra 𝐵 (cf. ibid. for the definition).
Remark 1.4.23. An Eckmann–Hilton-type argument shows that the algebra struc-
ture of P defined by the morphism Com → P has to be commutative for the
composition product to even be associative.

Voronov’s version of the Swiss-Cheese SCvor operad then satisfies:

scvor ≔ 𝐻∗(SCvor) ≅ Ger ⊗ Ass.

This isomorphism is moreover an isomorphism of Hopf operads.
In the case of sc = 𝐻∗(SC), one has to use the unital structures of Ass and Ger.

We have (and this is still an isomorphism of Hopf operads):

sc+ ≔ 𝐻∗(SC+) ≅ Ger+ ⊗ Ass+.

If we remove the components with zero closed inputs and zero open inputs,
we then get sc = 𝐻∗(SC), a relative operad over Ger whose algebras are described
above Definition 1.4.22. But one should not forget that:

sc(0, 𝑚) = Ger+(𝑚) ⊗ Ass+(0) = Ger(𝑚)
≠ scvor(0, 𝑚) = Ger(𝑚) ⊗ Ass(0) = 0.

Indeed, we still keep the components that have a nonzero number of total
inputs. We have in particular that sc(0, 1) ≅ Ger(1) = ℚ is spanned by the
morphism between the Gerstenhaber algebra to the associative algebra. We use
the notation:

sc = Ger+ ⊗0 Ass+

to express the fact that sc is obtained as the Voronov product Ger+ ⊗ Ass+ from
which we remove the components with zero closed inputs and zero open inputs.

Comparison

By theorems of Kontsevich [Kon99] (𝕜 = ℝ, 𝑛 ≥ 2) and Tamarkin [Tam03]
(𝕜 = ℚ, 𝑛 = 2), the little disks operads are formal, i.e. 𝐶∗(D+

𝑛 ) ≃ 𝐻∗(D+
𝑛 ). Fresse

and Willwacher [FW15] give another proof of this result (𝕜 = ℚ, 𝑛 ≥ 3), and
show that it can be enhanced in the rational homotopy context: there is a rational
equivalence of simplicial operads D𝑛 ≃ℚ ⟨𝐻∗(D𝑛)⟩𝕃, which implies the rational
formality of D𝑛. In low dimensions, we thus have D1 ≃ℚ ⟨Ass∗⟩𝕃 (easy computa-
tion). Tamarkin proves that, from the existence of rational Drinfeld associators, it
follows that D2 ≃ℚ ⟨Ger∗⟩𝕃. These rational equivalences are also compatible with
the unital structures.
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Given two (Hopf) cooperads P𝑐, Q𝑐, and a morphism P𝑐 → Com∗, one can define
the Voronov product P𝑐 ⊗Q𝑐, similarly to Definition 1.4.22. This is a relative (Hopf)
cooperad under P𝑐. It is defined by formulas that are formally dual to the ones
defining P ⊗ Q. If these cooperads admit counital extensions, we can similarly
define P+

𝑐 ⊗0 Q
+
𝑐 .

The inclusion D+
1 ↪ D+

2 induces in cohomology a morphism of Hopf cooper-
ads Ger∗

+ → Ass∗
+. This morphism factors through a morphism Ger∗

+ → Com∗
+

(the coproduct of a Gerstenhaber coalgebra is cocommutative). We then get an
isomorphism:

sc∗ = 𝐻∗(SC) ≅ (Ger+ ⊗0 Ass+)∗ ≅ Ger∗
+ ⊗0 Ass

∗
+.

The morphism Ger∗
+ → Com∗

+ induces a morphism of simplicial operads Com+ ≅
⟨Com∗

+⟩𝕃 → ⟨Ger∗
+⟩𝕃. Since the realization functor is monoidal, we get:4

⟨𝐻∗(SC)⟩𝕃 ≃ ⟨Ger∗
+⟩𝕃 ×0 ⟨Ass∗

+⟩𝕃.

It is known that PaP ≃ 𝜋D1 and ĈD ≃ℚ 𝜋D2 [Fre17, §5,§10]. There is an ob-
vious morphism Com → ĈD sending the generator to the empty chord diagram
(see [FW15]), which we can use to build the Voronov product of the operads in
groupoids ĈD and PaP. Since the fundamental groupoid functor is monoidal too,
we finally have:

𝜋⟨sc∗⟩𝕃 ≃ 𝜋⟨Ger∗
+⟩𝕃 × 𝜋⟨Ass∗

+⟩𝕃 ≃ℚ ĈD+ ×0 PaP+.

The operad SC is not formal [Liv15], therefore 𝜋SC is not equivalent to

𝜋⟨sc∗⟩𝕃 ≃ℚ PaP+ ×0 ĈD+.

Thus, our construction PaPĈD
𝜙
+ rectifies the model arising from the homology

of SC to retrieve, from PaP and ĈD, an operad in groupoids which is actually
rationally equivalent to 𝜋SC.

4. The monoidal structure on simplicial sets being the Cartesian product, we denote the
Voronov product of two simplicial operads with × instead of ⊗, and we use ×0 to say that we
remove the components with zero inputs.
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2 The Lambrechts–Stanley Model
of Configuration Spaces

Let 𝑀 be a closed smooth 𝑛-manifold and consider the ordered configuration
space of 𝑘 points in 𝑀:

Conf𝑘(𝑀) ≔ {(𝑥1, … , 𝑥𝑘) ∈ 𝑀𝑛 ∣ 𝑥𝑖 ≠ 𝑥𝑗 ∀𝑖 ≠ 𝑗}.

The homotopy type of these spaces is notoriously hard to compute. For example
there exist two homotopy equivalent (non simply connected) closed 3-manifolds
such that their configuration spaces are not homotopy equivalent [LS05b].

A theorem of Lambrechts–Stanley [LS08b] shows that a simply connected
closed manifold 𝑀 always admits a Poincaré duality model 𝐴 (in the sense of
rational homotopy theory). They build a CDGA G𝐴(𝑘) [LS08a] out of 𝐴 and show
that this CDGA is quasi-isomorphic as Σ𝑘-dg-modules to A∗

PL(Conf𝑘(𝑀)).
When 𝑀 is a smooth complex projective variety, Kriz [Kri94] had previously

shown that G𝐻∗(𝑀)(𝑘) is actually a rational CDGA model for Conf𝑘(𝑀). The
CDGA G𝐻∗(𝑀)(𝑘) is the E2 page of a spectral sequence of Cohen–Taylor [CT78]
that converges to the cohomology of Conf𝑘(𝑀). Totaro [Tot96] has shown that
for a smooth complex compact projective variety, the spectral sequence only has
one nonzero differential. When 𝑘 = 2, G𝐴(2) is known to be a model of Conf2(𝑀)
either when 𝑀 is 2-connected [LS04] or when dim 𝑀 is even [Cor15]. Lambrechts
and Stanley conjecture that G𝐴(𝑘) is a rational model of Conf𝑘(𝑀) for any simply
connected manifold [LS08b].

We prove this conjecture over ℝ for manifolds of dimension at least 4. This
proves as a corollary that the real homotopy type of Conf𝑘(𝑀) only depends on
the real homotopy type of 𝑀 and its Poincaré duality.

We use that the space Conf𝑘(𝑀) is homotopy equivalent to its Fulton–Mac-
Pherson compactification FM𝑀(𝑘) [FM94; AS94; Sin04]. When 𝑀 is framed, these
compactifications assemble into a right module FM𝑀 over the Fulton–MacPherson
operad FM𝑛, an operad weakly equivalent to the little 𝑛-disks operad [May72;
BV73]. We show that the Lambrechts–Stanley model is compatible with this
action of the little disks operad.

Based on “The Lambrechts–Stanley Model of Configuration Spaces”, preprint (submitted),
arXiv:1608.08054.
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2 The Lambrechts–Stanley Model of Configuration Spaces

The little 𝑛-disks operad D𝑛 is formal [Kon99; Tam03; LV14; FW15], i.e. its operad
of singular chains 𝐶∗(D𝑛) is quasi-isomorphic to its homology e𝑛 ≔ 𝐻∗(D𝑛). This
formality result can be strengthened [LV14; FW15] so that it holds in the category
of Hopf cooperads, taking into account the CDGA structures of Ω∗

PA(FM𝑛(𝑘)) and
the dual e∨

𝑛 (𝑘).
By general arguments, the formality theorem implies that there exists a homo-

topy class of right e𝑛-modules e𝑀 such that the pair (e𝑀, e𝑛) is quasi-isomorphic
to the chain complex of the pair (FM𝑀, FM𝑛). We show that G𝐴 = {G𝐴(𝑘)}𝑘≤0 is a
Hopf right e∨

𝑛 -comodule whose dual is a representative of e𝑀. Our results are
summarized by:

Theorem C (Theorem 2.4.14). Let 𝑀 be a smooth simply connected closed 𝑛-manifold,
where 𝑛 ≥ 4. Then for any Poincaré duality model 𝐴 of 𝑀 and for all 𝑘 ≥ 0, the
CDGA G𝐴(𝑘) defined by Lambrechts and Stanley is Σ𝑘-equivariantly weakly equivalent
to Ω∗

PA(FM𝑀(𝑘)).
If 𝜒(𝑀) = 0, the collection G𝐴 = {G𝐴(𝑘)}𝑘≥0 moreover forms a Hopf right e∨

𝑛 -comodule.
If 𝑀 is framed, then (G𝐴, e∨

𝑛 ) is weakly equivalent to (Ω∗
PA(FM𝑀), Ω∗

PA(FM𝑛)) as a Hopf
right comodule.

As Corollary 2.4.36, we obtain that if two smooth closed simply connected
manifolds of dimension at least 4 have the same real homotopy type, then so do
their configuration spaces.

In dimension 3, the only simply connected manifold is the 3-sphere, which
is framed. The Lambrechts–Stanley conjecture is satisfied over ℚ in this case
(Proposition 2.4.37), and the collection G𝐻∗(𝑆3) is still a Hopf right e∨

3 -comodule.
We conjecture that the model is also compatible with the action of the Fulton–
MacPherson operad.

Factorization homology, an invariant of framed 𝑛-manifolds defined from
an D𝑛-algebra, may be computed via a derived tensor product over the D𝑛 op-
erad [AF15]. The Taylor tower in the Goowillie–Weiss calculus of embeddings
may similarly be computed via a derived Hom [GW99; BW13]. It follows from a
result of [Tur13, Section 5.1] that FM𝑀 may be used for this purpose. Therefore
our theorem shows that G𝐴 may be used for computing factorization homology
or the Taylor tower.

The proof of this theorem is inspired by Kontsevich’s proof of the formality
theorem, and is radically different from the ideas of the paper [LS08a]. It in-
volves an intermediary Hopf right comodule of labeled graphs Graphs𝑅. This
comodule is similar to a comodule developed by Campos–Willwacher [CW16],
which is isomorphic to our construction applied to 𝑅 = 𝑆(𝐻̃∗(𝑀)). Despite this
similarity, their whole approach is different, and they manage to prove that
Graphs𝑆(𝐻̃∗(𝑀)) is quasi-isomorphic to Ω∗

PA(FM𝑀) even for non simply connected
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manifolds. They also prove that in the simply connected case, the real homotopy
types of configuration spaces only depend on the real homotopy type of the
manifold.

Outline In Section 2.1, we recall some background on the little disks operad,
the Fulton–MacPherson compactification, the proof of Kontsevich formality,
Poincaré duality CDGAs, and the Lambrechts–Stanley CDGAs. In Section 2.2,
we build out of these CDGAs a Hopf right e∨

𝑛 -comodule G𝐴. In Section 2.3,
inspired by the proof of the formality theorem, we construct the labeled graph
complex Graphs𝑅 which will be used to connect this comodule to Ω∗

PA(FM𝑀).
In Section 2.4, we prove that the zigzag of Hopf right comodule morphisms
between G𝐴 and Ω∗

PA(FM𝑀) is a weak equivalence. In Section 2.5, we use our
model to compute factorization homology of framed manifolds and we compare
the result to a complex obtained by Knudsen. Finally, in Section 2.6 we work
out a variant of our theorem for the only simply connected surface using the
formality of the framed little 2-disks operad, and we present a conjecture about
higher dimensional oriented manifolds.

2.1 Background and recollections

We assume basic proficiency with Hopf (co)operads and (co)modules over (co)op-
erads. References include the book [LV12] for (co)operads and the books [Fre09;
Fre17] for (co)modules over (co)operads and for Hopf (co)operads.

2.1.1 Conventions

All our dg-modules will have a cohomological grading:

𝑉 = ⨁
𝑛∈ℤ

𝑉𝑛,

and the differentials raise degrees by one: deg(𝑑𝑥) = deg(𝑥) + 1. If 𝑉, 𝑊 are
dg-modules and 𝑣 ⊗ 𝑤 ∈ 𝑉 ⊗ 𝑊, we let (𝑣 ⊗ 𝑤)21 = (−1)(deg 𝑣)(deg 𝑤)𝑤 ⊗ 𝑣 and we
extend this linearly to 𝑉 ⊗ 𝑊. We will let 𝑉[𝑘] be the desuspension, defined by
(𝑉[𝑘])𝑛 = 𝑉𝑛+𝑘. We will call CDGAs the (graded) commutative unital algebras
in the category of dg-modules.
Remark 2.1.1. There is a Quillen adjunction between the category of ℤ-graded
CDGAs and the category of ℕ-graded CDGAs. If 𝐴 is a cofibrant ℕ-graded
CDGA which is connected, i.e. satisfying 𝐻0(𝐴) = 𝕜, then it is also cofibrant
when seen as a ℤ-graded CDGA. Therefore if two connected ℕ-graded CDGAs
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2 The Lambrechts–Stanley Model of Configuration Spaces

are weakly equivalent (quasi-isomorphic) in the category of ℤ-graded CDGAs,
then they are also weakly equivalent in the category of ℕ-graded CDGAs.

We index our (co)operads by finite sets instead of integers to ease the writing of
some formulas. If 𝑊 ⊂ 𝑈 is a subset, we define the quotient 𝑈/𝑊 = (𝑈 −𝑊)⊔{∗},
where ∗ represents the class of 𝑊; note that 𝑈/∅ = 𝑈 ⊔ {∗}. An operad P is given
by a functor from the category of finite sets and bijections (also known as a
symmetric collection) to the category of dg-modules, a unit 𝕜 → P({∗}), as well
as composition maps for every pair of sets:

∘𝑊 ∶ P(𝑈/𝑊) ⊗ P(𝑊) → P(𝑈),

satisfying the usual associativity, unity and equivariance conditions.
Dually, a cooperad C is given by a symmetric collection, a counit C({∗}) → 𝕜,

and cocomposition maps for every pair (𝑈 ⊃ 𝑊)

∘∨
𝑊 ∶ C(𝑈) → C(𝑈/𝑊) ⊗ C(𝑊).

Using the terminology of Fresse [Fre17], we call Hopf cooperads the cooperads
in the category of CDGAs.
Remark 2.1.2. The constructions of Fresse [Fre17] are done in the category of
ℕ-graded CDGAs. They extend to the setting of ℤ-graded CDGAs. The previous
remark extends to Hopf cooperads.

Let 𝑘 = {1, … , 𝑘}. We recover the usual notion of a cooperad indexed by the
integers by considering the collection {C(𝑘)}𝑘≥0, and the cocomposition maps
∘∨

𝑖 ∶ C(𝑘 + 𝑙 − 1) → C(𝑘) ⊗ C(𝑙) correspond to ∘∨
{𝑖,…,𝑖+𝑙−1}.

We do not generally assume that our (co)operads are trivial in arity zero, but
they will satisfy P(∅) = 𝕜 (resp. C(∅) = 𝕜). With this assumption we get (co)op-
erad structures which are actually equivalent to the structure of Λ-(co)operads
considered by Fresse [Fre17].

We will consider right (co)modules over (co)operads. Given an operad P, a
right P-module is a symmetric collection M equipped with composition maps:

∘𝑊 ∶ M(𝑈/𝑊) ⊗ P(𝑊) → M(𝑈)

satisfying the usual associativity, unity and equivariance conditions. A right
comodule over a cooperad is defined dually. If C is a Hopf cooperad, then a right
Hopf C-comodule is a C-comodule N such that all the N(𝑈) are CDGAs and all
the maps ∘∨

𝑊 are morphisms of CDGAs.

Definition 2.1.3. Let C (resp. C′) be a Hopf cooperad and N (resp. N′) be a Hopf
right comodule over C (resp. C′). A morphism of Hopf right comodules 𝑓 =
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2.1 Background and recollections

(𝑓N, 𝑓C) ∶ (N, C) → (N′, C′) is a pair consisting of a morphism of Hopf cooperads
𝑓C ∶ C → C′, and a map of Hopf right C′-comodules 𝑓N ∶ N → N′, where N has the
C-comodule structure induced by 𝑓C. It is said to be a quasi-isomorphism if both
𝑓C and 𝑓N are quasi-isomorphisms of dg-modules in each arity.

If the context is clear, we will allow ourselves to remove the cooperads from
the notation in the morphism.

Definition 2.1.4. A Hopf right C-module N is said to be weakly equivalent to
a Hopf right C′-module N′ if the pair (N, C) can be connected to the pair (N′, C′)
through a zigzag of quasi-isomorphisms.

2.1.2 Little disks and related objects

The little disks operad D𝑛 is a topological operad initially introduced by May
and Boardman–Vogt [May72; BV73] to study iterated loop spaces. Its homology
e𝑛 ≔ 𝐻∗(D𝑛) is described by a theorem of Cohen [Coh76]: it is either the operad
encoding associative algebras for 𝑛 = 1, or the one encoding (𝑛 − 1)-Poisson
algebras for 𝑛 ≥ 2.

For technical reasons, we instead consider the Fulton–MacPherson operad FM𝑛,
introduced by Fulton–MacPherson [FM94] in the complex context and adapted
by Axelrod–Singer [AS94] to the real context. Each space FM𝑛(𝑘) is a compactifi-
cation of the configuration space Conf𝑘(ℝ𝑛), where roughly speaking points can
become “infinitesimally close”. Using insertion of infinitesimal configurations,
they assemble to form a topological operad, weakly equivalent to D𝑛. We refer
to [Sin04] for a detailed treatment.

The first two spaces FM𝑛(∅) = FM𝑛(1) = ∗ are singletons, and FM𝑛(2) = 𝑆𝑛−1 is a
sphere. We will let

vol𝑛−1 ∈ Ω𝑛−1
PA (𝑆𝑛−1) = Ω𝑛−1

PA (FM𝑛(2)) (2.1.5)

be the top volume form of FM𝑛(2). For 𝑘 ≥ 2 and 𝑖 ≠ 𝑗 ∈ 𝑘, we also define the
projection maps

𝑝𝑖𝑗 ∶ FM𝑛(𝑘) → FM𝑛(2) (2.1.6)
that forget all but two points in the configuration.

To follow Kontsevich’s proof of the formality theorem [Kon99], we use the
theory of semi-algebraic sets, as developed in [KS00; Har+11]. A semi-algebraic
set is a subset of ℝ𝑁 defined by finite unions of finite intersections of zero sets of
polynomials and polynomial inequalities. There is a functor Ω∗

PA of “piecewise
algebraic differential forms”, analogous to the de Rham complex, taking a semi-
algebraic set to a real CDGA. If 𝑀 is a compact semi-algebraic smooth manifold,
then Ω∗

PA(𝑀) ≃ Ω∗
dR(𝑀).
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2 The Lambrechts–Stanley Model of Configuration Spaces

The spaces FM𝑛(𝑘) are all semi-algebraic stratified manifolds. The dimension of
FM𝑛(𝑘) is 𝑛𝑘 − 𝑛 − 1 for 𝑘 ≥ 2, and is 0 otherwise.

The functor Ω∗
PA is monoidal, but contravariant; it follows that Ω∗

PA(FM𝑛) is an
“almost” Hopf cooperad. It satisfies a slightly modified version of the cooperad
axioms coming from the fact that Ω∗

PA is not strongly monoidal, as explained
in [LV14, Definition 3.1] (they call it a “CDGA model”): the insertion maps ∘𝑊
become zigzags

Ω∗
PA(FM𝑛(𝑈)) ∘∗

𝑊 Ω∗
PA(FM𝑛(𝑈/𝑊)×FM𝑛(𝑊)) ∼ Ω∗

PA(FM𝑛(𝑈/𝑊))⊗Ω∗
PA(FM𝑛(𝑊)),

where the second map is the Künneth quasi-isomorphism. If C is a Hopf cooperad,
an “almost” morphism 𝑓 ∶ C → Ω∗

PA(FM𝑛) is a collection of CDGA morphisms
𝑓𝑈 ∶ C(𝑈) → Ω∗

PA(FM𝑛(𝑈)) for all 𝑈, such that the following diagrams commute:

C(𝑈) Ω∗
PA(𝐹𝑀𝑛(𝑈))

Ω∗
PA(FM𝑛(𝑈/𝑊) × FM𝑛(𝑊))

C(𝑈/𝑊) ⊗ C(𝑊) Ω∗
PA(FM𝑛(𝑈/𝑊)) ⊗ Ω∗

PA(FM𝑛(𝑊))

𝑓𝑈

∘∨
𝑊

∘∗
𝑊

𝑓𝑈/𝑊⊗𝑓𝑊
∼

We will generally omit the adjective “almost”, keeping in mind that some
commutative diagrams are a bit more complicated than at first glance.

If 𝑀 is a manifold, the configuration space Conf𝑘(𝑀) can similarly be compact-
ified to give a space FM𝑀(𝑘). When 𝑀 is framed, these spaces assemble to form
a topological right module over FM𝑛, by inserting infinitesimal configurations.
By the Nash–Tognoli Theorem [Nas52; Tog73], any closed smooth manifold is
homeomorphic to a semi-algebraic subset of ℝ𝑁 for some 𝑁, and in this way
FM𝑀(𝑘) becomes a stratified semi-algebraic manifold of dimension 𝑛𝑘.

By the same reasoning as above, if 𝑀 is framed, then Ω∗
PA(FM𝑀) becomes an

“almost” Hopf right comodule over Ω∗
PA(FM𝑛). As before, if N is a Hopf right

C-comodule, where C is a cooperad equipped with an “almost” morphism 𝑓 ∶
C → Ω∗

PA(FM𝑛), then an “almost” morphism 𝑔 ∶ N → Ω∗
PA(FM𝑀) is a collection of

CDGA morphisms 𝑔𝑈 ∶ N(𝑈) → Ω∗
PA(FM𝑀(𝑈)) that make the following diagrams

commute:

N(𝑈) Ω∗
PA(FM𝑀(𝑈))

Ω∗
PA(FM𝑀(𝑈/𝑊) × FM𝑛(𝑊))

N(𝑈/𝑊) ⊗ C(𝑊) Ω∗
PA(FM𝑀(𝑈/𝑊)) ⊗ Ω∗

PA(FM𝑛(𝑊))

𝑓𝑈

∘∨
𝑊

∘∗
𝑊

𝑔𝑈/𝑊⊗𝑓𝑊
∼
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2.1 Background and recollections

Remark 2.1.7. Following [Fre17, Section II.10.1], there is a construction Ω∗
♯ that

turns a simplicial operad P into a Hopf cooperad and such that a morphism of
Hopf cooperads C → Ω∗

♯(P) is the same thing as an “almost” morphism C → Ω∗(P),
where Ω∗ is the functor of Sullivan forms. Moreover there is a canonical collection
of maps (Ω∗

♯(P))(𝑈) → Ω∗(P(𝑈)), which are weak equivalences if P is a cofibrant
operad. Such a functor is built by considering the right adjoint of the functor on
operads induced by the Sullivan realization functor, which is monoidal.

Although we will not use it in the rest of the paper, a similar construction can
be carried out for Ω∗

PA. The proof follows step by step the constructions carried
out in [Fre17, Section II.10.1]. The key points are the two facts that for a given
𝑛 ≥ 0, the complex Ω∗

PA(Δ𝑛) is acyclic (a.k.a. the Poincaré lemma), and that for a
given 𝑘 ≥ 0, the simplicial vector space Ω𝑘

PA(Δ•) is acyclic too. These are respec-
tively [Har+11, Lemma 6.3 and Lemma 6.10] (where the last property is called
the “extendability” of Ω∗

PA(Δ•) and is used to prove the Mayer–Vietoris theorem
for PA forms). Then one can define a functor 𝐺PA

• (𝐴) ≔ HomCDGA(𝐴, Ω∗
PA(Δ•))

on CDGAs, and use the right adjoint of its extension to the category of Hopf
cooperads to define and prove the properties of Ω∗

PA,♯. We can also extend this
construction to modules over operads, by similar arguments.

2.1.3 Formality of the little disks operad

Kontsevich’s formality theorem [Kon99; LV14] can be summarized by the fact
that Ω∗

PA(FM𝑛) is weakly equivalent to e∨
𝑛 as a Hopf cooperads. We outline here

the proof as we will mimic its pattern for our theorem. We will use the formalism
of (co)operadic twisting [Wil14; DW15], and we refer to [LV14] for proofs of most
of the claims of this section.

The cohomology of D𝑛 The classical description due to Arnold and Cohen of
the cohomology e∨

𝑛 (𝑈) = 𝐻∗(D𝑛(𝑈)) is:

e∨
𝑛 (𝑈) = 𝑆(𝜔𝑢𝑣)𝑢≠𝑣∈𝑈/𝐼 (2.1.8)

where 𝑆(−) is the free graded commutative algebra, the generators 𝜔𝑢𝑣 have
cohomological degree 𝑛 − 1, and the ideal 𝐼 is generated by the relations:

𝜔𝑣𝑢 = (−1)𝑛𝜔𝑢𝑣; 𝜔2
𝑢𝑣 = 0; 𝜔𝑢𝑣𝜔𝑣𝑤 + 𝜔𝑣𝑤𝜔𝑤𝑢 + 𝜔𝑤𝑢𝜔𝑢𝑣 = 0. (2.1.9)
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2 The Lambrechts–Stanley Model of Configuration Spaces

The cooperadic structure maps are given on generators by:

∘∨
𝑊 ∶ e∨

𝑛 (𝑈) → e∨
𝑛 (𝑈/𝑊) ⊗ e∨

𝑛 (𝑊)

𝜔𝑢𝑣 ↦

⎧{{{
⎨{{{⎩

1 ⊗ 𝜔𝑢𝑣, if 𝑢, 𝑣 ∈ 𝑊;
𝜔∗𝑣 ⊗ 1, if 𝑢 ∈ 𝑊 and 𝑣 ∉ 𝑊;
𝜔𝑢∗ ⊗ 1, if 𝑢 ∉ 𝑊 and 𝑣 ∈ 𝑊;
𝜔𝑢𝑣 ⊗ 1, if 𝑢, 𝑣 ∉ 𝑊.

(2.1.10)

Graphs with only external vertices The intermediary cooperad of graphs is
built in several steps. In the first step, define a cooperad of graphs with only
external vertices, with generators 𝑒𝑢𝑣 of degree 𝑛 − 1:

Gra𝑛(𝑈) = (𝑆(𝑒𝑢𝑣)𝑢,𝑣∈𝐴/(𝑒2
𝑢𝑣 = 𝑒𝑢𝑢 = 0, 𝑒𝑣𝑢 = (−1)𝑛𝑒𝑢𝑣), 𝑑 = 0). (2.1.11)

The CDGA Gra𝑛(𝑈) is spanned by words of the type 𝑒𝑢1𝑣1
… 𝑒𝑢𝑟𝑣𝑟

. Such a word
can be viewed as a graph with 𝑈 as the set of vertices, and an edge between 𝑢𝑖
and 𝑣𝑖 for each factor 𝑒𝑢𝑖𝑣𝑖

. For example, the word 𝑒𝑢𝑣 is a graph with a single edge
between the vertices 𝑢 and 𝑣 (see Figure 2.1.1 for another example). Graphs with
double edges or edges between a vertex and itself are set to zero. Given such a
graph, its set of edges 𝐸Γ ⊂ (𝑈

2 ) is well-defined. The vertices of these graphs are
called “external”, in contrast with the internal vertices that are going to appear
in the next part.

𝑒12𝑒13𝑒56 =

1 2

3 4

5

6

∈ Gra𝑛(6)

Figure 2.1.1: Example of the correspondence between graphs and words

The Hopf product map Gra𝑛(𝑈) ⊗Gra𝑛(𝑈) → Gra𝑛(𝑈), from this point of view,
consists of gluing two graphs along their vertices. The cooperadic structure map
∘∨

𝑊 ∶ Gra𝑛(𝑈) → Gra𝑛(𝑈/𝑊) ⊗ Gra𝑛(𝑊) maps a graph Γ to ±Γ𝑈/𝑊 ⊗ Γ𝑊 such that
Γ𝑊 is the full subgraph of Γ with vertices 𝑊 and Γ𝑈/𝑊 collapses this full subgraph
to a single vertex.

On the generators, the formula for ∘∨
𝑊 is in fact identical to Equation (2.1.10),

replacing 𝜔?? by 𝑒??. This implies that the cooperad Gra𝑛 maps to e∨
𝑛 by sending

𝑒𝑢𝑣 to 𝜔𝑢𝑣.
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The cooperad Gra𝑛 also maps to Ω∗
PA(FM𝑛) using a map given on generators by:

𝜔′ ∶ Gra𝑛(𝑈) → Ω∗
PA(FM𝑛(𝑈))

Γ ↦ ⋀
(𝑢,𝑣)∈𝐸Γ

𝑝∗
𝑢𝑣(vol𝑛−1), (2.1.12)

where vol𝑛−1 is the volume form of FM𝑛(2) ≅ 𝑆𝑛−1 (2.1.5).

Twisting The second step of the construction is cooperadic twisting, for which
our general reference is the appendix of [Wil16] (see also [DW15]). Let hoLie𝑘 be
the operad controlling homotopy Lie algebras shifted by 𝑘+1 (with Lie𝑘 being the
operad controlling shifted Lie algebras). Let C be a cooperad, finite-dimensional
in every arity and equipped with a map to the dual of hoLie𝑘. This map can
equivalently be seen as a Maurer–Cartan element 𝜇 in the deformation complex
Def(hoLie𝑘 → C∨), a convolution dg-Lie algebra. Then define:

Tw C(𝑈) ≔ ⨁
𝑖≥0

(C(𝑈 ⊔ 𝑖) ⊗ ℝ[𝑘]⊗𝑖)
Σ𝑖

.

The symmetric module Tw C can be given a cooperad structure induced by C.
Its differential is the sum of the internal differential of C and a differential coming
from the action of 𝜇, acting on both sides of C. Roughly speaking, Tw C encodes
coalgebras over C with a differential twisted by a “Maurer–Cartan element”.1
There is also an obvious inclusion C → Tw C that commutes with differentials
and cooperad maps. We refer to [Wil16] for the details – one needs to formally
dualize the appendix to twist cooperads instead of operads.

If C satisfies C(∅) = 𝕜 and is a Hopf cooperad, then Tw C inherits a Hopf
cooperad structure. To multiply an element of C(𝑈 ⊔ 𝐼) ⊂ Tw C(𝑈) with an
element of C(𝑈 ⊔ 𝐽) ⊂ Tw C(𝑈), first use the maps

C(𝑉) ∘∨
∅ C(𝑉/∅) ⊗ C(∅) ≅ C(𝑉 ⊔ {∗})

several times to map both elements to C(𝑈 ⊔ 𝐼 ⊔ 𝐽), and then use the CDGA
structure of C(𝑈 ⊔ 𝐼 ⊔ 𝐽) to multiply them.

We now turn our attention to graphs. The Hopf cooperad Gra𝑛 maps into Lie∨
𝑛

as follows. The cooperad Lie∨
𝑛 is cogenerated by Lie∨

𝑛 (2), and on cogenerators
the cooperad map is given by sending 𝑒12 ∈ Gra𝑛(2) to the cobracket in Lie∨

𝑛 (2)
and all the other graphs to zero. This map to Lie∨

𝑛 yields a map to hoLie∨
𝑛 by

composition with the canonical map Lie∨
𝑛

∼
hoLie∨

𝑛 . Roughly speaking, the
Maurer–Cartan element 𝜇 is given by Figure 2.1.2.

1. A coalgebra over C is automatically a hoLie∨
𝑘 -coalgebra due to the fixed morphism C →

hoLie∨
𝑘 , therefore the notion of Maurer–Cartan element in a C-coalgebra is well-defined.
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2 The Lambrechts–Stanley Model of Configuration Spaces

1 2

Figure 2.1.2: The Maurer–Cartan element 𝜇 = 𝑒∨
12 ∈ Gra∨

𝑛 (2)

The cooperad Gra𝑛 satisfies Gra𝑛(∅) = ℝ. The induced maps Gra𝑛(𝑈) →
Gra𝑛(𝑈′) (for 𝑈 ⊂ 𝑈′) add new vertices with no incident edges. Thus the gen-
eral framework makes Tw Gra𝑛 into a Hopf cooperad, which we now explicitly
describe.

The dg-module Tw Gra𝑛(𝑈) is spanned by graphs with two types of vertices:
external vertices, which correspond to elements of 𝑈, and indistinguishable
internal vertices (usually drawn in black). The degree of an edge is 𝑛 − 1, and the
degree of an internal vertex is −𝑛. The differential sends a graph Γ to the sum:

𝑑Γ = ∑
𝑒∈𝐸Γ

contractible

±Γ/𝑒,

where Γ/𝑒 is Γ with the edge 𝑒 collapsed and 𝑒 ranges over all “contractible” edges,
i.e. edges connecting an internal vertex to another vertex of either kind. See
Figure 2.1.3 for an example.

𝑑
⎛⎜⎜⎜⎜⎜⎜
⎝

1

2 3

⎞⎟⎟⎟⎟⎟⎟
⎠

= ±

1

2 3
±

1

2 3
±

1

2 3

Figure 2.1.3: The differential of Tw Gra𝑛

Remark 2.1.13. An edge connected to a univalent internal vertex is not considered
contractible: the Maurer–Cartan element 𝜇 ∈ Def(C → hoLie∨

𝑘 ) “acts” on both
sides of Tw C in the definition of the differential, and for such edges the two
contributions cancel out. Such vertices are called dead ends by Lambrechts–
Volić [LV14].2

The product of two graphs glues them along their external vertices only (which
is the same thing as adding disjoint internal vertices to both graphs and gluing
along all vertices).

The two morphisms e∨
𝑛 ← Gra𝑛

𝜔′ Ω∗
PA(FM𝑛) extend along the inclusion

Gra𝑛 ⊂ Tw Gra𝑛 as follows. The extended morphism Tw Gra𝑛 → e∨
𝑛 simply sends

2. Their definition is slightly different, but since we forbid multiple edges and loops, the two
definitions are equivalent.
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a graph with internal vertices to zero; since dead ends are not contractible, this
commutes with differentials. The extended morphism 𝜔 ∶ Tw Gra𝑛 → Ω∗

PA(FM𝑛)
sends a graph Γ ∈ Gra𝑛(𝑈 ⊔ 𝐼) ⊂ Tw Gra𝑛(𝑈) to:

𝜔(Γ) ≔ (𝑝𝑈)∗(𝜔′(Γ)) = ∫
FM𝑛(𝑈⊔𝐼)→FM𝑛(𝑈)

𝜔′(Γ), (2.1.14)

where 𝑝𝑈 is the projection that forgets the points of the configuration correspond-
ing to 𝐼, and the integral is an integral along the fiber of this semi-algebraic
bundle.

Reduction of the graph complex The cooperad Tw Gra𝑛 does not have the
right homotopy type yet. It is reduced by quotienting out all the graphs with
connected components consisting exclusively of internal vertices. This is a Hopf
cooperad bi-ideal and thus the resulting quotient Graphs𝑛 is still a Hopf cooperad.
One checks that the two morphisms e∨

𝑛 ← Tw Gra𝑛 → Ω∗
PA(FM𝑛) factor through

the quotient (the first one because dead ends are not contractible, the second one
because 𝜔 vanishes on graphs with only internal vertices). The resulting zigzag:

e∨
𝑛 ← Graphs𝑛 → Ω∗

PA(FM𝑛) (2.1.15)

is then a zigzag of weak equivalence of Hopf cooperads by the work of Kontse-
vich [Kon99], which proves the formality theorem.

2.1.4 Poincaré duality CDGA models

The model for Ω∗
PA(FM𝑀) relies on a Poincaré duality model of 𝑀. We mostly

borrow the terminology and notations from [LS08b]. Recall that we only consider
simply connected manifolds, which are necessarily orientable and thus satisfy
Poincaré duality.

Fix an integer 𝑛 and let 𝐴 be a connected CDGA (i.e. 𝐴 = 𝕜 ⊕ 𝐴≥1). A Poincaré
duality pairing on 𝐴 is a dg-form 𝜀 ∶ 𝐴 → 𝕜[−𝑛] (i.e. a linear map 𝐴𝑛 → 𝕜 with
𝜀 ∘ 𝑑 = 0) such that the induced pairing

𝐴𝑘 ⊗ 𝐴𝑛−𝑘 → 𝕜
𝑎 ⊗ 𝑏 ↦ 𝜀(𝑎𝑏) (2.1.16)

is non-degenerate for all 𝑘. This implies that 𝐴 = 𝐴≤𝑛, and that 𝜀 ∶ 𝐴𝑛 → 𝕜 is an
isomorphism. The pair (𝐴, 𝜀) is called a Poincaré duality algebra.

If 𝐴 is such a Poincaré duality CDGA, then so is its cohomology. The theorem of
Lambrechts–Stanley [LS08b] implies that if Ω is a CDGA (over any field) whose
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2 The Lambrechts–Stanley Model of Configuration Spaces

minimal model is 1-connected and of finite type,3 and if ∫ ∶ Ω → 𝕜[−𝑛] is a
dg-form inducing a Poincaré duality structure of dimension 𝑛 on 𝐻∗(Ω), then Ω
is quasi-isomorphic to a Poincaré duality algebra (𝐴, 𝜀) of the same dimension
through a zigzag of CDGA morphisms which respect the dg-forms:

Ω ⋅ ∃𝐴

𝕜
∫

∼ ∼

∃𝜀

Remark 2.1.17. Even though it is not written in the statement of the theorem
in [LS08b], studying of the proof shows that the diagram above does commute.

Let 𝐴 be a Poincaré duality CDGA of finite type and let {𝑎𝑖} be a graded basis of
𝐴. Consider the dual basis {𝑎∨

𝑖 } with respect to the duality pairing, i.e. 𝜀(𝑎𝑖𝑎∨
𝑗 ) =

𝛿𝑖𝑗 is given by the Kronecker symbol. Then the diagonal cocycle is defined
by the following formula and is independent of the chosen graded basis (see
e.g. [FOT08]):

Δ𝐴 = ∑
𝑖

(−1)|𝑎𝑖|𝑎𝑖 ⊗ 𝑎∨
𝑖 ∈ 𝐴 ⊗ 𝐴. (2.1.18)

The element Δ𝐴 is a cocycle of degree 𝑛 (this follows from 𝜀 ∘ 𝑑 = 0). It satisfies
Δ21 = (−1)𝑛Δ, and for all 𝑎 ∈ 𝐴 it satisfies the equation (𝑎 ⊗ 1)Δ𝐴 = (1 ⊗ 𝑎)Δ𝐴.
Finally, the product 𝜇𝐴 ∶ 𝐴 ⊗ 𝐴 → 𝐴 sends Δ𝐴 to 𝜒(𝐴) ⋅ vol𝐴, where 𝜒(𝐴) is the
Euler characteristic of 𝐴 and vol𝐴 ∈ 𝐴𝑛 is the preimage of 1 ∈ 𝕜 by 𝜀 ∶ 𝐴𝑛 → 𝕜.

2.1.5 The Lambrechts–Stanley CDGAs

We will give the definition of the CDGA G𝐴(𝑘), constructed in [LS08a] in the
general case of a Poincaré duality CDGA (see the introduction for a more detailed
history).

Let 𝐴 be a Poincaré duality CDGA of dimension 𝑛 and let 𝑘 be an integer. For
1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘, let 𝜄𝑖 ∶ 𝐴 → 𝐴⊗𝑘 be defined by 𝜄𝑖(𝑎) = 1⊗𝑖−1 ⊗ 𝑎 ⊗ 1⊗𝑘−𝑖−1, and let
𝜄𝑖𝑗 ∶ 𝐴 ⊗ 𝐴 → 𝐴⊗𝑘 be given by 𝜄𝑖𝑗(𝑎 ⊗ 𝑏) = 𝜄𝑖(𝑎) ⋅ 𝜄𝑗(𝑏).

Recalling the description of e∨
𝑛 in Equation (2.1.8), the CDGA G𝐴(𝑘) is then

defined by:

G𝐴(𝑘) = (𝐴⊗𝑘 ⊗ e∨
𝑛 (𝑘)/(𝜄𝑖(𝑎) ⋅ 𝜔𝑖𝑗 = 𝜄𝑗(𝑎) ⋅ 𝜔𝑖𝑗), 𝑑𝜔𝑖𝑗 = 𝜄𝑖𝑗(Δ𝐴)). (2.1.19)

3. A chain complex is of “finite type” if it is finite dimensional in each degree. Looking closely
at the proof of the theorem, we see that Ω does not need to be of finite type, only its minimal
model does.
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2.2 The Hopf right comodule model G𝐴

We will call these CDGAs the Lambrechts–Stanley CDGAs, or LS CDGAs for
short. For example G𝐴(0) = 𝕜, G𝐴(1) = 𝐴, and G𝐴(2) is isomorphic to:

G𝐴(2) ≅ ((𝐴 ⊗ 𝐴) ⊕ (𝐴 ⊗ 𝜔12), 𝑑(𝑎 ⊗ 𝜔12) = (𝑎 ⊗ 1) ⋅ Δ𝐴 = (1 ⊗ 𝑎) ⋅ Δ𝐴).

