Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative

par Franck Gautier-Baudhuit

Thèse de doctorat en Mathématiques Fondamentales

Sous la direction de Dominique Manchon et de Jean-Marie Lescure.

Soutenue le 10-11-2017

à Clermont Auvergne , dans le cadre de École doctorale des sciences fondamentales (Clermont-Ferrand) , en partenariat avec Laboratoire de Mathématiques Blaise Pascal (laboratoire) .

Le président du jury était Sylvie Paycha.

Le jury était composé de Ali Baklouti, Nigel Higson, François Dumas.

Les rapporteurs étaient Ali Baklouti, Nigel Higson.


  • Résumé

    Cette thèse s'intéresse à des familles de fonctions zêta spectrales (séries de Dirichlet) qui peuvent être associées à certaines algèbres d'opérateurs sur des espaces de Hilbert. Dans ce mémoire, la principale question étudiée sur ces fonctions zêta est l'existence d'un prolongement méromorphe à partir d'un demi-plan ouvert du plan complexe au plan complexe tout entier. Généralisant une idée de Nigel Higson, on propose dans la partie I, une méthode pour prouver l'existence de ce prolongement méromorphe pour certains fonction zêta spectrales. Cette méthode s’effectue dans le cadre d'algèbres d'opérateurs différentiels généralisés et elle s'appuie sur une suite de réduction. Le théorème principal donne, sous certaines conditions, l'existence d'un prolongement méromorphe, une localisation des pôles dans les supports de suites arithmétiques et une borne supérieure pour l'ordre de ces pôles. Dans la partie II, on reformule la méthode de la partie I dans le contexte et avec le vocabulaire des triplets spectraux de Connes et Moscovici. Dans la troisième partie, on donne une application pour des fonctions zêta associées à des opérateurs de type Laplace sur des variétés lisses, compactes et sans bord. Cet exemple a été initialement traité par Nigel Higson avec cette approche en 2006. Une deuxième application traite de fonctions zêta associées au tore non commutatif. Dans la partie IV, on utilise le calcul pseudodifférentiel associé à des algèbres de Lie nilpotentes et développé par Dominique Manchon, pour construire de nouveaux triplets spectraux. Dans la partie V se trouve la principale application de la méthode exposée dans ce mémoire. On prouve l'existence du prolongement méromorphe pour des fonctions zêta provenant de représentations de Kirillov d'une classe d'algèbre de Lie nilpotentes.

  • Titre traduit

    Meromorphic continuation of spectral zeta functions approach to noncommutative geometry


  • Résumé

    The thesis is about a families of zeta functions (Dirichlet series) that may be associated to certain algebras of Hilbert space operators. In this thesis, the main question in studying these zeta functions is to establish their meromorphic continuation from a half-plane in the complex plane to the full plane.Following an idea of Nigel Higson, we develop, in part I, a method for proving the existence of a meromorphic continuation for some spectral zeta functions. The method is based on algebras of generalized differential operators. The more important tool is the reduction sequence. The main theorem states, under some conditions, the existence of a meromorphic continuation, a localization of the poles in supports of arithmetic sequences and an upper bound of their order. A formulation of the method into the framework of Connes and Moscovici, the regular spectral triples, setting in part II. In the third part, we give an application for zeta functions associate to a Laplace-type operator on a smooth, closed manifold. This example was initially treated in this way by Nigel Higson in 2006. We give another application for zeta functions associate to the noncommutative torus. In part IV, using the work of Dominique Manchon on algebras of pseudodifferential operators associated to unitary representations of nilpotent Lie group, we construct new spectral triples. In part V, set the main application of the method. We applicate the reduction method for some algebras of generalized differential operators, arising from a Kirillov representation of a class of nilpotent Lie algebras.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.