Thèse soutenue

Définition et mise en œuvre d’un nouveau service de positionnement précis par GNSS

FR  |  
EN  |  
PT
Auteur / Autrice : Paulo Sérgio de Oliveira Junior
Direction : Laurent MorelJoão Francisco Galera Monico
Type : Thèse de doctorat
Discipline(s) : Astronomie, astrophysique. Géomatique
Date : Soutenance le 05/09/2017
Etablissement(s) : Paris, CNAM en cotutelle avec Universidade estadual paulista (São Paulo, Brésil). Faculdade de Ciências e Tecnologia
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur, Géosciences, Architecture (Nantes)
Partenaire(s) de recherche : Laboratoire : Laboratoire Géomatique et Foncier. Équipe de Géodésie et de Géomatique (Le Mans) - Laboratório de Geodésia Espacial (São Paulo, Brésil)
Entreprise : Géodata Diffusion (Villebon-sur-Yvette, Essonne)
Jury : Président / Présidente : Régis Mourgues
Examinateurs / Examinatrices : Daniele Barroca Marra Alves, Paul Rebischung
Rapporteurs / Rapporteuses : Félix Perosanz, Marcelo Santos

Résumé

FR  |  
EN  |  
PT

Le PPP (Precise Point Positioning) est une méthode GNSS (Global Navigation Satellite Systems), basée sur le concept SSR (State Space Representation). Grâce aux améliorations récentes des modèles atmosphériques, le PPP en temps réel (RT-PPP) peut être également amélioré. L'objectif principal de ce travail est d'étudier le RT-PPP et l'infrastructure optimisée en termes de coûts et d'avantages pour réaliser la méthode en utilisant des corrections atmosphériques. Pour cela, différentes configurations d'un réseau GNSS dense et régulier existant en France, le réseau Orphéon, sont utilisées. Ce réseau compte environ 160 sites, propriété de Geodata-Diffusion (Hexagon Geosystems). Dans un premier temps, le mode «PPP-RTK flottant» a été évalué, il correspond au RT-PPP avec des améliorations issues des corrections de réseau, mais avec les ambiguïtés flottantes. Ensuite, des corrections de réseau sont appliquées pour améliorer le mode « PPP-RTK » où les ambiguïtés sont fixées à leurs valeurs entières. Pour le PPP-RTK flottant, une version modifiée du package RTKLib 2.4.3 (beta) est utilisée pour prendre en compte les corrections réseau. Les effets ionosphériques de premier ordre ont été éliminés par la combinaison iono-free et le retard troposphérique zénithal est estimé. Les corrections ont été appliquées en introduisant des paramètres troposphériques a priori contraints. Une modélisation adaptative basée sur les OFCs (Optimal Fitting Coefficients) a été mise en place pour décrire le comportement de la troposphère, en utilisant des estimations des retards troposphériques pour les stations Orphéon. Cette solution permet une communication monodirectionnelle entre le serveur et l'utilisateur. Les gains réalisés sur le temps de convergence pour obtenir un positionnement de 10 centimètres de précision ont été quantifiés statistiquement. La topologie du réseau a été évaluée, en réduisant le nombre de stations de référence (jusqu'à 75%), via une configuration de réseau lâche. Dans la deuxième étape, le PPP-RTK est réalisé grâce au logiciel PPP-Wizard 1.3 et avec les produits temps réel CNES (Centre Nacional de Estudes Spatiales) pour les orbites, les horloges et les biais de phase des satellites. Le RT-IPPP (RT-Integer PPP) est réalisé avec estimation des délais troposphériques et ionosphériques. Les corrections ionosphériques et troposphériques sont introduites en tant que paramètres a priori contraints au PPP-RTK. Pour générer des corrections ionosphériques, il a été mis en place un algorithme d'interpolation à distance inversée (IDW–Inverse Distance Weighting). Les améliorations apportées au positionnement horizontal dues aux corrections atmosphériques SSR externes provenant d’un réseau (dense ou lâche) sont prometteuses et peuvent être utiles pour les applications qui dépendent principalement du positionnement horizontal.