When 𝑀 is any simply connected closed manifold, a theorem of Lambrechts
and Stanley [LS08a] implies that there exists a Poincaré duality CDGA 𝐴 which
is a rational model for 𝑀 and such that

𝐻∗(G𝐴(𝑘); ℚ) ≅ 𝐻∗(FM𝑀(𝑘); ℚ) as graded vector spaces. (2.1.20)

2.2 The Hopf right comodule model G𝐴

In this section we describe the Hopf right e∨
𝑛 -comodule derived from the LS

CDGAs of Section 2.1.5. From now on we work over ℝ, and we fix a simply con-
nected smooth closed manifold 𝑀 of dimension at least 4. Following Section 2.1.2,
we endow 𝑀 with a fixed semi-algebraic structure.

For now we fix an arbitrary Poincaré duality CDGA model 𝐴 of 𝑀; we will
choose one in the next section. We then define the right comodule structure of
G𝐴 as follows, using the cooperad structure of e∨

𝑛 given by Equation (2.1.10):

Proposition 2.2.1. If 𝜒(𝑀) = 0, then the following maps go through the quotients
defining G𝐴 = {G𝐴(𝑘)}𝑘≥0 and endow it with a Hopf right e∨

𝑛 -comodule structure:

∘∨
𝑊 ∶ 𝐴⊗𝑈 ⊗ e∨

𝑛 (𝑈) → (𝐴⊗(𝑈/𝑊) ⊗ e∨
𝑛 (𝑈/𝑊)) ⊗ e∨

𝑛 (𝑊)
(𝑎𝑢)𝑢∈𝑈 ⊗ 𝜔 ↦ ((𝑎𝑢)𝑢∈𝑈−𝑊 ⊗ ∏

𝑤∈𝑊
𝑎𝑤)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈𝐴⊗(𝑈/𝑊)

⊗ ∘∨
𝑊 (𝜔)

⏟
∈e∨

𝑛(𝑈/𝑊)⊗e∨
𝑛(𝑊)

(2.2.2)

In informal terms, ∘∨
𝑊 multiplies together all the elements of 𝐴 indexed by 𝑊 on

the 𝐴⊗𝑈 factor and indexes the result by ∗ ∈ 𝑈/𝑊, and it applies the cooperadic
structure map of e∨

𝑛 on the other factor. Note that if 𝑊 = ∅, then ∘∨
𝑊 adds a factor

of 1𝐴 (the empty product) indexed by ∗ ∈ 𝑈/∅ = 𝑈 ⊔ {∗}.
We split the proof in three parts: compatibility of the maps with the cooperadic

structure of e∨
𝑛 , factorization of the maps through the quotient, and compatibility

with the differential.

Proposition 2.2.1, part 1: Factorization through the quotient. Since the algebra 𝐴 is
commutative, the maps of the proposition commute with multiplication. The
ideals defining G𝐴(𝑈) are multiplicative ideals, hence it suffices to show that the
maps (2.2.2) take the generators (𝜄𝑢(𝑎) − 𝜄𝑣(𝑎)) ⋅ 𝜔𝑢𝑣 of the ideal to elements of the
ideal in the target. We simply check each case:
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2 The Lambrechts–Stanley Model of Configuration Spaces

• If 𝑢, 𝑣 ∈ 𝑊, then ∘∨
𝑊(𝜄𝑢(𝑎)𝜔𝑢𝑣) = 𝜄∗(𝑎) ⊗ 𝜔𝑢𝑣, which is equal to ∘∨

𝑊(𝜄𝑣(𝑎)𝜔𝑢𝑣).

• If 𝑢 ∈ 𝑊 and 𝑣 ∉ 𝑊, then

∘∨
𝑊(𝜄𝑢(𝑎)𝜔𝑢𝑣) = 𝜄∗(𝑎)𝜔∗𝑣 ⊗ 1 ≡ ∘∨

𝑊(𝜄𝑣(𝑎)𝜔𝑢𝑣)

are congruent modulo the ideal, and the case 𝑢 ∉ 𝑊, 𝑣 ∈ 𝑊 is symmetric.

• Finally if 𝑢, 𝑣 ∉ 𝑊 then

∘∨
𝑊(𝜄𝑢(𝑎)𝜔𝑢𝑣) = 𝜄𝑢(𝑎)𝜔𝑢𝑣 ⊗ 1 ≡ ∘∨

𝑊(𝜄𝑣(𝑎)𝜔𝑢𝑣).

Proposition 2.2.1, part 2: Compatibility with the differential. All the maps involved
are respectively morphisms of algebras or derivations of algebras, thus it suffices
to check the compatibility on the generators 𝜄𝑢(𝑎) and 𝜔𝑢𝑣.

The equality ∘∨
𝑊(𝑑(𝜄𝑢(𝑎))) = 𝑑(∘∨

𝑊(𝜄𝑢(𝑎))) is immediate. For 𝜔𝑢𝑣 we again check
the three cases. Recall that since our manifold has vanishing Euler characteristic,
𝜇𝐴(Δ𝐴) = 0.

• If 𝑢, 𝑣 ∈ 𝑊, then
∘∨

𝑊(𝑑𝜔𝑢𝑣) = 𝜄∗(𝜇𝐴(Δ𝐴)) = 0,

whereas ∘∨
𝑊(𝜔𝑢𝑣) = 1 ⊗ 𝜔𝑢𝑣 and thus 𝑑(∘∨

𝑊(𝜔𝑢𝑣)) = 0 (since 𝑑e∨
𝑛

= 0).

• If 𝑢 ∉ 𝑊 and 𝑣 ∈ 𝑊, then

∘∨
𝑊(𝑑𝜔𝑢𝑣) = 𝜄∗𝑣(Δ𝐴) ⊗ 1 = 𝑑(𝜔∗𝑣 ⊗ 1) = 𝑑(∘∨

𝑊(𝜔𝑢𝑣)),

and the case 𝑢 ∈ 𝑊, 𝑣 ∉ 𝑊 is symmetric.

• Finally if 𝑢, 𝑣 ∉ 𝑊, then

∘∨
𝑊(𝑑𝜔𝑢𝑣) = 𝜄𝑢𝑣(Δ𝐴) ⊗ 1 = 𝑑(𝜔𝑢𝑣 ⊗ 1) = 𝑑(∘∨

𝑊(𝜔𝑢𝑣)).

Proposition 2.2.1, part 3: Comodule structure. Although the fact that the cocompo-
sition maps are compatible with the coproduct of e∨

𝑛 can easily be proved “by
hand”, it also follows from general arguments.

Let Com∨ be the cooperad of counital cocommutative coalgebras, which is a
right comodule over itself, and view 𝐴 as an operad concentrated in arity 1. We
apply the result of the next lemma (Lemma 2.2.3) to C = Com∨. We get that the
collection Com∨ ∘𝐴 = {𝐴⊗𝑘}𝑘≥0 forms a Com∨-comodule. Then the arity-wise tensor
product (see [LV12, Section 5.1.12], where this operation is called the Hadamard
product):

(Com∨ ∘ 𝐴) ⊠ e∨
𝑛 = {𝐴⊗𝑘 ⊗ e∨

𝑛 (𝑘)}𝑘≥0
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2.3 Labeled graph complexes

is the arity-wise tensor product of a Com∨-comodule and an e∨
𝑛 -comodule, hence it

is a (Com∨ ⊠ e∨
𝑛 )-comodule. The cooperad Com∨ is the unit of the arity-wise tensor

product of cooperads, hence the result is an e∨
𝑛 -comodule. It remains to make the

easy check that the resulting comodule maps are given by Equation (2.2.2).

The next very general lemma can for example be found in [CW16, Section
5.2]. Let C be a cooperad, and see the CDGA 𝐴 as an operad concentrated in
arity 1. Then the commutativity of 𝐴 implies the existence of a distributive law
𝑡 ∶ C ∘ 𝐴 → 𝐴 ∘ C, given in each arity by:

𝑡 ∶ (C ∘ 𝐴)(𝑛) = C(𝑛) ⊗ 𝐴⊗𝑛 → (𝐴 ∘ C)(𝑛) = 𝐴 ⊗ C(𝑛)
𝑥 ⊗ 𝑎1 ⊗ … ⊗ 𝑎𝑛 ↦ 𝑎1 … 𝑎𝑛 ⊗ 𝑥

Lemma 2.2.3. Let N be a right C-comodule, and see 𝐴 as a symmetric collection concen-
trated in arity 1. Then N ∘ 𝐴 is a right C-comodule through the map:

N ∘ 𝐴 ΔN∘1 N ∘ C ∘ 𝐴 1∘𝑡 N ∘ 𝐴 ∘ C.

2.3 Labeled graph complexes

In this section we construct the intermediary comodule used to prove the theorem.
We will construct a zigzag of CDGAs of the form:

G𝐴 ← Graphs𝑅 → Ω∗
PA(FM𝑀).

The construction of Graphs𝑅 follows the same pattern as the one of Graphs𝑛
from Section 2.1.3, using labeled graphs. If 𝜒(𝑀) = 0, then the collections G𝐴 and
Graphs𝑅 are Hopf right comodules respectively over e∨

𝑛 and a Graphs𝑛, and the
left arrow is a morphism of comodules between (G𝐴, e∨

𝑛 ) and (Graphs𝑅, Graphs𝑛).
When 𝑀 is moreover framed, Ω∗

PA(FM𝑀) becomes a Hopf right comodule over
Ω∗

PA(FM𝑛), and the right arrow is a morphism of comodules.

2.3.1 Graphs with loops and multiple edges

We first define a variant Graphs	𝑛 of Graphs𝑛, where graphs are allowed to have
“loops” (also sometimes known as “tadpoles”) and multiple edges. For a finite
set 𝑈, the CDGA Gra	𝑛 (𝑈) is given by:

Gra	𝑛 (𝑈) = (𝑆(𝑒𝑢𝑣)𝑢,𝑣∈𝐴/(𝑒𝑣𝑢 = (−1)𝑛𝑒𝑢𝑣), 𝑑 = 0).

The difference with Equation (2.1.11) is that we no longer set 𝑒𝑢𝑢 = 𝑒2
𝑢𝑣 = 0.
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2 The Lambrechts–Stanley Model of Configuration Spaces

Remark 2.3.1. When 𝑛 is even, 𝑒2
𝑢𝑣 = 0 since deg 𝑒𝑢𝑣 = 𝑛 − 1 is odd; and when 𝑛 is

odd, 𝑒𝑢𝑢 = (−1)𝑛𝑒𝑢𝑢 = −𝑒𝑢𝑢 ⟹ 𝑒𝑢𝑢 = 0.

Like Gra𝑛, this defines a Hopf cooperad with cocomposition given by an equa-
tion similar to Equation (2.1.10):

∘∨
𝑊 ∶ Gra	𝑛 (𝑈) → Gra	𝑛 (𝑈/𝑊) ⊗ Gra	𝑛 (𝑊)

𝑒𝑢𝑣 ↦

⎧{{{
⎨{{{⎩

𝑒∗∗ ⊗ 1 + 1 ⊗ 𝑒𝑢𝑣, if 𝑢, 𝑣 ∈ 𝑊;
𝑒∗𝑣 ⊗ 1, if 𝑢 ∈ 𝑊 and 𝑣 ∉ 𝑊;
𝑒𝑢∗ ⊗ 1, if 𝑢 ∉ 𝑊 and 𝑣 ∈ 𝑊;
𝑒𝑢𝑣 ⊗ 1, if 𝑢, 𝑣 ∉ 𝑊.

(2.3.2)

This new cooperad has a graphical description similar to Gra𝑛. The difference
in the cooperad structure is that when we collapse a subgraph, we sum over all
ways of choosing whether edges are in the subgraph or not; if they aren’t, then
they yield a loop. See Figure 2.3.1 for an example. The cooperad Gra𝑛 is the
quotient of Gra	𝑛 by the ideal generated by the loops and the multiple edges.

1 2
3

↦
⎛⎜⎜⎜⎜
⎝ ∗

3
⊗ 1 2

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝ ∗

3
⊗ 1 2

⎞⎟⎟⎟⎟
⎠

Figure 2.3.1: Example of cocomposition in Gra	𝑛

The element 𝑒∨
12 ∈ (Gra	𝑛 )∨(2) still defines a Maurer–Cartan element

𝜇 ≔ 𝑒∨
12 ∈ Def(hoLie𝑛 → (Gra	𝑛 )∨),

which allows us to define the twisted Hopf cooperad Tw Gra	𝑛 . It has a graphical
description similar to Tw Gra𝑛 with internal and external vertices. Finally we can
quotient by graphs containing connected component consisting exclusively of
internal vertices to get a Hopf cooperad Graphs	𝑛 .

2.3.2 External vertices: Gra𝑅

We construct a collection of CDGAs Gra𝑅, corresponding to the first step in
the construction of Graphs𝑛 of Section 2.1.3. We first apply the formalism of
Section 2.1.4 to Ω∗

PA(𝑀) in order to obtain a Poincaré duality CDGA out of 𝑀:
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2.3 Labeled graph complexes

Theorem 2.3.3 (Lambrechts–Stanley [LS08b]). There exists a zigzag of weak equiva-
lences of CDGAs

𝐴 𝜌 𝑅 𝜎 Ω∗
PA(𝑀),

such that:

1. 𝐴 is a Poincaré duality CDGA of dimension 𝑛;

2. 𝑅 is a quasi-free CDGA generated in degrees ≥ 2;

3. For all 𝑥 ∈ 𝑅, 𝜀𝐴(𝜌(𝑥)) = ∫
𝑀

𝜎(𝑥) (see Remark 2.1.17.

If 𝜒(𝑀) = 0 then the diagonal cocycle of any Poincaré duality model 𝐴 of 𝑀
satisfies 𝜇𝐴(Δ𝐴) = 0. We will require the following technical lemma.

Proposition 2.3.4. One can choose the zigzag of Theorem 2.3.3 such there exists a
symmetric cocycle Δ𝑅 ∈ 𝑅 ⊗ 𝑅 of degree 𝑛 satisfying (𝜌 ⊗ 𝜌)(Δ𝑅) = Δ𝐴. If 𝜒(𝑀) = 0
we can moreover choose it so that 𝜇𝑅(Δ𝑅) = 0.

We follow closely the proof of [LS08b] to obtain the result.

Proof (case 𝑛 ≤ 6). When 𝑛 ≤ 6, the CDGA Ω∗
PA(𝑀) is formal [NM78, Proposition

4.6]. We choose 𝐴 = (𝐻∗(𝑀), 𝑑𝐴 = 0), and 𝑅 to be the minimal model of 𝑀.
By Künneth’s formula, 𝑅 ⊗ 𝑅 → 𝐴 ⊗ 𝐴 is a quasi-isomorphism. Since 𝑑Δ𝐴 = 0,

there exists some cocycle Δ′ ∈ 𝑅 ⊗ 𝑅 such that 𝜌(Δ′) = Δ𝐴 + 𝑑𝛼 = Δ𝐴 (since
𝑑𝐴 = 0).

Let us now assume that 𝜒(𝑀) = 0. Then 𝜌(𝜇𝑅(Δ′)) = 𝜇𝐴(Δ𝐴) = 𝜒(𝐴)vol𝐴 = 0.
Since 𝜌 is a quasi-isomorphism and hence injective in cohomology, 𝜇𝑅(Δ′) = 𝑑𝛽
for some 𝛽 ∈ 𝑅 ⊗ 𝑅. We now let Δ″ = Δ′ − 𝑑𝛽 ⊗ 1, so that 𝜇𝑅(Δ″) = 0, and

𝜌(Δ″) = 𝜌(Δ′) − 𝜌(𝑑𝛽) ⊗ 1 = Δ𝐴.

If 𝜒(𝑀) ≠ 0 we simply let Δ″ = Δ′. We finally set Δ𝑅 = 1
2(Δ″ + (−1𝑛)(Δ″)21),

which is symmetric and still satisfies all the required properties.

Proof (case 𝑛 ≥ 7). When 𝑛 ≥ 7, the proof of Lambrechts and Stanley builds a
zigzag of weak equivalences:

𝐴 𝜌 𝑅 ← 𝑅′ → Ω∗
PA(𝑀),

where 𝑅′ is the minimal model of 𝑀, the CDGA 𝑅 is obtained from 𝑅′ by succes-
sively adjoining cells of degree ≥ 𝑛/2 + 1, and the Poincaré duality CDGA 𝐴 is a
quotient of 𝑅 by an ideal of “orphans”. By construction, this zigzag is compatible
with 𝜀𝐴 and ∫

𝑀
.
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2 The Lambrechts–Stanley Model of Configuration Spaces

The minimal model 𝑅′ is quasi-free, and since 𝑀 is simply connected it is
generated in degrees ≥ 2. The CDGA 𝑅 is obtained from 𝑅′ by a cofibrant cellular
extension, adjoining cells of degree greater than 2. It follows that 𝑅 is cofibrant
and quasi-free generated in degrees ≥ 2. Since 𝑅′ → 𝑅 is an acyclic cofibration and
𝜀 ∶ 𝑅′ → ℝ is a fibration, we can invert 𝑅′ → 𝑅 up to homotopy while preserving
𝜀. Composing with 𝑅′ → Ω∗

PA(𝑀) yields a morphism 𝜎 ∶ 𝑅 → Ω∗
PA(𝑀) that still

satisfies 𝜀𝐴 ∘ 𝜌 = ∫
𝑀

𝜎(−), and we therefore get a zigzag 𝐴 ← 𝑅 → Ω∗
PA(𝑀).

The morphism 𝜌 is a quasi-isomorphism, so there exists some cocycle Δ̃ ∈ 𝑅⊗𝑅
such that 𝜌(Δ̃) = Δ𝐴 + 𝑑𝛼 for some 𝛼. By surjectivity of 𝜌 (it is a quotient map)
there is some 𝛽 such that 𝜌(𝛽) = 𝛼; we let Δ′ = Δ̃ − 𝑑𝛽, and now 𝜌(Δ′) = Δ𝐴.

Let us assume for the moment that 𝜒(𝑀) = 0. Then the cocycle 𝜇𝑅(Δ′) ∈ 𝑅
satisfies 𝜌(𝜇𝑅(Δ′)) = 𝜇𝐴(Δ𝐴) = 0, i.e. it is in the kernel of 𝜌. It follows that the
cocycle Δ″ = Δ′ − 𝜇𝑅(Δ′) ⊗ 1 is still mapped to Δ𝐴 by 𝜌, and satisfies 𝜇𝑅(Δ″) = 0.

If 𝜒(𝑀) ≠ 0 we just let Δ″ = Δ′. Finally we symmetrize Δ″ to get the Δ𝑅 of the
lemma, which satisfies all the requirements.

From now on we keep the zigzag and the element Δ𝑅 of the previous lemma
fixed until the end of Section 2.4.

Definition 2.3.5. The CDGA of 𝑅-labeled graphs with loops on the set 𝑈 is given
by:

Gra	𝑅(𝑈) = (𝑅⊗𝑈 ⊗ Gra	𝑛 (𝑈), 𝑑𝑒𝑢𝑣 = 𝜄𝑢𝑣(Δ𝑅)).

Remark 2.3.6. It follows from the definition that 𝑑𝑒𝑢𝑢 = 𝜄𝑢𝑢(Δ𝑅) = 𝜄𝑢(𝜇𝑅(Δ𝑅)),
which is zero when 𝜒(𝑀) = 0.

Proposition 2.3.7. The CDGAs Gra	𝑅(𝑈) assemble to form a Hopf right Gra	𝑛 -comodule.

Proof. The proof of this proposition is almost identical to the proof of Proposi-
tion 2.2.1. If we forget the extra differential (keeping only the internal differential
of 𝑅), then Gra𝑅 is the arity-wise tensor product (Com∨ ∘ 𝑅) ⊠ Gra𝑛, which is
automatically a Hopf Gra𝑛-right comodule. Checking the compatibility with
the differential involves almost exactly the same equations as Proposition 2.2.1,
except that when 𝑢, 𝑣 ∈ 𝑊 we have:

∘∨
𝑊(𝑑(𝑒𝑢𝑣)) = 𝜄∗(𝜇𝑅(Δ𝑅)) ⊗ 1 = 𝑑(𝑒∗∗ ⊗ 1 + 1 ⊗ 𝑒𝑢𝑣) = 𝑑(∘∨

𝑊(𝑒𝑢𝑣)).

We now give a graphical interpretation of Definition 2.3.5, in the spirit of
Section 2.3.1. We view Gra	𝑅(𝑈) as spanned by graphs with 𝑈 as set of vertices,
and each vertex has a label which is an element of 𝑅. The Gra	𝑛 -comodule structure
collapses subgraphs as before, and the label of the collapsed vertex is the product
of all the labels in the subgraph.
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2.3 Labeled graph complexes

Let Γ ∈ Gra	𝑅(𝑈) be some graph. The differential of Γ, as defined in Defini-
tion 2.3.5, is the sum over the edges 𝑒 ∈ 𝐸Γ of the graph Γ − 𝑒 with that edge
removed and the labels of the endpoints multiplied by the factors of

Δ𝑅 = ∑
(Δ𝑅)

Δ′
𝑅 ⊗ Δ″

𝑅 ∈ 𝑅 ⊗ 𝑅.

In particular if 𝑒 is a loop, then in the corresponding factor of 𝑑Γ the vertex
incident to 𝑒 has its label multiplied by 𝜇𝑅(Δ𝑅). We will often write 𝑑split for this
differential, to contrast it with the differential that contracts edges which will
occur in the complex Tw Gra	𝑅 defined later on. See Figure 2.3.2 for an example –
gray vertices can be either internal or external.

𝑥 𝑦

↦ ∑
(Δ𝑅)

𝑥Δ′
𝑅 𝑦Δ″

𝑅

Figure 2.3.2: The splitting part of the differential (on one edge)

Finally the Hopf structure glues two graphs along their vertices, multiplying
the labels in the process.

If 𝜒(𝑀) ≠ 0, we cannot directly map Gra	𝑅 to Ω∗
PA(FM𝑀), as the Euler class in

Ω∗
PA(𝑀) would need to be the boundary of the image of the loop 𝑒11 ∈ Gra	𝑅(1).

We thus define a sub-CDGA which will map to Ω∗
PA(FM𝑀) whether 𝜒(𝑀) vanishes

or not.

Definition 2.3.8. For a given finite set 𝑈, let Gra𝑅(𝑈) be the sub-CDGA of Gra	𝑅(𝑈)
spanned by graphs without loops.

Proposition 2.3.9. The space Gra𝑅(𝑈) is a sub-CDGA, and if 𝜒(𝑀) = 0 the collection
Gra𝑅 assembles to form a Hopf right Gra𝑛-comodule.

Proof. Clearly, neither the splitting part of the differential nor the internal differ-
ential coming from 𝑅 can create new loops, nor can the product of two graphs
without loops contain a loop, thus Gra𝑅(𝑈) is indeed a sub-CDGA of Gra	𝑅(𝑈).

Let us now assume that 𝜒(𝑀) = 0. The proof that Gra𝑅 is a Gra𝑛-comodule is
now almost the same as the proof of Proposition 2.3.7, except that we need to use
the fact that 𝜇𝑅(Δ𝑅) = 0 to check that 𝑑(∘∨

𝑊(𝑒𝑢𝑣)) = ∘∨
𝑊(𝑑(𝑒𝑢𝑣)) when 𝑢, 𝑣 ∈ 𝑊.
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2 The Lambrechts–Stanley Model of Configuration Spaces

2.3.3 The propagator

To define 𝜔′ ∶ Gra𝑅 → ΩPA(FM𝑀), we need a “propagator” 𝜑 ∈ Ω𝑛−1
PA (FM𝑀(2)),

for which a reference is [CM10, Section 4], who refine constructions of Axelrod–
Singer [AS94].

For a given 𝑢 ∈ 𝑈, we define the projection 𝑝𝑢 ∶ FM𝑀(𝑈) → 𝑀 to be the map that
forgets all the points of the configuration except the one labeled by 𝑢. The two
projections 𝑝1, 𝑝2 ∶ FM𝑀(2) → 𝑀 are equal when restricted to the boundary, and
form a sphere bundle 𝜕FM𝑀(2) → 𝑀 (FM𝑀(2) is the blow-up of 𝑀 × 𝑀 along the
diagonal). When 𝑀 is framed, this bundle is trivial, and the operadic insertion
map

𝑀 × 𝑆𝑛−1 ≅ FM𝑀(1) × FM𝑛(2) ∘1 𝜕FM𝑀(2)

is an isomorphism of bundles.

Proposition 2.3.10 ([CW16, Proposition 7]). There exists a form 𝜑 ∈ Ω𝑛−1
PA (FM𝑀(2))

such that 𝜑21 = (−1)𝑛𝜑, 𝑑𝜑 = (𝑝1 × 𝑝2)∗(𝜎(Δ𝑅)) and such that the restriction of 𝜑
to 𝜕FM𝑀(2) is a global angular form, i.e. it is a volume form of 𝑆𝑛−1 when restricted
to each fiber. When 𝑀 is framed one can moreover choose 𝜑|𝜕FM𝑀(2) = 1 × vol𝑆𝑛−1 ∈
Ω𝑛−1

𝑃𝐴 (𝑀 × 𝑆𝑛−1).

One can see from the proofs of [CM10, Section 4] that 𝑑𝜑 can in fact be chosen to
be any pullback of a form cohomologous to the diagonal class Δ𝑀 ∈ Ω𝑛

PA(𝑀 × 𝑀).
We will make further adjustments to the propagator 𝜑 in Proposition 2.3.32.

Proposition 2.3.11. There is a morphism of collections of CDGAs:

Gra𝑅
𝜔′

ΩPA(FM𝑀)

⨂
𝑢∈𝑈

𝑥𝑢 ∈ 𝑅⊗𝑈 ↦ ⋀
𝑢∈𝑈

𝑝∗
𝑢(𝜎(𝑥𝑢))

𝑒𝑢𝑣 ↦ 𝑝∗
𝑢𝑣(𝜑),

where 𝑝𝑢𝑣 was defined in Equation (2.1.6).
Moreover, if 𝑀 is framed, then 𝜔′ defines a morphism of comodules:

(Gra𝑅, Gra𝑛) (𝜔′,𝜔′) (Ω∗
PA(FM𝑀), Ω∗

PA(FM𝑛))

where 𝜔′ ∶ Gra𝑛 → Ω∗
PA(FM𝑛) was defined in Section 2.1.3.

Proof. The property 𝑑𝜑 = (𝑝1 × 𝑝2)∗(Δ𝑅) shows that the map 𝜔′ preserves the
differential.
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2.3 Labeled graph complexes

Let us now assume that 𝑀 is framed to prove that this is a morphism of right
comodules. Cocomposition commutes with 𝜔′ on the generators coming from
𝐴⊗𝑈, since the comodule structure of Ω∗

PA(FM𝑀) multiplies together forms that
are pullbacks of forms on 𝑀:

∘∨
𝑊(𝑝∗

𝑢(𝑥)) =
⎧{
⎨{⎩

𝑝∗
𝑢(𝑥) ⊗ 1 if 𝑢 ∉ 𝑊;

𝑝∗
∗(𝑥) ⊗ 1 if 𝑢 ∈ 𝑊.

We now check the compatibility of the cocomposition ∘∨
𝑊 with 𝜔′ on the gener-

ator 𝜔𝑢𝑣, for some 𝑊 ⊂ 𝑈.

• If one of 𝑢, 𝑣, or both, is not in 𝑊, then the equality

∘∨
𝑊(𝜔′(𝑒𝑢𝑣)) = (𝜔′ ⊗ 𝜔′)(∘∨

𝑊(𝑒𝑢𝑣))

is clear by the previous relation.

• Otherwise suppose {𝑢, 𝑣} ⊂ 𝑊. We may assume that 𝑈 = 𝑊 = 2 (it suffices
to pull back the result along 𝑝𝑢𝑣 to get the general case), so that we are
considering the insertion of an infinitesimal configuration 𝑀 × FM𝑛(2) →
FM𝑀(2). This insertion factors through the boundary 𝜕FM𝑀(2). We have
(recall Definition 2.3.10):

∘∨
2 (𝜑) = 1 ⊗ vol𝑆𝑛−1 ∈ Ω∗

PA(𝑀) ⊗ Ω∗
PA(FM𝑛(2)) = Ω∗

PA(𝑀) ⊗ Ω∗
PA(𝑆𝑛−1).

Going back to the general case, we find:

∘∨
𝑊(𝜔′(𝑒𝑢𝑣)) = ∘∨

𝑊(𝑝∗
𝑢𝑣(𝜑)) = 1 ⊗ 𝑝∗

𝑢𝑣(vol𝑆𝑛−1),

which is indeed the image of ∘∨
𝑊(𝜔𝑢𝑣) = 1 ⊗ 𝜔𝑢𝑣 by 𝜔′ ⊗ 𝜔′.

2.3.4 Twisting: Tw Gra𝑅

The general framework of [Wil16, Appendix C] shows that to twist a right (co)mod-
ule, one only needs to twist the (co)operad. As before, the condition on the arity
zero component of the Hopf cooperad provides the Hopf structure on the twisted
comodule.

Definition 2.3.12. The twisted labeled graph comodule Tw Gra	𝑅 is a Hopf right
comodule over (Tw Gra	𝑛 ), obtained from Gra	𝑅 by twisting with respect to the
Maurer–Cartan element 𝜇 ∈ (Gra	𝑛 )∨(2) of Section 2.1.3.
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2 The Lambrechts–Stanley Model of Configuration Spaces

We now explicitly describe this comodule in terms of graphs.
The dg-module Tw Gra	𝑅(𝑈) is spanned by graphs with two kinds of vertices,

external vertices corresponding to elements of 𝑈, and indistinguishable internal
vertices (usually drawn in black). The degree of an edge is still 𝑛 − 1, while the
degree of an internal vertex is −𝑛. All the vertices are labeled by elements of 𝑅,
and their degree is added to the degree of the graph.

The Hopf structure glues two graphs along their external vertices, multiplying
labels in the process. The differential is a sum of two terms 𝑑split + 𝑑contr (in
addition to the internal differential coming from 𝑅). The first part comes from
Gra	𝑅 and splits edges, multiplying by Δ𝑅 the labels of the endpoints. The second
part is similar to the differential of Tw Gra	𝑛 : it contracts edges connecting an
internal vertex to another vertex of either kind, multiplying the labels of the
endpoints (see Figure 2.1.3).
Remark 2.3.13. Unlike Tw Gra𝑛, dead ends are contractible in Tw Gra	𝑅 . This is
because the Maurer–Cartan element in (Gra	𝑛 )∨(2) can only “act” while coming
from the right side on Gra	𝑅 in the definition of the differential, and so there is
nothing to cancel out the contraction of a dead end.

Finally, the comodule structure is similar to the cooperad structure of Tw Gra	𝑛 :
for Γ ∈ Gra	𝑅(𝑈 ⊔ 𝐼) ⊂ Tw Gra	𝑅(𝑈), the cocomposition ∘∨

𝑊(Γ) is the sum over
tensors of the type ±Γ𝑈/𝑊 ⊗Γ𝑊, where Γ𝑈/𝑊 ∈ Gra	𝑅(𝑈/𝑊 ⊔𝐽), Γ𝑊 ∈ Gra𝑛(𝑊 ⊔𝐽′),
𝐽 ⊔ 𝐽′ = 𝐼, and there exists a way of inserting Γ𝑊 in the vertex ∗ of Γ𝑈/𝑊 and
reconnecting edges to get back Γ. See Figure 2.3.3 for an example.

1
𝑥

𝑦

↦
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝ ∗

𝑥

𝑦

⊗ 1
⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

±
⎛⎜⎜⎜⎜
⎝

∗
𝑥𝑦

⊗
1

⎞⎟⎟⎟⎟
⎠

±
⎛⎜⎜⎜⎜
⎝

∗
𝑥𝑦

⊗
1

⎞⎟⎟⎟⎟
⎠

Figure 2.3.3: Example of cocomposition Tw Gra	𝑅(1) → Tw Gra	𝑅(1) ⊗ Tw Gra	𝑛 (1)

Lemma 2.3.14. The subspace Tw Gra𝑅(𝑈) ⊂ Tw Gra	𝑅(𝑈) spanned by graphs with no
loops is a sub-CDGA.

Proof. It is clear that this defines a subalgebra. We need to check that it is pre-
served by the differential, i.e. that the differential cannot create new loops if there
are none in a graph. This is clear for the internal differential coming from 𝑅 and
for the splitting part of the differential. The contracting part of the differential
could create a loop from a double edge; however for even 𝑛 multiple edges are
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2.3 Labeled graph complexes

zero for degree reasons, and for odd 𝑛 loops are zero because of the antisymmetry
relation (see Remark 2.3.6).

Note that despite the notation, Tw Gra𝑅 is a priori not defined as the twisting
of the Gra𝑛-comodule Gra𝑅: when 𝜒(𝑀) ≠ 0, the collection Gra𝑅 is not even a
Gra𝑛-comodule. However, the following proposition is clear and shows that we
can get away with this abuse of notation:
Proposition 2.3.15. If 𝜒(𝑀) = 0, then Tw Gra𝑅 assembles to a right Hopf comodule
over (Tw Gra𝑛), isomorphic to the twisting of the right Hopf Gra𝑛-comodule Gra𝑅 of
Definition 2.3.8.
Remark 2.3.16. We could have defined the algebra Tw Gra𝑅 explicitly in terms of
labeled graphs, and then defined the differential 𝑑 using an ad-hoc formula. The
difficult part would have then been to check that 𝑑2 = 0 (involving difficult signs),
which is a consequence of the general operadic twisting framework.
Proposition 2.3.17. There is a morphism of collections of CDGAs 𝜔 ∶ Tw Gra𝑅 →
Ω∗

PA(FM𝑀) extending 𝜔′, given on a graph Γ ∈ Gra𝑅(𝑈 ⊔ 𝐼) ⊂ Tw Gra𝑅(𝑈) by:

𝜔(Γ) ≔ (𝑝𝑈)∗(𝜔′(Γ)) = ∫
FM𝑀(𝑈⊔𝐼)→FM𝑀(𝑈)

𝜔′(Γ).

Moreover, if 𝑀 is framed, then this defines a morphism of Hopf right comodules:

(𝜔, 𝜔) ∶ (Tw Gra𝑅, Tw Gra𝑛) → (Ω∗
PA(FM𝑀), Ω∗

PA(FM𝑛)).

Remark 2.3.18. It is not a priori possible to integrate any arbitrary form along the
fiber of the projection 𝑝𝑈, see [Har+11, Section 9.4]. However, following [CW16,
Appendix C], we can assume that the morphism 𝜎 ∶ 𝑅 → Ω∗

PA(𝑀) factors through
the quasi-isomorphism sub-CDGA of “trivial forms” and that the propagator is
a trivial form. This makes 𝜔(Γ) well-defined.

Proof. The proof of the compatibility with the Hopf structure and, in the framed
case, the comodule structure, is formally similar to the proof of the same facts
about 𝜔 ∶ Tw Gra𝑛 → Ω∗

PA(FM𝑛). We refer to [LV14, Sections 9.2, 9.5]. The proof
is exactly the same proof, but writing FM𝑀 or FM𝑛 instead of 𝐶[−] and 𝜑 instead
of vol𝑆𝑛−1 in every relevant sentence, and recalling that when 𝑀 is framed, we
choose 𝜑 such that ∘∨

2 (𝜑) = 1 ⊗ vol𝑆𝑛−1 .
The proof that 𝜔 is a chain map is different albeit similar. The rest of the section

is dedicated to that proof.

We recall Stokes’ formula for integrals along fibers of semi-algebraic bundles.
If 𝜋 ∶ 𝐸 → 𝐵 is a semi-algebraic bundle, the fiberwise boundary 𝜋𝜕 ∶ 𝐸𝜕 → 𝐵 is
the bundle with total space

𝐸𝜕 = ⋃
𝑏∈𝐵

𝜕𝜋−1(𝑏).
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2 The Lambrechts–Stanley Model of Configuration Spaces

Remark 2.3.19. The space 𝐸𝜕 is neither 𝜕𝐸 nor ⋃
𝑏∈𝐵 𝜋−1(𝑏)∩𝜕𝐸 in general. Consider

for example the projection on the first coordinate [0, 1]×2 → [0, 1].
Stokes’ formula is given in the semi-algebraic context by [Har+11, Proposition

8.12]:
𝑑 (∫

𝜋∶𝐸→𝐵
𝛼) = ∫

𝜋∶𝐸→𝐵
𝑑𝛼 ± ∫

𝜋𝜕∶𝐸𝜕→𝐵
𝛼|𝐸𝜕 .

If we apply this formula to compute 𝑑𝜔(Γ), we find that the first part is given
by:

∫
𝑝𝑈

𝑑𝜔′(Γ) = ∫
𝑝𝑈

𝜔′(𝑑𝑅Γ + 𝑑splitΓ) = 𝜔(𝑑𝑅Γ + 𝑑splitΓ), (2.3.20)

since 𝜔′ was a chain map. It thus remain to check that the second summand
satisfies:

∫
𝑝𝜕

𝑈∶FM𝜕
𝑀(𝑈⊔𝐼)→FM𝑀(𝑈)

𝜔′(Γ) = ∫
𝑝𝑈

𝜔′(𝑑contrΓ) = 𝜔(𝑑contrΓ).

The fiberwise boundary of the projection 𝑝𝑈 ∶ FM𝑛(𝑈 ⊔ 𝐼) → FM𝑛(𝑈) is rather
complex [LV14, Section 5.7], essentially due to the quotient by the affine group
in the definition of FM𝑛 which lowers dimensions. We will not repeat its explicit
decomposition into cells as we do not need it here.

The fiberwise boundary of 𝑝𝑈 ∶ FM𝑀(𝑈 ⊔ 𝐼) → FM𝑀(𝑈) is simpler. Let 𝑉 = 𝑈 ⊔ 𝐼.
The interior of FM𝑀(𝑈) is the space Conf𝑈(𝑀), and thus FM𝜕

𝑀(𝑉) is the closure of
(𝜕FM𝑀(𝑉)) ∩ 𝜋−1(Conf𝑈(𝑀)). Let

ℬℱ(𝑉, 𝑈) = {𝑊 ⊂ 𝑉 ∣ #𝑊 ≥ 2 and #𝑊 ∩ 𝑈 ≤ 1}.

Lemma 2.3.21. The subspace FM𝜕
𝑀(𝑉) ⊂ FM𝑀(𝑉) is equal to:

⋃
𝑊∈ℬℱ(𝑉,𝑈)

im(∘𝑊 ∶ FM𝑀(𝑉/𝑊) × FM𝑛(𝑊) → FM𝑀(𝑉)).

In the description of FM𝜕
𝑛(𝑉), there was an additional part which corresponds

to 𝑈 ⊂ 𝑊. But unlike FM𝑛, for FM𝑀 the image of 𝑝𝑈(− ∘𝑊 −) is always included in
the boundary of FM𝑀(𝑈) when 𝑈 ⊂ 𝑊. We follow a pattern similar to the one
used in the proof of [LV14, Proposition 5.7.1].

Proof. Let cls denote the closure operator. Since Conf𝑈(𝑀) is the interior of
FM𝑀(𝑈) and 𝑝 ∶ FM𝑀(𝑉) → FM𝑀(𝑈) is a bundle, it follows that:

FM𝜕
𝑀(𝑉) = cls(FM𝜕

𝑀(𝑉) ∩ 𝑝−1(Conf𝑈(𝑀)))
= cls(𝜕FM𝑀(𝑉) ∩ 𝑝−1(Conf𝑈(𝑀))).

The boundary 𝜕FM𝑀(𝑉) is the union of the im(∘𝑊) for #𝑊 ≥ 2 (note that the case
𝑊 = 𝑉 is included, unlike for FM𝑛). If #𝑊 ∩ 𝑈 ≥ 2 ⟺ 𝑊 ∉ ℬℱ(𝑉, 𝑈), then
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2.3 Labeled graph complexes

im(𝑝𝑈(−∘𝑊 −)) ⊂ 𝜕FM𝑀(𝑈), because if a configuration belongs to this image then
at least two points of 𝑈 are infinitesimally close. Therefore:

FM𝜕
𝑀(𝑉) = cls(𝜕FM𝑀(𝑉) ∩ 𝑝−1(Conf𝑈(𝑀)))

= cls(⋃
#𝑊≥2

im(∘𝑊) ∩ 𝜋−1(Conf𝑈(𝑀)))

= cls(⋃
#𝑊∈ℬℱ(𝑉,𝑈)

im(∘𝑊) ∩ 𝜋−1(Conf𝑈(𝑀)))

= ⋃
𝑊∈ℬℱ(𝑉,𝑈)

cls(im(∘𝑊) ∩ 𝜋−1(Conf𝑈(𝑀)))

= ⋃
𝑊∈ℬℱ(𝑉,𝑈)

im(∘𝑊).

