Thèse soutenue

Exploration des nanotechnologies ADN pour l'auto-assemblage de nanoparticules d'aluminium et d'oxyde de cuivre : application à la synthèse de matériaux énergétiques

FR  |  
EN
Auteur / Autrice : Théo Calais
Direction : Carole RossiAurélien Bancaud
Type : Thèse de doctorat
Discipline(s) : Micro Nano Systèmes
Date : Soutenance le 16/01/2017
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....)
Jury : Président / Présidente : Jean-Pierre Aimé
Examinateurs / Examinatrices : Carole Rossi, Aurélien Bancaud, Rose-Marie Sauvage, Yves J. Chabal, Alain Estève
Rapporteurs / Rapporteuses : Didier Gasparutto, Sébastien Bidault

Résumé

FR  |  
EN

Les nanotechnologies ADN utilisées pour l’auto-assemblage de nanoparticules d’or ou de métaux nobles ont connu un important développement au cours des vingt dernières années, permettant l’organisation de particules agencées en nano-cristaux, grâce à la spécificité biologique inégalable de deux brins complémentaires d’ADN. L’objectif de ces travaux de thèse est d’adapter ces nanotechnologies à l’assemblage de nanoparticules d’Al et de CuO en vue d’élaborer des matériaux composites énergétiques à haute performance, grâce à l’augmentation des surfaces en contact entre réducteur (Al) et oxydant (CuO) par la maîtrise de l’organisation spatiale des nanoparticules. Ainsi, la fonctionnalisation séparée des nanoparticules d’Al et de CuO dispersées en solution colloïdale par des monobrins d’ADN complémentaires assurée ici par l’utilisation du complexe biotineStreptavidine, doit amener, après mélange des deux solutions colloïdales, à l’agrégation des particules par l’hybridation des brins d’ADN greffés en surface. La stratégie de fonctionnalisation choisie ici est générique : la protéine « Streptavidine » est d’abord greffée sur la nanoparticule, puis le brin d’ADN possédant un groupe biotine à une de ses extrémités, se fixe sur la Streptavidine. Au-delà de l’organisation de la matière à l’échelle nanométrique, l’enjeu double de ces travaux tient dans l’établissement d’un protocole de fonctionnalisation fiable et reproductible, propre aux procédés de micro-électronique, pour envisager un report de ces matériaux sur puce, mais également dans le contrôle des performances énergétiques grâce à l’ADN. Nous nous sommes donc appliqués à élaborer ce protocole en caractérisant précisément chaque étape de fonctionnalisation : la stabilisation des colloïdes et la biofonctionnalisation des nanoparticules par la Streptavidine et l’ADN. De plus, l’interaction entre ADN et surfaces oxydées des particules a été étudiée de façon à identifier les interactions non-spécifiques à l’origine d’agrégations non maîtrisées et améliorer en conséquence la qualité de la fonctionnalisation. Nous avons ensuite étudié l’agrégation des particules fonctionalisées en fonction de nombreux paramètres expérimentaux telles que la longueur de la chaîne ADN, la séquence de l’oligonucléotide, ou encore la composition saline de la solution. A cause de l’existence d’interactions non-spécifiques mise en évidence, nous avons optimisés ces paramètres de façon à assurer une agrégation dirigée uniquement par l’hybridation des brins d’ADN. Les performances énergétiques des matériaux synthétisés ont enfin été caractérisées et nous avons démontré la possibilité de contrôler les performances énergétiques des nanobiocomposites synthétisant en maîtrisant leur microstructure grâce à l’ADN.