Lemma 2.3.22. For a given graph Γ ∈ Tw Gra𝑅(𝑈), the integral over the fiberwise
boundary is given by:

∫
𝑝𝜕

𝑈

𝜔′(Γ)|FM𝜕
𝑀(𝑉) = 𝜔(𝑑contrΓ).

Proof. The maps ∘𝑊 ∶ FM𝑀(𝑉/𝑊) × FM𝑛(𝑊) → FM𝑀(𝑉) are smooth injective map
and their domains are compact, thus they are homeomorphisms onto their images.
Recall #𝑊 ≥ 2 for 𝑊 ∈ ℬℱ(𝑉, 𝑈), hence dim FM𝑛(𝑊) = 𝑛#𝑊 − 𝑛 − 1. The
dimension of the image of ∘𝑊 is then:

dim im(∘𝑊) = dim FM𝑀(𝑉/𝑊) + dim FM𝑛(𝑊)
= 𝑛#(𝑉/𝑊) + (𝑛#𝑊 − 𝑛 − 1)
= 𝑛#𝑉 − 1,

(2.3.23)

i.e. the image is of codimension 1 in FM𝑀(𝑉). It is also easy to check that if 𝑊 ≠ 𝑊′,
then im(∘𝑊) ∩ im(∘𝑊′) is of codimension strictly bigger than 1.

We now fix 𝑊 ∈ ℬℱ(𝑉, 𝑈). Since #𝑊 ∩𝑈 ≤ 1, the composition 𝑈 ⊂ 𝑉 → 𝑉/𝑊
is injective and identifies 𝑈 with a subset of 𝑉/𝑊. There is then a forgetful map
𝑝′

𝑈 ∶ FM𝑀(𝑉/𝑊) → FM𝑀(𝑈). We then have a commutative diagram:

FM𝑀(𝑉/𝑊) × FM𝑛(𝑊) FM𝑀(𝑉/𝑊)

FM𝑀(𝑉) FM𝑀(𝑈)

∘𝑊

𝑝1

𝑝′
𝑈

𝑝𝑈

(2.3.24)

It follows that 𝑝𝑈(− ∘𝑊 −) = 𝑝′
𝑈 ∘ 𝑝1 is the composite of two semi-algebraic

bundles, hence it is a semi-algebraic bundle itself [Har+11, Proposition 8.5].
Combined with the fact about codimensions above, we can therefore apply the
summation formula [Har+11, Proposition 8.11]:

∫
𝑝𝜕

𝑈

𝜔′(Γ) = ∑
𝑊∈ℬℱ(𝑉,𝑈)

∫
𝑝𝑈(−∘𝑊−)

𝜔′(Γ)|FM𝑀(𝑉/𝑊)×FM𝑛(𝑊) (2.3.25)
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2 The Lambrechts–Stanley Model of Configuration Spaces

Now we can directly adapt the proof of Lambrechts and Volić. For a fixed 𝑊,
by [Har+11, Proposition 8.13], the corresponding summand is equal to ±𝜔(Γ𝑉/𝑊)⋅
∫
FM𝑛(𝑊)

𝜔′(Γ𝑊), where

• Γ𝑉/𝑊 ∈ Tw Gra𝑅(𝑈) is the graph with 𝑊 collapsed to a vertex and 𝑈 ↪ 𝑉/𝑊
is identified with its image;

• Γ𝑊 ∈ Tw Gra𝑛(𝑊) is the full subgraph of Γ with vertices 𝑊 and the labels
removed.

The vanishing lemmas in the proof of Lambrechts and Volić then imply that the
integral ∫

FM𝑛(𝑊)
𝜔′(Γ𝑊) is zero unless Γ𝑊 is the graph with exactly two vertices and

one edge, in which case the integral is equal to 1. In this case, Γ𝑉/𝑊 is the graph
Γ with one edge connecting an internal vertex to some other vertex collapsed.
The sum runs over all such edges, and dealing with signs carefully we see that
Equation (2.3.25) is precisely equal to 𝜔(𝑑contrΓ).

End of the proof of Proposition 2.3.17. By Equation (2.3.20) and Lemma 2.3.22, we
can apply Stokes’ formula to 𝑑𝜔(Γ) to show that it is equal to 𝜔(𝑑Γ) = 𝜔(𝑑𝑅Γ +
𝑑splitΓ) + 𝜔(𝑑splitΓ).

2.3.5 Reduction: Graphs𝑅

The last step in the construction of Graphs𝑅 is the reduction of Tw Gra𝑅 so
that it has the right cohomology. We borrow the terminology of Campos–
Willwacher [CW16] for the next two definitions.

Definition 2.3.26. Let the full graph complex be:

fGC𝑅 = Tw Gra𝑅(∅)[−𝑛].

It consists of graphs with only internal vertices, and the product is disjoint union
of graphs. The degree of a graph 𝛾 is 𝑛 + (𝑛 − 1)#𝐸𝛾 − 𝑛#𝑉𝛾, where 𝐸𝛾 is the set
of edges and 𝑉𝛾 the set of vertices.

Remark 2.3.27. The degree shift is there to be consistent with the definition of the
standard graph complex GC𝑛.

As an algebra, fGC𝑅[𝑛] is free and generated by connected graphs. In general
we will call “internal components” the connected components of a graph that only
contain internal vertices. The full graph complex naturally acts on Tw Gra𝑅(𝑈)
by adding extra internal components.
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2.3 Labeled graph complexes

Definition 2.3.28. The partition function Z𝜑 ∶ fGC𝑅[𝑛] → ℝ is the restriction:

Z𝜑 = 𝜔|∅ ∶ Tw Gra𝑅(∅) = fGC𝑅[𝑛] → Ω∗
PA(FM𝑀(∅)) = Ω∗

PA(pt) = ℝ.

By the double-pushforward formula and Fubini’s theorem, Z𝜑 is an algebra
morphism and

∀𝛾 ∈ fGC𝑅[𝑛], ∀Γ ∈ Tw Gra𝑅(𝑈), 𝜔(𝛾 ⋅ Γ) = Z𝜑(𝛾) ⋅ 𝜔(Γ). (2.3.29)

Definition 2.3.30. Let ℝ𝜑 be the fGC𝑅[𝑛]-module of dimension 1 induced by
Z𝜑 ∶ fGC𝑅[𝑛] → ℝ. The reduced graph comodule Graphs𝜑

𝑅 is the tensor product:

Graphs𝜑
𝑅(𝑈) = ℝ𝜑 ⊗fGC𝑅[𝑛] Tw Gra𝑅(𝑈).

In other words, a graph of the type Γ ⊔ 𝛾 containing an internal component
𝛾 ∈ fGC𝑅[𝑛] is identified with Z𝜑(𝛾) ⋅ Γ. It is spanned by representative classes
of graphs with no internal connected component; we call such graphs reduced.
The notation is meant to evoke the fact that Graphs𝜑

𝑅 depends on the choice of
the propagator 𝜑, unlike the collection Graphs𝜀

𝑅 that will appear in Section 2.4.1.

Proposition 2.3.31. The map 𝜔 ∶ Tw Gra𝑅(𝑈) → Ω∗
PA(FM𝑀(𝑈)) defined in Proposi-

tion 2.3.17 factors through the quotient defining Graphs𝜑
𝑅.

If 𝜒(𝑀) = 0, the symmetric collection Graphs𝜑
𝑅 forms a Hopf right comodule over

Graphs𝑛. If moreover 𝑀 is framed, the map 𝜔 defines a Hopf right comodule morphism.

Proof. Equation (2.3.29) immediately implies that 𝜔 factors through the quotient.
The vanishing lemmas shows that if Γ ∈ Tw Gra𝑛(𝑈) has internal components,

then 𝜔(Γ) vanishes [LV14, Proposition 9.3.1], so it is straightforward to check that
if 𝜒(𝑀) = 0, then Graphs𝜑

𝑅 becomes a Hopf right comodule over Graphs𝑛. It is
also clear that for 𝑀 framed, the quotient map 𝜔 remains a Hopf right comodule
morphism.

Proposition 2.3.32 ([CM10, Lemma 3]). The propagator 𝜑 can be chosen such that the
additional property (P4) holds:

∫
𝑝1∶FM𝑀(2)→FM𝑀(1)=𝑀

𝑝∗
2(𝜎(𝑥)) ∧ 𝜑 = 0, ∀𝑥 ∈ 𝑅; (P4)

Remark 2.3.33. The additional property (P5) of the paper mentioned above would
be helpful in order to get a direct morphism Graphs𝜑

𝑅 → G𝐴, because then the
partition function would vanish on all connected graphs with at least two vertices.
However we run into difficulties when trying to adapt the proof in the setting
of PA forms, mainly due to the lack of an operator 𝑑𝑀 acting on Ω∗

PA(𝑀 × 𝑁)
differentiating “only in the first slot”.
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2 The Lambrechts–Stanley Model of Configuration Spaces

From now on and until the end of the paper, we assume that 𝜑 satisfies (P4).
Corollary 2.3.34. The morphism 𝜔 vanishes on graphs containing univalent internal
vertices (i.e. dead ends).
Proof. Let Γ ∈ Gra𝑅(𝑈 ⊔ 𝐼) ⊂ Tw Gra𝑅(𝑈) be a graph with a univalent internal
vertex 𝑢 ∈ 𝐼, labeled by 𝑥, and let 𝑣 be the only vertex connected to 𝑢. Let Γ̃ be
the full subgraph of Γ on the set of vertices 𝑈 ⊔ 𝐼 − {𝑢}. Then using [Har+11,
Propositions 8.10 and 8.15] (in a way similar to the end of the proof of [LV14,
Lemma 9.3.9]), we find:

𝜔(Γ) = ∫
FM𝑀(𝑈⊔𝐼)→FM𝑀(𝑈)

𝜔′(Γ)

= ∫
FM𝑀(𝑈⊔𝐼)→FM𝑀(𝑈)

𝜔′(Γ̃)𝑝∗
𝑢𝑣(𝜑)𝑝∗

𝑢(𝜎(𝑥))

= ∫
FM𝑀(𝑈⊔𝐼−{𝑢})→FM𝑀(𝑈)

𝜔′(Γ̃) ∧ 𝑝∗
𝑣 (∫

FM𝑀({𝑢,𝑣})→FM𝑀({𝑣})
𝑝∗

𝑢𝑣(𝜑)𝑝∗
𝑢(𝜎(𝑥))) ,

which vanishes by (P4).

Almost everything we have done so far works for non-simply connected man-
ifolds. We now prove a proposition which sets simply connected manifolds
apart.
Proposition 2.3.35. The partition function Z𝜑 vanishes on any connected graph with
no bivalent vertices labeled by 1𝑅 and containing at least two vertices.
Remark 2.3.36. If 𝛾 ∈ fGC𝑅 has only one vertex, labeled by 𝑥, then Z𝜑(𝛾) = ∫

𝑀
𝜎(𝑥)

which can be nonzero.

Proof. Let 𝛾 ∈ fGC𝑅[𝑛] be a connected graph with at least two vertices and no
bivalent vertices labeled by 1𝑅. By Corollary 2.3.34, we can assume that all the
vertices of 𝛾 are at least bivalent. By hypothesis, if a vertex is bivalent then it is
labeled by an element of 𝑅>0 = 𝑅≥2.

Let 𝑘 = 𝑖 + 𝑗 be the number of vertices of 𝛾, with 𝑖 vertices that are at least
trivalent and 𝑗 vertices that are bivalent and labeled by 𝑅≥2. It follows that 𝛾 has
at least 1

2(3𝑖 + 2𝑗) edges, all of degree 𝑛 − 1. Since bivalent vertices are labeled by
𝑅≥2, their labels contribute at least 2𝑗 to the degree of 𝛾. The (internal) vertices
contribute −𝑘𝑛 to the degree, and the other labels have a nonnegative contribution.
Thus:

deg 𝛾 ≥ (
3
2

𝑖 + 𝑗) (𝑛 − 1) + 2𝑗 − 𝑘𝑛

= (
3
2

𝑘 −
3
2

𝑗 + 𝑗) (𝑛 − 1) + 2𝑗 − 𝑘𝑛

=
1
2

(𝑘(𝑛 − 3) − 𝑗(𝑛 − 5)).
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2.4 From the model to forms via graphs

This last number is always positive for 0 ≤ 𝑗 ≤ 𝑘: it is an affine function of
𝑗, and it is positive when 𝑗 = 0 and 𝑗 = 𝑘 (recall that 𝑛 ≥ 4). The degree of
𝛾 ∈ fGC𝑅[𝑛] must be zero for the integral defining Z𝜑(𝛾) to be the integral of a
top form of FM𝑀(𝑘) and hence possibly nonzero. But by the above computation,
deg 𝛾 > 0 ⟹ Z𝜑(𝛾) = 0.

Remark 2.3.37. When 𝑛 = 3, the manifold 𝑀 is the 3-sphere 𝑆3 thanks to Perelman’s
proof [Per02; Per03] of the Poincaré conjecture. The partition function Z𝜑 is
conjectured to be trivial on 𝑆3 for a proper choice of framing, thus bypassing the
need for the above degree counting argument. See also Proposition 2.4.37.

2.4 From the model to forms via graphs

In this section we connect G𝐴 to Ω∗
PA(FM𝑀) and we prove that the connecting

morphisms are quasi-isomorphisms.

2.4.1 Construction of the morphism to G𝐴

Proposition 2.4.1. For each finite set 𝑈, there is a CDGA morphism 𝜌′
∗ ∶ Gra𝑅(𝑈) →

G𝐴(𝑈) given by 𝜌 on the 𝑅⊗𝑈 factor and sending the generators 𝑒𝑢𝑣 to 𝜔𝑢𝑣 on the Gra𝑛
factor. When 𝜒(𝑀) = 0, this defines a Hopf right comodule morphism (Gra𝑅, Gra𝑛) →
(G𝐴, e∨

𝑛 ).

If we could find a propagator for which property (P5) held (see Remark 2.3.33),
then we could just send all graphs containing internal vertices to zero and obtain
an extension Graphs𝜑

𝑅 → G𝐴. Since we cannot assume that (P5) holds, the defini-
tion of the extension is more complex. However we still have Proposition 2.3.35,
and homotopically speaking, graphs with bivalent vertices are irrelevant.

Definition 2.4.2. Let fGC0
𝑅 be the quotient of fGC𝑅 defined by identifying a dis-

connected vertex labeled by 𝑥 with the number 𝜀(𝜌(𝑥)) = ∫
𝑀

𝜎(𝑥).

It’s clear that Z𝜑 factors through a map fGC0
𝑅[𝑛] → ℝ, for which we will keep

the same notation Z𝜑.

Lemma 2.4.3. The subspace 𝐼 ⊂ fGC0
𝑅 spanned by graphs with at least one univalent

vertex, or at least one bivalent vertex labeled by 1𝑅, or at least one label in ker(𝜌 ∶ 𝑅 → 𝐴),
is a (shifted) CDGA ideal.

Proof. It is clear that 𝐼 is an algebra ideal. Let us prove that it is a differential ideal.
If one of the labels of Γ is in ker 𝜌, then so do all the summands of 𝑑Γ, because
ker 𝜌 is a CDGA ideal of 𝑅.
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2 The Lambrechts–Stanley Model of Configuration Spaces

If Γ contains a bivalent vertex 𝑢 labeled by 1𝑅, then so does 𝑑𝑅Γ. In 𝑑splitΓ,
splitting one of the two edges connected to 𝑢 produces a univalent vertex; and in
𝑑contrΓ, the contraction of the two edges connected to 𝑢 cancel each other.

Finally let us prove that if Γ has a univalent vertex 𝑢, then 𝑑Γ lies in 𝐼. It’s clear
that 𝑑𝑅Γ ∈ 𝐼. Contracting or splitting the only edge connected to the univalent
vertex could remove the univalent vertex. Let us prove that these two summands
cancel each other up to ker 𝜌.

Let 𝑥 be the label of 𝑢, and let 𝑦 be the label of the only vertex incident to 𝑢.
Contracting the edge yields a new vertex labeled by 𝑥𝑦. Due to the definition of
fGC0

𝑅, splitting the edge yields a new vertex labeled by

𝛼 = ∑
(Δ𝑅)

𝜀(𝜌(𝑦Δ″
𝑅))𝑥Δ′

𝑅

⟹ 𝜌(𝛼) = 𝜌(𝑥) ⋅ ∑
(Δ𝐴)

±𝜀𝐴(𝜌(𝑦)Δ″
𝐴)Δ′

𝐴.

It is a standard property of the diagonal class Δ𝐴 that ∑
(Δ𝐴) ±𝜀𝐴(𝑎Δ″

𝐴)Δ′
𝐴 = 𝑎

for all 𝑎 ∈ 𝐴, directly from Equation (2.1.18). Applied to 𝑎 = 𝜌(𝑦), it follows from
the previous equation 𝜌(𝛼) = ±𝜌(𝑥𝑦); examining the signs, this summand cancels
from the summand that comes from contracting the edge.

Definition 2.4.4. The algebra fGC′
𝑅 is the quotient of fGC0

𝑅 by the ideal 𝐼.

Note that fGC′
𝑅[𝑛] is also free as an algebra, with generators given by connected

graphs with no univalent vertices nor bivalent vertices labeled by 1𝑅, and where
the labels in 𝑅/ ker(𝜌) = 𝐴.

Definition 2.4.5. Let fLoop
𝑅

⊂ fGC0
𝑅 be the sub-CDGA generated by graphs with

univalent vertices and by circular graphs (i.e. graphs of the type 𝑒12𝑒23 … 𝑒(𝑘−1)𝑘𝑒𝑘1).

Lemma 2.4.6. The morphism Z𝜑 ∶ fGC0
𝑅[𝑛] → ℝ vanishes on fLoop

𝑅
[𝑛].

Proof. The map Z𝜑 vanishes on graphs with univalent vertices by Corollary 2.3.34.
The degree of a circular graph with 𝑘 vertices is −𝑘 < 0, but Z𝜑 can only be nonzero
on graphs of degree zero.

Proposition 2.4.7. The sequence fLoop
𝑅

→ fGC0
𝑅 → fGC′

𝑅 is a homotopy cofiber
sequence.

Proof. The underlying algebra of fGC0
𝑅 is a quasi-free extension of fLoop

𝑅
by the

algebra generated by graphs that are not circular and that do not contain any
univalent vertices. The homotopy cofiber of the inclusion fLoop

𝑅
→ fGC0

𝑅 is this
algebra fGC″

𝑅, together with a differential induced by the quotient fGC0
𝑅/(fLoop

𝑅
).
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2.4 From the model to forms via graphs

We aim to prove that the induced morphism fGC″
𝑅 → fGC′

𝑅 is a quasi-isomor-
phism.

Let us define an increasing filtration on both CDGAs by letting 𝐹𝑠fGC′
𝑅 (resp.

𝐹𝑠fGC″
𝑅) be the submodule spanned by graphs Γ such that #edges − #vertices ≤ 𝑠

(see also the proof of Proposition 2.4.17 where a similar technique is reused).
The splitting part of the differential strictly decreases the filtration, so only 𝑑𝑅

and 𝑑contr remain on the first page of the associated spectral sequences.
One can then filter by the number of edges. On the first page of the spectral

sequence associated to this new filtration, there is only the internal differential
𝑑𝑅. Thus on the second page, the vertices are labeled by 𝐻∗(𝑅) = 𝐻∗(𝑀). The
contracting part of the differential decreases the new filtration by exactly one,
and so on the second page we see all of 𝑑contr.

We can now adapt the proof of [Wil14, Proposition 3.4] to show that on the
part of the complex with bivalent vertices, only the circular graphs contribute to
the cohomology (we work dually so we consider a quotient instead of an ideal,
but the idea is the same). To adapt the proof, one must see the labels of positive
degree as formally adding one to the valence of the vertex, thus “breaking” a line
of bivalent vertices. These label break the symmetry (recall the coinvariants in
the definition of the twisting) that allow cohomology classes to be produced.

Corollary 2.4.8. The morphism fGC𝑅[𝑛] → ℝ factors through fGC′
𝑅[𝑛] up to homotopy.

Let 𝜋 ∶ fGC𝑅 → fGC′
𝑅 be the quotient map. Let also Ω∗(Δ1) = 𝑆(𝑡, 𝑑𝑡) be the

algebra of polynomials forms on Δ1, which is a path object for ℝ in the model
category of CDGAs.

The CDGAs fGC𝑅[𝑛] and fGC′
𝑅[𝑛] are both quasi-free with a good filtration:

the generators are graphs (with some conditions for fGC′
𝑅[𝑛]), and the filtration is

given by the number of edges. Therefore they are cofibrant as CDGAs. Thus there
exists some morphism Z′

𝜑 ∶ fGC′
𝑅[𝑛] → ℝ and some homotopy ℎ ∶ fGC𝑅[𝑛] →

Ω∗(Δ1) such that the following diagram commutes:

fGC𝑅[𝑛]

ℝ Ω∗(Δ1) ℝ

Z𝜑 Z′
𝜑𝜋

ℎ

∼
𝑑1 𝑑0

∼

Definition 2.4.9. Let Ω∗(Δ1)ℎ be the fGC𝑅[𝑛]-module induced by ℎ, and let

Graphs′
𝑅(𝑈) = Ω∗(Δ1)ℎ ⊗fGC𝑅[𝑛] Tw Gra𝑅(𝑈).
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2 The Lambrechts–Stanley Model of Configuration Spaces

Definition 2.4.10. Let Z𝜀 ∶ fGC𝑅[𝑛] → ℝ be the algebra morphism that sends
a graph Γ with a single vertex labeled by 𝑥 ∈ 𝑅 to ∫

𝑀
𝜎(𝑥) = 𝜀(𝜌(𝑥)), and that

sends all the other connected graphs to zero. Let ℝ𝜀 be the one-dimensional
fGC𝑅[𝑛]-module induced by Z𝜀, and let

Graphs𝜀
𝑅(𝑈) = ℝ𝜀 ⊗fGC𝑅[𝑛] Tw Gra𝑅(𝑈).

Explicitly, in Graphs𝜀
𝑅, all internal components with at least two vertices are

identified with zero, whereas an internal component with a single vertex labeled
by 𝑥 ∈ 𝑅 is identified with the number ∫

𝑀
𝜎(𝑥) = 𝜀(𝜌(𝑥)).

Lemma 2.4.11. The morphism Z′
𝜑𝜋 is equal to Z𝜀.

Proof. This is a rephrasing of Proposition 2.3.35. Using the same degree counting
argument, all the connected graphs with more than one vertex in fGC′

𝑅[𝑛] are
of positive degree. Since ℝ is concentrated in degree zero, Z′

𝜑𝜋 must vanish on
these graphs, just like Z𝜀.

Besides the morphism 𝜋 ∶ fGC𝑅 → fGC′
𝑅 = fGC0

𝑅/𝐼 factors through fGC0
𝑅,

where graphs 𝛾 with a single vertex are already identified with the numbers
Z𝜑(𝛾) = Z𝜀(𝛾).

Proposition 2.4.12. For each finite set 𝑈, we have a zigzag of quasi-isomorphisms of
CDGAs:

Graphs𝜀
𝑅(𝑈) ∼

Graphs′
𝑅(𝑈) ∼

Graphs𝜑
𝑅(𝑈).

If 𝜒(𝑀) = 0, then Graphs′
𝑅 and Graphs𝜀

𝑅 are right Hopf Graphs𝑛-comodules, and the
zigzag defines a zigzag of Hopf right comodule morphisms.

Proof. We have two commutative diagrams:

Graphs𝜀
𝑅(𝑈) Graphs′

𝑅(𝑈)

Tw Gra𝑅(𝑈) ⊗fGC𝑅[𝑛] ℝ𝜀 Tw Gra𝑅(𝑈) ⊗fGC𝑅[𝑛] Ω∗(Δ1)ℎ

= =

1⊗𝑑1

Graphs′
𝑅(𝑈) Graphs𝜑

𝑅(𝑈)

Tw Gra𝑅(𝑈) ⊗fGC𝑅[𝑛] Ω∗(Δ1)ℎ Tw Gra𝑅(𝑈) ⊗fGC𝑅[𝑛] ℝ𝜑

=

1⊗𝑑0

=

The action of fGC𝑅[𝑛] on Tw Gra𝑅(𝑈) is quasi-free with a good filtration, thus
the functor Tw Gra𝑅(𝑈) ⊗fGC𝑅[𝑛] (−) preserves quasi-isomorphisms. The two
maps 𝑑0, 𝑑1 ∶ Ω∗(Δ1) → ℝ are quasi-isomorphisms, therefore all the maps in the
diagram are quasi-isomorphisms.
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2.4 From the model to forms via graphs

If 𝜒(𝑀) = 0, the proof that Graphs′
𝑅 and Graphs𝜀

𝑅 assemble to Graphs𝑛-como-
dules is identical to the proof for Graphs𝜑

𝑅 (see Proposition 2.3.31). It’s also clear
that the two zigzags define morphisms of comodules: in Graphs𝑛, all internal
components are identified with zero anyway.

Proposition 2.4.13. The CDGA morphisms 𝜌′
∗ ∶ Gra𝑅(𝑈) → G𝐴(𝑈) extend to CDGA

morphisms 𝜌∗ ∶ Graphs𝜀
𝑅(𝑈) → G𝐴(𝑈) by sending all the graphs containing internal

vertices to zero. If 𝜒(𝑀) = 0 this extension defines a Hopf right comodule morphism.

Proof. The submodule of graphs containing internal vertices is a multiplicative
ideal and a cooperadic coideal, so all we are left to prove is that 𝜌∗ is compatible
with differentials. Since 𝜌′

∗ was a chain map, we must only prove that if Γ has
internal vertices, then 𝜌∗(𝑑Γ) = 0.

If a summand of 𝑑Γ still contains an internal vertex, then it is mapped to zero
by definition of 𝜌∗. The only parts of the differential that can remove all internal
vertices are the contraction of dead ends and the splitting off of an internal
component containing all the internal vertices of Γ. By the definition of Graphs𝜀

𝑅,
splitting off an internal component can yield a nonzero graph only if that internal
component contains a single vertex, i.e. if we are dealing with a dead end.

Reusing the proof of Lemma 2.4.3, we can see that the contraction of that dead
end cancels out with the splitting of that dead end after applying 𝜌∗. We thus get
𝜌∗(𝑑Γ) = 0 as expected.

2.4.2 The morphisms are quasi-isomorphisms

In this section we prove that the morphisms constructed in Proposition 2.3.31 and
Proposition 2.4.13 are quasi-isomorphisms, completing the proof of Theorem C.

Theorem 2.4.14 (Precise version of Theorem C). The following zigzag, where the
maps were constructed in Propositions 2.3.31, 2.4.12, and 2.4.13, is a zigzag of quasi-
isomorphisms of CDGAs for all finite sets 𝑈:

G𝐴(𝑈) ∼
Graphs𝜀

𝑅(𝑈) ∼
Graphs′

𝑅(𝑈) ∼
Graphs𝜑

𝑅(𝑈) ∼ Ω∗
PA(FM𝑀(𝑈)).

If 𝜒(𝑀) = 0, the left-pointing maps form a quasi-isomorphism of Hopf right comodules:

(G𝐴, e∨
𝑛 ) ∼ (Graphs𝜀

𝑅, Graphs𝑛) ∼ (Graphs′
𝑅, Graphs𝑛).

If 𝑀 is moreover framed, then the right-pointing maps also form a quasi-isomorphism
of Hopf right comodules:

(Graphs′
𝑅, Graphs𝑛) ∼ (Graphs𝜑

𝑅, Graphs𝑛) ∼ (Ω∗
PA(FM𝑀), Ω∗

PA(FM𝑛)).
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2 The Lambrechts–Stanley Model of Configuration Spaces

The rest of the section is dedicated to the proof of Theorem 2.4.14.
Remark 2.4.15. The graph complexes are, in general, nonzero even in negative
degrees; see Remark 2.1.1.

Lemma 2.4.16. The morphisms Graphs𝜀
𝑅(𝑈) → G𝐴(𝑈) factors through a quasi-iso-

morphism Graphs𝜀
𝑅(𝑈) → Graphs𝐴(𝑈), where Graphs𝐴(𝑈) is the CDGA obtained by

modding graphs with a label in ker(𝜌 ∶ 𝑅 → 𝐴) in Graphs𝜀
𝑅(𝑈).

Proof. The morphism Graphs𝜀
𝑅 → Graphs𝐴 simply applies the surjective map

𝜌 ∶ 𝑅 → 𝐴 to all the labels. It is clear that Graphs𝜀
𝑅 → G𝐴 factors through the

quotient.
We can consider the spectral sequences associated to the filtrations of both

Graphs𝜀
𝑅 and Graphs𝐴 by the number of edges, and we obtain a morphism

E0Graphs𝜀
𝑅 → E0Graphs𝐴. On both E0 pages, only the internal differentials coming

from 𝑅 and 𝐴 remain. The chain map 𝑅 → 𝐴 is a quasi-isomorphism, and so the
morphism induces an isomorphism on theE1 page. By standard spectral sequence
arguments, it follows that Graphs𝜀

𝑅 → Graphs𝐴 is a quasi-isomorphism.

The CDGA Graphs𝐴(𝑈) has the same graphical description as Graphs𝜀
𝑅(𝑈),

except that now vertices are labeled by elements of 𝐴. An internal component
with a single vertex labeled by 𝑎 ∈ 𝐴 is identified with 𝜀(𝑎), and an internal
component with more than one vertex is identified with zero.

Proposition 2.4.17. The morphism Graphs𝐴 → G𝐴 is a quasi-isomorphism.

Before starting to prove this proposition, let us outline the different steps. We
filter our complex in such a way that on the E0 page, only the contracting part
of the differential remains. Using a splitting result, we can focus on connected
graphs. Finally, we use a “trick” (Figure 2.4.2) for moving labels around in a
connected component, reducing ourselves to the case where only one vertex
is labeled. We then get a chain map 𝐴 ⊗ Graphs𝑛 → 𝐴 ⊗ e∨

𝑛 (𝑈), which is a
quasi-isomorphism thanks to the formality theorem.

Let us start with the first part of the outlined program, removing the splitting
part of the differential from the picture. Define an increasing filtration on Graphs𝐴
by counting the number of edges and vertices in a reduced graph:

𝐹𝑠Graphs𝐴 = {Γ ∣ #edges − #vertices ≤ 𝑠}.

Lemma 2.4.18. This is a filtration of chain complexes. It is bounded below for each finite
set 𝑈: 𝐹−#𝑈−1Graphs𝐴(𝑈) = 0.

The E0 page of the spectral sequence associated to this previous filtration is isomorphic
as a module to Graphs𝐴. Under this isomorphism the differential 𝑑0 is equal to 𝑑𝐴 +𝑑′

contr,
where 𝑑𝐴 is the internal differential coming from 𝐴 and 𝑑′

contr is the part of the differential
that contracts all edges but dead ends.
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Proof. If Γ ∈ Graphs𝐴(𝑈) is the graph with no edges and no internal vertices,
then it lives in filtration level −#𝑈. Adding edges can only increase the filtration.
Since we consider reduced graphs (i.e. no internal components), each time we
add an internal vertex (decreasing the filtration) we must add at least one edge
(bringing it back up). By induction on the number of internal vertices, each graph
is of filtration at least −#𝑈.

Let us now prove that the differential preserves the filtration and check which
parts remain on the associated graded complex. The internal differential 𝑑𝐴
doesn’t change either the number of edges nor the number of vertices and so keeps
the filtration constant. The contracting part 𝑑contr of the differential decreases
both by exactly one, and so keeps the filtration constant too.

The splitting part 𝑑split of the differential removes one edge. If the resulting
graph is still connected, then nothing else changes and this decreases the fil-
tration by exactly 1. Otherwise, it means that a whole internal component 𝛾
was connected to the rest of the graph by a single edge, and then split off and
identified with a number. If 𝛾 has a single vertex labeled by 𝑎 (i.e. we split a dead
end), then this number is 𝜀(𝑎), and the filtration is kept constant. Otherwise, the
summand is zero (and so the filtration is obviously preserved).

In all cases, the differential preserves the filtration, and so we get a filtered
chain complex. On the associated graded complex, the only remaining parts of
the differential are 𝑑𝐴, 𝑑contr, and the part that splits off dead ends. But by the
proof of Proposition 2.4.13 this last part cancels out with the part that contracts
the dead ends.

The symmetric algebra 𝑆(𝜔𝑢𝑣)𝑢≠𝑣∈𝑈 is weight graded, which induces a weight
grading on e∨

𝑛 (𝑈). This grading in turn induces an increasing filtration 𝐹′
𝑠G𝐴 on

G𝐴 (the extra differential strictly decreases the weight). Define a shifted filtration
on G𝐴 by:

𝐹𝑠G𝐴(𝑈) = 𝐹′
𝑠+#𝑈G𝐴(𝑈).

Lemma 2.4.19. The E0 page of the spectral sequence associated to 𝐹∗G𝐴 is isomorphic as
a module to G𝐴. Under this isomorphism the 𝑑0 differential is just the internal differential
of 𝐴.

Lemma 2.4.20. The morphism Graphs𝐴 → G𝐴 preserves the filtration and induces a
chain map, for each 𝑈:

E0Graphs𝐴(𝑈) → E0G𝐴(𝑈).

It maps graphs with internal vertices to zero, an edge 𝑒𝑢𝑣 between external vertices to
𝜔𝑢𝑣, and a label 𝑎 of an external vertex 𝑢 to 𝜄𝑢(𝑎).

Proof. The morphism Graphs𝐴(𝑈) → G𝐴(𝑈) preserves the filtration by construc-
tion.
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2 The Lambrechts–Stanley Model of Configuration Spaces

If a graph has internal vertices, then its image in G𝐴(𝑈) is of strictly lower
filtration unless the graph is a forest (i.e. a product of trees). But trees have
leaves, therefore by Corollary 2.3.34 and the formula defining Graphs𝐴 → G𝐴 they
are mapped to zero in G𝐴(𝑈) anyway. It’s clear that the rest of the morphism
preserves filtrations exactly, and so is given on the associated graded complex as
stated in the lemma.

For a partition 𝜋 of 𝑈, define the submodule Graphs𝐴⟨𝜋⟩ ⊂ E0Graphs𝐴(𝑈)
spanned by reduced graphs Γ such that the partition of 𝑈 induced by the con-
nected components of Γ is exactly 𝜋. In particular let Graphs𝐴⟨𝑈⟩ be the submod-
ule of connected graphs.

Lemma 2.4.21. For each partition 𝜋 of 𝑈, Graphs𝐴⟨𝜋⟩ is a subcomplex, and the complex
E0Graphs𝐴(𝑈) splits as the sum over all partitions 𝜋 of 𝑈:

E0Graphs𝐴(𝑈) = ⨁
𝜋

⨂
𝑉∈𝜋

Graphs𝐴⟨𝑉⟩.

Proof. Since there is no longer any part of the differential that can split off con-
nected components in E0Graphs𝐴, it is clear that Graphs𝐴⟨𝑈⟩ is a subcomplex.
The splitting result is immediate.

The complex E0G𝐴(𝑈) splits in a similar fashion. For a monomial in 𝑆(𝜔𝑢𝑣),
we say that 𝑢 and 𝑣 are “connected” if the term 𝜔𝑢𝑣 appears in the monomial.
Consider the equivalence relation generated by “𝑢 and 𝑣 are connected”. The
monomial induces in this way a partition 𝜋 of 𝑈, and this definition factors
through the quotient defining e∨

𝑛 (𝑈) (draw a picture of the 3-term relation).
Finally, for a given monomial in G𝐴(𝑈), the induced partition of 𝑈 is still well-
defined.

Thus for a given partition 𝜋 of 𝑈, we can define e∨
𝑛 ⟨𝜋⟩ and G𝐴⟨𝜋⟩ to be the

submodules of e∨
𝑛 (𝑈) and E0G𝐴(𝑈) spanned by monomials inducing the partition

𝜋. It is a standard fact that e∨
𝑛 ⟨𝑈⟩ = Lie∨

𝑛 (𝑈) [Sin07]. The proof of the following
lemma is similar to the proof of the previous lemma:

Lemma 2.4.22. For each partition 𝜋 of 𝑈, G𝐴⟨𝜋⟩ is a subcomplex of E0G𝐴(𝑈), and there
is a splitting as the sum over all partitions 𝜋 of 𝑈:

E0G𝐴(𝑈) = ⨁
𝜋

⨂
𝑉∈𝜋

G𝐴⟨𝑉⟩.

Lemma 2.4.23. The morphism E0Graphs𝐴(𝑈) → E0G𝐴(𝑈) preserves the splitting.

We can now focus on connected graphs to prove Proposition 2.4.17.

Lemma 2.4.24. The complex G𝐴⟨𝑈⟩ is isomorphic to 𝐴 ⊗ e∨
𝑛 ⟨𝑈⟩.
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2.4 From the model to forms via graphs

Proof. We define explicit isomorphisms in both directions.
Define 𝐴⊗𝑈 ⊗ e∨

𝑛 ⟨𝑈⟩ → 𝐴 ⊗ e∨
𝑛 ⟨𝑈⟩ using the multiplication of 𝐴. This induces

a map on the quotient E0G𝐴(𝑈) → 𝐴 ⊗ e∨
𝑛 ⟨𝑈⟩, which restricts to a map G𝐴⟨𝑈⟩ →

e∨
𝑛 ⟨𝑈⟩. Since 𝑑𝐴 is a derivation, this is a chain map.
Conversely, define 𝐴 ⊗ e∨

𝑛 ⟨𝑈⟩ → 𝐴⊗𝑈 ⊗ e∨
𝑛 ⟨𝑈⟩ by 𝑎 ⊗ 𝑥 ↦ 𝜄𝑢(𝑎) ⊗ 𝑥 for some

fixed 𝑢 ∈ 𝑈 (it does not matter which one since 𝑥 ∈ e∨
𝑛 ⟨𝑈⟩ is “connected”). This

induces a map 𝐴 ⊗ e∨
𝑛 ⟨𝑈⟩ → G𝐴⟨𝑈⟩, and it is straightforward to check that this

map is the inverse isomorphism of the previous map.

We have a commutative diagram of complexes:

Graphs𝐴⟨𝑈⟩ 𝐴 ⊗ Graphs′
𝑛⟨𝑈⟩

G𝐴⟨𝑈⟩ 𝐴 ⊗ e∨
𝑛 ⟨𝑈⟩

∼

≅

Here Graphs′
𝑛(𝑈) is defined similarly to Graphs𝑛(𝑈) except that multiple edges

are allowed. It is known that the quotient map Graphs′
𝑛(𝑈) → e∨

𝑛 (𝑈) (which
factors through Graphs𝑛(𝑈)) is a quasi-isomorphism [Wil14, Proposition 3.9]. The
subcomplex Graphs′

𝑛⟨𝑈⟩ is spanned by connected graphs. The upper horizontal
map in the diagram multiplies all the labels of a graph.

The right vertical map is the tensor product of id𝐴 and Graphs𝑛⟨𝑈⟩ ∼
e∨

𝑛 ⟨𝑈⟩
(see 2.1.3). The bottom row is the isomorphism of the previous lemma.

It then remains to prove that Graphs𝐴⟨𝑈⟩ → 𝐴 ⊗ Graphs′
𝑛⟨𝑈⟩ is a quasi-isomor-

phism to prove Proposition 2.4.17. If 𝑈 = ∅, then Graphs′
𝐴(∅) = ℝ = G𝐴(∅) and

the morphism is the identity, so there is nothing to do. From now on we assume
that #𝑈 ≥ 1.

Lemma 2.4.25. The morphism Graphs𝐴⟨𝑈⟩ → 𝐴 ⊗ Graphs′
𝑛⟨𝑈⟩ is surjective on coho-

mology.

Proof. Choose some 𝑢 ∈ 𝑈. There is an explicit chain-level section of the mor-
phism, sending 𝑥 ⊗ Γ to Γ𝑢,𝑥, the same graph with the vertex 𝑢 labeled by 𝑥 and all
the other vertices labeled by 1𝑅. It is a well-defined chain map. It is clear that this
is a section of the morphism in the lemma, hence the morphism of the lemma is
surjective on cohomology.

We now use a proof technique similar to the proof of [LV14, Lemma 8.3],
working by induction. The dimension of 𝐻∗(Graphs′

𝑛⟨𝑈⟩) = e∨
𝑛 ⟨𝑈⟩ = Lie∨

𝑛 (𝑈) is
well-known:

dim 𝐻𝑖(Graphs′
𝑛⟨𝑈⟩) =

⎧{
⎨{⎩

(#𝑈 − 1)!, if 𝑖 = (𝑛 − 1)(#𝑈 − 1);
0, otherwise.

(2.4.26)
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2 The Lambrechts–Stanley Model of Configuration Spaces

Lemma 2.4.27. For all sets 𝑈 with #𝑈 ≥ 1, the dimension of 𝐻𝑖(Graphs𝐴⟨𝑈⟩) is the
same as the dimension:

dim 𝐻𝑖(𝐴 ⊗ Graphs′
𝑛⟨𝑈⟩) = (#𝑈 − 1)! ⋅ dim 𝐻𝑖−(𝑛−1)(#𝑈−1)(𝐴).

The proof will be by induction on the cardinality of 𝑈.

Lemma 2.4.28. The complex Graphs𝐴⟨1⟩ has the same cohomology as 𝐴.

Proof. Let ℐ be the subcomplex spanned by graphs with at least one internal
vertex. We will show that ℐ is acyclic; as Graphs𝐴⟨1⟩/ℐ ≅ 𝐴, this will prove the
lemma.

There is an explicit homotopy ℎ that shows that ℐ is acyclic. Given a graph Γ
with a single external vertex and at least one internal vertex, define ℎ(Γ) to be
the same graph with the external vertex replaced by an internal vertex, a new
external vertex labeled by 1𝐴, and an edge connecting the external vertex to the
new internal vertex (see Figure 2.4.1).

𝑢
𝑥

↦ 𝑢
1𝐴 𝑥

Figure 2.4.1: The homotopy ℎ

The differential in Graphs𝐴⟨1⟩ only retains the internal differential of 𝐴 and the
contracting part of the differential. Contracting the new edge in ℎ(Γ) gives back
Γ, and it is now straightforward to check that:

𝑑ℎ(Γ) = Γ ± ℎ(𝑑Γ).

Now let 𝑈 be a set with at least two elements, and fix some element 𝑢 ∈ 𝑈. Let
Graphs𝑢

𝐴⟨𝑈⟩ ⊂ Graphs𝐴⟨𝑈⟩ be the subcomplex spanned by graphs Γ such that 𝑢
has valence 1, is labeled by 1𝐴, and is connected to another external vertex.

We now get to the core of the proof. The idea (adapted from [LV14, Lemma 8.3])
is to “push” the labels of positive degree away from the chosen vertex 𝑢 through
a homotopy. Roughly speaking, we use Figure 2.4.2 to move labels around up to
homotopy.

Lemma 2.4.29. The inclusion Graphs𝑢
𝐴⟨𝑈⟩ ⊂ Graphs𝐴⟨𝑈⟩ is a quasi-isomorphism.
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2.4 From the model to forms via graphs

𝑑contr ( 𝑥 ) = 𝑥 − 𝑥

Figure 2.4.2: Trick for moving labels around (gray vertices are either internal or
external)

Proof. Let 𝒬 be the quotient. We will prove that it is acyclic. The module 𝒬
further decomposes into a direct sum of modules (but the differential does not
preserve the direct sum):

• The module 𝒬1 spanned by graphs where 𝑢 is of valence 1, labeled by 1𝐴,
and connected to an internal vertex;

• The module 𝒬2 spanned by graphs where 𝑢 is of valence ≥ 2 or has a label
in 𝐴>0.

We now filter 𝒬 as follows. For 𝑠 ∈ ℤ, let 𝐹𝑠𝒬1 be the submodule of 𝒬1 spanned
by graphs with at most 𝑠 + 1 edges, and let 𝐹𝑠𝒬2 be the submodule spanned by
graphs with at most 𝑠 edges. This filtration is preserved by the differential of 𝒬.

Consider the E0 page of the spectral sequence associated to this filtration. Then
the differential 𝑑0 is an morphism E0𝒬1 → E0𝒬2 by counting the number of edges
(and using the crucial fact that dead ends are not contractible). It contracts the
only edge incident to 𝑢. It is an isomorphism, with an inverse similar to the
homotopy defined in Lemma 2.4.28, “blowing up” the point 𝑢 into a new edge
connecting 𝑢 to a new internal vertex that replaces 𝑢.

This shows that (E0𝒬, 𝑑0) is acyclic, hence E1𝒬 = 0. It follows that 𝒬 is acyclic.

Proof of Lemma 2.4.27. The case #𝑈 = 0 is obvious, and the case #𝑈 = 1 of the
lemma was covered in Lemma 2.4.28. We now work by induction and assumes
the claim proved for #𝑈 ≤ 𝑘, for some 𝑘 ≥ 1.

Let 𝑈 be of cardinality 𝑘 + 1. Choose some 𝑢 ∈ 𝑈 and define Graphs𝑢
𝐴⟨𝑈⟩ as

before. By Lemma 2.4.29 we only need to show that this complex has the right
cohomology. It splits as:

Graphs𝑢
𝐴⟨𝑈⟩ ≅ ⨁

𝑣∈𝑈−{𝑢}
𝑒𝑢𝑣 ⋅ Graphs𝐴⟨𝑈 − {𝑢}⟩ (2.4.30)

And therefore using the induction hypothesis:

dim 𝐻𝑖(Graphs𝑢
𝐴⟨𝑈⟩) = 𝑘 ⋅ dim 𝐻𝑖−(𝑛−1)(Graphs𝐴⟨𝑈 − {𝑢}⟩)

= 𝑘! ⋅ dim 𝐻𝑖−𝑘(𝑛−1)(𝐴).

75



2 The Lambrechts–Stanley Model of Configuration Spaces

Proof of Proposition 2.4.17. By Lemma 2.4.25, the morphism induced by Graphs𝐴 →
G𝐴 on the E0 page is surjective on cohomology. By Lemma 2.4.27 and Equa-
tion (2.4.26), both E0 pages have the same cohomology, and so the induced mor-
phism is a quasi-isomorphism. Standard spectral arguments imply the proposi-
tion.

Proposition 2.4.31. The morphism 𝜔 ∶ Graphs′
𝑅(𝑈) → Ω∗

PA(FM𝑀(𝑈)) is a quasi-iso-
morphism.

Proof. From Equation (2.1.20), Proposition 2.4.12, Lemma 2.4.16, and Proposi-
tion 2.4.17, both CDGAs have the same cohomology of finite type, so it will
suffice to show that the map is surjective on cohomology to prove that it is a
quasi-isomorphism.

We work by induction. The case 𝑈 = ∅ is immediate, as we get

Graphs′
𝑅(∅) ∼

Graphs𝜑
𝑅(∅) = Ω∗

PA(FM𝑀(∅)) = ℝ

and the last map is the identity.
Suppose that 𝑈 = {𝑢} is a singleton. Since 𝜌 is a quasi-isomorphism, for every

cocycle 𝛼 ∈ Ω∗
PA(FM𝑀(𝑈)) = Ω∗

PA(𝑀) there is some cocycle 𝑥 ∈ 𝑅 such that 𝜌(𝑥)
is cohomologous to 𝛼. Then the graph 𝛾𝑥 with a single (external) vertex labeled
by 𝑥 is a cocycle in Graphs′

𝑅(𝑈), and 𝜔(𝛾𝑥) = 𝜌(𝑥) is cohomologous to 𝛼. This
proves that Graphs′

𝑅({𝑢}) → Ω∗
PA(𝑀) is surjective on cohomology, and hence a

quasi-isomorphism.
Now assume that 𝑈 = {𝑢} ⊔ 𝑉, where #𝑉 ≥ 1, and assume that the claim is

proved for sets of vertices of size at most #𝑉 = #𝑈 − 1. By Equation (2.1.20),
we may represent any cohomology class of FM𝑀(𝑈) by an element 𝑧 ∈ G𝐴(𝑈)
satisfying 𝑑𝑧 = 0. Using the relations defining G𝐴(𝑈), we may write 𝑧 as

𝑧 = 𝑧′ + ∑
𝑣∈𝑉

𝜔𝑢𝑣𝑧𝑣,

where 𝑧′ ∈ 𝐴 ⊗ G𝐴(𝑉) and 𝑧𝑣 ∈ G𝐴(𝑉). The relation 𝑑𝑧 = 0 is equivalent to

𝑑𝑧′ + ∑
𝑣∈𝑉

(𝑝𝑢 × 𝑝𝑣)∗(Δ𝐴) ⋅ 𝑧𝑣 = 0, (2.4.32)

and 𝑑𝑧𝑣 = 0 for all 𝑣. (2.4.33)

By the induction hypothesis, for all 𝑣 ∈ 𝑉 there exists a cocycle 𝛾𝑣 ∈ Graphs′
𝑅(𝑉)

such that 𝜔(𝛾𝑣) represents the cohomology class of the cocycle 𝑧𝑣 in 𝐻∗(FM𝑀(𝑉)),
and such that 𝜎∗(𝛾𝑣) is equal to 𝑧𝑣 up to a coboundary.

By Equation (2.4.32), the cocycle

𝛾̃ = ∑
𝑣∈𝑉

(𝑝𝑢 × 𝑝𝑣)∗(Δ𝑅) ⋅ 𝛾𝑣 ∈ 𝑅 ⊗ Graphs′
𝑅(𝑉)
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is mapped to a coboundary in 𝐴 ⊗ G𝐴(𝑉). The map 𝜎∗ ∶ 𝑅 ⊗ Graphs′
𝑅(𝑉) →

𝐴 ⊗ G𝐴(𝑉) is a quasi-isomorphism, hence 𝛾̃ = 𝑑𝛾̃1 is a coboundary too.
It follows that 𝑧′ − 𝜎∗(𝛾̃1) ∈ 𝐴 ⊗ G𝐴(𝑉) is a cocycle. Thus by the induction

hypothesis there exists some 𝛾̃2 ∈ 𝑅 ⊗ Graphs′
𝑅(𝑉) whose cohomology class

represents the same cohomology class as 𝑧′ − 𝜎∗(𝛾̃1) in 𝐻∗(𝐴 ⊗ G𝐴(𝑉)) = 𝐻∗(𝑀 ×
FM𝑀(𝑉)).

We now let 𝛾′ = −𝛾̃1 + 𝛾̃2, hence 𝑑𝛾′ = −𝛾̃ + 0 = −𝛾̃ and 𝜎∗(𝛾′) is equal to 𝑧′

up to a coboundary. By abuse of notation we still let 𝛾′ be the image of 𝛾′ under
the obvious map 𝑅 ⊗ Graphs′

𝑅(𝑉) → Graphs′
𝑅(𝑈), 𝑥 ⊗ Γ ↦ 𝜄𝑢(𝑥) ⋅ Γ. Then

𝛾 = 𝛾′ + ∑
𝑣∈𝑉

𝑒𝑢𝑣 ⋅ 𝛾𝑣 ∈ Graphs′
𝑅(𝑈)

is a cocycle, and 𝜔(𝛾) represents the cohomology class of 𝑧 in Ω∗
PA(FM𝑀(𝑈)).

We’ve shown that the morphism Graphs′
𝑅(𝑈) → Ω∗

PA(FM𝑀(𝑈)) is surjective on
cohomology, and hence it is a quasi-isomorphism.

Proposition 2.4.34. If 𝐴′ is another Poincaré duality model of 𝑀, then we have a weak
equivalence of symmetric collections G𝐴 ≃ G𝐴′ . If moreover 𝜒(𝑀) = 0 then this weak
equivalence is a weak equivalence of right Hopf e∨

𝑛 -comodules.

Proof. The CDGAs 𝐴 and 𝐴′ are models of the manifold, hence there exists some
cofibrant CDGA 𝑆 and quasi-isomorphisms 𝑓 ∶ 𝑆 ∼ 𝐴 and 𝑓 ′ ∶ 𝑆 ∼ 𝐴′. This
yields two chain maps 𝜀, 𝜀′ ∶ 𝑆 → ℝ[−𝑛] defined by 𝜀 = 𝜀𝐴 ∘ 𝑓 and 𝜀′ = 𝜀𝐴′ ∘
𝑓 ′. Mimicking the proof of Proposition 2.3.4, we can also find cocycles Δ, Δ′ ∈
𝑆 ⊗ 𝑆 which satisfy Δ21 = (−1)𝑛Δ (and the same equation for Δ′) and mapped
respectively to Δ𝐴 and Δ𝐴′ under 𝑓 and 𝑓 ′.

We can then build symmetric collections Graphs𝜀,Δ
𝑆 and Graphs𝜀′,Δ′

𝑆 and quasi-
isomorphisms 𝑓∗ ∶ Graphs𝜀,Δ

𝑆 → G𝐴 and 𝑓 ′
∗ ∶ Graphs𝜀′,Δ′

𝑆 → G𝐴′ like before. The
differential of an edge 𝑒𝑢𝑣 in Graphs𝜀,Δ

𝑆 (resp. Graphs𝜀′,Δ′

𝑆 is 𝜄𝑢𝑣(Δ) (resp. 𝜄𝑢𝑣(Δ′)),
and an isolated internal vertex labeled by 𝑥 ∈ 𝑆 is identified with 𝜀(𝑥) (resp.
𝜀′(𝑥)).

If moreover 𝜒(𝑀) = 0, we can choose Δ and Δ′ such that their product vanishes,
thus both Graphs𝑆 become right Hopf Graphs𝑛-comodules and the projections
𝑓∗, 𝑓 ′

∗ are compatible with the comodule structure. It thus suffices to prove that
we have a quasi-isomorphism between Graphs𝜀,Δ

𝑆 and Graphs𝜀′,Δ′

𝑆 to prove the
proposition.

We first have an isomorphism Graphs𝜀′,Δ′

𝑆 ≅ Graphs𝜀′,Δ
𝑆 (with the obvious no-

tations). Indeed, the two cocycles Δ and Δ′ are cohomologous, say Δ′ = Δ − 𝑑𝛼
for some 𝛼 ∈ 𝑆 ⊗ 𝑆 of degree 𝑛 − 1. If we replace 𝛼 by (𝛼 + (−1)𝑛𝛼21)/2, we
can assume that 𝛼21 = (−1)𝑛𝛼. Moreover if 𝜒(𝑀) = 0, one can replace 𝛼 by
𝛼 − (𝜇𝑆(𝛼) ⊗ 1 + (−1)𝑛1 ⊗ 𝜇𝑆(𝛼))/2 to be able to assume that 𝜇𝑆(𝛼) = 0. We then
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2 The Lambrechts–Stanley Model of Configuration Spaces

obtain an isomorphism by mapping an edge 𝑒𝑢𝑣 to 𝑒𝑢𝑣 ±𝜄𝑢𝑣(𝛼) (the sign depending
on the direction of the isomorphism). This is clearly compatible with differentials,
and if 𝜒(𝑀) = 0 with the comodule structure.

The dg-module 𝑆 is cofibrant and ℝ[−𝑛] is fibrant (like all dg-modules). More-
over we can assume that 𝜀 and 𝜀′ induce the same map on cohomology (it suffices
to rescale, say, 𝜀′, and there is an automorphism of Graphs𝜀′,Δ

𝑆 which takes care of
this rescaling). Thus the two maps 𝜀, 𝜀′ ∶ 𝑆 → ℝ[−𝑛] are homotopic, and there
exists some ℎ ∶ 𝑆[1] → ℝ[−𝑛] such that 𝜀(𝑥) − 𝜀′(𝑥) = ℎ(𝑑𝑥) for all 𝑥 ∈ 𝑆.

This homotopy induces a homotopy between the two morphisms Z𝜀, Z𝜀′ ∶
fGC𝑆[𝑛] → ℝ. Because Tw GraΔ

𝑆(𝑈) and Tw GraΔ′

𝑆 (𝑈) are cofibrant as modules
over fGC𝑆[𝑛], we obtain quasi-isomorphisms

Graphs𝜀,Δ
𝑆 ≃ Graphs𝜀′,Δ

𝑆

which are compatible with the comodule structure when 𝜒(𝑀) = 0 (see the proof
of Proposition 2.4.12).

Proof of Theorem 2.4.14. The zigzag of the theorem becomes, after factorizing the
first map through Graphs𝐴:

Graphs𝐴(𝑈) Graphs𝜀
𝑅(𝑈) Graphs′

𝑅(𝑈) Graphs𝜀
𝑅(𝑈)

G𝐴(𝑈) Ω∗
PA(FM𝑀(𝑈))

All these maps are quasi-isomorphisms by Lemma 2.4.16, Proposition 2.4.12,
Proposition 2.4.17, and Proposition 2.4.31. Their compatibility with the comod-
ule structures (under the relevant hypotheses) are due to Proposition 2.3.31,
Proposition 2.4.12, and Proposition 2.4.13.

The only thing missing from the theorem is that we must be able to choose any
Poincaré duality model of the manifold, and not necessarily 𝐴; this is the content
of Proposition 2.4.34.

We can thus settle the conjecture of Lambrechts–Stanley over ℝ for the class of
manifolds that we consider:

Corollary 2.4.35. Let 𝑀 be a smooth simply connected closed manifold of dimension at
least 4, and let 𝐴 be any Poincaré duality model of 𝑀. Then the CDGA G𝐴(𝑘) is a real
model for Conf𝑘(𝑀).

And this implies the real homotopy invariance of configuration spaces:

Corollary 2.4.36. The real homotopy type of the configuration space of a smooth simply
connected closed manifold of dimension at least 4 only depends on the real homotopy type
of 𝑀.
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2.4 From the model to forms via graphs

Proof. When dim 𝑀 ≥ 3, the Fadell–Neuwirth fibrations [FN62] Conf𝑘−1(𝑀−∗) ↪
Conf𝑘(𝑀) → 𝑀 show by induction that if 𝑀 is simply connected, then so is
Conf𝑘(𝑀) for all 𝑘 ≥ 1. Hence the real model G𝐴(𝑘) completely encodes the real
homotopy type of Conf𝑘(𝑀).

The degree-counting argument of Proposition 2.3.35 does not work in dimen-
sion 3, and so we cannot directly apply our results to 𝑆3 (the only simply connected
3-manifold). We however record the following partial result, communicated to
us by Thomas Willwacher:

Proposition 2.4.37. The CDGA G𝐴(𝑘), where 𝐴 = 𝐻∗(𝑆3; ℚ), is a rational model of
Conf𝑘(𝑆3) for all 𝑘 ≥ 0.

Proof. The claim is clear for 𝑘 = 0. Since 𝑆3 is a Lie group, the Fadell–Neuwirth
fibration

Conf𝑘(ℝ3) ↪ Conf𝑘+1(𝑆3) → 𝑆3

is trivial [FN62, Theorem 4]. The space Conf𝑘+1(𝑆3) is thus identified with 𝑆3 ×
Conf𝑘(ℝ3), which is rationally formal with cohomology 𝐻∗(𝑆3) ⊗ e∨

3 (𝑘). It thus
suffices to build a quasi-isomorphism between G𝐴(𝑘 + 1) and 𝐻∗(𝑆3) ⊗ e∨

𝑛 (𝑘) to
prove the proposition.

To simplify notation, we consider G𝐴(𝑘+) (where 𝑘+ = {0, … , 𝑘}), which is
obviously isomorphic to G𝐴(𝑘 + 1). Let us denote by 𝜐 ∈ 𝐻3(𝑆3) = 𝐴3 the volume
form of 𝑆3, and recall that the diagonal class Δ𝐴 is given by 1 ⊗ 𝜐 − 𝜐 ⊗ 1. We have
an explicit map given on generators by:

𝑓 ∶ 𝐻∗(𝑆3) ⊗ e∨
3 (𝑘) → G𝐴(𝑘+)

𝜐 ⊗ 1 ↦ 𝜄0(𝜐)
1 ⊗ 𝜔𝑖𝑗 ↦ 𝜔𝑖𝑗 + 𝜔0𝑖 − 𝜔0𝑗

The Arnold relations show that this is a well-defined algebra morphism. Let
us prove that 𝑑 ∘ 𝑓 = 0 on the generator 𝜔𝑖𝑗 (the vanishing on 𝜐 ⊗ 1 is clear). We
may assume that 𝑘 = 2 and (𝑖, 𝑗) = (1, 2), and then apply 𝜄𝑖𝑗 to get the general case.
Then we have:

𝑑𝑓 (𝜔12) = (1 ⊗ 1 ⊗ 𝜐 − 1 ⊗ 𝜐 ⊗ 1)
+ (1 ⊗ 𝜐 ⊗ 1 − 𝜐 ⊗ 1 ⊗ 1)
− (1 ⊗ 1 ⊗ 𝜐 − 𝜐 ⊗ 1 ⊗ 1)
= 0

We know that both CDGAs have the same cohomology (Equation (2.1.20)),
so to check that 𝑓 is a quasi-isomorphism it suffices to check that it is surjective
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2 The Lambrechts–Stanley Model of Configuration Spaces

in cohomology. The cohomology 𝐻∗(G𝐴(𝑘+)) ≅ 𝐻∗(𝑆3) ⊗ e∨
3 (𝑘) is generated in

degrees 2 (by the 𝜔𝑖𝑗) and 3 (by the 𝜄𝑖(𝜐)), so it suffices to check surjectivity in
these degrees.

In degree 3, the cocycle 𝜐 ⊗1 is sent to a generator of 𝐻3(G𝐴(𝑘+)) ≅ 𝐻3(𝑆3) = ℚ.
Indeed, assume 𝜄0(𝜐) = 𝑑𝜔, where 𝜔 is a linear combination of the 𝜔𝑖𝑗 for degree
reasons. In 𝑑𝜔, the sum of the coefficients of each 𝜄𝑖(𝜐) is zero, because they
all come in pairs (𝑑𝜔𝑖𝑗 = 𝜄𝑗(𝜐) − 𝜄𝑖(𝜐)). We want the coefficient of 𝜄0(𝜐) to be 1,
so at least one of the other coefficient must be nonzero to compensate, hence
𝑑𝜔 ≠ 𝜄0(𝜐).

It remains to prove that 𝐻2(𝑓 ) is surjective. We consider the quotient map
𝑝 ∶ G𝐴(𝑘+) → e∨

3 (𝑘) that maps 𝜄𝑖(𝜐) and 𝜔0𝑖 to zero for all 1 ≤ 𝑖 ≤ 𝑘. We also
consider the quotient map 𝑞 ∶ 𝐻∗(𝑆3) ⊗ e∨

3 (𝑘) → e∨
3 (𝑘) sending 𝜐 ⊗ 1 to zero. We

get a morphism of short exact sequences:

0 ker 𝑞 𝐻∗(𝑆3) ⊗ e∨
3 (𝑘) e∨

3 (𝑘) 0

0 ker 𝑝 G𝐴(𝑘) e∨
3 (𝑘) 0

𝑞

𝑓 =

𝑝

We consider part of the long exact sequence in cohomology induced by these
short exact sequences of complexes:

e∨
3 (𝑘)1 𝐻2(ker 𝑞) 𝐻2(𝐻∗(𝑆3) ⊗ e∨

3 (𝑘)) = e∨
3 (𝑘)2 e∨

3 (𝑘)2

e∨
3 (𝑘)1 𝐻2(ker 𝑝) 𝐻2(G𝐴(𝑘+)) e∨

3 (𝑘)2

= (1) 𝐻2(𝑓 ) =

For degree reasons, 𝐻2(ker 𝑞) = 0 and so the map (1) is injective. By the four
lemma, it follows that 𝐻2(𝑓 ) is injective too. Both its domain and its codomain
have the same finite dimension, thus 𝐻2(𝑓 ) is an isomorphism.

2.5 Factorization homology of universal

enveloping 𝐸𝑛-algebras

2.5.1 Factorization homology and formality

Fix some dimension 𝑛. Let 𝑈 be a finite set and consider the space of framed
embeddings of 𝑈 copies of ℝ𝑛 in itself, endowed with the compact open topology:

Diskfr
𝑛 (𝑈) ≔ Embfr(ℝ𝑛 × 𝑈, ℝ𝑛) ⊂ Map(ℝ𝑛 × 𝑈, ℝ𝑛). (2.5.1)
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2.5 Factorization homology of universal enveloping 𝐸𝑛-algebras

Using composition of embeddings, these spaces assemble to form a topo-
logical operad Diskfr

𝑛 . This operad is weakly equivalent to the operad of little
𝑛-disks [AF15, Remark 2.10], and the application that takes 𝑓 ∈ Diskfr

𝑛 (𝑈) to
{𝑓 (0 × 𝑢)}𝑢∈𝑈 ∈ Conf𝑈(ℝ𝑛) is a homotopy equivalence.

Similarly if 𝑀 is a framed manifold, then the spaces Embfr(ℝ𝑛 × −, 𝑀) assem-
ble to form a topological right Diskfr

𝑛 -module, again given by composition of
embeddings. We call it Diskfr

𝑀. If 𝐵 is a Diskfr
𝑛 -algebra, factorization homology is

given by a derived composition product [AF15, Definition 3.2]:

∫
𝑀

𝐵 ≔ Diskfr
𝑀 ∘𝕃

Diskfr
𝑛

𝐵 = hocoeq(Diskfr
𝑀 ∘ Diskfr

𝑛 ∘ 𝐵 ⇉ Diskfr
𝑀 ∘ 𝐵). (2.5.2)

Thanks to [Tur13, Section 2], the pair (FM𝑀, FM𝑛) is weakly equivalent to the
pair (Diskfr

𝑀, Diskfr
𝑛 ). So if 𝐵 is an FM𝑛-algebra, its factorization homology can be

computed as:

∫
𝑀

𝐵 ≃ FM𝑀 ∘𝕃
FM𝑛

𝐵 = hocoeq(FM𝑀 ∘ FM𝑛 ∘ 𝐵 ⇉ FM𝑀 ∘ 𝐵). (2.5.3)

We now work in the category of chain complexes over ℝ. We use the formality
theorem (Equation (2.1.15)) and the fact that weak equivalences of operads induce
Quillen equivalence between categories of right modules (resp. categories of
algebras) [Fre09, Theorems 16.A and 16.B]. Thus, to any homotopy class [𝐵] of
𝐸𝑛-algebras in the category of chain complexes, there corresponds a homotopy
class [𝐵̃] of e𝑛-algebras (which is generally not easy to describe).

Using Theorem 2.4.14, a game of adjunctions [Fre09, Theorems 15.1.A and
15.2.A] shows that:

∫
𝑀

𝐵 ≃ G∨
𝐴 ∘𝕃

e𝑛
𝐵̃, (2.5.4)

where 𝐴 is the Poincaré duality model of 𝑀 mentioned in the theorem, and G∨
𝐴 is

the right e𝑛-module dual to G𝐴. Note that we forget the Hopf structure of G𝐴 in
Equation 2.5.4.

2.5.2 Higher enveloping algebras

Consider the forgetful functor from nonunital 𝐸𝑛-algebras to homotopy Lie alge-
bras. Knudsen [Knu16, Theorem A] constructs a left adjoint 𝑈𝑛 to this forgetful
functor, called the higher enveloping algebra functor. He also gives a way of
computing factorization homology of higher enveloping algebras If 𝔤 is a Lie
algebra, then so is 𝐴 ⊗ 𝔤 for any CDGA 𝐴. Then the factorization homology of
𝑈𝑛(𝔤) on 𝑀 is given by [Knu17, Theorem 3.16].:

∫
𝑀

𝑈𝑛(𝔤) ≃ CCE
∗ (A−∗

PL(𝑀) ⊗ 𝔤) (2.5.5)
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2 The Lambrechts–Stanley Model of Configuration Spaces

where CCE
∗ is the Chevalley–Eilenberg complex and A−∗

PL(𝑀) is the CDGA of
rational piecewise polynomial differential forms, with the usual grading reversed
to obtain a homological grading.

Let 𝑛 be at least 2. We use again the formality theorem and standard facts about
Quillen equivalences induced by weak equivalences of operads. Consider the
canonical resolution hoLie𝑛

∼
Lie𝑛, the standard inclusion Lie𝑛 ⊂ e𝑛, and the

maps of operads Lie𝑛 → Graphs∨
𝑛 which sends the generator (the bracket) to the

graph with two external vertex and an edge between the two (see the part about
twisting in Section 2.1.3). We can find a morphism of operads hoLie𝑛 → 𝐶∗(FM𝑛)
which makes the following diagram commute (the square on the right only up
to homotopy):

e𝑛 Graphs∨
𝑛 𝐶∗(FM𝑛)

Lie𝑛 Lie𝑛 hoLie𝑛

∼ ∼

= ∼

∃(ℎ)

These morphisms of operads yield functors between the corresponding cat-
egories of algebras. The forgetful functor 𝑈𝑛 in Knudsen’s work corresponds
(in an informal sense) to the right adjoint (obtained by a Kan extension) of the
induced functor 𝐶∗(FM𝑛)-Alg → hoLie-Alg which is the composite of the functor
induced by the morphism of operads and a shift in degree.

The inclusion Lie𝑛 ⊂ e𝑛 induces a functor e𝑛-Alg → Lie-Alg that maps an
(𝑛 − 1)-Poisson algebra 𝐵 to its underlying Lie algebra 𝐵[1 − 𝑛]. Its left adjoint 𝑈̃𝑛
corresponds to 𝑈𝑛, thanks to the commutative diagram above; in other words,
given a Lie algebra 𝔤, which we can also see as an hoLie-algebra, we have 𝑈𝑛(𝔤) ≃
𝑈̃𝑛(𝔤). It is given by a symmetric algebra 𝑈̃𝑛(𝔤) = 𝑆(𝔤[𝑛 − 1]), with a shifted Lie
bracket is defined using the Leibniz rule.

Proposition 2.5.6. Let 𝐴 be a Poincaré duality CDGA. Then we have a quasi-isomor-
phism of chain complexes:

G∨
𝐴 ∘𝕃

e𝑛
𝑆(𝔤[𝑛 − 1]) ∼ CCE

∗ (𝐴−∗ ⊗ 𝔤).

If 𝐴 is a Poincaré duality model of 𝑀, we have 𝐴 ≃ Ω∗
PA(𝑀) ≃ A∗

PL(𝑀) ⊗ℚ
ℝ [Har+11, Theorem 6.1]. It follows that the Chevalley–Eilenberg complex of
the previous proposition is weakly equivalent to the Chevalley–Eilenberg com-
plex of Equation (2.5.5). By Equation (2.5.3), the derived circle product over e𝑛
computes the factorization homology of 𝑈𝑛(𝔤) on 𝑀, and so we recover a vari-
ant of Knudsen’s theorem (over the reals) for closed framed simply connected
manifolds.

82



2.5 Factorization homology of universal enveloping 𝐸𝑛-algebras

Let I be the unit of the composition product, defined by I(1) = ℝ and I(𝑈) = 0
for #𝑈 ≠ 1. Let Λ be the suspension of operads, satisfying

ΛP ∘ (𝑋[−1]) = (P ∘ 𝑋)[−1] = I[−1] ∘ (P ∘ 𝑋).

As as symmetric collection, ΛP is simply given by ΛP = I[−1] ∘ P ∘ I[1]. Recall
that we let Lie𝑛 = Λ1−𝑛Lie.

The symmetric collection

L𝑛 ≔ Lie ∘ I[1 − 𝑛] = I[1 − 𝑛] ∘ Lie𝑛 (2.5.7)

is a (Lie, Lie𝑛)-bimodule, i.e. a Lie-algebra in the category of Lie𝑛-right modules.
We have L𝑛(𝑈) = (Lie𝑛(𝑈))[1 − 𝑛]. This bimodule satisfies, for any Lie algebra 𝔤,

L𝑛 ∘Lie𝑛
𝔤[𝑛 − 1] ≅ 𝔤 as Lie algebras. (2.5.8)

We can view the CDGA 𝐴−∗ as a symmetric collection concentrated in arity 0,
and as such it is a commutative algebra in the category of symmetric collections.
Thus the tensor product

𝐴−∗ ⊗ L𝑛 = {𝐴−∗ ⊗ L𝑛(𝑘)}𝑘≥0

becomes a Lie-algebra in right Lie𝑛-modules, where the right Lie𝑛-module
structure comes from L𝑛 and the Lie algebra structure combines the Lie alge-
bra structure of L𝑛 and the CDGA structure of 𝐴−∗. Its Chevalley–Eilenberg
complex CCE

∗ (𝐴−∗ ⊗ L𝑛) is well-defined, and by functoriality of CCE
∗ , it is a right

Lie𝑛-module.
The proof of the following lemma is essentially found (in a different language)

in the work of Félix and Thomas [FT04, Section 2].

Lemma 2.5.9. The right Lie𝑛-modules G∨
𝐴 and CCE

∗ (𝐴−∗ ⊗ L𝑛) are isomorphic.

Proof. We will actually define a non-degenerate pairing

⟨−, −⟩ ∶ G𝐴(𝑈) ⊗ CCE
∗ (𝐴−∗ ⊗ L𝑛)(𝑈) → ℝ

for each finite set 𝑈, compatible with differentials and the right Lie𝑛-(co)module
structures. As both complexes are finite-dimensional in each degree, this is
sufficient to prove that they are isomorphic.

Recall that the Chevalley–Eilenberg complex CCE
∗ (𝔤) is given by the cofree

cocommutative conilpotent coalgebra 𝑆𝑐(𝔤[−1]), together with a differential in-
duced by the Koszul duality morphism Λ−1Com∨ → Lie. It follows that as a
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2 The Lambrechts–Stanley Model of Configuration Spaces

module, CCE
∗ (𝐴−∗ ⊗ L𝑛)(𝑈) is given by:

⨁
𝑟≥0

⎛⎜
⎝

⨁
𝜋∈Part𝑟(𝑈)

𝐴−∗ ⊗ L𝑛(𝑈1)[−1] ⊗ … ⊗ 𝐴−∗ ⊗ L𝑛(𝑈𝑟)[−1]⎞⎟
⎠

Σ𝑟

= ⨁
𝑟≥0

⎛⎜
⎝

⨁
𝜋∈Part𝑟(𝑈)

(𝐴𝑛−∗)⊗𝑟 ⊗ Lie𝑛(𝑈1) ⊗ … ⊗ Lie𝑛(𝑈𝑟)⎞⎟
⎠

Σ𝑟

(2.5.10)

where the sums run over all partitions 𝜋 = {𝑈1 ⊔…⊔𝑈𝑟} of 𝑈 and 𝐴𝑛−∗ = 𝐴−∗[−𝑛]
(which is a CDGA, Poincaré dual to 𝐴).

Fix some 𝑟 ≥ 0 and some partition 𝜋 = {𝑈1 ⊔ … ⊔ 𝑈𝑟}. We define a first pairing:

(𝐴⊗𝑈 ⊗ e∨
𝑛 (𝑈))⊗((𝐴𝑛−∗)⊗𝑟 ⊗ Lie𝑛(𝑈1) ⊗ … ⊗ Lie𝑛(𝑈𝑟)) → ℝ (2.5.11)

as follows:

• On the 𝐴 factors, the pairing uses the Poincaré duality pairing 𝜀𝐴. It is given
by:

(𝑎𝑢)𝑢∈𝑈 ⊗ (𝑎′
1 ⊗ … ⊗ 𝑎′

𝑟) ↦ ±𝜀𝐴(𝑎𝑈1
⋅ 𝑎′

1) … 𝜀𝐴(𝑎𝑈𝑟
⋅ 𝑎′

𝑟),

where 𝑎𝑈𝑖
= ∏

𝑢∈𝑈𝑖
𝑎𝑢.

• On the factor e∨
𝑛 (𝑈) ⊗ ⨂𝑟

𝑖=1 Lie𝑛(𝑈𝑖), it uses the duality pairing on e∨
𝑛 (𝑈) ⊗

e𝑛(𝑈) (recalling that e𝑛 = Com ∘ Lie𝑛 so we can view ⨂𝑟
𝑖=1 Lie𝑛(𝑈𝑖) as a

submodule of e𝑛(𝑈)).

The pairing in Equation (2.5.11) is the product of the two pairings we just
defined. It is extended linearly on all of (𝐴⊗𝑈 ⊗ e∨

𝑛 (𝑈)) ⊗ CCE
∗ (𝐴−∗ ⊗ L𝑛)(𝑈), and

it factors through the quotient defining G𝐴(𝑈) from 𝐴⊗𝑈 ⊗ e∨
𝑛 (𝑈).

To check the non-degeneracy of this pairing, recall the vector subspaces G𝐴⟨𝜋⟩
of Lemma 2.4.22, which are well-defined even though they are not preserved by
the differential if we do not consider the graded space E0G𝐴. Fix some partition
𝜋 = {𝑈1, … , 𝑈𝑟} of 𝑈, then we have an isomorphism of vector spaces:

G𝐴⟨𝜋⟩ ≅ 𝐴⊗𝑟 ⊗ Lie∨
𝑛 (𝑈1) ⊗ … ⊗ 𝐴 ⊗ Lie∨

𝑛 (𝑈𝑟).

It is clear that G𝐴⟨𝜋⟩ is paired with the factor corresponding to 𝜋 in Equa-
tion (2.5.10), using the Poincaré duality pairing of 𝐴 and the pairing between
Lie𝑛 and its dual; and if two elements correspond to different partitions, then
their pairing is equal to zero. Since both 𝜀𝐴 and the pairing between Lie𝑛 and its
dual are non-degenerate, the total pairing is non-degenerate.

84



2.5 Factorization homology of universal enveloping 𝐸𝑛-algebras

The pairing is compatible with the Lie𝑛-(co)module structures, i.e. the follow-
ing diagram commutes (a relatively easy but notationally tedious check):

G𝐴(𝑈) ⊗ CCE
∗ (𝐴−∗ ⊗ L𝑛)(𝑈/𝑊)

⊗ Lie𝑛(𝑊) G𝐴(𝑈) ⊗ CCE
∗ (𝐴−∗ ⊗ L𝑛)(𝑈)

G𝐴(𝑈/𝑊) ⊗ CCE
∗ (𝐴−∗ ⊗ L𝑛)(𝑈/𝑊)

Lie∨
𝑛 (𝑊) ⊗ Lie𝑛(𝑊) ℝ

1⊗∘𝑊

∘∨
𝑊⊗1 ⟨−,−⟩

⟨−,−⟩
⟨−,−⟩Lie𝑛

Finally, it is a straightforward but long computation that the pairing commutes
with differentials (i.e. ⟨𝑑(−), −⟩ = ±⟨−, 𝑑(−)⟩). It follows directly from the fact
that 𝜀𝐴(𝑎𝑎′) = ∑

(Δ𝐴) ±𝜀𝐴(𝑎Δ′
𝐴)𝜀𝐴(𝑎′Δ″

𝐴), which in turns stems from the definition
of Δ𝐴.

Proof of Proposition 2.5.6. The operad e𝑛 is given by the composition product Com∘
Lie𝑛 equipped with a distributive law that encodes the Leibniz rule. We get the
following isomorphism (natural in 𝔤):

G∨
𝐴 ∘e𝑛

𝑆(𝔤[𝑛 − 1]) = G∨
𝐴 ∘e𝑛

(Com ∘ 𝔤[𝑛 − 1])
≅ G∨

𝐴 ∘e𝑛
(e𝑛 ∘Lie𝑛

𝔤[𝑛 − 1])
≅ G∨

𝐴 ∘Lie𝑛
𝔤[𝑛 − 1].

According to Lemma 2.5.9, the right Lie𝑛-module G∨
𝐴 is isomorphic to CCE

∗ (𝐴−∗⊗
L𝑛). The functoriality of 𝐴−∗ ⊗ − and CCE

∗ (−), as well as Equation (2.5.8), imply
that we have the following isomorphism (natural in 𝔤):

G∨
𝐴 ∘Lie𝑛

𝔤[𝑛 − 1] ≅ CCE
∗ (𝐴−∗ ⊗ L𝑛) ∘Lie𝑛

𝔤[𝑛 − 1]
≅ CCE

∗ (𝐴−∗ ⊗ ((L𝑛) ∘Lie𝑛
𝔤[𝑛 − 1]))

≅ CCE
∗ (𝐴−∗ ⊗ 𝔤).

The derived circle product is computed by taking a cofibrant resolution of
𝑆(𝔤[𝑛 − 1]). Let 𝑄𝔤

∼ 𝔤 be a cofibrant resolution of the Lie algebra 𝔤. Then
𝑆(𝑄𝔤[𝑛 − 1]) is a cofibrant e𝑛-algebra, and by Künneth’s formula 𝑆(𝑄𝔤[𝑛 − 1]) →
𝑆(𝔤[𝑛 − 1]) is a quasi-isomorphism. It follows that:

G∨
𝐴 ∘𝕃

e𝑛
𝑆(𝔤[𝑛 − 1]) = G∨

𝐴 ∘e𝑛
𝑆(𝑄𝔤[𝑛 − 1]).

We therefore have a commutative diagram:

G∨
𝐴 ∘𝕃

e𝑛
𝑆(𝔤[𝑛 − 1]) G∨

𝐴 ∘e𝑛
𝑆(𝔤[𝑛 − 1])

CCE
∗ (𝐴−∗ ⊗ 𝑄𝔤) CCE

∗ (𝐴−∗ ⊗ 𝔤)

≅ ≅
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2 The Lambrechts–Stanley Model of Configuration Spaces

The Chevalley–Eilenberg functor preserves quasi-isomorphisms of Lie algebras,
and therefore the bottom map is a quasi-isomorphism. The proposition follows.

2.6 Outlook: The case of the 2-sphere and oriented

manifolds

We provide a generalization of the previous work for the 2-sphere, and we formu-
late a conjecture for higher dimensional closed manifolds that are not necessarily
framed.

2.6.1 Framed little disks and framed configurations

Following Salvatore–Wahl [SW03, Definition 2.1], we describe the framed little
disks operad as a semi-direct product. If 𝐺 is a topological group and P is an
operad in 𝐺-spaces, the semi-direct product P⋊𝐺 is the topological operad defined
by (P ⋊ 𝐺)(𝑛) = P(𝑛) × 𝐺𝑛 and explicit formulas for the composition. Similarly
if 𝐻 is a commutative Hopf algebra and C is a Hopf cooperad in 𝐻-comodules,
then the semi-direct product C ⋊ 𝐻 is defined by formally dual formulas.

The operad FM𝑛 is an operad in SO(𝑛)-spaces, the action rotating configurations.
There is thus an operad fFM𝑛 = FM𝑛 ⋊ SO(𝑛), the framed Fulton–MacPherson
operad, weakly equivalent to the standard framed little disks operad.

Given an oriented 𝑛-manifold 𝑀, there is a corresponding right module over
fFM𝑛, which we call fFM𝑀 [Tur13, Section 2]. The space fFM𝑀(𝑈) is a princi-
pal SO(𝑛)×𝑈-bundle over FM𝑀(𝑈). Since SO(𝑛) is an algebraic group, fFM𝑛 and
fFM𝑀(𝑈) are respectively an operad and a module in semi-algebraic spaces.

2.6.2 Cohomology of fFM𝑛 and potential model

The cohomology of SO(𝑛) is classically given by Pontryagin classes and Euler
classes:

𝐻∗(SO(2𝑛); ℚ) = 𝑆(𝛽1, … , 𝛽𝑛−1, 𝛼2𝑛−1) (deg 𝛼2𝑛−1 = 2𝑛 − 1)
𝐻∗(SO(2𝑛 + 1)) = 𝑆(𝛽1, … , 𝛽𝑛) (deg 𝛽𝑖 = 4𝑖 − 1)

By the Künneth formula, fe∨
𝑛 (𝑈) = e∨

𝑛 (𝑈) ⊗ 𝐻∗(SO(𝑛))⊗𝑈. We now provide
explicit formulas for the cocomposition [SW03]. If 𝑥 ∈ 𝐻∗(SO(𝑛)) and 𝑢 ∈ 𝑈,
denote as before 𝜄𝑢(𝑥) ∈ 𝐻∗(SO(𝑛))⊗𝑈. Let 𝑊 ⊂ 𝑈, then if 𝑥 is either 𝛽𝑖 or 𝛼2𝑛−1
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2.6 Outlook: The case of the 2-sphere and oriented manifolds

in the even case, we have:

∘∨
𝑊 (𝜄𝑢(𝑥)) =

⎧{
⎨{⎩

𝜄∗(𝑥) ⊗ 1 + 1 ⊗ 𝜄𝑢(𝑥), if 𝑢 ∈ 𝑊;
𝜄𝑢(𝑥) ⊗ 1, otherwise.

(2.6.1)

The formula for ∘∨
𝑊(𝜔𝑢𝑣) depends on the parity of 𝑛. If 𝑛 is odd, then ∘∨

𝑊(𝜔𝑢𝑣)
is still given by Equation (2.1.10). Otherwise, in fe∨

2𝑛 we have:

∘∨
𝑊 (𝜔𝑢𝑣) =

⎧{{
⎨{{⎩

𝜄∗(𝛼2𝑛−1) ⊗ 1 + 1 ⊗ 𝜔𝑢𝑣, if 𝑢, 𝑣 ∈ 𝑊;
𝜔𝑢𝑣 ⊗ 1, if 𝑢, 𝑣 ∉ 𝑊;
𝜔𝑢∗ ⊗ 1, if 𝑣 ∈ 𝑊, 𝑢 ∉ 𝑊.

(2.6.2)

From now on, we focus on the case of oriented surfaces. Let 𝑀 = 𝑆2 be
the 2-sphere, the only simply connected compact surface. We can choose 𝐴 =
𝐻∗(𝑆2) = 𝑆(𝜐)/(𝜐2) as our Poincaré duality model for 𝑆2. The Euler class of 𝐴 is
𝑒𝐴 = 𝜒(𝑆2)vol𝐴 = 2𝜐, and the diagonal class is given by Δ𝐴 = 𝜐 ⊗ 1 + 1 ⊗ 𝜐. It is
a standard fact about diagonal classes that 𝜇𝐴(Δ𝐴) = 𝑒𝐴. Let also 𝛼 ∈ 𝐻1(𝑆1) be
the generator (the “Euler class”).

Definition 2.6.3. The framed LS CDGA fG𝐴(𝑈) is given by:

fG𝐴(𝑈) = (𝐴⊗𝑈 ⊗ fe∨
2 (𝑈)/(𝜄𝑢(𝑎) ⋅ 𝜔𝑢𝑣 = 𝜄𝑣(𝑎) ⋅ 𝜔𝑢𝑣), 𝑑),

where the differential is given by 𝑑𝜔𝑢𝑣 = 𝜄𝑢𝑣(Δ𝐴) and 𝑑𝜄𝑢(𝛼) = 𝜄𝑢(𝑒𝐴).

Proposition 2.6.4. The collection {fG𝐴(𝑈)}𝑈 is a Hopf right fe∨
2 -comodule, with co-

composition given by the same formula as Equation (2.2.2).

Proof. The proofs that the cocomposition is compatible with the cooperad struc-
ture of fe∨

2 , and that this is compatible with the quotient, is the same as in the
proof of Proposition 2.2.1. It remains to check compatibility with differentials.

We check this compatibility on generators. The internal differential of 𝐴 =
𝐻∗(𝑆2) is zero, so it is easy to check that ∘∨

𝑊(𝑑(𝜄𝑢(𝑎))) = 𝑑(∘∨
𝑊(𝜄𝑢(𝑎))) = 0. Similarly,

using Equation (2.6.1), checking the equality on 𝛼 is immediate.
As before there several are cases to check for 𝜔𝑢𝑣. If 𝑢, 𝑣 ∈ 𝑊, then by Equa-

tion (2.6.2),

𝑑(∘∨
𝑊(𝜔𝑢𝑣)) = 𝑑(𝜄∗(𝛼) ⊗ 1 + 1 ⊗ 𝜔𝑢𝑣) = 𝜄∗(𝑒𝐴) ⊗ 1

= 𝜄∗(𝜇𝐴(Δ𝐴)) ⊗ 1 = ∘∨
𝑊(𝑑𝜔𝑢𝑣),

and otherwise the proof is identical to the proof of Proposition 2.2.1.

87



2 The Lambrechts–Stanley Model of Configuration Spaces

2.6.3 Connecting fG𝐴 to Ω∗
PA(fFM𝑆2)

The framed little 2-disks operad is known to be formal [GS10; Šev10]. We will
focus on the proof of Giansiracusa–Salvatore [GS10], which goes along the same
line as the proof of Kontsevich of the formality of FM𝑛. To simplify notations, let
𝐻 = 𝐻∗(𝑆1), which is a Hopf algebra.

The operad Graphs2 is an operad in 𝐻-comodules, so we may consider the
semi-direct product Graphs2 ⋊ 𝐻. Giansiracusa and Salvatore construct a zigzag:

fe∨
2

∼
Graphs2 ⋊ 𝐻 ∼ ΩPA(fFM2). (2.6.5)

The first map is the tensor product of Graphs2
∼

e∨
2 and the identity of 𝐻.

The second map is given by the Kontsevich integral on Graphs2 and by sending
the generator 𝛼 ∈ 𝐻 to the volume form of Ω∗

PA(𝑆1) (pulled back by the relevant
projection). They check that both maps are maps of Hopf (almost) cooperads,
and they are quasi-isomorphisms by the Künneth formula.
Theorem 2.6.6. The Hopf right comodule (fG𝐴, fe∨

2 ), where 𝐴 = 𝐻∗(𝑆2; ℝ), is quasi-
isomorphic to the Hopf right comodule (Ω∗

PA(fFM𝑆2), Ω∗
PA(fFM2)).

Proof. It is now straightforward to adapt the proof of Theorem C to this setting,
reusing the proof of Giansiracusa–Salvatore [GS10]. We build the zigzag:

fG𝐴 ← Graphs𝐴 ⋊ 𝐻 → Ω∗
PA(fFM𝑆2).

We simply choose 𝑅 = 𝐴 = 𝐻∗(𝑆2), mapping 𝜐 ∈ 𝐻2(𝑆2) to the volume form
of 𝑆2. Note that the propagator can be made completely explicit on 𝑆2, and it
can be checked that 𝑍𝜑 vanishes on all connected graphs with more than one
vertex [CW16, Proposition 80]. The middle term is a Hopf right (Graphs2 ⋊
𝐻)-comodule built out of Graphs𝐴 and 𝐻, using formulas similar to the formulas
defining Graphs2 ⋊ 𝐻 out of Graphs2 and 𝐻. The first map is given by the tensor
product of Graphs𝑅 → G𝐴 and the identity of 𝐻.

The second map is given by the morphism of Proposition 2.3.31 on the Graphs𝐴
factor, composed with the pullback along the projection fFM𝑆2 → FM𝑆2 . The
generator 𝛼 ∈ 𝐻 is sent to a pullback of a global angular form 𝜓 of the principal
SO(2)-bundle fFM𝑆2(1) → FM𝑆2(1) = 𝑆2 induced by the orientation of 𝑆2. This
form satisfies 𝑑𝜓 = 𝜒(𝑆2)vol𝑆2 .

The proof of Giansiracusa–Salvatore [GS10] then adapts itself to prove that
these two maps are maps of Hopf right comodules. The Künneth formula im-
plies that the first map is a quasi-isomorphism, and the second map induces
an isomorphism on the E2-page of the Serre spectral sequence associated to the
bundle fFM𝑆2 → FM𝑆2 and hence is itself a quasi-isomorphism.
Corollary 2.6.7. The CDGA fG𝐻∗(𝑆2)(𝑘) is a real model for Confor

𝑘 (𝑆2), the principal
SO(2)×𝑘-bundle over Conf𝑘(𝑆2) induced by the orientation of 𝑆2.
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2.6 Outlook: The case of the 2-sphere and oriented manifolds

A conjecture in higher dimensions If 𝑀 is an oriented 𝑛-manifold, Defini-
tion 2.6.3 readily adapts to define fG𝐻∗(𝑀), by setting 𝑑𝛼 to be the Euler class of
𝑀 (when 𝑛 is even), and 𝑑𝛽𝑖 to be the 𝑖th Pontryagin class of 𝑀. The proof of
Proposition 2.6.4 adapts easily to this new setting, and fG𝐻∗(𝑀) becomes a Hopf
right fe∨

𝑛 -comodule.
It was recently proved that the framed little disks operads is formal for even 𝑛

and not formal for odd 𝑛 ≥ 3 [Mor16; KW17].

Conjecture 2.6.8. If 𝑀 is a formal, simply connected, oriented closed 2𝑛-manifold, then
the pair (fG𝐻∗(𝑀), fe∨

2𝑛) is quasi-isomorphic to the pair (Ω∗
PA(fFM𝑀), Ω∗

PA(fFM2𝑛)).

To adapt our proof directly to this conjecture, the difficulty would be the
same as encountered by Giansiracusa–Salvatore [GS10], namely finding forms in
Ω∗

PA(fFM𝑛) corresponding to the generators of 𝐻∗(SO(𝑛)) and compatible with
the Kontsevich integral. The proof of the formality of fFM2𝑛 for 𝑛 > 1 [KW17]
is rather more involved than the proof for 𝑛 = 1, and it would be an interesting
question to try and adapt it for the conjecture.

If 𝑀 itself is not formal, it is also not clear how to define Pontryagin classes in
some Poincaré duality model of 𝑀 – the Euler class was simply given the Euler
characteristic. Nevertheless, for any oriented manifold 𝑀 we get invariants of
fe𝑛-algebras by considering the functor fG∨

𝐴 ∘𝕃
fe𝑛

(−). Despite not necessarily
computing factorization homology, these invariants could prove to be interesting.
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3 Configuration Spaces of
Manifolds with Boundary

We now extend the results of the previous chapter to compact manifolds with
boundary which admit a “surjective pretty model” [CLS15a].

For concreteness, let (𝑀, 𝜕𝑀) be a compact manifold with boundary. Given
some integer 𝑘 ≥ 0, its 𝑘th (ordered) configuration space is:

Conf𝑘(𝑀) ≔ {(𝑥1, … , 𝑥𝑘) ∈ 𝑀×𝑘 ∣ 𝑥𝑖 ≠ 𝑥𝑗 ∀𝑖 ≠ 𝑗}.

Suppose that the pair (𝑀, 𝜕𝑀) has a surjective pretty model induced by 𝜓 ∶ 𝑃 →
𝑄, where 𝑃 is a Poincaré duality CDGA and 𝜓 is surjective (see Section 3.1.2 for
the definitions). In short, this means that 𝑀 has been obtained by removing from
a closed manifold 𝑁 (of which 𝑃 is a model) a sub-polyhedron 𝑋 (of which 𝑄 is a
model). Roughly, the pretty model construction is a way of encoding Poincaré–
Lefschetz duality to obtain a model for 𝑀 = 𝑁 − 𝑋. This situation occurs the
case if 𝑀 is closed (in which case 𝑄 = 0), if both 𝑀 and 𝜕𝑀 are 2-connected
and the boundary retracts rationally onto its half-skeleton, if 𝑀 is a disk bundle
over a closed manifold, or if 𝑀 is obtained by removing the thickening of a
high-codimensional subpolyhedron from a closed manifold (see Theorem 3.1.12).
Then a model of 𝑀 is given by 𝐴 = 𝑃/𝐼, where 𝐼 = im(𝜓!) is an ideal of the
Poincaré duality CDGA 𝑃.

We use the same construction as in Chapter 2 to get a CDGA G̃𝐴(𝑘) (Equa-
tion (3.3.19)), which is somehow a “perturbation” of G𝐴(𝑘). We show that there is
an isomorphism of graded vector spaces between 𝐻∗(G𝐴(𝑘)) and 𝐻∗(Conf𝑘(𝑀))
over ℚ (see Theorem 3.3.16), which generalizes the result of [LS08a]. If 𝑀 is
closed, then 𝐼 = 0 and we recover the model considered in Chapter 2. If 𝑀 is sim-
ply connected with simply connected boundary but does not admit a surjective
pretty model, we have analogous results as soon as dim 𝑀 ≥ 7 using what we
dub “Poincaré–Lefschetz duality models”.

Just like in the previous chapter, we consider a colored version of the Fulton–
MacPherson compactification SFM𝑀(∅, 𝑘). This is a stratified space which contains
Conf𝑘(𝑀̊) as its interior, and the inclusion is a weak equivalence. If 𝑀 is framed,

Based on a work-in-progress in collaboration with P. Lambrechts.
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3 Configuration Spaces of Manifolds with Boundary

then the collection SFM𝑀(∅, −) = {SFM𝑀(∅, 𝑘)}𝑘≥0 is equipped with an action of
the Fulton–MacPherson operad, just like in the previous chapter.

The first result of this chapter can be summarized as:

Theorem D (See Theorem 3.5.37). Let 𝑀 be a smooth, simply connected connected
compact 𝑛-manifold with simply connected boundary of dimension at least 5. Assume
that either 𝑀 admits a surjective pretty model, or that 𝑛 ≥ 7 so that 𝑀 admits a Poincaré–
Lefschetz duality model. Let 𝐴 be the model built either out of the surjective pretty model
or the Poincaré–Lefschetz duality model.

Then for all 𝑘 ≥ 0, the CDGA G̃𝐴(𝑘) is weakly equivalent to Ω∗
PA(SFM𝑀(∅, 𝑘)), and

the equivalence is compatible with the action of the symmetric group Σ𝑘.
The collection G̃𝐴 is a Hopf right comodule over the cooperad e∨

𝑛 = 𝐻∗(FM𝑛). More-
over, if 𝑀 is framed, then the right Hopf comodule (G𝐴, e∨

𝑛 ) is weakly equivalent to
(Ω∗

PA(SFM𝑀(∅, −)), Ω∗
PA(FM𝑛)).

Corollary E. Let 𝑀 be a manifold with boundary which satisfies the hypotheses of
Theorem D. Then the real homotopy type of Conf𝑘(𝑀) only depends on the real homotopy
type of the pair (𝑀, 𝜕𝑀).

One can also consider colored configuration in the manifold 𝑀 and study the
space, for 𝑘, 𝑙 ≥ 0:

Conf𝑘,𝑙(𝑀) ≔ {(𝑥1, … , 𝑥𝑘, 𝑦1, … , 𝑦𝑙) ∈ Conf𝑘+𝑙(𝑀) ∣ 𝑥𝑖 ∈ 𝜕𝑀, 𝑦𝑗 ∈ 𝑀̊}.

Once again, we can consider its (colored) Fulton–MacPherson compactification
SFM𝑀(𝑘, 𝑙). This is a stratified space which contains Conf𝑘,𝑙(𝑀) as its interior,
the inclusion being a homotopy equivalence. When 𝑀 is framed, the collection
SFM𝑀 is equipped with an action of SFM𝑛, an operad weakly equivalent to the
Swiss-Cheese operad [Vor99]. Willwacher [Wil15] has built a model SGraphs𝑛
for SFM𝑛 which is similar in spirit to Kontsevich’s graph model Graphs𝑛 (due to
the non-formality of the Swiss-Cheese operad [Liv15], it is not possible to go all
the way to the cohomology 𝐻∗(SFM𝑛)). We then have:

Theorem F (See Theorem 3.5.42). Let 𝑀 be a smooth, simply connected manifold with
a simply connected boundary of dimension at least 5. Assume either that 𝑀 admits a
surjective pretty model or that 𝑛 ≥ 7. Then we have an explicit model SGraphs𝑅(𝑘, 𝑙) of
Conf𝑘,𝑙(𝑀) which is built out of the pretty (resp. PLD) model. It is compatible with the
action of the symmetric groups Σ𝑘 × Σ𝑙.

The collection SGraphs𝑅 is a Hopf right comodule over Willwacher’s [Wil15] model
SGraphs𝑛 for the Swiss-Cheese operad. Moreover, if 𝑀 is framed, then the Hopf right
comodule (SGraphs𝑅, SGraphs𝑛) is weakly equivalent to (Ω∗

PA(SFM𝑀), Ω∗
PA(SFM𝑛)).
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3.1 Background and recollections

Outline In Section 3.1, we recall some background on relative cooperads and
comodules over them, pretty models, colored Fulton–MacPherson compacti-
fications, and graph complexes. In Section 3.2, we define Poincaré–Lefschetz
duality models, a generalization of surjective pretty models, and we prove that
any simply connected manifold with simply connected boundary of dimension at
least 7 admits a Poincaré–Lefschetz duality model. In Section 3.3, we describe the
CDGA G̃𝐴(𝑘), and we prove that it computes the Betti numbers of Conf𝑘(𝑀). In
Section 3.4, we compute the cohomology of the Swiss-cheese version of the graph
complex twisted by a Maurer–Cartan element corresponding to the HKR isomor-
phism. In Section 3.5, we show that G̃𝐴(𝑘) is actually a real model of Conf𝑘(𝑀),
and we prove that it is compatible with the action of the Fulton–MacPherson
operad. We also build a graph complex SGraphs

𝑐𝑀,z𝑆
𝜑

𝑅 (𝑘, 𝑙) and we show that it
is a real model for Conf𝑘,𝑙(𝑀), compatible with the action of the compactified
colored Fulton–MacPherson operad.

3.1 Background and recollections

We mostly reuse the conventions of Section 2.1.1.

3.1.1 Colored (co)operads and (co)modules

We deal with special types of two-colored operads, called relative operads [Vor99],
or Swiss-Cheese type operads.

Definition 3.1.1. Given an operad P, a relative operad over P is an operad in the
category of right P-modules (see also Definition 1.1.1). This is equivalent to an
operad with two colors (traditionally called the “closed” color 𝔠 and the “open”
color 𝔬) such that operations with a closed output may only have closed inputs
and are given by P.

We can encode the part of the operad with an open output as a bisymmetric
collection Q, i.e. as a functor from the category of pairs of sets and pairs of
bijections to dg-modules. The first set in the pair corresponds to open inputs, and
the second to closed inputs. There is an identity 𝜂𝔬 ∈ Q({∗}, ∅), and the operadic
composition structure maps are given by:

∘𝑇 ∶ Q(𝑈, 𝑉/𝑇) ⊗ P(𝑇) → Q(𝑈, 𝑉) 𝑇 ⊂ 𝑉;
∘𝑊,𝑇 ∶ Q(𝑈/𝑊, 𝑉) ⊗ Q(𝑊, 𝑇) → Q(𝑈, 𝑉 ⊔ 𝑇) 𝑊 ⊂ 𝑈.

As mentioned in the definition, we can equivalently view Q as an operad in the
category of right P-modules. The P-module in arity 𝑈 is given by Q(𝑈, −), and
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3 Configuration Spaces of Manifolds with Boundary

one checks that the operad structure maps ∘𝑊,− ∶ Q(𝑈/𝑊, −)⊗Q(𝑊, −) → Q(𝑈, −)
are morphisms of right P-modules.

Given a (one-colored) cooperad C, a relative cooperad over C is defined dually
as a bisymmetric collection D equipped with structure maps:

∘∨
𝑇 ∶ D(𝑈, 𝑉) → D(𝑈, 𝑉/𝑇) ⊗ C(𝑊) 𝑇 ⊂ 𝑉; (3.1.2)

∘∨
𝑊,𝑇 ∶ D(𝑈, 𝑉 ⊔ 𝑇) → D(𝑈/𝑊, 𝑉) ⊗ D(𝑊, 𝑇) 𝑊 ⊂ 𝑈. (3.1.3)

Finally, a comodule over a relative C-cooperad D is given by a bisymmetric
collection N equipped with structure maps:

∘∨
𝑇 ∶ N(𝑈, 𝑉) → N(𝑈, 𝑉/𝑇) ⊗ C(𝑇) 𝑇 ⊂ 𝑉; (3.1.4)

∘∨
𝑊,𝑇 ∶ N(𝑈, 𝑉 ⊔ 𝑇) → N(𝑈/𝑊, 𝑉) ⊗ D(𝑊, 𝑇) 𝑊 ⊂ 𝑈. (3.1.5)

We can also define relative Hopf cooperads as relative cooperads in the cate-
gory of CDGAs.

3.1.2 Pretty models for compact manifolds with boundary

The cohomology of a compact manifold with boundary does not satisfy Poincaré
duality; it satisfies Poincaré–Lefschetz duality instead. Cordova Bulens, Lam-
brechts, and Stanley [CLS15a; CLS15b] use this idea to define “pretty rational
models” for Poincaré duality pairs such as (𝑀, 𝜕𝑀).

The rough idea is that one can see 𝑀 as the complement in some closed manifold
𝑁 of the thickening of some subpolyhedron 𝐾 ⊂ 𝑁. One then takes a Poincaré
duality model 𝑃 of 𝑁 and a model 𝑄 of 𝐾, and formally “kills” the forms that are
dual to homology classes on 𝐾 to obtain a model of 𝑀.

To be explicit, the starting data in the definition of a pretty model is:

• a Poincaré duality CDGA 𝑃 of formal dimension 𝑛 (in the rough picture
above, it would be a model for 𝑁);

• a connected CDGA 𝑄 satisfying 𝑄≥𝑛/2−1 = 0 (representing a model for
𝐾 ⊂ 𝑁);

• a morphism 𝜓 ∶ 𝑃 → 𝑄 (representing the restriction Ω∗(𝑁) → Ω∗(𝐾)).

The morphism 𝜓 makes 𝑄 into a 𝑃-module. Moreover, the dual 𝑃∨ (resp. 𝑄∨)
is a 𝑃-module (resp. 𝑄-module) by letting (𝑥 ⋅ 𝑓 )(𝑦) = ±𝑓 (𝑥𝑦), and so is the
desuspension 𝑃∨[−𝑛] (resp. 𝑄∨[−𝑛]).

The Poincaré duality structure on 𝑃 induces an isomorphism of 𝑃-modules:

𝜃𝑃 ∶ 𝑃 ≅ 𝑃∨[−𝑛] (3.1.6)
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given by 𝑎 ↦ 𝜀𝑃(𝑎 ⋅ −). The “shriek map” 𝜓! is the morphism of 𝑃-modules
defined by the composite map:

𝜓! ∶ 𝑄∨[−𝑛] 𝜓∨[−𝑛] 𝑃∨[−𝑛] 𝜃−1
𝑃
≅ 𝑃. (3.1.7)

More concretely, given 𝛼 ∈ 𝑄∨[−𝑛], 𝜓!(𝛼) is uniquely determined by:

∀𝑥 ∈ 𝑃, 𝜀𝑃(𝜓!(𝛼)𝑥) = 𝛼(𝜓(𝑥)). (3.1.8)

One must further assume that 𝜓𝜓! is “balanced”, i.e. that for all 𝑓 , 𝑔 ∈ 𝑄∨[−𝑛],
one has 𝜓𝜓!(𝑓 ) ⋅ 𝑔 = 𝑓 ⋅ 𝜓𝜓!(𝑔). Note that, under our assumptions, this is auto-
matically the case by degree reasons (in fact, we have 𝜓𝜓! = 0 because of the
hypothesis that 𝑄≥𝑛/2−1 = 0).

Definition 3.1.9. The mapping cone of a chain map 𝑓 ∶ 𝑋 → 𝑌, denoted either
by cone(𝑓 ) or 𝑌 ⊕𝑓 𝑋[1], is given as a graded vector space by 𝑌 ⊕ 𝑋[1], and the
differential is given by 𝑑(𝑦, 𝑥) = (𝑑𝑌𝑦 + 𝑓 (𝑥), 𝑑𝑋𝑥).

Note that 𝜓𝜓! = 0 implies that cone(𝜓𝜓!) = 𝑄⊕𝜓𝜓! 𝑄∨[1−𝑛] = 𝑄⊕𝑄∨[1−𝑛] is
simply given by the direct sum of 𝑄 and 𝑄∨[1 − 𝑛]. The balancedness assumption
ensures that one can make the mapping cones 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛] and 𝑄 ⊕ 𝑄∨[1 − 𝑛]
into CDGAs, using the product of 𝑃 (resp. 𝑄) and the 𝑃-module (resp. 𝑄-module)
structure of 𝑄∨[1 − 𝑛], and by letting the product of two elements of 𝑄∨[1 − 𝑛]
be zero. In other words, the product is defined by:

(𝑥, 𝛼) ⋅ (𝑦, 𝛽) ≔ (𝑥𝑦, 𝑥 ⋅ 𝛽 + 𝛼 ⋅ 𝑦).

Definition 3.1.10. The pretty model associated to (𝑃, 𝑄, 𝜓) is the CDGA mor-
phism:

𝜆 ≔ 𝜓 ⊕ id ∶ 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛] → 𝑄 ⊕ 𝑄∨[1 − 𝑛].

The pair (𝑀, 𝜕𝑀) admits a surjective pretty model if there exists a surjective
morphism 𝜓 ∶ 𝑃 → 𝑄 as above such that there is a commutative diagram of
CDGAs:

𝐵 ≔ 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛] 𝑅 Ω∗(𝑀)

𝐵𝜕 ≔ 𝑄 ⊕ 𝑄∨[1 − 𝑛] 𝑅𝜕 Ω∗(𝜕𝑀)

𝜆≔𝜓⊕id

𝑓
∼ ∼

𝑔

𝜌 res

𝑓𝜕

∼ ∼
𝑔𝜕

(3.1.11)

with each row a zigzag of quasi-isomorphisms.

Theorem 3.1.12 (Cordova Bulens, Lambrechts, and Stanley [CLS15a; CLS15b]).
The pair (𝑀, 𝜕𝑀) admits a surjective pretty model in the following cases:
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• If both 𝑀 and 𝜕𝑀 are 2-connected and the boundary 𝜕𝑀 retracts rationally on its
half-skeleton [CLS15a, Definition 6.1];

• If 𝑀 (resp. 𝜕𝑀) is the associated disk bundle (resp. sphere bundle) of a vector bundle
of even rank over a simply connected Poincaré duality space;

• If 𝑀 is obtained by removing a tubular neighborhood of a 2-connected subpolyhe-
dron 𝐾 from a 2-connected closed manifold 𝑁 satisfying 2 dim 𝐾 + 3 ≤ dim 𝑁 =
dim 𝑀.

By the results from Section 2.1.4, when 𝑀 is simply connected and 𝜕𝑀 = ∅,
one can take a Poincaré duality model 𝑃 of 𝑀 and 𝑄 = 0 to obtain a surjective
pretty model of (𝑀, ∅).

The CDGA 𝐵𝜕 is a Poincaré duality CDGA of formal dimension 𝑛 − 1, with
augmentation 𝜀𝐵𝜕

∶ 𝐵𝜕 → 𝕜[1 − 𝑛] given on

(𝑄 ⊕ 𝑄∨[1 − 𝑛])𝑛−1 = (𝑄0)∨

by evaluation on 1𝑄 ∈ 𝑄0. In other words the volume form is given by 1∨
𝑄. We

will also write 𝜀𝐵 ∶ 𝐵 → 𝕜[−𝑛] for the linear map given by 𝜀𝐵(𝑥, 𝑦) = 𝜀𝑃(𝑥).
Remark 3.1.13. The map 𝜀𝐵 is not a chain map unless 𝑄 = 0. Indeed if 𝑄 ≠ 0, then
we have 𝑑(1∨

𝑄) = 𝜓!(1∨
𝑄) = vol𝑃, and thus 𝜀𝐵 ∘ 𝑑 ≠ 0. Instead, there is a Stokes-like

formula:

𝜀𝐵(𝑑(𝑥, 𝛼)) = 𝜀𝐵𝜕
(𝜓(𝑥), 𝛼), ∀𝑥 ∈ 𝑃, 𝛼 ∈ 𝑄∨[1 − 𝑛], (3.1.14)

which means that 𝜀 = (𝜀𝐵, 𝜀𝐵𝜕
) defines a chain map 𝜀 ∶ cone(𝜓 ⊕ id) → ℝ[−𝑛 + 1].

Let 𝐼 ⊂ 𝑃 be the image of 𝜓!, which is an ideal. Then when 𝜓 is surjective, the
projection 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛] → 𝐴 ≔ 𝑃/𝐼 is a quasi-isomorphism. Thus if (𝑀, 𝜕𝑀)
admits a surjective pretty model, then 𝑀 admits a model which is a quotient of a
Poincaré duality CDGA. It is an open conjecture whether this is the case for all
compact manifolds with boundary.

There is an interpretation of Poincaré–Lefschetz duality in this case. The kernel
𝐾 ≔ ker 𝜓 ⊂ 𝑃 is equal to ker(𝜓 ⊕ id), which is a model for

Ω∗(𝑀, 𝜕𝑀) ≔ hoker(Ω∗(𝑀) → Ω∗(𝜕𝑀)).

Recall the isomorphism 𝜃𝑃 ∶ 𝑃 → 𝑃∨[−𝑛] from Equation (3.1.6). It induces dual
isomorphisms:

𝜃𝑃 ∶ 𝑃/𝐼 ≅ 𝐾∨[−𝑛], 𝜗𝑃 ∶ 𝐾 ≅ (𝑃/𝐼)∨[−𝑛], (3.1.15)

that are both induced by the non-degenerate pairing (𝑃/𝐼) ⊗ (ker 𝜓) → ℝ[−𝑛],
𝑥 ⊗ 𝑦 ↦ 𝜀𝑃(𝑥𝑦).
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Example 3.1.16. Consider the manifold 𝑀 = 𝐷𝑛 with boundary 𝜕𝑀 = 𝑆𝑛−1.
Intuitively, we can see 𝑀 as a sphere with a (thick) point removed. Thus consider
the Poincaré duality CDGA 𝑃 = 𝐻∗(𝑆𝑛) = 𝑆(vol𝑛)/(vol2𝑛) (with a generator of
degree 𝑛), and let 𝑄 = 𝐻∗(pt) = ℝ. Let also 𝜓 ∶ 𝑃 → 𝑄 be the augmentation.

We get as a model for 𝐷𝑛 the mapping cone 𝐵 = 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛], which is
spanned by three generators 1𝑃, 1∨

𝑄, and vol𝑛. All the nontrivial products vanish,
and 𝑑(1∨

𝑄) = vol𝑛. The quotient 𝐴 = 𝑃/𝐼 is isomorphic to 𝐻∗(𝐷𝑛) = ℝ, and
𝐵𝜕 = 𝑄 ⊕ 𝑄∨[1 − 𝑛] is isomorphic to 𝐻∗(𝜕𝐷𝑛) = 𝐻∗(𝑆𝑛−1) – both manifolds being
formal.

3.1.3 Compactified configuration spaces

Recall the Fulton–MacPherson operad FM𝑛 from Section 2.1.2, defined using
compactified configuration spaces. Recall also its right modules FM𝑀, defined
when 𝑀 is a closed framed manifold. These constructions generalize to manifolds
with boundary. Given a manifold with boundary (𝑀, 𝜕𝑀) and finite sets 𝑈, 𝑉,
define the colored configuration spaces:

Conf𝑈,𝑉(𝑀) ≔ {𝑐 ∈ Conf𝑈⊔𝑉(𝑀) ∣ 𝑐(𝑈) ⊂ 𝜕𝑀, 𝑐(𝑉) ⊂ 𝑀̊}. (3.1.17)

If 𝑀 is a compact manifold, then this configuration space can be compactified
into SFM𝑀(𝑈, 𝑉). This is a stratified manifold of dimension (𝑛−1)⋅#𝑈+𝑛⋅#𝑉. Note
that SFM𝑀(∅, {∗}) ≅ 𝑀, as a point may be infinitesimally close to the boundary of
𝑀.

Similarly if 𝑀 = ℍ𝑛 ⊂ ℝ𝑛 is the upper half-space, then Conf𝑈,𝑉(𝑀), after mod-
ding it out by the group of translations preserving ℍ𝑛 and positive dilatations,
can be compactified into a space SFM𝑛(𝑈, 𝑉) [Vor99]. It is a stratified manifold of
dimension 𝑛 ⋅ #𝑉 + (𝑛 − 1) ⋅ #𝑈 − 𝑛 as soon as #𝑈 + 2#𝑉 ≥ 2, and it is reduced
to a point otherwise. One has homeomorphisms SFM𝑛(𝑈, ∅) ≅ FM𝑛−1(𝑈) and
SFM𝑛(1, 1) ≅ 𝐷𝑛−1, and homotopy equivalences SFM𝑛(∅, 𝑉) ≃ FM𝑛(𝑉).

In this way, one obtains a relative operad SFM𝑛 over FM𝑛, weakly equivalent
to the Swiss-Cheese operad [Vor99] where operations with no open inputs are
allowed (see [HL12, Section 3] or Remark 1.1.2 for an explanation of the difference).
If 𝑀 is framed, then the collection SFM𝑀 also assemble into a right SFM𝑛-module
using insertion of configurations:

∘𝑇 ∶ SFM𝑀(𝑈, 𝑉/𝑇) × FM𝑛(𝑇) → SFM𝑀(𝑈, 𝑉) 𝑇 ⊂ 𝑉; (3.1.18)
∘𝑊,𝑇 ∶ SFM𝑀(𝑈/𝑊, 𝑉) × SFM𝑛(𝑊, 𝑇) → SFM𝑀(𝑈, 𝑉 ⊔ 𝑇) 𝑊 ⊂ 𝑈. (3.1.19)

The spaces SFM𝑛(𝑈, 𝑉) are clearly semi-algebraic sets. Moreover, 𝑀 itself can
be endowed with a semi-algebraic structure. Indeed, it can be triangulated and
is 𝐶1-diffeomorphic to some simplicial complex in some ℝ𝑁. Each simplex is a
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semi-algebraic set, and there is a finite number of them (because 𝑀 is compact),
hence 𝑀 itself is semi-algebraic. It follows that the spaces SFM𝑀(𝑈, 𝑉) are semi-
algebraic too. We can thus apply the theory of PA forms (see Section 2.1.2) and
obtain relative “almost” cooperads and comodules Ω∗

PA(SFM𝑛) and Ω∗
PA(SFM𝑀).

Moreover, the projections

𝑝𝑈,𝑉 ∶ SFM𝑀(𝑈 ⊔ 𝐼, 𝑉 ⊔ 𝐽) → SFM𝑀(𝑈, 𝑉) (3.1.20)

which forget some of the points are semi-algebraic bundles. Just like in Chap-
ter 2, we follow the proof from [LV14, Section 5.9] step by step, and we work
by induction on the number of points forgotten (because SA bundles can be
composed, see [Har+11, Proposition 8.5]). If we forget a terrestrial point, then
this essentially follows from the fact that the projections FM𝜕𝑀(𝑈 ⊔ 𝐼) → FM𝜕𝑀(𝑈)
are SA bundles. For aerial points, let us give an idea of the key point of the proof
for the projection 𝑝 ∶ SFM𝑀(∅, 2) → SFM𝑀(∅, 1) which forgets the point 2. Recall
that SFM𝑀(∅, 1) is homeomorphic to 𝑀. The fiber of 𝑝 over a point 𝑥 of the interior
of 𝑀 is given by 𝑀 with an open disk centered around 𝑥. The fiber over a point 𝑥
of the boundary has three types of points: either point 2 is far away from point 1,
or it is infinitesimally close to point 1. The set of configurations from the first case
is given by 𝑀 with a half-disk around point 1 removed. The set of configurations
from the second case is given by the space SFM𝑛(∅, 2) which specify how the two
points are infinitesimally arranged. The intersection of these two sets is given by
SFM𝑛(∅, 1), i.e. point 2 is infinitesimally close to 1 but “almost” leaves it. In other
words, the fiber is:

𝑝−1(𝑥) = 𝑀 − {half-disk around 𝑥} ∪SFM𝑛(∅,1) SFM𝑛(∅, 2), (3.1.21)

which is also homeomorphic to 𝑀 with an open disk removed, see Figure 3.1.1.

3.1.4 Graphs and the Swiss-Cheese operad

The Swiss-Cheese operad is not formal [Liv15; Wil17], thus there can be no
quasi-isomorphism between 𝐻∗(SFM𝑛) and Ω∗

PA(SFM𝑛). Nevertheless, there is a
model SGraphs𝑛 of SFM𝑛, due to Willwacher [Wil15], which is similar in spirit to
the cooperad Graphs𝑛. The cohomology 𝐻∗(SFM𝑛) ≅ 𝐻∗(FM𝑛) ⊗ 𝐻∗(FM𝑛−1) splits
as a Voronov product (see [Vor99] and Section 1.4.3), and SGraphs𝑛 is a way of
intertwining Graphs𝑛 and Graphs𝑛−1 in a way that corrects the lack of formality.
Remark 3.1.22. Our notations differ slightly from the notations of [Wil15]. We call
SGraphs𝑛 what is called Graphs1

𝑛 there, i.e. the space of operations with output
of “type 1” (which corresponds to “open”). This is a relative Hopf cooperad over
Graphs𝑛 (which would be Graphs2

𝑛 in Willwacher’s paper, the space of operations
with output of “type 2”, i.e. closed).
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𝑀 minus open half-disk

SFM𝑛(0, 1)

SFM𝑛(0, 2)

Figure 3.1.1: The fiber of SFM𝑀(∅, 2) → SFM𝑀(∅, 1) = 𝑀 above a point of the
boundary: (𝑀 − {half-disk}) ∪SFM𝑛(∅,1) SFM𝑛(∅, 2)

Let us assume from the start that 𝑛 ≥ 3 to avoid some difficulties that arise
when 𝑛 = 2. Note that in the 𝑛 = 2 case we have found a different model
(Chapter 1) for SFM2 which is instead inspired by Tamarkin’s proof of the formality
of the little 2-disks operad, obtained by intertwining the operad of parenthesized
permutations and the operad of parenthesized chord diagrams.

The idea is to construct a relative Hopf cooperad SGra𝑛 over Gra𝑛, with two
types of vertices: aerial ones, corresponding to closed inputs, and terrestrial ones,
corresponding to open inputs. Edges are oriented, and the source of an edge may
only be an aerial vertex. More concretely, one defines:

SGra𝑛(𝑈, 𝑉) ≔ 𝑆(𝑒𝑣𝑢)𝑢∈𝑈,𝑣∈𝑉 ⊗ 𝑆(𝑒𝑣𝑣′)𝑣,𝑣′∈𝑉 (3.1.23)

where the generators all have degree 𝑛 − 1 and the cooperad structure is given
by formulas similar to Equation (2.1.10).

A monomial in SGra𝑛(𝑈, 𝑉) can be seen as a directed graph with two kinds of
vertices: aerial and terrestrial. The set 𝑈 is the set of terrestrial vertices, and the
set 𝑉 is the set of aerial vertices. Note that unlike graphs in Gra𝑛, double edges
(of the type 𝑒2

𝑣𝑢 or 𝑒2
𝑣𝑣′) and loops (also known as tadpoles, of the type 𝑒𝑣𝑣) are

allowed.
This allows us to produce a first morphism 𝜔″ ∶ SGra𝑛 → Ω∗

PA(SFM𝑛). One can
define, for 𝑣, 𝑣′ ∈ 𝑉, 𝜔′(𝑒𝑣𝑣′) ≔ 𝑝∗

𝑣𝑣′(vol𝑛−1), where

vol𝑛−1 ∈ Ω𝑛−1
PA (SFM𝑛(∅, {𝑣, 𝑣′})) ≃ Ω𝑛−1

PA (FM𝑛({𝑣, 𝑣″})) ≃ Ω𝑛−1
PA (𝑆𝑛−1).

Recall that SFM𝑛({𝑢}, {𝑣}) is homeomorphic to 𝐷𝑛−1, and we write volℎ𝑛−1 for the
(𝑛 − 1)-form on SFM𝑛({𝑢}, {𝑣}) obtained by pulling back the volume form of 𝑆𝑛−1
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3 Configuration Spaces of Manifolds with Boundary

along the map 𝐷𝑛−1 → 𝑆𝑛−1 given by the hyperbolic geodesic (see [Wil15, Equa-
tion (8)]). Then for 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉, define 𝜔′(𝑒𝑣𝑢) ≔ 𝑝∗

𝑣𝑢(volℎ𝑛−1).
If Γ ∈ SGra𝑛(𝑈, 𝑉) is a graph, let

𝑐(Γ) ≔ ∫
SFM𝑛(𝑈,𝑉)

𝜔′(Γ). (3.1.24)

Note that these are analogous to the coefficients that appear in Kontsevich’s
universal 𝐿∞ formality morphism 𝑇poly → 𝐷poly, defined for 𝑛 = 2 [Kon03].

The cooperad SGra𝑛 is then twisted with respect to the sum of the Maurer–
Cartan element 𝜇 ∈ Def(hoLie𝑛 → Gra𝑛) with the Maurer–Cartan element
defined by 𝑐, to obtain a relative Hopf cooperad Tw SGra𝑛 over Tw Gra𝑛.

Concretely, Tw SGra𝑛(𝑈, 𝑉) is spanned by graphs with four types of vertices:
they can be either aerial or terrestrial, and either internal or external. Internal ter-
restrial vertices are of degree 1 − 𝑛 and indistinguishable among themselves, and
internal aerial vertices are of degree −𝑛 and indistinguishable among themselves.
Edges remain oriented and of degree 𝑛 − 1. External terrestrial vertices are in
bijection with 𝑈, and external aerial vertices are in bijection with 𝑉. The cooperad
structure maps collapse subgraphs, and the product glues graphs along external
vertices.

𝑢

𝑣1 𝑣2

Figure 3.1.2: A colored graph in Tw SGra𝑛({𝑢}, {𝑣1, 𝑣2}). Terrestrial vertices are
drawn on a dotted line to distinguish them, even though they are
not ordered. This graph is of degree 5(𝑛 − 1) − 𝑛 − (𝑛 − 1).

The differential has several summands:

• A first summand (corresponding to 𝜇) contracts edges between two aerial
vertices, with at least one being internal.

• A second summand is given by contracting subgraphs Γ′ ⊂ Γ with at
most one external vertex, which must be terrestrial, to obtain Γ/Γ′, with
coefficient 𝑐(Γ′). One should note that in Γ/Γ′, the new vertex representing
the collapsed subgraph is terrestrial, even if Γ′ is fully aerial.

• Finally, a third summand is given by forgetting some internal vertices and
keeping a subgraph Γ′ ⊂ Γ, with coefficient 𝑐(Γ/Γ′).
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3.1 Background and recollections

In the second and third cases, if the graph Γ/Γ′ contains an edge whose source
is terrestrial, then the summand is defined to be zero (see [Kon03, §6.4.2.2]).

One then checks that there is an extension 𝜔 ∶ Tw SGra𝑛 → Ω∗
PA(SFM𝑛), given

by a formula analogous to Equation (2.1.14). It remains to mod out by the bi-ideal
of graphs with internal components to obtain a Hopf cooperad SGraphs𝑛, and to
check that 𝜔 factors through the quotient.

Theorem 3.1.25 (Willwacher [Wil15]). The morphism 𝜔 ∶ SGraphs𝑛 → Ω∗
PA(SFM𝑛)

is a quasi-isomorphism of relative Hopf cooperads.

3.1.5 Graph complexes

There is a dg-module of particular interested appearing in Kontsevich’s proof of
the formality of FM𝑛. Define

fGC𝑛 ≔ Tw Gra𝑛(∅)[−𝑛] (3.1.26)

to be the full graph complex. It is spanned by graphs containing only internal
vertices, with a degree shift: if 𝛾 ∈ fGC𝑛 is a graph with 𝑘 edges and 𝑙 vertices,
then its degree 𝑘(𝑛 − 1) − 𝑙𝑛 + 𝑛. The differential is given by contracting edges. Its
suspension fGC𝑛[𝑛] is a CDGA, and the product is the disjoint union of graphs.
Since the differential cannot create new connected components, this a free CDGA,
and we have:

fGC𝑛 = 𝑆(GC𝑛[𝑛])[−𝑛] (3.1.27)
where GC𝑛 is the submodule of connected graph. The variants GC2

𝑛 (where
bivalent vertices are allowed but univalent vertices forbidden) and GC�𝑛 (where
loops are allowed) are defined similarly.
Remark 3.1.28. Our notations are slightly nonstandard. It is often the dual complex
GC∨

𝑛 which is called the graph complex, with a differential that is dually given
by creating internal vertices. This dual is a Lie algebra using insertion of graphs.

The homology of this dg-module is particularly hard to compute. It is known
that 𝐻0(GC∨

2 ) is isomorphic to the Grothendieck–Teichmüller Lie algebra 𝔤𝔯𝔱1
and that 𝐻<0(GC∨

2 ) = 0 [Wil14]; it is a conjecture that 𝐻1(GC2) = 0. The van-
ishing of 𝐻∗(GC2,∨

𝑛 ) in some degrees shows that the operad of little 𝑛-disks is
intrinsically formal as a Hopf cooperad [FW15]. And this homology computes
the homotopy groups of the space of rational automorphisms of the little 𝑛-disks
operad [FTW17].

There is also a Swiss-Cheese version of that graph complex appearing in the
description of Willwacher’s model for the Swiss-Cheese operad:

fSGC𝑛 ≔ Tw SGra𝑛(∅, ∅)[−𝑛] = 𝑆(SGC𝑛[𝑛])[−𝑛] (3.1.29)
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3 Configuration Spaces of Manifolds with Boundary

is the full Swiss-Cheese graph complex, a symmetric algebra on its subcomplex
of connected graphs. Its dual SGC∨

𝑛 is a Lie algebra using insertion of graphs
(and the Lie algebra GC∨

𝑛 acts on SGC𝑛), and is sometimes also denoted KGC𝑛.
The Kontsevich integrals 𝑐 ∈ SGC∨

𝑛 define a Maurer–Cartan element in this Lie
algebra.

3.2 Poincaré–Lefschetz duality models

3.2.1 Motivation

In Section 3.1.2, we recalled the definition of pretty models. If 𝑀 admits a sur-
jective pretty model (see Theorem 3.1.12) induced by 𝜓 ∶ 𝑃 → 𝑄, then we get a
diagram as in Equation (3.1.11):

𝐾 ≔ ker 𝜆

𝐴 ≔ 𝑃/𝐼 𝐵 ≔ 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛] 𝑅 Ω∗
PA(𝑀)

𝐵𝜕 ≔ 𝑄 ⊕ 𝑄∨[1 − 𝑛] 𝑅𝜕 Ω∗
PA(𝜕𝑀)

non degen.

pairing

𝜆=𝜓⊕id

𝜋
∼

𝑓
∼ ∼

𝑔

𝜌 res

𝑓𝜕

∼ ∼
𝑔𝜕

(3.2.1)

Recall that 𝐼 ⊂ 𝑃 is the image of 𝜓! ∶ 𝑄∨[1 − 𝑛] → 𝑃. We consider the diagonal
cocycle Δ𝑃 ∈ 𝑃⊗2 as in Equation (2.1.18), and we implicitly view it as an element
of 𝐵⊗2 using the inclusion 𝐵 ⊂ 𝑃. We let Δ𝐴 ∈ 𝐴⊗2 be the image of Δ𝑃 under
the projection 𝜋 ∶ 𝐵 → 𝐴. Let 𝐾 be the kernel of 𝜓, which is also the kernel of
𝜆 = 𝜓 ⊕ id.

While they are quite useful, we do not know whether all manifolds with
boundary admit a surjective pretty model. We will deal with a more general
notion, which we dub “Poincaré–Lefschetz duality models” (or “PLD models” for
short), and which are available as soon as dim 𝑀 ≥ 7 and 𝑀 and 𝜕𝑀 are simply
connected. The goal is to obtain a diagram similar to Equation (3.2.1) without
assuming that 𝐵 (resp. 𝐵𝜕) is of the form 𝑃 ⊕𝜓! 𝑄∨[1 − 𝑛] (resp. 𝑄 ⊕ 𝑄∨[1 − 𝑛]).

Let us first motivate our definition. It is always possible to find a surjective
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3.2 Poincaré–Lefschetz duality models

model 𝜌 for 𝑀:1

𝑅 Ω∗
PA(𝑀)

𝑅𝜕 Ω∗
PA(𝜕𝑀)

𝜌

𝑓
∼

res

𝑓𝜕
∼

(3.2.2)

We can still define a chain map (𝜀, 𝜀𝜕) ∶ cone(𝜌) → ℝ[−𝑛 + 1] by 𝜀(𝑥) = ∫
𝑀

𝑓 (𝑥)
and 𝜀𝜕(𝑦) = ∫

𝜕𝑀
𝑓𝜕(𝑦). If we let 𝐾𝑅 = ker(𝜌), this yields dual maps 𝜃𝑅 ∶ 𝑅 →

𝐾∨
𝑅[−𝑛] and 𝜗𝑅 ∶ 𝐾𝑅 → 𝑅∨[−𝑛], which are quasi-isomorphisms by Poincaré–

Lefschetz duality. However, they are not necessarily isomorphisms, contrary to
the maps 𝜃𝐵, 𝜗𝐵 defined in the setting of surjective pretty models. This prevents
us from carrying out the arguments of Section 3.3. The idea of this section is to
adapt the proofs of [LS08b] in order to obtain a surjective model of (𝑀, 𝜕𝑀) for
which 𝜃 is surjective and 𝜗 is injective.

If the morphism 𝜃𝑅 were surjective (which is equivalent to 𝜗𝑅 being injective),
then we would obtain an induced isomorphism 𝑅/ ker 𝜃 ≅ 𝐾∨[−𝑛], and the
quotient map 𝑅 → 𝑅/ ker 𝜃𝑅 would be a quasi-isomorphism by the 2-out-of-3
property. We would thus get an actual isomorphism between a model of 𝑀 and
a model for the homology of 𝑀.

3.2.2 Definition and existence

Definition 3.2.3. A Poincaré–Lefschetz duality pair (or “PLD pair” for short)
of formal dimension 𝑛 is a CDGA morphism 𝜆 ∶ 𝐵 → 𝐵𝜕 between two connected
CDGAs, equipped with a chain map2 𝜀 ∶ cone(𝜆) → ℝ[1 − 𝑛], and such that:

• The pair (𝐵𝜕, 𝜀𝐵𝜕
) is a Poincaré duality CDGA of formal dimension 𝑛 − 1;

• Let 𝐾 ≔ ker 𝜆, and let 𝜃𝐵 ∶ 𝐵 → 𝐾∨[−𝑛] be defined by 𝜃𝐵(𝑏)(𝑘) = 𝜀(𝑏𝑘); then
we require 𝜃𝐵 to be surjective and to be a quasi-isomorphism.

If (𝐵 𝜆−→ 𝐵𝜕, 𝜀) is a PLD pair, then

• the CDGA 𝐵 is quasi-isomorphic to its quotient 𝐴 ≔ 𝐵/ ker 𝜃𝐵;

• the map 𝜃 ∶ 𝐴 → 𝐾∨[−𝑛] induced by 𝜃𝐵 is an isomorphism of 𝐵⊗2-modules;

• Equivalently, the pairing 𝐴𝑖 ⊗ 𝐾𝑛−𝑖 → ℝ, given by 𝑎 ⊗ 𝑘 ↦ 𝜀𝐵(𝑎𝑘), is non-
degenerate for all 𝑖 ∈ ℤ.

1. We can also assume that the maps 𝑓, 𝑓𝜕 factor through the sub-CDGAs of trivial forms in
order to integrate along the fibers of the canonical projections, see [CW16, Appendix C].

2. Recall that this is equivalent to the data of two linear maps 𝜀𝐵 ∶ 𝐵𝑛 → ℝ and 𝜀𝐵𝜕
∶ 𝐵𝑛−1

𝜕 → ℝ
satisfying the “Stokes formula” 𝜀𝐵(𝑑𝑥) = 𝜀𝐵𝜕

(𝜆(𝑥)) and 𝜀𝐵𝜕
(𝑑𝑦) = 0.
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3 Configuration Spaces of Manifolds with Boundary

Example 3.2.4. A surjective pretty model is an example of a PLD pair.

Definition 3.2.5. A Poincaré–Lefschetz duality model of (𝑀, 𝜕𝑀) is a PLD pair
𝜆 ∶ 𝐵 → 𝐵𝜕 which is a model of the inclusion 𝜕𝑀 ⊂ 𝑀, in the sense that we can
fill out the following diagram:

𝐵 𝑅 Ω∗
PA(𝑀)

𝐵𝜕 𝑅𝜕 Ω∗
PA(𝜕𝑀)

𝜆 𝜌

∼ ∼

res

∼ ∼

.

Remark 3.2.6. In that case, 𝐻∗(𝐴) ≅ 𝐻∗(𝑀), 𝐻∗(𝐾) ≅ 𝐻∗(𝑀, 𝜕𝑀), and the isomor-
phism 𝜃 is given by Poincaré–Lefschetz duality 𝐻∗(𝑀) ≅ 𝐻𝑛−∗(𝑀, 𝜕𝑀).

Proposition 3.2.7. Let 𝑀 be a simply connected 𝑛-manifold with simply connected
boundary, and assume that 𝑛 ≥ 7. Then (𝑀, 𝜕𝑀) admits a PLD model.

Proof. We start with some surjective model 𝜌 ∶ 𝑅 → 𝑅𝜕 as in Equation (3.2.2), and
we will build a PLD model out of it.

We keep the terminology of [LS08b]. We can find a surjective quasi-isomor-
phism 𝑔𝜕 ∶ 𝑅𝜕 → 𝐵𝜕, where 𝐵𝜕 is a Poincaré duality CDGA, by [LS08b]. We let 𝐾𝑅
be the kernel of 𝜌‴ ≔ 𝑔𝜕∘𝜌 and we define the chain map 𝜀𝑅 ∶ cone(𝜌′) → ℝ[−𝑛+1].
Let 𝒪 ≔ ker 𝜗𝑅 ⊂ 𝐾𝑅 be the ideal of “orphans”, i.e.

𝒪 ≔ ker 𝜗𝑅 = {𝑦 ∈ 𝐾𝑅 ∣ ∀𝑥 ∈ 𝑅, 𝜗𝑅(𝑦)(𝑥) = 𝜀𝑅(𝑥𝑦) = 0}. (3.2.8)

We could consider (for a moment) the new short exact sequence:

0 → (𝐾 ≔ 𝐾𝑅/𝒪) → (𝐵 ≔ 𝑅/𝒪) 𝜆 𝐵𝜕 → 0. (3.2.9)

There is an induced chain map 𝜀𝐵 ∶ cone(𝜆) → ℝ[−𝑛 + 1], and 𝜗𝐵 ∶ 𝐾 → 𝐵∨[−𝑛]
is injective because we killed all the orphans. Thus we do obtain an isomorphism
𝐵/ ker 𝜃𝐵 ≅ 𝐾∨[−𝑛] induced by 𝜃𝐵.

The problem is that the ideal 𝒪 is not necessarily acyclic, thus 𝜆 is not necessarily
a model of (𝑀, 𝜕𝑀) anymore. Indeed, by Poincaré–Lefschetz duality, all we know
is that a cycle 𝑜 ∈ 𝒪 is always the boundary of some element 𝑧 ∈ 𝐾; but one may
not always choose 𝑧 ∈ 𝒪. The idea, just like in [LS08b], is to extend the CDGA 𝑅
by acyclic cofibrations (over 𝐵𝜕) in order to make the ideal of orphans acyclic.

Thanks to our connectivity assumptions on the manifold and its boundary,
we can assume that the model 𝜌 ∶ 𝑅 → 𝑅𝜕 of (𝑀, 𝜕𝑀) and the chain map 𝜀𝑅 ∶
cone(𝜌′) → ℝ[−𝑛 + 1] satisfy:

• 𝜌 is surjective, hence so is 𝜌′ ≔ 𝑔𝜕 ∘ 𝜌, and we let 𝐾𝑅 = ker(𝜌′);
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3.2 Poincaré–Lefschetz duality models

• both 𝑅 and 𝑅𝜕 are of finite type;

• both 𝑅 and 𝑅𝜕 are simply connected, i.e. 𝑅0 = 𝑅0
𝜕 = ℝ and 𝑅1 = 𝑅1

𝜕 = 0;

• we have 𝑅2
𝜕 ⊂ ker 𝑑 and 𝐾2 ⊂ ker 𝑑;3

• the morphisms 𝜃𝑅, 𝜗𝑅 induced by 𝜀𝑅 are quasi-isomorphisms.

We say that the pair (𝜌, 𝜀𝑅) is a “good” pair if it satisfies all these assumptions.
Let us say that its orphans are 𝑘-half-acyclic if 𝐻𝑖(𝒪) = 0 for 𝑛/2 + 1 ≤ 𝑖 ≤ 𝑘. This
condition is void when 𝑘 = 𝑛/2, and if 𝑘 = 𝑛 + 1 then Poincaré–Lefschetz duality
implies that 𝒪 is acyclic (see [LS08b, Proposition 3.6]).

We will now work by induction (starting at 𝑘 = 𝑛/2) and we assume that we
are given a good pair (𝜌, 𝜀𝑅) whose orphans are (𝑘 − 1)-half-acyclic. We will build
an extension:

0 𝐾𝑅 𝑅 𝑅𝜕 0

0 𝐾̂𝑅 𝑅̂ 𝑅𝜕 0

∼

𝜌

∼ =

̂𝜌

(3.2.10)

and an extension ̂𝜀𝑅 ∶ cone( ̂𝜌′) → ℝ[−𝑛 + 1] of 𝜀𝑅 such that ( ̂𝜌, ̂𝜀) is good and its
orphans are 𝑘-half-acyclic.

We follow closely [LS08b, Sections 4 and 5], adapting the proof where needed.
Let 𝑙 = dim(𝒪𝑘 ∩ ker 𝑑) − dim(𝑑(𝒪𝑘−1)) and choose 𝑙 linearly independent cycles
𝛼1, … , 𝛼𝑙 ∈ 𝒪𝑘 such that

𝒪𝑘 ∩ ker 𝑑 = 𝑑(𝒪𝑘−1) ⊕ ⟨𝛼1, … , 𝛼𝑙⟩. (3.2.11)

These are the obstructions to 𝒪 being 𝑘-half acyclic. Because 𝜗𝑅 is a quasi-
isomorphism and 𝜗𝑅(𝛼𝑖) = 0, there exists 𝛾′

𝑖 ∈ 𝐾𝑘−1 such that 𝑑𝛾′
𝑖 = 𝛼𝑖.

Let 𝑚 ≔ dim 𝐻∗(𝑅) = dim 𝐻∗(𝐾𝑅), and choose cycles ℎ1, … , ℎ𝑚 ∈ 𝑅 such that
([ℎ1], … , [ℎ𝑚]) is a basis of 𝐻∗(𝑅). By Poincaré–Lefschetz duality there exists
cycles ℎ′

1, … , ℎ′
𝑚 in 𝐾𝑅 such that 𝜀(ℎ𝑖ℎ′

𝑗) = 𝛿𝑖𝑗 (and these form a basis for 𝐻∗(𝐾)).
Let

𝛾𝑖 ≔ 𝛾′
𝑖 − ∑

𝑗
𝜀(𝛾′

𝑖 ℎ𝑗)ℎ′
𝑗 ∈ 𝐾𝑘−1, (3.2.12)

and let Γ be the subspace of 𝐾𝑘−1 generated by the 𝛾𝑖. Then a proof similar to the
proof of [LS08b, Lemma 4.1] shows that 𝑑𝛾𝑖 = 𝛼𝑖, and if 𝑦 ∈ 𝑅 is a cycle, then
𝜀(𝛾𝑖𝑦) = 𝜗(𝛾𝑖)(𝑦) = 0.

3. Since we require 𝜌 to be surjective, it is possible that not all elements of 𝑅2 are cycles, because
some of the classes from 𝐻2(𝜕𝑀) may need to be killed. Check Example 3.1.16 when 𝑀 = 𝐷3.
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Now let

𝑅̂ ≔ (𝑅 ⊗ 𝑆(𝑐1, … , 𝑐𝑙, 𝑤1, … , 𝑤𝑙), 𝑑𝑐𝑖 = 𝛼𝑖, 𝑑𝑤𝑖 = 𝑐𝑖 − 𝛾𝑖), (3.2.13)

where the 𝑐𝑖 and the 𝑤𝑖 are new variables of degrees 𝑘 − 1 and 𝑘 − 2.
Extend 𝜌 to ̂𝜌 ∶ 𝑅̂ → 𝑅𝜕 by declaring that ̂𝜌(𝑐𝑖) = ̂𝜌(𝑤𝑖) = 0. It follows that

𝐾̂𝑅 ≔ ker ̂𝜌 = (𝐾𝑅 ⊗ 𝑆(𝑐𝑖, 𝑤𝑗)1≤𝑖,𝑗≤𝑙, 𝑑). (3.2.14)

It is not hard to see that 𝑅 ↪ 𝑅̂ is an acyclic cofibration (compare with [LS08b,
Lemma 4.2]), and so is 𝐾 ↪ 𝐾̂. Finally, since all the 𝛾𝑖 and 𝛼𝑖 are in ker ̂𝜌, one
can extend 𝜀𝑅 to ̂𝜀𝑅 ∶ cone( ̂𝜌) → ℝ[−𝑛 + 1] by formulas identical to [LS08b,
Equation 4.5], which works because 𝑛 ≥ 7. It is clear that ( ̂𝜌, ̂𝜀𝑅) is still a good
pair. We let ̂𝜃𝑅, ̂𝜗𝑅 be the quasi-isomorphisms induced by the pairing, and we
finally let ̂𝒪 ≔ ker ̂𝜗𝑅.

It remains to check that ̂𝒪 is 𝑘-half-acyclic, knowing that 𝒪 is (𝑘 −1)-half-acyclic.
First, we can reuse the proofs of [LS08b, Lemmas 5.2 and 5.3] to check that if
𝑖 > 𝑛 − 𝑘 + 2 then 𝒪𝑖 ⊆ ̂𝒪𝑖, and if 𝑖 ∈ {𝑘 − 2, 𝑘 − 1} then ̂𝒪𝑖 ∩ ker 𝑑 ⊂ 𝒪𝑖 ∩ ker 𝑑.
The only difference is that instead of the hypothesis 𝑑(𝑅2) = 0, we instead have
𝑑(𝐾2

𝑅) = 0.
Now, just like [LS08b], we have several cases to check. If we have 𝑘 ≥ 𝑛/2 + 2,

or if we have 𝑛 odd and 𝑘 = (𝑛 + 1)/2 + 1, then the proof goes through unchanged
up to slight changes of notation. However, if 𝑛 is even and 𝑘 = 𝑛/2 + 1, more
significant adaptations are needed, even if the idea is the same. We’d like to check
that ̂𝒪𝑘 ∩ ker 𝑑 ⊂ 𝑑( ̂𝒪𝑘−1). We already know that

̂𝒪𝑘 ∩ ker 𝑑 ⊂ 𝒪𝑘 ∩ ker 𝑑 = 𝑑(𝒪𝑘−1) ⊕ ⟨𝛼𝑖⟩. (3.2.15)

Since 𝒪𝑘−1 ⊂ ̂𝒪𝑘−1 (the proof is identical to [LS08b, Lemma 5.7]), it is sufficient
to check that ̂𝒪𝑘−1 ∩ ⟨𝛼𝑖⟩ = 0. Let us write 𝑗 ∶ 𝐾𝑅 → 𝑅 for the inclusion, 𝑅̄ ≔ 𝑅/𝒪,
𝐾̄𝑅 ≔ 𝐾𝑅/𝒪, 𝑛 = 2𝑚 and 𝑘 = 𝑛/2 + 1 = 𝑚 + 1. Then we have long exact sequences
in cohomology and morphisms between them:

0 𝐻𝑚(𝑅) 𝐻𝑚(𝑅̄) 𝐻𝑚+1(𝒪) 0

0 𝐻𝑚(𝐾) 𝐻𝑚(𝐾̄𝑅) 𝐻𝑚+1(𝒪) 0

𝜋 𝛿

𝜋

𝑗

𝛿

̄𝚥 = (3.2.16)

The space 𝐻𝑚+1(𝒪) is generated by the classes of the 𝛼𝑖. We obtain a section
𝜎 ∶ 𝐻𝑚+1(𝒪) → 𝐻𝑚(𝐾̄𝑅) of 𝛿 by letting 𝜎([𝛼𝑖]) ≔ [𝛾𝑖].

Suppose that we have some nonzero element 𝛼 ∈ ⟨𝛼𝑖⟩; we’d like to show that it
is not in ̂𝒪𝑘, i.e. that it is not an orphan in 𝐾̂𝑅. The pairing 𝐻𝑚(𝐾̄𝑅) ⊗ 𝐻𝑚(𝑅̄) → ℝ
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3.2 Poincaré–Lefschetz duality models

induced by ̄𝜀𝑅 is non-degenerate, and 𝜎(𝛼) ≠ 0, hence there exists some 𝛽 ∈
𝐻𝑚(𝑅̄) such that 𝜀(𝜎(𝛼)𝛽) ≠ 0. But as we saw before, for any [ℎ] = ∑ 𝑥𝑗[ℎ𝑗] ∈
𝐻𝑚(𝑅), 𝜀𝑅(𝜎(𝛼)ℎ) = 0, because 𝜀𝑅(𝛾𝑖ℎ𝑗) = 0. It follows that 𝜀𝑅(𝜎(𝛼)𝜎(𝛿(𝛽))) =
𝜀𝑅(𝜎(𝛼)𝛽) ≠ 0. If we write 𝛿(𝛽) = ∑

𝑗 𝛽𝑗𝛾𝑗 ∈ 𝐻𝑚+1(𝒪), we can let 𝑤 = ∑
𝑗 𝛽𝑗𝑤𝑗 ∈ 𝑅̂,

and then by definition ̂𝜀𝑅(𝛼𝑤) = 𝜀𝑅(𝜎(𝛼)𝜎(𝛿(𝛽))) ≠ 0, thus 𝛼 is not an orphan.
This completes the proof that ̂𝒪𝑘−1 ∩ ⟨𝛼𝑖⟩ = 0, and thus that ̂𝒪𝑘 ∩ ker 𝑑 ⊂ 𝑑( ̂𝒪𝑘−1).
We have thus covered all the cases to prove that if 𝒪 is (𝑘 − 1)-half-acyclic, then

̂𝒪 is 𝑘-half-acyclic.
By induction, we obtain a good pair ( ̂𝜌 ∶ 𝑅̂ → 𝑅𝜕, ̂𝜀𝑅) whose ideal of orphans is

(𝑛 + 1)-half acyclic (and hence actually acyclic), obtained by a sequence of acyclic
cofibrations from 𝑅. It then remains to define 𝐵 ≔ 𝑅̂/ ̂𝒪 and 𝜀𝐵 to be the map
induced by ̂𝜀𝑅 on the quotient to prove Proposition 3.2.7.

Given a PLD model of (𝑀, 𝜕𝑀), we obtain a diagram (similar to (3.2.1)):

𝐾 ≔ ker 𝜆

𝐴 ≔ 𝐵/ ker 𝜃𝐵 𝐵 𝑅 Ω∗
PA(𝑀)

𝐵𝜕 𝑅𝜕 Ω∗
PA(𝜕𝑀)

non degen.

pairin
g

∼
𝜋

𝜆

𝑔
∼

𝜌
𝑓
∼

res

𝑔𝜕 𝑓𝜕

∼

(3.2.17)

We also see in the proof that 𝜀𝐵 satisfies by construction 𝜀𝐵𝑔 = ∫
𝑀

𝑓 (−). We
also have 𝜀𝐵𝜕

𝑔𝜕 = ∫
𝜕𝑀

𝑓𝜕(−) by construction (see Remark 2.1.17).

3.2.3 Diagonal classes

Let (𝐵 𝜆−→ 𝐵𝜕, 𝜀) be a Poincaré–Lefschetz duality pair, with 𝐾 = ker 𝜆. Recall that
we write 𝜃 ∶ (𝐴 = 𝐵/ ker 𝜃𝐵) → 𝐾∨[−𝑛] for the isomorphism of 𝐵⊗2-modules
induced by the surjective 𝜃𝐵 ∶ 𝐵 → 𝐾∨[−𝑛].

The multiplication 𝜇𝐾 ∶ 𝐾⊗2 → 𝐾 can then be dualized into a morphism of
𝐵⊗2-modules 𝛿 ∶ 𝐴 → 𝐴⊗2[−𝑛], and we let

Δ𝐴 ≔ 𝛿(1𝐴) ∈ (𝐴 ⊗ 𝐴)𝑛 (3.2.18)

be a representative of the diagonal class. Graded commutativity of 𝜇𝐾 implies
that Δ21

𝐴 = (−1)𝑛Δ𝐴. The fact that 𝛿 is a morphism of 𝐵⊗2-modules imply that Δ𝐴
satisfies

∀𝑎 ∈ 𝐴, 𝛿(𝑎) = (𝑎 ⊗ 1)Δ𝐴 = Δ𝐴(1 ⊗ 𝑎). (3.2.19)
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Remark 3.2.20. If the PLD model comes from a surjective pretty model, then we
check that this diagonal class is indeed the image of Δ𝑃 ∈ 𝑃⊗2 ⊂ 𝐵⊗2 under the
projection 𝜋 ∶ 𝐵 → 𝐴.

The duality between 𝐴 and 𝐾 can also be turned into a cocycle Δ𝐴𝐾 ∈ 𝐴⊗𝐾. Let
{𝑎𝑖} be some basis of 𝐴, and let {𝑎∗

𝑖 } be the dual basis of 𝐾, satisfying 𝜀𝐵(𝑎𝑖𝑎∗
𝑖 ) = 𝛿𝑖𝑗.

Then we define:
Δ𝐴𝐾 ≔ ∑ ±𝑎𝑖 ⊗ 𝑎∗

𝑖 ∈ (𝐴 ⊗ 𝐾)𝑛. (3.2.21)

It is not hard to check that Δ𝐴 is the image of Δ𝐴𝐾 under the composite map
1 ⊗ 𝜋 ∘ 𝜄 ∶ 𝐴 ⊗ 𝐾 → 𝐴 ⊗ 𝐵 → 𝐴 ⊗ 𝐴, and by definition:

∀𝑎 ∈ 𝐴, ∑
(Δ𝐴𝐾)

𝜀𝐵(𝑎Δ″
𝐴𝐾)Δ′

𝐴𝐾 = 𝑎. (3.2.22)

Note also that, under the multiplication map 𝜇𝐴 ∶ 𝐴⊗𝐴 → 𝐴, we have 𝜇𝐴(Δ𝐴) =
∑ ±𝜋(𝑎𝑖𝑎∗

𝑖 ) = 𝜒(𝐴)𝜋(vol𝐾) is equal to the Euler characteristic of 𝐵 multiplied
by the volume form vol𝐾 ∈ 𝐾 (the only element of 𝐵 satisfying 𝜀𝐵(vol𝐾) = 1,
representing the fundamental class of (𝑀, 𝜕𝑀)). But by degree reasons, vol𝐾 ∈
𝐾 ⊂ 𝐵 is in the kernel of 𝜃𝐵 ∶ 𝐵 → 𝐾∨[−𝑛] when 𝜕𝑀 ≠ ∅, hence 𝜋(vol𝐾) = 0 by
definition. In other words,

𝜇𝐴(Δ𝐴) = 0 if 𝜕𝑀 ≠ ∅. (3.2.23)

3.3 The model and its cohomology

From now on, let us assume that 𝑀 is a smooth, simply connected manifold with
nonempty boundary. We also fix a PLD model of 𝑀 as in Equation (3.2.17).

3.3.1 The dg-module model of Conf𝑘(𝑀)

Given a finite set 𝑉 and an element 𝑣 ∈ 𝑉, define the canonical injection 𝜄𝑣 ∶ 𝐴 →
𝐴⊗𝑉 by

𝜄𝑣(𝑎) ≔ 1 ⊗ … ⊗ 1 ⊗ 𝑎⏟
𝑣

⊗1 ⊗ … ⊗ 1. (3.3.1)

Definition 3.3.2. Define a symmetric collection of CDGAs G𝐴 by:

G𝐴(𝑉) ≔ (𝐴⊗𝑉 ⊗ e∨
𝑛 (𝑉)/(𝜄𝑣(𝑎) ⋅ 𝜔𝑣𝑣″ = 𝜄𝑣′(𝑎) ⋅ 𝜔𝑣𝑣′), 𝑑(𝜔𝑣𝑣′) = (𝜄𝑣 ⋅ 𝜄𝑣′)(Δ𝐴))

with the obvious actions of the symmetric groups.

108



3.3 The model and its cohomology

This definition also makes sense when 𝜕𝑀 = ∅, and it yields the symmetric
collection of CDGAs considered in Section 2.2.

When 𝑀 is a closed manifold, as soon as its Euler characteristic 𝜒(𝑀) vanishes,
then there is a structure of Hopf right e∨

𝑛 -comodule on G𝐴 (Proposition 2.2.1), with
cocomposition structure maps characterized by (compare with Equation (2.1.10)):

∘∨
𝑇(𝜔𝑣𝑣′) = 1 ⊗ 𝜔𝑣𝑣′ , if {𝑣, 𝑣′} ⊂ 𝑇;

∘∨
𝑇(𝜔𝑣𝑣′) = 𝜔[𝑣][𝑣′] ⊗ 1, if {𝑣, 𝑣′} ⊄ 𝑇;

∘∨
𝑇(𝜄𝑣(𝑎)) = 𝜄[𝑣](𝑎) for 𝑎 ∈ 𝐴, 𝑣 ∈ 𝑉;

(3.3.3)

where [𝑣] ∈ 𝑉/𝑇 is the class of 𝑣 in the quotient.

Proposition 3.3.4. If 𝜕𝑀 ≠ ∅, then the symmetric collection of CDGAs G𝐴 forms a
right Hopf e∨

𝑛 -comodule, with the same formulas.

Proof. Comparing with the proof of Proposition 2.2.1, we see that almost all the
arguments are the same. The only difficulty is to check that the cocomposition
is compatible with the differential, which required that the Euler characteristic
vanished in the boundaryless case.

It is immediate to check that 𝑑(∘∨
𝑇(𝜄𝑣(𝑎))) = ∘∨

𝑇(𝑑(𝜄𝑣(𝑎))) = 𝜄[𝑣](𝑑𝑎), thus it
suffices to check that the same equality holds on the generators 𝜔𝑣𝑣′ . If either
𝑣 ∉ 𝑇 or 𝑣′ ∉ 𝑇, this is again immediate; hence it suffices to check that

𝑑(∘∨
𝑇(𝜔𝑣𝑣′)) = ∘∨

𝑇(𝑑(𝜔𝑣𝑣′)) for 𝑣, 𝑣′ ∈ 𝑇

The LHS of that equation always vanishes. On the other hand, the RHS is equal
to 𝜄∗(𝜇𝐴(Δ𝐴)), where 𝜇𝐴 ∶ 𝐴 ⊗ 𝐴 → 𝐴 is the product. But by Equation (3.2.23),
𝜇𝐴(Δ𝐴) = 0.

Example 3.3.5. Recall from Example 3.1.16 the model for (𝐷𝑛, 𝑆𝑛−1), with 𝐴 = ℝ,
and Δ𝐴 = 0. It follows that in this case, G𝐴 is isomorphic to e∨

𝑛 seen as a Hopf right
comodule over itself. This is not surprising, given that FM𝑛 is formal as an operad,
and hence as a module over itself, and that SFM𝐷𝑛(∅, −) is weakly equivalent to
FM𝑛 as a right FM𝑛-module.

3.3.2 Computing the homology

We now prove that G𝐴 has the right cohomology, in the spirit of [LS08a] and using
the methods of [CLS15b] to deal with manifolds with boundary. From then on
and until the end of this section, we fix some integer 𝑘 ≥ 0. We can work over ℚ
in this section.
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3 Configuration Spaces of Manifolds with Boundary

The general idea goes as follows. If 𝑊 is a manifold with boundary, and 𝑋 ⊂ 𝑊
is a sub-polyhedron, then by [CLS15b], it suffices to know a CDGA model of the
square of inclusions

𝜕𝑊 𝑊

𝜕𝑊𝑋 ≔ 𝑋 ∩ 𝜕𝑊 𝑋

(3.3.6)

to obtain a complex computing the cohomology of 𝑊 − 𝑋.
Therefore, to compute the cohomology of Conf𝑘(𝑀), we need to find such

models for 𝑊 = 𝑀𝑘 and 𝑋 = Δ(𝑘) ≔ ⋃
1≤𝑖,𝑗≤𝑘 Δ𝑖𝑗, where Δ𝑖𝑗 ≔ {𝑥 ∈ 𝑀𝑘 ∣ 𝑥𝑖 = 𝑥𝑗}.

Since the sub-polyhedron Δ(𝑘) can be decomposed into the sub-polyhedra Δ𝑖𝑗, we
can use the techniques of [LS08a] to further simplify the description of the dg-
module model as a “total cofiber” indexed by graphs, which will be isomorphic
to G𝐴.

Let us now give the details. Let 𝐸 = {(𝑖, 𝑗) ∣ 1 ≤ 𝑖 < 𝑗 ≤ 𝑘} be a set of pairs, and
let Γ be the poset of subsets of 𝐸 ordered by reverse inclusion. We can see an
element 𝛾 ∈ Γ as a graph on 𝑘 vertices, with an edge between 𝑖 and 𝑗 iff (𝑖, 𝑗) ∈ 𝛾.
In particular ∅ ∈ Γ is the “empty” graph with no edges (but 𝑘 vertices). Using
this point of view, we can define the “zeroth homotopy group” 𝜋0(𝛾) of a graph
𝛾 ∈ Γ, which is a partition of {1, … , 𝑘}.

We obtain a functor ∇ from Γ to the category of topological spaces defined by

𝛾 ↦ ∇(𝛾) ≔ ⋂
𝑒∈𝐸𝛾

Δ𝑒 ⊂ 𝑀𝑘, (3.3.7)

where Δ(𝑖,𝑗) is simply the small diagonal Δ𝑖𝑗. Note that ∇(∅) = 𝑀𝑘, and that if
𝛾′ ⊃ 𝛾 then there is an inclusion ∇(𝛾′) ⊂ ∇(𝛾). The space ∇(𝛾) is homeomorphic
to the product 𝑀𝜋0(𝛾), and under these homeomorphisms, the inclusion ∇(𝛾′) ⊂
∇(𝛾) is the cofibration induced by iterations of the diagonal map 𝑀 → 𝑀 × 𝑀.
We thus obtain that:

Δ(𝑘) = ⋃
1≤𝑖<𝑗≤𝑘

Δ𝑖𝑗 = colim𝛾∈Γ ∇(𝛾) = colim𝛾∈Γ 𝑀𝜋0(𝛾), (3.3.8)

and this is in fact a homotopy colimit.
We will first aim to build a CDGA model for the square (3.3.6) (with 𝑊 = 𝑀𝑘

and 𝑋 = Δ(𝑘)) out of the diagram (3.2.1). The previous description of Δ(𝑘) as a
homotopy colimit tells us that a model for Δ(𝑘) is given by lim𝛾∈Γop 𝐵⊗𝜋0(𝛾), where
the maps in the diagram are induced by iterations the multiplication 𝜇𝐵 of 𝐵. The
inclusion Δ(𝑘) is modeled by the canonical map from 𝐵⊗𝑘 = 𝐵⊗𝜋0(∅) to the colimit.

It remains to find a model for 𝜕𝑊𝑋 = Δ(𝑘) ∩ 𝜕(𝑀𝑘) and models for the inclusion
maps. The morphism 𝐵 → 𝐵𝜕 is surjective, hence 𝐵𝜕 is isomorphic to 𝐵/𝐾 where
𝐾 ≔ ker(𝐵 → 𝐵𝜕). We get:
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Lemma 3.3.9. For all 𝑖 ≥ 0, the left-hand side square is a CDGA model for the right-hand
side square, where the horizontal maps are the diagonal maps:

𝐵 𝐵⊗𝑖

𝐵/𝐾 𝐵⊗𝑖/𝐾⊗𝑖

𝜇(𝑖)
𝐵

𝜇(𝑖)
𝐵

is a model for
𝑀 𝑀𝑖

𝜕𝑀 𝜕(𝑀𝑖)

𝛿

𝛿

Proof. The idea is the same as in [CLS15b, Proposition 5.1]. We work by induction.
The case 𝑖 = 1 is obvious (as 𝐵𝜕 ≅ 𝐵/𝐾), and they prove the case 𝑖 = 2. Now

let use assume that the proposition is true for a given 𝑖 ≥ 2. There is a diagram,
where all the inclusions are either induced by diagonal maps or induced by
𝜕𝑀 ⊂ 𝑀:

𝑀 × 𝑀𝑖 𝑀

𝜕(𝑀 × 𝑀𝑖) 𝑀 × 𝜕(𝑀𝑖)

(𝜕𝑀) × 𝑀𝑖 (𝜕𝑀) × (𝜕(𝑀𝑖)) 𝜕𝑀

(ho. pushout)

.

The diagram of the proposition is the “outer” diagram, and the bottom left square
is a (homotopy) pushout.

Let 𝑃 be the (homotopy) pullback in CDGAs of

𝐵𝜕 ⊗ 𝐵⊗𝑖 → 𝐵𝜕 ⊗ (𝐵⊗𝑖/𝐾⊗𝑖) ← 𝐵 ⊗ (𝐵⊗𝑖/𝐾⊗𝑖).

Then the induction hypothesis and the fact that homotopy pushouts of spaces
become homotopy pullbacks of models imply that the following diagram is
a CDGA model of the previous one (where the maps are either induced by
𝜇𝐵 ∶ 𝐵⊗2 → 𝐵 or 𝜆 ∶ 𝐵 → 𝐵𝜕):

𝐵 ⊗ 𝐵⊗𝑖 𝐵

𝑃 𝐵 ⊗ (𝐵⊗𝑖/𝐾⊗𝑖)

𝐵𝜕 ⊗ 𝐵⊗𝑖 𝐵𝜕 ⊗ (𝐵⊗𝑖/𝐾⊗𝑖) 𝐵𝜕

(ho. pullback)

Now, as in the proof [CLS15b, Lemma 5.3], it is clear that the natural map
𝐵⊗(𝑖+1) → 𝑃 is surjective and that its kernel is 𝐾⊗(𝑖+1), in other words that 𝑃 ≅
𝐵⊗(𝑖+1)/𝐾⊗(𝑖+1). The proposition then follows immediately.
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The space Δ(𝑘) ∩ 𝜕(𝑀𝑘) admits a description as a colimit similar to the one
Equation 3.3.8. Indeed, a point of 𝑀𝑘 is in the boundary iff one of the coordinates
is in the boundary of 𝑀. Now if a point is in both ∇(𝛾) and 𝜕(𝑀𝑘), then at least
one of the coordinates (say 𝑥𝑖) is in the boundary, and thus all the points indexed
by some 𝑗 in the same connected component as 𝑖 in 𝛾 is also in the boundary. We
then obtain:

Δ(𝑘) ∩ 𝜕(𝑀𝑘) = colim𝛾∈Γ colim∅⊊𝑆⊂𝜋0(𝛾)(𝜕𝑀)𝑆 × 𝑀𝜋0(𝛾)−𝑆. (3.3.10)

For a fixed 𝛾, the inner colimit is precisely the image of 𝜕(𝑀𝜋0(𝛾)) under the
diagonal embedding 𝑀𝜋0(𝛾) ↪ 𝑀𝑘. Combining this with the previous lemma,
we then obtain:

Proposition 3.3.11. A model for the square (3.3.6), with 𝑊 = 𝑀𝑘 and 𝑋 = Δ(𝑘), is
given by:

𝐵⊗𝑘 𝐵⊗𝑘/𝐾⊗𝑘

lim𝛾∈Γop 𝑅⊗𝜋0(𝛾) lim𝛾∈Γop 𝑅⊗𝜋0(𝛾)/𝐾⊗𝜋0(𝛾)

𝛼𝑘

𝜉𝑘

𝛽𝑘

The map 𝛼𝑘 is surjective, thus we have a canonical quasi-isomorphism ker 𝛼𝑘 =
𝐾⊗𝑘 ∼ hoker 𝛼𝑘. Therefore, by [CLS15b, Proposition 3.1]:

Corollary 3.3.12. The cohomology of the cone

cone((hoker 𝛽𝑘)∨[−𝑛𝑘] ̄𝜉𝑘 (𝐾⊗𝑘)∨[−𝑛𝑘])

of the map induced by 𝜉𝑘 on the kernels is isomorphic, as a graded vector space, to the
cohomology of Conf𝑘(𝑀) = 𝑀𝑘 − Δ(𝑘).

Armed with this corollary, we can now define a cubical diagram 𝐶• (see [LS08a,
Section 7]) whose total cofiber computes the cohomology of Conf𝑘(𝑀) as a graded
vector space. Given 𝛾 ∈ Γ, the chain complex 𝐶𝛾 is defined to be (𝐾⊗𝜋0(𝛾))∨; note
in particular that 𝐶∅ = (𝐾⊗𝑘)∨. If 𝛾′ ⊃ 𝛾, then the map 𝐶𝛾′⊃𝛾 ∶ 𝐶𝛾′ → 𝐶𝛾 is induced
by the dual of the multiplication of 𝐾.

Recall that the total cofiber of 𝐶• is a representative of the homotopy colimit of
𝐶, given by the chain complex [LS08a, Definition 7.2]:

TotCof 𝐶• ≔ (⨁
𝛾∈Γ

𝐶𝛾 ⋅ 𝑦𝛾, 𝐷), (3.3.13)

where 𝑦𝛾 is some variable of degree −#𝐸𝛾, deg(𝑥 ⋅ 𝑦𝛾) = deg(𝑥) + deg(𝑦𝛾), and

𝐷(𝑥 ⋅ 𝑦𝛾) = ±(𝑑𝑥) ⋅ 𝑦𝛾 + ∑
𝑒∈𝐸𝛾

±(𝐶𝛾′⊃𝛾𝑥) ⋅ 𝑦𝛾−𝑒. (3.3.14)
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Proposition 3.3.15. The total cofiber of 𝐶• computes the cohomology of Conf𝑘(𝑀) as a
graded vector space, up to suspension by 𝑛𝑘.

Proof. The proof is almost identical to the proof of [LS08a, Theorem 9.2]. First
define an auxiliary cubical diagram 𝐶′

• just like 𝐶•, except for 𝐶∅ which we set
equal to (hoker 𝛽𝑘)∨. The maps 𝐶′

𝛾⊃∅ are induced by the inclusions 𝐾⊗𝜋0(𝛾) →
𝐵⊗𝜋0(𝛾), which go through the definition of hoker 𝛽𝑘. By Poincaré–Lefschetz
duality, (hoker 𝛽𝑘)∨ is a model for Δ(𝑘) = ⋃

𝛾∈Γ ∇(𝛾), each 𝐶𝛾 is a model for ∇(𝛾),
and the maps between the 𝐶′

𝛾 are models for the inclusions by Lemma 3.3.9. We
thus obtain that TotCof 𝐶′

• is acyclic by [LS08a, Proposition 9.1] and the homotopy
invariance of total cofibers.

The morphism 𝐶′
𝛾 → 𝐶𝛾 is given by the identity if 𝛾 ≠ ∅, and it is given by ̄𝜉∨

𝑘
if 𝛾 = ∅. This yields a morphism of cubical diagrams 𝐶′

• → 𝐶•. Define 𝐶″
• to be

the object-wise mapping cone of 𝐶′
• → 𝐶•, so that there is a short exact sequence

0 → 𝐶′
• → 𝐶• → 𝐶″

• → 0.

For 𝛾 ≠ ∅, the map 𝐶′
𝛾 → 𝐶𝛾 is the identity, hence 𝐶″

𝛾 is acyclic. It follows that
TotCof 𝐶″

• is quasi-isomorphic to the cone of ̄𝜉∨
𝑘 ∶ 𝐶′

∅ → 𝐶∅, which computes the
cohomology of Conf𝑘(𝑀) by Corollary 3.3.12.

There is a long exact sequence between the homologies of the total cofibers 𝐶′
•,

𝐶•, and 𝐶″
• : total cofibers commute with mapping cones up to homotopy, because

both are types of homotopy colimits. The proposition then follows from the fact
that 𝐻∗(TotCof 𝐶′

•) = 0.

Theorem 3.3.16. Let 𝑀 be a simply connected manifold with simply connected boundary
and which admits a Poincaré–Lefschetz duality model. Let 𝐴 be the model of 𝑀 obtained
from this PLD model (see Section 3.2). Then there is an isomorphism of graded vector
spaces between 𝐻∗(G𝐴(𝑘); ℚ) and 𝐻∗(Conf𝑘(𝑀); ℚ).

Proof. There is in fact an isomorphism of dg-modules

G𝐴(𝑘) ≅ (TotCof 𝐶•)[−𝑛𝑘].

It is induced by the Poincaré–Lefschetz isomorphism 𝜃 ∶ 𝐴 → 𝐾∨[−𝑛]. We use the
crucial fact that the multiplication of 𝐾 is dual, under this isomorphism, to the
map 𝐴 → 𝐴⊗2 defined by 𝑎 ↦ (𝑎 ⊗ 1)Δ𝐴 = (1 ⊗ 𝑎)Δ𝐴 (which is true by definition
of Δ𝐴 in our setting). The proof is then similar to the proof of Lemma 2.5.9.

In other words, G𝐴(𝑘) is a dg-module model of Conf𝑘(𝑀). Unfortunately, in
general if 𝜕𝑀 ≠ ∅ then G𝐴(𝑘) is not an actual model of Conf𝑘(𝑀): the algebra
structure is not the correct one.
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3.3.3 The perturbed model

We define in the next section a “perturbed” version of G𝐴(𝑉), which will be the
actual model for Conf𝑘(𝑀), and we will prove that it is isomorphic to G𝐴(𝑉) as a
dg-module.

Choose some section 𝑠 ∶ 𝐵𝜕 → 𝐵 of 𝜌. Using the Poincaré duality of 𝐵𝜕, this
section 𝑠 corresponds to some element 𝜎𝐵 ∈ 𝐵𝜕 ⊗ 𝐵 of degree 𝑛 − 1. Note that, by
definition, the image of 𝜎𝐵 in 𝐵⊗2

𝜕 is the diagonal class of 𝐵𝜕.
The map 𝑠 does not commute, in general, with the differential, though for any

𝑥 ∈ 𝐵𝜕, one has 𝑑𝑠(𝑥) − 𝑠(𝑑𝑥) ∈ 𝐾 = ker 𝜌. It follows that in general 𝑑𝜎𝐵 ≠ 0, but
𝑑𝜎𝐵 ∈ 𝐵𝜕 ⊗ 𝐾. We in fact have that 𝑑𝜎𝐵 is a representative of the image of Δ𝐴𝐾
under the map 𝐵 ⊗ 𝐾 → 𝐵𝜕 ⊗ 𝐾.

Let
𝜎𝐴 = (1 ⊗ 𝜋)(𝜎𝐵) ≔ ∑

(𝜎𝐴)
𝜎 ′ ⊗ 𝜎″ ∈ 𝐵𝜕 ⊗ 𝐴. (3.3.17)

Remark 3.3.18. We are going to use Sweedler’s notation as above extensively. If
the element 𝜎 (or any other tensor) appears multiple times in an equation, we are
going to write it as follows:

𝜎 ⊗ 𝜎 = ∑ 𝜎 ′
1 ⊗ 𝜎″

1 ⊗ 𝜎 ′
2 ⊗ 𝜎″

2

and so on if it appears more than twice.
We define the perturbed model to be:

G̃𝐴(𝑉) ≔ (𝐴⊗𝑉 ⊗ 𝑆(𝜔̃𝑣𝑣′)𝑣,𝑣′∈𝑉/𝐽, 𝑑𝜔̃𝑣𝑣′ = (𝜄𝑣 ⋅ 𝜄𝑣′)(Δ𝐴)) (3.3.19)

where the ideal of relations is generated by 𝜔̃2
𝑣𝑣′ = 0 and, for all 𝑏 ∈ 𝐵 and all

subsets 𝑇 ⊂ 𝑉 of cardinality at least two:

∑
𝑣∈𝑇

±(𝜄𝑣(𝜋(𝑏)) ⋅ ∏
𝑣≠𝑣′∈𝑇

𝜔̃𝑣𝑣′) + ∑ ±𝜀𝜕(𝜌(𝑏) ∏
𝑣∈𝑇

𝜎 ′
𝑣) ∏

𝑣∈𝑇
𝜄𝑣(𝜎″

𝑣 ). (3.3.20)

Note in particular that we have

𝜔̃12 − (−1)𝑛𝜔̃21 + ∑ ±𝜀𝜕(𝜎 ′
1𝜎 ′

2)𝜎″
1 ⊗ 𝜎″

2 = 0 ∈ G̃𝐴(2), (3.3.21)

with the last summand being a cycle. The relations for #𝑇 = 2 are perturbations
of the symmetry relation of G𝐴(𝑉), and the relations for #𝑇 = 3 are perturbations
of the Arnold relations in e∨

𝑛 (𝑉) (where, by “perturbation”, we informally mean
that the perturbed relation is the sum of the standard relation and terms which
have a strictly lower number of generators 𝜔̃𝑣𝑣′).
Example 3.3.22. Let us consider 𝑀 = 𝑆1 × [0, 1] (even though it doesn’t satisfy our
assumptions about connectivity). We can find a PLD model for 𝑀 where:
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• 𝐵𝜕 = 𝐻∗(𝜕𝑀) is four-dimensional, generated by 1, 𝑡, 𝑑𝜑, and 𝑡𝑑𝜑 with 𝑡
being idempotent;

• 𝐴 = 𝐻∗(𝑀) = 𝐻∗(𝑆1) is two-dimensional, generated by 1 and 𝑑𝜑;

• 𝐾 = 𝐻∗(𝑀, 𝜕𝑀) is two-dimensional, generated by 𝑑𝑡 and 𝑑𝑡 ∧ 𝑑𝜑.
Then one of the nontrivial relation in G̃𝐴(2) is given by (𝑑𝜑 ⊗ 1)𝜔̃21 + (1 ⊗

𝑑𝜑)𝜔̃12 + (𝑑𝜑 ⊗ 𝑑𝜑) = 0. To obtain some intuition about this relation, consider
that Conf2(𝑀) ≃ Conf2(ℝ2 − {0}) is homotopy equivalent to Conf3(ℝ2). The
element 𝑑𝜑 correspond to the two points are rotating around the origin. Thus we
can identify 𝜔̃12 with 𝜔12 ∈ 𝐻∗(Conf3(ℝ2)), 𝑑𝜑 ⊗ 1 with 𝜔13, and 1 ⊗ 𝑑𝜑 with 𝜔23.
The perturbed relation in G̃𝐴(2) is then nothing but the usual Arnold relation in
e∨

2 (3) = 𝐻∗(Conf3(ℝ2)).
Proposition 3.3.23. There is an isomorphism of dg-modules between G𝐴(𝑉) and G̃𝐴(𝑉).

Proof. Let us fix 𝑉 = {1, … , 𝑘} for some 𝑘 ≥ 0. Consider the standard basis of
e∨

𝑛 (𝑘) given by monomials of the type:

𝜔𝑖1𝑗1 … 𝜔𝑖𝑟𝑗𝑟 ,

with 1 ≤ 𝑖1 < … < 𝑖𝑟 ≤ 𝑟 and 𝑖𝑙 < 𝑗𝑙 for all 𝑙. By choosing some basis {𝑎1, … , 𝑎𝑚}
of 𝐴, we obtain a basis of G𝐴(𝑘) by labeling the last element of each connected
component of such a monomial by some 𝑎𝑖.

We claim that if we replace all the 𝜔𝑖𝑗 by 𝜔̃𝑖𝑗 in this basis, then we obtain a basis
of G̃𝐴(𝑉). Using the perturbed Arnold relations, it’s clear that any element of
G̃𝐴(𝑉) can be written as a linear combination of these elements. Moreover, using
the same argument that proves that there is no nontrivial relation between the
elements of the standard basis of e∨

𝑛 (𝑘), we can prove that there is non nontrivial
relation between the elements of our claimed basis.

There is thus a linear isomorphism G𝐴(𝑉) → G̃𝐴(𝑉) which is defined on the
basis by replacing all the 𝜔𝑖𝑗 by 𝜔̃𝑖𝑗. It’s then clear that this map preserves the
internal differential of 𝐴 and the part of the differential which splits an 𝜔𝑖𝑙𝑗𝑙
(which can be written down explicitly in the basis: it merely splits a connected
component into two).
Corollary 3.3.24. There is an isomorphism of graded vector spaces 𝐻∗(Conf𝑘(𝑀)) ≅
𝐻∗(G̃𝐴(𝑘)).

Proof. This follows immediately from Theorem 3.3.16

Remark 3.3.25. It is often the case that G𝐴 and G̃𝐴 are actually equal. For example, if
𝑀 is obtained by removing a point from a closed manifold, then 𝐵𝜕 = 𝐻∗(𝑆𝑛−1) =
𝑆(𝑣)/(𝑣2), and 𝜎𝐴 = 𝑣 ⊗ 1. Then in all the “corrective terms” in the definition of
G̃𝐴(𝑉), the power of 𝑣 is at least two, hence the term vanishes.
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Example 3.3.26. If 𝑀 = 𝐷𝑛 and we use the PLD model of Example 3.1.16, then
G̃𝐴 = G𝐴 (see Example 3.3.5).

3.4 Computation of Swiss-Cheese graph

cohomology

In this section, we prove statements related to the vanishing of the homology of
a twist of SGC∨

𝑛 (see Section 3.1.5). We assume that 𝑛 ≥ 3 throughout the section.
Elements of SGC𝑛 are given by linear combinations of graphs; we identify an

element in the dual with a (possibly infinite) sum of graphs using the dual basis.
Let 𝛿 be the differential in SGC∨

𝑛 : it is given by “splitting” an aerial vertex (in all
possible ways) in two vertices connected by an edge. Then SGC∨

𝑛 is a (complete)
dg-Lie algebra, with the bracket given by [𝛾, 𝛾′] = 𝛾 ∘ 𝛾″ − ±𝛾′ ∘ 𝛾, where 𝛾 ∘ 𝛾′

is defined by the sum over the terrestrial vertices of 𝛾 of the insertion of 𝛾′ into
that terrestrial vertex and reconnecting the incident edges in all possible ways.

Recall the Kontsevich integrals 𝑐 ∈ SGC∨
𝑛 (see Equation (3.1.24)). It is well-

known (see e.g. [Wil15, Section 6.1]) that 𝑐 starts with a linear part 𝑐0 correspond-
ing to the Hochschild–Kostant–Rosenberg map, which we now describe. Let 𝛾𝑗,
for 𝑗 ≥ 0, be the graph with one aerial vertex, 𝑗 terrestrial vertex, and an edge
from the aerial vertex to each terrestrial vertex.

𝛾𝑗 ≔
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗 vertices

(3.4.1)

Definition 3.4.2. The linear part 𝑐0 ∈ SGC∨
𝑛 of 𝑐 is given by 𝑐0(𝛾𝑗) = 1

𝑗! and
𝑐0(𝛾) = 0 if 𝛾 does not have exactly one aerial vertex.

The element 𝑐0 itself is a Maurer–Cartan element in 𝑆𝐺𝐶∨
𝑛 . In other words, 𝑐−𝑐0,

which vanishes on all graphs with exactly one aerial vertex, is a Maurer–Cartan
in the twisted Lie algebra

SGC∨,𝑐0
𝑛 ≔ (SGC∨

𝑛 , 𝛿 + [𝑐0, −]). (3.4.3)

We’d like to prove that 𝑐 is gauge equivalent to 𝑐0, or equivalently that 𝑐 − 𝑐0 is
gauge trivial in the twisted Lie algebra.

Proposition 3.4.4. For each 𝑖 ∈ ℤ, the dimension of 𝐻𝑖(SGC∨,𝑐0
𝑛 ) is at most equal to

the dimension of 𝐻𝑖(GC∨
𝑛 ) ⊕ 𝐻𝑖(GC∨

𝑛−1).
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3.4 Computation of Swiss-Cheese graph cohomology

This is to be compared with a similar result for 𝑛 = 2 at the beginning of [Wil15,
Section 5], stating that 𝐻∗(SGC∨,𝑐0

2 ) ≅ 𝐻∗(GC∨
2 ). This result relies in turn on [Wil16,

Appendix F], and we will use similar proof techniques.

Proof of Proposition 3.4.4. Call an aerial vertex a “wedge” if it is bivalent and con-
nected to two terrestrial vertices. For example, the only aerial vertex of 𝛾2 is a
wedge. We define a complete decreasing filtration on SGC∨,𝑐0

𝑛 by the number of
aerial vertices that are not wedges. On the E0 page, the differential is given by
the bracket 𝛾 ↦ [𝛾2, −], which can be represented as follows:

↦

This roughly corresponds to the differential in Graphs∨
𝑛−1. Note that the creations

of “dead ends” in 𝛾 ∘ 𝛾2 (i.e. when all the incoming edges at a vertex are put on
one side of the wedge) are canceled with the summands coming from 𝛾2 ∘ 𝛾.

Our goal is to prove that on E1 = 𝐻(E0, 𝑑0), there only remains univalent
terrestrial vertices (“hairs”) and no wedges. The computation is conceptually
similar to the one right after [Wil16, Claim 1], except that instead of computing the
Hochschild homology of a symmetric algebra, we compute the e𝑛−1-cohomology
of a symmetric algebra with trivial bracket.

The E0 page splits in a direct sum as follows. Given some 𝛾 ∈ E0, we consider
the “index” idx(𝛾) obtained by removing all wedges and cutting off the terrestrial
vertices, keeping a half-edge. We obtain in this way a possibly disconnected graph
with only aerial vertices, each one having a certain number of half-edges attached
to it. The only restriction is that a zero-valent vertex may not have two half-edges
attached to it (otherwise it would be a wedge). Then E0

Γ ≔ {𝛾 ∈ E0 ∣ idx(𝛾) = Γ}
is a subcomplex, and that E0 = ⨁Γ E

0
Γ.

We’d like to compute 𝐻∗(E0
Γ, 𝑑0). There are two cases to consider. If Γ = ∅,

then (E0
∅, 𝑑0) is isomorphic to GC∨

𝑛−1 in the following way. If 𝛾 ∈ GC∨
𝑛−1, then we

can view it as an element of E0
∅ by viewing all its vertices as terrestrial, and by

replacing all its edges by wedges. The differential 𝑑0 is then the differential of
GC∨

𝑛−1.
Now if Γ ≠ ∅, then the actual shape of Γ doesn’t matter, only the number

of half-edges does. If we number the half-edges as ℎ1, … , ℎ𝑘, then we see that
we are actually computing the Graphs∨

𝑛−1-cohomology of the symmetric algebra
𝑆(ℎ1, … , ℎ𝑘) and taking the summand where each half-edge appears exactly once.
Since Graphs∨

𝑛−1 ≃ e𝑛−1, we have 𝐻∗(E0
Γ) = 𝐻∗

e𝑛−1
(𝑆(ℎ1, … , ℎ𝑘); ℝ)(1,…,1). Applying

the higher HKR theorem, this cohomology is given by a symmetric algebra on
a shift of the generators. Going back to E0

Γ, under this identification, 𝐻∗(E0
Γ, 𝑑0)

is given by graphs where the code is Γ,there are no wedges, and each terrestrial
vertex is univalent.
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In other words, we can identify E1 as a direct sum of 𝐻∗(GC∨
𝑛−1) and a version

of the hairy graph complex (as a vector space) where each vertex may have
multiple hairs. The differential 𝑑1 is given by the part of the differential of
SGC∨,𝑐0

𝑛 which raises the number of non-wedge vertices by exactly one, i.e. 𝑑1 =
𝛿 + [𝛾0, −] + [𝛾1, −] + ∑

𝑗≥3[𝛾𝑗, −].
We can now apply the same technique which appears in the proof of [Wil16,

Claim 2]. The differential 𝑑1 splits into three parts: 𝑑1,−1 = [𝛾0, −] which decreases
the number of terrestrial vertices by 1, 𝑑1,0 = 𝛿 + [𝛾1, −] which keeps it constant,
and 𝑑1,≥1 = ∑

𝑗≥3[𝛾𝑗, −] which increases it. Let E1′ be the quotient of E1 by graphs
with terrestrial vertices as well as graphs in the image of 𝑑1,−1 (i.e. graphs with
univalent aerial vertices connected to another aerial vertex). The map 𝑑1,0 induces
a differential on E1′ . We can then reuse the proof of [Wil16, Claim 2] to prove that
(E1, 𝑑1) is quasi-isomorphism to the direct sum of 𝐻∗(GC∨

𝑛−1) and the quotient
(E1′ , 𝑑1,0).

Then (E1′ , 𝑑1,0 = 𝛿) has the same cohomology as GC∨
𝑛 , using an argument

identical to the one in [Wil16, Appendix F.2.1]. Thus, the E2 page is a direct sum
of 𝐻∗(GC∨

𝑛 ) and 𝐻∗(GC∨
𝑛−1). It follows that the dimension of the cohomology of

SGC∨,𝑐0
𝑛 is at most the dimension of the cohomology of GC∨

𝑛 ⊕ GC∨
𝑛−1.

Recall that 𝐻∗(GC∨
𝑛 ) and 𝐻∗(GC∨

𝑛−1) contain some special classes, the circular
graphs (or loops, but this terminology clashes with our terminology for edges
between a vertex and itself), see e.g. [Wil14, Proposition 3.4]. We depict these
circular graphs in Figure 3.4.1.

Figure 3.4.1: Circular graphs in GC𝑛 and GC𝑛−1

Corollary 3.4.5. The Maurer–Cartan element 𝑐 is gauge equivalent to 𝑐0 in SGC∨
𝑛 .

Proof. According to [FW15, Proposition 2.2.3], the cohomology of GC∨
𝑛 is given

by a sum of the circular graphs and a part which vanishes in degrees ∗ > −𝑛 (we
work with cohomological conventions, so the degree is reversed). The integral
defining 𝑐 vanishes on all the circular graphs for degree reasons: the total degree
of a circular graph with 𝑘 “edges” (either an edge between two aerial vertices
or a wedge between two terrestrial vertices) is −𝑘 < 0. It then follows from
Proposition 3.4.4 that 𝑐−𝑐0 lives in a Lie subalgebra of SGC∨,𝑐0

𝑛 whose cohomology
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vanishes in degrees ∗ > −(𝑛 − 1). Hence, by obstruction theory,4 the Maurer–
Cartan element 𝑐 − 𝑐0 is gauge trivial.

The definition of the cooperad SGraphs𝑛 (cf. Section 3.1.4) depends on the
choice of this Maurer–Cartan element, 𝑐 or 𝑐0.

Definition 3.4.6. The cooperad SGraphs𝑐0
𝑛 is defined similarly to SGraphs𝑛, but the

Maurer–Cartan element 𝑐0 is used in place of 𝑐 in the definition of the differential.

By choosing a path object for SGC∨
𝑛 , we can turn the gauge equivalence between

𝑐 and 𝑐0 into:

Corollary 3.4.7. There is a zigzag of quasi-isomorphism of cooperads:

SGraphs𝑛
∼ ⋅ ∼

SGraphs𝑐0
𝑛 .

Let us also record the following observation. The comodule SGraphs𝑐0
𝑛 (∅, −) is

not isomorphic to Graphs𝑛 seen as a comodule over itself, because its graphs can
contain internal terrestrial vertices. However, SFM𝑛(∅, {∗}) is a point, and there is
a weak equivalence of FM𝑛-modules given by:

FM𝑛(𝑈) ≅ SFM𝑛(∅, {∗}) × FM𝑛(𝑈) ∘𝑈 SFM𝑛(∅, 𝑈). (3.4.8)

This is modeled by the following proposition. Define the map

𝜈 ∶ SGraphs𝑐0
𝑛 (∅, 𝑉) → Graphs𝑛(𝑉) (3.4.9)

as follows. Given some Γ ∈ SGraphs𝑐0
𝑛 (∅, 𝑉), if Γ only has univalent terrestrial

vertices, then 𝜈(Γ) is the graph with these univalent vertices and their incident
edges removed. Otherwise, if Γ has terrestrial vertices of valence greater than
one, then 𝜈(Γ) = 0.

Proposition 3.4.10. The maps 𝜈 ∶ SGraphs𝑐0
𝑛 (∅, 𝑉) → Graphs𝑛(𝑉) defines a quasi-

isomorphism of Hopf right Graphs𝑛-modules.

Proof. For a given 𝑉, the map is the composite of two quasi-isomorphisms of
CDGAs (hence it is itself a CDGA map and a quasi-isomorphism):

• The comodule structure map

∘∨
𝑉 ∶ SGraphs𝑐0

𝑛 (∅, 𝑉) → SGraphs𝑐0
𝑛 (∅, {∗}) ⊗ Graphs𝑛(𝑉),

which is a quasi-isomorphism because it models the weak equivalence
FM𝑛(∅, {∗}) × FM𝑛(𝑉) → SFM𝑛(∅, 𝑉);

4. The E1 page of the spectral sequence computing 𝜋∗ Map
CDGA

((𝑆(SGC𝑛[1]), 𝛿𝑐0
), ℝ) =

𝜋∗MC•(SGC∨,𝑐0
𝑛 ) vanishes in the right degrees.
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• The map SGraphs𝑐0
𝑛 (∅, {∗}) → ℝ given by 𝑐0, tensored with the identity of

Graphs𝑛(𝑉). This is a quasi-isomorphism because SGraphs𝑐0
𝑛 (∅, {∗}) is a

model for SFM𝑛(∅, {∗}), which is a point, and 𝑐0 is a nontrivial cocycle.

The fact that SGraphs𝑐0
𝑛 is a relative operad over Graphs𝑛 also shows that this

is a morphism of Graphs𝑛-comodules.

3.5 A model of right Hopf comodules

3.5.1 The propagator

The proof of Theorem C in the case of closed manifolds relied on the existence
of a propagator, see Section 2.3.3. Let us briefly recall its construction in this
case, before going back to the case 𝜕𝑀 ≠ ∅. The propagator 𝜑 is an (𝑛 − 1)-form
on FM𝑀(2) whose differential was the pullback of the diagonal class. Moreover,
recall that the projection 𝜕FM𝑀(2) → 𝑀 is an 𝑆𝑛−1-bundle, and the restriction
of the propagator to the boundary is a global angular form for this bundle. If
𝑀 is framed then this bundle is trivial (with ∘1 ∶ 𝑀 × 𝑆𝑛−1 → FM𝑀(2) being an
isomorphism of bundles), and one can further assume that 𝜑 is equal to 1 × vol𝑛−1.

This propagator was constructed by considering a global angular form of the
previous bundle, pulling it back to a tubular neighborhood of the boundary
inside FM𝑛(2), multiplying it by a bump function, and then extending it by zero
outside of the tubular neighborhood (see [CW16, Proposition 7]). Moreover, it
can be chosen so that it belongs to the subalgebra Ω∗

triv(FM𝑀(2)) ⊂ Ω∗
PA(FM𝑀(2))

of “trivial” PA forms (see [CW16, Appendix C]), which implies that it can be
integrated along the fibers of the canonical projections 𝑝𝑉.

Let us now return to the case 𝜕𝑀 ≠ ∅. Consider the double 𝐷 = 𝑀 ∪𝜕𝑀 𝑀̄, a
closed manifold. One can construct a propagator 𝜓 ∈ Ωtriv(FM𝐷(2)). There is an
“inclusion” map 𝑖 ∶ SFM𝑀(∅, 2) → FM𝐷(2) (which is not actually injective on the set
of configurations 𝑥 ∈ SFM𝑀(2) where 𝑝1(𝑥) = 𝑝2(𝑥) ∈ 𝜕𝑀, just like the standard
map SFM𝑛(∅, 2) → FM𝑛(2) is not injective). Moreover, there is a “mirror” map
𝜏1 ∶ SFM𝑀(∅, 2) → FM𝐷(2) which is defined similarly, except that the first point of
the configuration is sent to its mirror in 𝑀̄ ⊂ 𝐷. We then define the propagator
on 𝑀 to be:

𝜑 ≔
1
2

(𝑖∗𝜓 − 𝜏∗
1𝜓). (3.5.1)

One can write down the cohomology of 𝐻∗(𝐷) in terms of the cohomology of 𝑀
and 𝜕𝑀 and check on a basis that [𝑑𝜑] ∈ 𝐻∗(𝑀 × 𝑀) is indeed the diagonal class
of 𝑀. Note that this propagator is not symmetrical: if the point 1 (the “origin” of
the propagator) becomes infinitesimally close to 𝜕𝑀, then the two contributions
cancel out and 𝜑 become zero; this is not the case for the point 2 (the “target”).
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Consider the space:

𝐸 = {𝑥 ∈ SFM𝑀(∅, 2) ∣ 𝑝1(𝑥) = 𝑝2(𝑥)} (3.5.2)

which is an 𝑆𝑛−1-bundle 𝐸̊ when restricted over the interior of 𝑀. Given that 𝜓 is
a global angular form on 𝜕FM𝐷(2), we check that 𝜑 is a global angular form on
this 𝑆𝑛−1-bundle.
Remark 3.5.3. We go back to the construction of the diagram of Equation (3.2.17)
and replace Ω∗

PA(−) with its quasi-isomorphic subalgebra Ω∗
triv(−), and then

build a PLD model from that. We can then compose with the inclusion Ω∗
triv(−) →

Ω∗
PA(−) and we obtain a diagram:

𝑅 Ω∗
triv(𝑀) Ω∗

PA(𝑀)

𝑅𝜕 Ω∗
triv(𝑀) Ω∗

PA(𝑀)

𝜌

∼
𝑓

∼

res res

∼
𝑓𝜕

∼

This allows to assume that if 𝑥 ∈ 𝑅 (resp. 𝑦 ∈ 𝑅𝜕), then 𝑔(𝑥) (resp. 𝑔𝜕(𝑦)) is a
trivial form on 𝑀 (resp. 𝜕𝑀) – compare with Remark 2.3.18.

Let us fix the differential of the resulting propagator. Recall the diagonal class
Δ𝐴𝐾 ∈ 𝐴 ⊗ 𝐾 from Equation (3.2.21), which gets sent to Δ𝐴 ∈ 𝐴 ⊗ 𝐴 under
𝐾 ⊂ 𝐵 𝜋−→ 𝐴. Then we have:

Lemma 3.5.4. There exists an element Δ𝑅 ∈ 𝑅 ⊗ 𝑅 such that (𝜋 ⊗ id)𝑔⊗2(Δ𝑅) = Δ𝐴𝐾
and 𝜇𝑅(Δ𝑅) = 0.

Proof. The proof is identical to the proof of Proposition 2.3.4, recalling that 𝑅 → 𝐵
and 𝐵 → 𝐴 are both surjective, and that 𝜇𝐴(Δ𝐴) = 0 when 𝜕𝑀 ≠ 0 (Equa-
tion (3.2.23)).

Definition 3.5.5. For convenience, define a cocycle Δ𝐵 in 𝐵⊗2 by:

Δ𝐵 ≔ 𝑔⊗2(Δ𝑅).

Finally, we’d like to fix the value of the propagator on the subspace SFM𝑀({2}, {1})
of SFM𝑀(∅, {1, 2}). In order to define the inclusion

𝑗 ∶ SFM𝑀({2}, {1}) ↪ SFM𝑀(∅, {1, 2}), (3.5.6)

we choose some inward pointing vector field on 𝜕𝑀 and we use it to infinitesimally
push the second point into the interior of 𝑀.

Recall the element 𝜎𝐵 ∈ 𝐵𝜕 ⊗ 𝐵 defined in Section 3.3.3, with 𝑑𝜎𝐵 ∈ 𝐵𝜕 ⊗ 𝐾
being cohomologous to the diagonal class of 𝑀 with the first factor restricted to
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𝜕𝑀. Using the fact that we have a surjective quasi-isomorphism (thanks to the
five lemma):

cone(𝑅𝜕 ⊗ ker 𝜌) → cone(𝐵 ⊗ 𝐾), (3.5.7)

we can find some element 𝜎𝑅 ∈ 𝑅𝜕⊗𝑅 with (𝑔𝜕⊗𝑔)(𝜎𝑅) = 𝜎𝐵 and 𝑑𝜎𝑅 ∈ 𝑅𝜕⊗ker 𝜌.
Then 𝑗∗𝜑 − (𝑓𝜕 ⊗ 𝑓 )(𝜎𝑅) is an exact form, by checking on cohomology.

Proposition 3.5.8. There exists a form 𝜑 ∈ Ω𝑛−1
PA (SFM𝑀(∅, 2)) such that:

• 𝑑𝜑 is the pullback of (𝑓 ⊗ 𝑓 )(Δ𝑅) along the product of the projections SFM𝑀(2) →
𝑀 × 𝑀;

• its restriction to the bundle 𝐸̊ from Equation (3.5.2) is a global angular form;

• if moreover 𝑀 is framed we choose 𝜑 so that 𝜑|𝐸̊ = 1 × vol𝑛−1;

• 𝑗∗𝜑 = 𝜑|SFM𝑀({2},{1}) = (𝑓𝜕 ⊗ 𝑓 )(𝜎𝑅);

• for any 𝑥 ∈ 𝑅, one has (𝑝2)∗(𝑝∗
1(𝑥)𝜑) = 0.

Proof. We’ve already seen how to construct a propagator satisfying the first three
properties, using the mirror 𝐷 = 𝑀 ∪𝜕𝑀 𝑀̄.

The difference 𝑗∗𝜑 − (𝑓𝜕 ⊗ 𝑓 )(𝜎𝑅) is an exact form, say 𝑑𝜉 where 𝜉 is a trivial
form on SFM𝑀({1}, {2}). The application 𝑗∗ is surjective (because SFM𝑀({1}, {2}) is
a submanifold with corners of SFM𝑀(∅, {1, 2})), hence there exists some ̂𝜉 such
that 𝑗∗ ̂𝜉 = 𝜉. It then suffices to replace 𝜑 by 𝜑 − 𝑑 ̂𝜉, which still satisfies the first
three properties.

Finally, for the last property, we reuse the proof technique of [CM10, Lemma 3].
Namely, we consider the chain map:

𝑟 ∶ Ω∗
triv(𝑀) → 𝑅

𝑥 ↦ ∑
(Δ𝑅)

(∫
𝑀

𝑥Δ′)Δ″ + ∑
(𝜎𝑅)

(∫
𝜕𝑀

𝑥|𝜕𝑀𝜎 ′)𝜎″,

satisfying 𝑓 = 𝑓 ∘ 𝑟 ∘ 𝑓, and the homotopy:

ℎ ∶ Ω∗
triv(𝑀) → Ω∗−1

triv(𝑀)
𝑥 ↦ (𝑝1)∗(𝑝∗

2(𝑥) ∧ 𝜑).

Then we replace ℎ by ℎ′ ≔ (id −𝑓 𝑟) ∘ ℎ ∘ (id −𝑓 𝑟) in order to obtain a new
homotopy satisfying ℎ′′′′′ ∘ 𝑓 = 0. Let us write down the integral kernel of ℎ′. In
order to simplify notations, we write ∫

𝑖,𝑗,…
(−) to indicate that we push forward
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3.5 A model of right Hopf comodules

along the projection which forgets the points 𝑖, 𝑗, …, we write Δ𝑖𝑗 = 𝑝∗
𝑖𝑗(Δ𝑅) and

𝜎𝑖𝑗 = 𝑝∗
𝑖𝑗(𝜎𝑅). Then the new propagator is:

̃𝜑12 ≔ 𝜑12 − ∫
3

𝜑23Δ13 − ∫
3

𝜑23𝜎13 − ∫
3

𝜑13Δ23 − ∫
3

𝜑13𝜎23

+ ∫
3,4

Δ24𝜑34Δ13 + ∫
3,4

𝜎24𝜑23Δ13 + ∫
3,4

Δ24𝜑34𝜎13 + ∫
3,4

𝜎42𝜑34𝜎13.

By construction, this new propagator ̃𝜑 satisfies the last property. To check that
the corrective term ̃𝜑 − 𝜑 is a cycle, one needs to apply the Stokes formula and
check that all the terms cancel out, which follows from the general properties
of the diagonal class, the fact that 𝜑|𝐸̊ is a global angular form, and that 𝑗∗𝜑 = 𝜎.
Similarly to check that 𝑗∗( ̃𝜑 − 𝜑) = 0 and that ( ̃𝜑 − 𝜑)|𝐸̊, one need to use the
functoriality property of integral along fibers [Har+11, Proposition 8.9] and check
that all the terms cancel out.

3.5.2 Colored labeled graphs

We now introduce a colored version of the graph comodule Graphs𝑅 considered
in Section 2.3. Recall the cocycle Δ𝑅 from Lemma 3.5.4. We also define Δ𝑅,𝑅𝜕

=
(id ⊗𝜌)(Δ𝑅) ∈ 𝑅 ⊗ 𝑅𝜕 and Δ𝑅,Ω∗(𝜕𝑀) ≔ (id ⊗𝑔𝜕)(Δ𝑅,𝑅𝜕

) for notational convenience.

Definition 3.5.9. The CDGA of (𝑅, Ω∗
triv(𝜕𝑀))-labeled graphs on the finite sets

𝑈, 𝑉 is:

SGra𝑅,Ω∗(𝜕𝑀)(𝑈, 𝑉) ≔ ((Ω∗
triv(𝜕𝑀))⊗𝑈 ⊗ 𝑅⊗𝑉 ⊗ SGra𝑛(𝑈, 𝑉), 𝑑)

with differential defined by 𝑑𝑒𝑣𝑣⁗ = 𝜄𝑣𝑣′(Δ𝑅) for 𝑣, 𝑣′ ∈ 𝑉, and 𝑑𝑒𝑣𝑢 = 𝜄𝑣𝑢(Δ𝑅,Ω∗(𝜕𝑀))
for 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉.

Proposition 3.5.10. The bisymmetric collection SGra𝑅,Ω∗(𝜕𝑀) is a Hopf right comodule
over SGra𝑛.

Proof. The proof is identical to the proof of Proposition 2.3.7. Recall that we do
not need additional assumptions on the Euler characteristic as soon as we assume
𝜕𝑀 ≠ ∅ (see Lemma 3.5.4).

This comodule has a graphical description similar to SGra𝑛. The difference is
that aerial points (corresponding to the interior of 𝑀) are labeled by 𝑅, while
terrestrial points (corresponding to the boundary) are labeled by 𝑅𝜕.

Given a graph Γ, the differential 𝑑Γ is a sum over the set of edges of Γ. For each
summand, one removes the edge from the graph and multiplies the endpoints
of the edge by either Δ𝑅 (if both endpoints are aerial) or Δ𝑅,𝜕 (if one endpoint is
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𝑥 𝑦

↦ ∑
(Δ𝑅)

𝑥Δ′
𝑅 𝑦Δ″

𝑅

Figure 3.5.1: The splitting differential of SGra𝑅,Ω∗(𝜕𝑀) (a gray vertex can be of any
kind).

aerial and the other terrestrial). We call this “splitting” the edge, see Figure 3.5.1.
Recall that we write Δ𝑅 = ∑

(Δ𝑅) Δ′
𝑅 ⊗ Δ″

𝑅 ∈ 𝑅⊗2.
The product glues graphs along their vertices (multiplying the labels), and the

comodule structure collapses subgraphs, multiplying the labels and applying 𝜌
to them if necessary.

Proposition 3.5.11. There is a morphism of bisymmetric collections 𝜔′ ∶ SGra𝑅,Ω∗(𝜕𝑀) →
Ω∗

PA(SFM𝑀) characterized by

𝜔′(𝜄𝑣(𝑥)) = 𝑝∗
𝑣(𝑔(𝑥)) 𝑣 ∈ 𝑉, 𝑥 ∈ 𝑅

𝜔′(𝜄𝑢(𝑥)) = 𝑝∗
𝑢(𝑥) 𝑢 ∈ 𝑈, 𝑥 ∈ Ω∗

triv(𝜕𝑀)
𝜔′(𝑒𝑣𝑣′) = 𝑝∗

𝑣𝑣′(𝜑) 𝑣, 𝑣′ ∈ 𝑉
𝜔′(𝑒𝑣𝑢) = 𝑝∗

𝑣𝑢(𝑗∗(𝜑)) 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉

where 𝑗 ∶ SFM𝑀(1, 1) → SFM𝑀(∅, 2) is the inclusion.5 Moreover if 𝑀 is framed, then
together with Willwacher’s morphism [Wil15], this defines a Hopf right comodule mor-
phism

𝜔′ ∶ (SGra𝑅,Ω∗(𝜕𝑀), SGra𝑛) → (Ω∗
PA(SFM𝑀), Ω∗

PA(SFM𝑛)).

Proof. The proof is identical to the proof of Proposition 2.3.11.

Let us define a Maurer–Cartan element 𝑐𝜑 ∈ SGC∨
𝑛 ⊗ Ω∗

triv(𝜕𝑀). Let 𝛾 ∈ SGC𝑛
be a connected graph, let 𝐼 be the set of its terrestrial vertices and 𝐽 of its aerial
vertices. Then 𝛾 defines a form 𝜔′(𝛾) on SFM𝑀(𝐼, 𝐽), which we can pull back along
the composition map ∘𝐼,𝐽 ∶ 𝜕𝑀 × SFM𝑛(𝐼, 𝐽) → SFM𝑀(𝐼, 𝐽) and then integrate on the
SFM𝑛(𝐼, 𝐽) factor, in other words:

𝑐𝜑(𝛾) ≔ (𝑝𝜕𝑀)∗(∘∗
𝐼,𝐽(𝜔′(𝛾))). (3.5.12)

5. Recall that one must choose a collar 𝜕𝑀 × [0, 1) ⊂ 𝑀 in order to define this inclusion.
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3.5 A model of right Hopf comodules

Remark 3.5.13. For all 𝛾, 𝜔′(𝛾) is a trivial form (in the sense of [CW16, Ap-
pendix C]), hence 𝑐𝜑(𝛾) is obtained by pushing forward a trivial form along
a trivial bundle and is therefore trivial itself.

Definition 3.5.14. The twisted colored labeled graph comodule Tw SGra𝑅,Ω∗(𝜕𝑀)
is the Hopf right (Tw SGra𝑛)-comodule obtained by twisting SGra𝑅,Ω∗(𝜕𝑀) with
respect to the Maurer–Cartan element 𝑐𝜑.

Let us give a graphical description of the module Tw SGra𝑅,Ω∗(𝜕𝑀)(𝑈, 𝑉). It is
spanned by graphs with four types of vertices: on the one hand, either aerial or
terrestrial, and on the other hand either external or internal. Recall that aerial
vertices are labeled by 𝑅 while terrestrial ones are labeled by 𝑅𝜕. External aerial
vertices are in bijection with 𝑉, while external terrestrial vertices are in bijection
with 𝑈. Internal aerial vertices are of degree −𝑛, while internal terrestrial vertices
are of degree −(𝑛−1). Both kinds of internal vertices are indistinguishable among
themselves. Finally, edges are of degree 𝑛 − 1, and the source of an edge may
only be aerial.

𝑢
𝑥1 𝑥2

𝑣1

𝑦1

𝑣2

𝑦2 𝑦3

(𝑥1, 𝑥2 ∈ 𝑅𝜕 and 𝑦1, 𝑦2, 𝑦3 ∈ 𝑅)

Figure 3.5.2: A colored labeled graph in Tw SGra𝑅,Ω∗(𝜕𝑀)({𝑢}, {𝑣1, 𝑣2}).

The product glues graphs along external vertices (multiplying the labels).
The comodule structure maps collapse subgraphs, and the label of the collapsed
subgraph is the product of all the labels inside that subgraph (applying 𝜌 ∶ 𝑅 → 𝑅𝜕
as needed). Finally, the differential has several parts:

• A first part comes from SGra𝑅,Ω∗(𝜕𝑀): it splits edges between vertices of any
type, and then multiplies the endpoints of the removed edge by either Δ𝑅
or Δ𝑅,𝜕.

• A second part contracts edges between two aerial vertices, one of them
being internal, and multiplies the labels of the endpoints in the process.
This includes dead ends, i.e. edges connected to a univalent internal vertex.

• A third part contracts a subgraph Γ′ with at most one external vertex. The
label of the contracted subgraph is the product of all the labels inside it
multiplied by 𝑐𝜑(Γ̄′), where Γ̄′ is the subgraph with the labels removed.
If the result contains a “bad edge” (whose source is terrestrial), then the
summand vanishes.

125



3 Configuration Spaces of Manifolds with Boundary

Remark 3.5.15. Note that there are several differences compared to the description
of the differential from Section 3.1.4: dead ends are contractible, and the last part
of the differential which forgets some internal vertices is not present. This comes
from the fact that in the definition of the twisting of a right comodule over a
cooperad, the Maurer–Cartan element of the deformation complex can only act
“from the right” on the comodule.

Dead ends aren’t contractible in Tw SGra𝑛 because the contraction of a dead
end appears twice in the differential, one “from the left” and one “from the right”,
and they cancel each other (see [Wil14, Appendix I.3]). This cancellation does
not occur in Tw SGra𝑅,Ω∗(𝜕𝑀). The last part of the differential on Tw SGra𝑛 came
exclusively from the left action of the deformation complex on SGra𝑛, and so
cannot appear in Tw SGra𝑅,Ω∗(𝜕𝑀).
Remark 3.5.16. One should not forget that when a subgraph Γ′ ⊂ Γ with only
internal vertices is contracted (the third part), the result may be a terrestrial vertex
even though the subgraph contains only aerial vertices, see Figure 3.5.3.

𝑥

↦ 𝜌(𝑥)

Figure 3.5.3: Collapsing an aerial vertex into a terrestrial vertex

Proposition 3.5.17. The morphism 𝜔′ ∶ SGra𝑅,Ω∗(𝜕𝑀) → Ω∗
PA(SFM𝑀) of Proposi-

tion 3.5.11 extends to a morphism of bisymmetric collections 𝜔 ∶ Tw SGra𝑅,Ω∗(𝜕𝑀) →
Ω∗

PA(SFM𝑀), given on a graph Γ ∈ SGra𝑅,Ω∗(𝜕𝑀)(𝑈⊔𝐼, 𝑉⊔𝐽) ⊂ Tw SGra𝑅,Ω∗(𝜕𝑀)(𝑈, 𝑉)
by:

𝜔(Γ) ≔ (𝑝𝑈,𝑉)∗(𝜔′(Γ)) = ∫
SFM𝑀(𝑈⊔𝐼,𝑉⊔𝐽)→SFM𝑀(𝑈,𝑉)

𝜔′(Γ).

Moreover if 𝑀 is framed then, together with Willwacher’s morphism [Wil15], this assign-
ment defines a morphism of Hopf right comodules

𝜔 ∶ (Tw SGra𝑅,Ω∗(𝜕𝑀), Tw SGra𝑛) → (Ω∗
PA(SFM𝑀), Ω∗

PA(SFM𝑛)).

Proof. First note that we have chosen the propagator 𝜑 so that it is a trivial form,
and we have assumed that the morphisms 𝑅 → Ω∗

PA(𝑀) and 𝑅𝜕 → Ω∗
PA(𝜕𝑀)

factor through the sub-CDGAs of trivial forms. Hence for any graph Γ, 𝜔′(Γ) is a
trivial form and can be integrated along the fiber of 𝑝𝑈,𝑉.

We can now reuse the proof of Proposition 2.3.17. The difference is the descrip-
tion of the decomposition of the fiberwise boundary of 𝑝𝑈,𝑉 used to show that 𝜔
is a chain map through the application of Stokes’ formula. This description is
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3.5 A model of right Hopf comodules

very similar to the one implicitly used by [Wil15] (see also [Kon03, Section 5.2.1])
with some variations accounting from the fact that no normalization is done
to compactify 𝑀 (see the discussion before the proof of Lemma 2.3.22). More
concretely, the boundary of SFM𝑀(𝑈, 𝑉) is given by:

𝜕SFM𝑀(𝑈, 𝑉) = ⋃
𝑇∈ℬℱ′(𝑉)

im(∘𝑇) ∪ ⋃
(𝑊,𝑇)∈ℬℱ″(𝑈;𝑉)

im(∘𝑊,𝑇),

where:

ℬℱ′(𝑉) ≔ {𝑇 ⊂ 𝑉 ∣ #𝑇 ≥ 2},
ℬℱ″(𝑈; 𝑉) ≔ {(𝑊, 𝑇) ∣ 𝑊 ⊂ 𝑈, 𝑇 ⊂ 𝑉, 2 ⋅ #𝑇 + #𝑊 ≥ 2}.

Note that in the description of 𝜕SFM𝑛(𝑈, 𝑉), there is an additional condition
𝑊 ∪ 𝑇 ⊊ 𝑈 ∪ 𝑉. Indeed in SFM𝑛 the normalization by the affine group prevents
the points from becoming infinitesimally close all at once; in SFM𝑀, no such
normalization occurs.

Then the fiberwise boundary of the canonical projection 𝑝𝑈,𝑉 is given by:

SFM𝜕
𝑀(𝑈, 𝑉) = ⋃

𝑇∈ℬℱ′(𝑉,𝐽)

im(∘𝑇) ∪ ⋃
(𝑊,𝑇)∈ℬℱ″(𝑈,𝐼;𝑉,𝐽)

im(∘𝑊,𝑇) ⊂ SFM𝑀(𝑈 ⊔ 𝐼, 𝑉 ⊔ 𝐽),

where

𝑇 ∈ ℬℱ′(𝑉, 𝐽) ⊂ ℬℱ′(𝑉 ⊔ 𝐽) ⟺ #(𝑇 ∩ 𝐽) ≤ 1,
(𝑊, 𝑇) ∈ ℬℱ″(𝑈, 𝐼; 𝑉, 𝐽) ⊂ ℬℱ″(𝑈 ⊔ 𝐼, 𝑉 ⊔ 𝐽) ⟺ 𝑉 ∩ 𝑇 = ∅, #(𝑈 ∩ 𝑊) ≤ 1.

One can then check that the boundary faces of that decomposition correspond
to the summands of the differential.

Definition 3.5.18. Define the full colored graph complex

fSGC𝑅 ≔ Tw SGra𝑅,Ω∗(𝜕𝑀)(∅, ∅)[−𝑛].

This is the (shifted) CDGA of colored, labeled graphs with only internal ver-
tices. The product is the disjoint union of graphs, thus fSGC𝑅[𝑛] is free as an
algebra, generated by the graded module SGC𝑅[𝑛] of connected graphs. Each
Tw SGra𝑅(𝑈, 𝑉) is a module over the CDGA fSGC𝑅[𝑛] by adding connected com-
ponents.

Definition 3.5.19. The colored partition function Z𝑆
𝜑 ∶ fSGC𝑅[𝑛] → ℝ is the

CDGA morphism given by the restriction in empty arity

Z𝑆
𝜑 ≔ 𝜔|(∅,∅) ∶ Tw SGra𝑅,Ω∗(𝜕𝑀)(∅, ∅) → Ω∗

PA(SFM𝑀(∅, ∅)) = Ω∗
PA({∗}) = ℝ.

Let ℝ𝑆
𝜑 be the one-dimensional fSGC𝑅[𝑛]-module induced by Z𝑆

𝜑.
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3 Configuration Spaces of Manifolds with Boundary

Remark 3.5.20. Since fSGC𝑅[𝑛] is a CDGA, the dual module SGC∨
𝑅 is naturally an

hoLie𝑛-algebra. The differential of fSGC𝑅 cannot create more than two connected
components, thus SGC∨

𝑅 is actually a Lie𝑛-algebra. The differential blows up
vertices (like in GC∨

𝑛 ) and joins pairs of vertices by an edge, while the Lie bracket
joins two graphs by an edge. The algebra morphism Z𝑆

𝜑 is uniquely determined
by its restriction z𝑆

𝜑 to SGC𝑅, which can be seen as a Maurer–Cartan element in
the Lie𝑛-algebra SGC∨

𝑅.

Definition 3.5.21. The reduced colored labeled graph comodule SGraphs𝑐𝜑,z𝑆
𝜑

𝑅,Ω∗(𝜕𝑀)
is the bisymmetric collection given in each arity by:

SGraphs
𝑐𝜑,z𝑆

𝜑
𝑅,Ω∗(𝜕𝑀)(𝑈, 𝑉) ≔ ℝ𝑆

𝜑 ⊗fSGC𝑅[𝑛] Tw SGra𝑅,Ω∗(𝜕𝑀)(𝑈, 𝑉).

Proposition 3.5.22. The bisymmetric collection SGraphs
𝑐𝜑,z𝑆

𝜑
𝑅,Ω∗(𝜕𝑀) forms a Hopf right

comodule over SGraphs𝑛, and the map 𝜔 ∶ Tw SGra𝑅,Ω∗(𝜕𝑀) → Ω∗
PA(SFM) factors

through a Hopf right comodule morphism:

𝜔 ∶ (SGraphs𝑐𝜑,z𝑆
𝜑

𝑅,Ω∗(𝜕𝑀), SGraphs𝑛) → (Ω∗
PA(SFM𝑀), Ω∗

PA(SFM𝑛)).

Proof. Identical to the proof of Proposition 2.3.31.

We now show that our comodule is quasi-isomorphic to a simpler one, in the
spirit of Corollary 3.4.7. Recall the circular graph from Figure 3.4.1. We will need
an explicit name for the circular graph of length 1 in GC𝑛−1, say:

ℓ1 ≔ (3.5.23)

Lemma 3.5.24. The Maurer–Cartan element 𝑐𝜑 ∈ SGC∨
𝑛 ⊗ Ω∗

triv(𝜕𝑀) is gauge equiva-
lent to

𝑐𝑀 ≔ 𝑐0 ⊗ 1 + ℓ∨
1 ⊗ 𝑒𝜕𝑀,

where:

• 𝑐0 ∈ SGC∨
𝑛 is the linear part of 𝑐 (Definition 3.4.2);

• ℓ1 ∈ SGC𝑛 is the circular graph of length 1 in GC𝑛−1 (Equation (3.5.23));

• 𝑒𝜕𝑀 ≔ 𝜒(𝜕𝑀) ⋅ vol𝜕𝑀 is the Euler class of 𝜕𝑀 (and vol𝜕𝑀 = 𝑔𝜕(vol𝑅𝜕
) where

vol𝑅𝜕
is a fixed cocycle satisfying 𝑓𝜕(vol𝑅𝜕

) = vol𝐵𝜕
).
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3.5 A model of right Hopf comodules

Proof. Let us first show that 𝑐𝜑 agrees with 𝑐𝑀 on circular graphs, i.e. that 𝑐𝜑
vanishes on circular graphs except for ℓ1, on which it is equal to 𝑒𝑀. The aerial
circular graphs which produce nontrivial classes have odd length,6 hence they
contain a vertex with in and out valences of 1. One can construct the propagator
𝜓 on 𝐷 = 𝑀 ∪𝜕𝑀 𝑀̄ (see Section 3.5.1) so that 𝜑 exhibits symmetry properties
that make 𝑐𝜑 vanish on these graphs, by an argument similar to Kontsevich’s
trick [Kon94, Lemma 2.1]. Moreover, using a similar argument, we see that 𝑐𝜑
vanishes on the circular graphs from GC𝑛−1, because apart from the first one, they
all contain a copy of the following graph (which represent a “bivalent” terrestrial
vertex, the “outside” vertices may be the same one):

Thus when computing the integral defining 𝑐, one can consider the automorphism
of SFM𝑛({𝑢1, 𝑢2, 𝑣}, ∅) which maps 𝑣 to its symmetric with respect to the barycenter
of 𝑢1 and 𝑢2 inside ℝ𝑛−1 × {0}, which changes the sign of the integral. The only
exception is ℓ1, for which we can explicitly compute 𝑐𝑀(ℓ1) = 𝑒𝑀 using the fourth
property of 𝜑 in Proposition 3.5.8 and the standard fact that the Euler class 𝑒𝜕𝑀 is
the image of the diagonal class of 𝜕𝑀 under the multiplication map.

It then follows that 𝑐𝜑 − 𝑐𝑀 is a Maurer–Cartan element in the twisted Lie
algebra SGC∨,𝑐0

𝑛 ⊗ Ω∗(𝜕𝑀). According to Proposition 3.4.4, if we forget about
circular graphs the cohomology of SGC∨,𝑐0

𝑛 is concentrated below degree −(𝑛−1),
and the cohomology of 𝜕𝑀 below degree 𝑛 − 1. It follows that 𝑐𝜑 − 𝑐𝑀 lives in
a Lie subalgebra of SGC∨,𝑐0

𝑛 ⊗ Ω∗(𝜕𝑀) whose cohomology vanishes in positive
degrees. Thus, by obstruction theory, 𝑐𝜑 − 𝑐𝑀 is gauge trivial and we have proved
the proposition.

Recall the cooperad SGraphs𝑐0
𝑛 from Definition 3.4.6. We can define a Hopf

right comodule SGraphs𝑐𝑀,z𝑆
𝜑

𝑅,Ω∗(𝜕𝑀) over this cooperad, by twisting SGra𝑅,Ω∗(𝜕𝑀) with
respect to 𝑐𝑀 instead of 𝑐𝜑.

Corollary 3.5.25. There is zigzag of quasi-isomorphisms of Hopf right comodules:

(SGraphs𝑐𝜑,z𝑆
𝜑

𝑅,Ω∗(𝜕𝑀), SGraphs𝑛) ∼ ⋅ ∼ (SGraphs𝑐𝑀,z𝑆
𝜑

𝑅,Ω∗(𝜕𝑀), SGraphs𝑐0
𝑛 ).

Moreover, we can now get rid of the Ω∗(𝜕𝑀) and label the terrestrial vertices
by elements of 𝑅𝜕 instead. This was not possible before vecause 𝑐𝜑 could produce
forms that were not in the image of 𝑔𝜕 ∶ 𝑅𝜕

∼ Ω∗(𝜕𝑀), but this is not the case

6. Depending on the parity of 𝑛, they are congruent to either 1 or 3 modulo 4.
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3 Configuration Spaces of Manifolds with Boundary

for 𝑐𝑀 ⊗ 1. We thus define a Hopf right comodule (SGraphs𝑐𝑀,z𝑆
𝜑

𝑅,𝑅𝜕
, SGraphs𝑐0

𝑛 ), and
we obtain:

Lemma 3.5.26. There is a quasi-isomorphism of Hopf right comodules induced by
𝑔𝜕 ∶ 𝑅𝜕

∼ Ω∗(𝜕𝑀):

(SGraphs𝑐𝑀,z𝑆
𝜑

𝑅,𝑅𝜕
, SGraphs𝑐0

𝑛 ) ∼ (SGraphs𝑐0,z𝑆
𝜑

𝑅,Ω∗(𝜕𝑀), SGraphs𝑐0
𝑛 ).

3.5.3 Labeled graphs and proof of Theorem D

We now introduce a variant Graphsz𝜑
𝑅 of the graph comodule from Chapter 2.

Recall that 𝑗∗𝜑 = 𝜑|SFM𝑀({2},{1}) is equal to (𝑔𝜕 ⊗ 𝑔)(𝜎𝑅), where 𝜎𝑅 = ∑ 𝜎 ′ ⊗ 𝜎″ ∈
𝑅𝜕 ⊗ 𝑅 was defined in Proposition 3.5.8.

Definition 3.5.27. The CDGA of reduced 𝑅-labeled graphs Graphsz𝜑
𝑅 (𝑉) on the

finite set 𝑉 is spanned by directed graphs with external (corresponding to 𝑉)
vertices and internal vertices, with all the vertices labeled by 𝑅. The algebra struc-
ture glues graphs along external vertices, and the comodule structure collapses
subgraphs. A connected component with only internal vertices is identified with
the real number given by the partition function Z𝑆

𝜑, by viewing the component as
having no terrestrial vertices. The differential has three parts:

• Splitting any edge and multiplying the labels of the endpoints by Δ𝑅;

• Contracting an edge between an internal vertex and another vertex, multi-
plying the labels;

• Removing one internal vertex 𝑢. Let 𝑥 ∈ 𝑅 be the label of 𝑢, and let 𝑣1, … , 𝑣𝑘
be the vertices connected to 𝑢, with respective labels 𝑦1, … , 𝑦𝑘 ∈ 𝑅. Then in
the differential, the vertex 𝑢 and its incident edges are removed, the label of
𝑣𝑖 becomes 𝑦𝑖𝜎″

𝑖 , and the new graph is multiplied by 𝜀𝜕(𝜌(𝑥)𝜎 ′
1 … 𝜎 ′

𝑘) ∈ ℝ.
See Figure 3.5.4 for an example.

𝑥

1
𝑦1

2
𝑦2

3
𝑦3 ↦ 𝜀𝜕(𝜌(𝑥)𝜎 ′

1𝜎 ′
2𝜎 ′

3) ⋅
1

𝑦1𝜎″
1

2
𝑦2𝜎″

2

3
𝑦3𝜎″

3

Figure 3.5.4: The third part of the differential in Graphs𝜑
𝑅
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3.5 A model of right Hopf comodules

Roughly speaking, in this third part of the differential, the removed vertex
becomes infinitesimally close to the boundary of 𝑀. Each edge thus becomes
𝑗∗𝜑 = 𝜑|SFM𝑀({1},{2}) = (𝑔𝜕 ⊗ 𝑔)(𝜎𝑅), and we multiply the labels accordingly. The
vertex 𝑢 is then alone in its connected component and is thus identified with the
integral of its label.

For each finite set of external vertices 𝑉, there is a map 𝜈𝑅 ∶ SGraphs𝑐𝑀,z𝑆
𝜑

𝑅,𝑅𝜕
(∅, 𝑉) →

Graphs
z𝜑
𝑅 (𝑉) defined as follows. Given some graph Γ ∈ SGraphs

𝑐𝑀,z𝑆
𝜑

𝑅,𝑅𝜕
(∅, 𝑉), we

remove all the edges from an aerial vertex to a terrestrial vertex and we multiply
their endpoints by 𝜎𝑅 ∈ 𝑅𝜕 ⊗ 𝑅. We then obtain a graph where all the terrestrial
vertices are zero-valent, and we identify those with the real number given by the
integral over 𝜕𝑀 of their labels. In this way, we obtain an element of Graphsz𝜑

𝑅 (𝑉).
This is a chain map, the part of the differential described in Figure 3.5.4 being
induced by Figure 3.5.3.

Proposition 3.5.28. The symmetric collection Graphs𝜑
𝑅 is a Hopf right comodule over

Graphs𝑛. The maps

𝜈𝑅 ∶ SGraphs𝑐𝑀,z𝑆
𝜑

𝑅 (∅, −) ∼
Graphs

z𝜑
𝑅

define a quasi-isomorphism of Hopf right Graphs𝑛-comodules.

Proof. We use an argument similar to the one of Section 2.4.2. Filter both com-
plexes by the number of edges minus the number of vertices. The only part of
the differential which remains on the E0 page is the contraction of aerial edges
and the contraction of a subgraph into a terrestrial vertex induced by 𝑐𝑀, which
is nonzero on trees only (see Definition 3.4.2 and Lemma 3.5.24, the summand
induced by ℓ1 ⊗ 𝑒𝜕𝑀 vanishes because it strictly decreases the filtration).

It follows that both complexes split as a direct sum in terms of connected
components, just like in Lemma 2.4.21. We can now reuse the same “trick” we
used for the proof of Lemma 2.4.27, to show that in cohomology, there is only
one label for each connected component. We thus reduce to the morphism
𝜈 ∶ SGraphs𝑐0

𝑛 (∅, 𝑉) → Graphs𝑛(𝑉) from Proposition 3.4.10 (tensored with the
identity of 𝑅 for each connected component). Since that morphism is a quasi-
isomorphism, we obtain that the induced morphism on the E1 page is an iso-
morphism. It follows by standard spectral sequence arguments (the filtration is
bounded below for a fixed 𝑉) that the morphism of the proposition is a quasi-
isomorphism.

We would now like to connect Graphsz𝜑
𝑅 (𝑉) with G̃𝐴(𝑉).
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Definition 3.5.29. The full labeled graph complex fGC𝑅 is the CDGA of aerial
graphs with only internal vertices, the differential being defined in a manner
similar to Definition 3.5.27. The partition function Z𝜑 ∶ fGC𝑅[𝑛] → ℝ is induced
by Z𝑆

𝜑. Let ℝ𝜑 be the one-dimensional fGC𝑅[𝑛]-module induced by Z𝜑.

The (shifted) commutative algebra fGC𝑅 is free, generated by the submodule
GC𝑅 of connected graphs. The differential of fGC𝑅 turns GC∨

𝑅 into a Lie𝑛-algebra
up to homotopy (see Remark 3.5.20, and note that the part of the differential that
removes one vertex may produce more than two connected components, so this
is not a Lie𝑛-algebra), and Z𝜑 defines a Maurer–Cartan element z𝜑 ∈ GC∨

𝑅.
We can reuse the counting argument from Proposition 2.3.35 (and the last

property of the propagator in Proposition 3.5.8) to show that the partition function
vanishes on any graph with no bivalent vertex labeled by 1𝑅. We can then define
Z𝜀 ∶ fGC𝑅 → ℝ to be the algebra morphism which vanishes on all connected
graphs 𝛾 except those with a single vertex. If that vertex is labeled by 𝑥 ∈ 𝑅 we
set Z𝜀(𝛾) = ∫

𝑀
𝑔(𝑥).

Unfortunately, we still cannot prove directly that Z𝜑 = Z𝜀; however, we can
follow the discussion at the beginning of Section 2.4. Let Ω∗(Δ1) = 𝑆(𝑡, 𝑑𝑡) be the
algebra of polynomials forms on Δ1, a path object in the category of CDGAs. We
then obtain:

Proposition 3.5.30. There exists a homotopy ℎ ∶ fGC𝑅[𝑛] → Ω∗(Δ1) such that the
following diagram commutes:

fGC𝑅[𝑛]

ℝ Ω∗(Δ1) ℝ

Z𝜑 Z𝜀ℎ

∼
𝑑1 𝑑0

∼

The reduced labeled graph comodule can be viewed as a tensor product
ℝ𝜑 ⊗fGC𝑅[𝑛] Tw Gra𝑅(𝑉). We can then define Graphs′

𝑅 ≔ Ω∗(Δ1)ℎ ⊗fGC𝑅[𝑛] Tw Gra𝑅
and Graphsz𝜀

𝑅 ≔ ℝ𝜀 ⊗fGC𝑅[𝑛] Tw Gra𝑅. Both symmetric collections define Hopf
right Graphs𝑛-comodules.

Proposition 3.5.31. We have a zigzag of quasi-isomorphisms of comodules:

Graphsz𝜀
𝑅

∼
Graphs′

𝑅
∼

Graphs
z𝜑
𝑅 .

Proof. The fGC𝑅[𝑛]-module Tw Gra𝑅(𝑉) is quasi-free and is equipped with a
good filtration, hence Tw Gra𝑅(𝑉) ⊗fGC𝑅[𝑛] (−) preserves quasi-isomorphisms.
The claim now follows from the previous proposition.
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3.5 A model of right Hopf comodules

We can now do the same construction as Graphsz𝜀
𝑅 but with 𝐵 replacing 𝑅, Δ𝐵

(from Definition 3.5.5) replacing Δ𝑅, 𝜎𝐵 replacing 𝜎𝑅, and taking as “partition
function” the map which sends a graph with a single vertex labeled by 𝑏 to 𝜀𝐵(𝑏)
and all other connected graphs to zero. We obtain a Hopf right Graphs𝑛-comodule
Graphs𝐵, where graphs with internal components containing at least two vertices
vanish, and an isolated internal vertex labeled by 𝑏 ∈ 𝐵 is identified with 𝜀𝐵(𝑏).

Finally, we can consider a quotient Graphs𝐴 of Graphs𝐵, where we apply the
projection 𝜋 ∶ 𝐵 → 𝐴 to all the remaining labels.

It is not necessarily the case that the two morphisms 𝜀, 𝜀′ ∶ cone(𝜌) → ℝ[−𝑛 +
1], defined respectively by the composites (∫

𝑀
𝑔(−), ∫

𝜕𝑀
𝑔𝜕(−)) and (𝜀𝐵𝑓 , 𝜀𝐵𝜕

𝑓𝜕),
are equal. Nevertheless, up to rescaling 𝜀 (which induces an automorphism of
Graphsz𝜀

𝑅 ), they induce the same map up to quasi-isomorphism, 𝐻𝑛−1(cone(𝜌))
being one-dimensional. Since all cochain complexes are fibrant and cofibrant, we
obtain a diagram:

cone(𝜌)

ℝ[−𝑛 + 1] 𝑃[−𝑛 + 1] ℝ[−𝑛 + 1]

𝜀 𝜀′
𝜀ℎ

∼
𝑑1 𝑑0

∼

(3.5.32)

where 𝑃 is the standard path object for the base field in the category of cochain
complexes. The chain map 𝜀ℎ is uniquely determined by a graded map ℎ ∶
cone(𝜌) → ℝ[−𝑛 + 1] satisfying 𝜀(𝑥) − 𝜀′(𝑥) = ℎ(𝑑𝑥).

Since the product of fGC𝑅 is merely given by the disjoint union of graphs, this
yield a homotopy between the two morphisms fGC𝑅[𝑛] → ℝ induced. Similarly
to Proposition 3.5.31, we then obtain a zigzag of quasi-isomorphisms:

Graphsz𝜀
𝑅

∼
Graphs″

𝑅
∼

Graphsz′
𝜀

𝑅 . (3.5.33)

Now 𝜀′ is compatible with (𝜀𝐵, 𝜀𝐵𝜕
), we obtain the following proposition:

Proposition 3.5.34. We have quasi-isomorphisms of Hopf right Graphs𝑛-comodules

Graphsz′
𝜀

𝑅
𝑓∗ Graphs𝐵

𝜋∗ Graphs𝐴

which apply 𝑓 ∶ 𝑅 → 𝐵 (resp. 𝜋 ∶ 𝐵 → 𝐴) to all the labels.

Proof. Filter the graph comodules by the number of edges. On each E0 page, only
the differentials from 𝑅 (resp. 𝐵, 𝐴) remain. Since 𝑓 and 𝜋 are a quasi-isomorphism,
it follows that the induced morphisms on E1 pages is an isomorphism. Standard
spectral sequence arguments then imply that 𝑓∗ and 𝜋∗ are quasi-isomorphisms.
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We can now define a morphism Graphs𝐴 → G̃𝐴 which maps all graphs with
internal vertices to zero, and which sends an edge 𝑒𝑣𝑣′ between external vertices
to 𝜔̃𝑣𝑣′ . Then we can mimic the proof of Proposition 2.4.17 in a straightforward
way (note that as soon as we filter by #edges − #vertices the perturbed relations
of G̃𝐴 become the usual relations of G𝐴):

Proposition 3.5.35. This defines a quasi-isomorphism of right Hopf comodules:

(Graphs𝐴, Graphs𝑛) → (G̃𝐴, e∨
𝑛 ).

We can also copy the proof of Proposition 2.4.31 and use Theorem 3.3.16 to
obtain:

Proposition 3.5.36. The morphism 𝜔 ∶ SGraphs𝑐𝜑,z𝑆
𝜑

𝑅 (∅, −) → Ω∗
PA(SFM𝑀(∅, −)) is a

quasi-isomorphism.

Finally we can summarize this section as:

Theorem 3.5.37 (Precise version of Theorem D). Let 𝑀 be a simply connected, smooth,
compact manifold with boundary of dimension at least 5, and assume either that it admits
a surjective pretty model or that dim 𝑀 ≥ 7 so that it admits a PLD. Let 𝐴 be the CDGA
model built from the resulting PLD model.

Then the symmetric collection of CDGAs G̃𝐴 is quasi-isomorphic to Ω∗
PA(SFM𝑀(∅, −)).

If moreover 𝑀 is framed, then the Hopf right comodule (G̃𝐴, e∨
𝑛 ) is quasi-isomorphic to

(Ω∗
PA(SFM𝑀(∅, −)), Ω∗

PA(FM𝑛)).

Corollary 3.5.38 (Corollary E). The real homotopy type of configuration spaces on a
simply connected, smooth manifold 𝑀 with simply connected boundary only depends on
the real homotopy type of the manifold as soon as:

• either dim 𝑀 ≥ 5 and 𝑀 admits a surjective pretty model;

• or dim 𝑀 ≥ 7.

Example 3.5.39. We can apply this to 𝑀 = 𝐷𝑛, using the surjective pretty model
from Example 3.1.16. Recall that in this case, 𝐴 = ℝ, Δ𝐴 = 0, 𝜎𝐴 = 0, and G̃𝐴
is isomorphic to e∨

𝑛 as a Hopf right comodule over itself (see Example 3.3.26).
We then “recover” the already known fact that SFM𝐷𝑛(∅, −) is (Hopf) formal as a
right FM𝑛-module (though that “proof” is of course circular).

The Hopf right Graphs𝑛-comodule Graphs𝐴 is isomorphic to Graphs𝑛 seen as
a comodule over itself. The augmentation 𝜀𝐵 ∶ 𝐵 → ℝ[−𝑛 + 1] yields a Maurer–
Cartan element z𝜀 in the abelian hoLie𝑛-algebra GC∨

𝐴 (see Remark 3.5.20), given
in the dual basis by the graph with a single vertex labeled by vol𝑛. The twisted
hoLie𝑛-algebra GC∨,z𝜀

𝐴 is then isomorphic to GC∨
𝑛 from Section 3.1.5.7

7. The twisting ensures that dead ends are not contractible, see the proof of Proposition 2.4.13.
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3.5.4 Proof of Theorem F

Proposition 3.5.40. Assume that 𝑛 = dim 𝑀 ≥ 5. Then for all finite sets 𝑈 and 𝑉,
𝐻∗(SGraphs𝑐𝜑,z𝑆

𝜑
𝑅 (𝑈, 𝑉)) has the same dimension in each degree as

𝐻∗(SFM𝑀(𝑈, 𝑉)) ≅ 𝐻∗(Conf𝑈(𝜕𝑀)) ⊗ 𝐻∗(Conf𝑉(𝑀)).

Proof. We use a spectral sequence argument similar to the proof in [Wil15, Sec-
tion 5]. The assumption about the dimension of 𝑀 allows us to apply Theo-
rem 3.5.37 to 𝑀 and Theorem C to 𝜕𝑀.

First filter SGraphs𝑐𝜑,z𝑆
𝜑

𝑅 (𝑈, 𝑉) by the number of edges minus the number of
vertices as in the proof of the previous proposition. We get as an E0 page the
graded module SGraphs𝑅(𝑈, 𝑉) together with the differential which contracts
edges connected to an aerial internal vertex. Filtering this new complex by the
number of vertices that are not of the type “bivalent, internal, aerial, and labeled
by 1𝑅” as in the proof of [Wil15, Section 5], and using the previous proposition,
we obtain that E0 is quasi-isomorphic to its quotient 𝒬(𝑈, 𝑉) in which:

• graphs containing bivalent internal aerial vertices labeled by 1𝑅 other than
those appearing in a zigzag of the type shown in Figure 3.5.5 are set to zero;

• graphs with edges between aerial and terrestrial vertices other than those
appearing in a zigzag of the type shown in Figure 3.5.5 are set to zero;

• an edge 𝑒𝑣𝑣′ between aerial vertices is identified with (−1)𝑛𝑒𝑣′𝑣.

1
𝑥

2
𝑦

1𝑅

Figure 3.5.5: A zigzag which represents an edge in Graphs𝑅𝜕
(𝑈).

We may identify the underlying graded module of 𝒬(𝑈, 𝑉) with the tensor
product Graphs𝑅(𝑉) ⊗ Graphs𝑅𝜕

(𝑈). The induced differential 𝑑0 contracts edges
in Graphs𝑅(𝑉) (but not Graphs𝑅𝜕

(𝑉)). We obtain that the underlying graded
module of the E1 page is isomorphic to

𝐻∗(Graphs𝑅(𝑉), 𝑑0) ⊗ Graphs𝑅𝜕
(𝑉).

The differential 𝑑1 is induced by the part of the differential which decreases
the filtration by exactly 1. By comparing with the proof of Theorem 3.5.37 (and
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by extension with the proof of Theorem C), we obtain that the complex

(𝐻∗(Graphs𝑅(𝑉), 𝑑0), 𝑑1)

is isomorphic to G𝐴(𝑉), which has the same Betti numbers as Conf𝑉(𝑀) by Theo-
rem 3.3.16. Moreover, by inspection, 𝑑1 is given on Graphs𝑅𝜕

(𝑈) by the contraction
of edges (and the multiplication of labels). Applying Theorem C to 𝜕𝑀, we thus
obtain that the E2 page of the spectral sequence is isomorphic to:

𝐻∗(G𝐴(𝑉)) ⊗ G𝐵𝜕
(𝑈) ≅ 𝐻∗(Conf𝑉(𝑀)) ⊗ G𝐵𝜕

(𝑈).

Since any remaining cocycle is represented by a cocycle in SGraphs
𝑐𝜑,z𝑆

𝜑
𝑅 (𝑈, 𝑉),

we obtain that the spectral sequence abuts at this stage.

Proposition 3.5.41. Assume that 𝑛 = dim 𝑀 ≥ 5. Then the morphism

𝜔 ∶ SGraphs𝑐𝜑,z𝑆
𝜑

𝑅,Ω∗(𝜕𝑀)(𝑈, 𝑉) → Ω∗
PA(SFM𝑀(𝑈, 𝑉))

is a quasi-isomorphism of CDGAs for all 𝑈, 𝑉.

Proof. We know that 𝐻∗(SFM𝑀(𝑈, 𝑉)) is isomorphic to the tensor product

𝐻∗(Conf𝑉(𝑀)) ⊗ 𝐻∗(Conf𝑈(𝜕𝑀)).

We can then use the previous proposition and an inductive argument similar
to the proof of Proposition 2.4.31 to obtain the result. Indeed we can represent
any cocycle in 𝐻∗(Conf𝑉(𝑀)) by a cocycle in Graphs𝜑

𝑅(𝑉), and each cocycle in
𝐻∗(Conf𝑈(𝜕𝑀)) by a cocycle in Graphs𝜑𝜕

𝑅𝜕
(𝑈), and then take the disjoint union of

the resulting graphs.

We can now bundle everything together into a theorem, with a summary of
our hypotheses.

Theorem 3.5.42 (Precise version of Theorem F). Let 𝑀 be a smooth, simply connected
manifold with a simply connected boundary, of dimension 𝑛 ≥ 5. Suppose also that
𝑀 admits a surjective pretty model, or that 𝑛 ≥ 7 so that it admits a PLD model as in
Equation (3.2.17).

Then for each 𝑈, 𝑉, then the CDGA SGraphs
𝑐𝑀,z𝑆

𝜑
𝑅,𝑅𝜕

(𝑈, 𝑉) is quasi-isomorphic to
Ω∗

PA(SFM𝑀(𝑈, 𝑉)), and this is compatible with the symmetric group actions.
If 𝑀 is framed, then together with Willwacher’s morphism [Wil15], this defines a

quasi-isomorphism of right Hopf comodules

(SGraphs𝑐𝑀,z𝑆
𝜑

𝑅,𝑅𝜕
, SGraphs𝑐0

𝑛 ) ≃ (Ω∗
PA(SFM𝑀), Ω∗

PA(SFM𝑛)).

It would be an interesting question to know how much z𝑆
𝜑 can be simplified.
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Conf𝑘(𝑀), configuration space, 37
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CoPB+, 23
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Δ𝑖𝑗, 110
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D𝑛, little disks operad, 8
Drinfeld associator, 25
Drinfeld center, 17
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e∨

𝑛 = 𝐻∗(D𝑛), 43
e∨
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partition function, 63, 132
PaSh+, 28
𝔭, Drinfeld–Kohno operad, 25
Π, permutation operad, 26
𝑝𝑖𝑗, 41
PLD model, 104

Poincaré duality algebra, 47
Poincaré–Lefschetz duality model, 104
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Stokes formula, 60
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