Modélisation de stratégies d'introduction de populations, effets Allee et stochasticité

par Nicolas Bajeux

Thèse de doctorat en Automatique, traitement du signal et des images

Sous la direction de Olivier Bernard.

Le président du jury était Xavier Fauvergue.

Le jury était composé de Olivier Bernard, Xavier Fauvergue, Julien Arino, Jérôme Coville, Fabien Campillo, Christelle Lopes.

Les rapporteurs étaient Julien Arino, Jérôme Coville.


  • Résumé

    Cette thèse s'intéresse à l'étude des stratégies d'introduction de populations dans l'environnement. Les deux principaux contextes présentés sont la lutte biologique et la réintroduction d'espèces. Si ces deux types d'introduction diffèrent, des processus biotiques et abiotiques les influencent de manière similaire. En particulier les populations introduites, souvent de petite taille, peuvent être sensibles à diverses formes de stochasticité, voire subir une baisse de leur taux de croissance à faible effectif, ce qu'on appelle « effet Allee ». Ces processus peuvent interagir avec les stratégies d'introduction des organismes et moduler leur efficacité. Dans un premier temps, nous modélisons le processus d'introduction à l'aide de systèmes dynamiques impulsionnels : la dynamique de la population est décrite par des équations différentielles ordinaires qui, à des instants donnés, sont perturbées par des augmentations soudaines de la taille de la population. Cette approche se concentre sur l'influence des effets Allee sur les populations isolées (réintroduction) ou dans un cadre proie-prédateur (lutte biologique). Dans un second temps, en nous concentrant sur l'aspect réintroduction, nous étendons ce cadre de modélisation pour prendre en compte des aspects stochastiques liés à l'environnement ou aux introductions elles-mêmes. Finalement, nous considérons un modèle individu centré pour étudier l'effet de la stochasticité démographique inhérente aux petites populations. Ces différentes approches permettent d'analyser l'influence de la distribution temporelle des introductions et ainsi déterminer les stratégies qui maximisent les chances de succès des introductions.

  • Titre traduit

    Modelling populations introduction strategies, Allee effects and stochasticity


  • Résumé

    This thesis investigates introduction strategies of populations in the environment. Two main situations are considered: biological control and species reintroduction. Although these two kinds of introductions are different, many biotic and abiotic processes influence them in a similar way. Introduced populations are often small and may be sensitive to various stochastic factors. Further, small populations may suffer from a decrease of their growth rate when the population is small, a feature called "Allee effect". These processes may interact with introduction strategies and modulate their efficiency. First, we represent the introduction process using impulsive dynamical systems: population dynamics are described by ordinary differential equations that are disrupted at some instants by instantaneous increases of the population size. This approach focuses on the influence of Allee effects on single-species (reintroduction) or predator-prey interactions (biological control). Then, we concentrate on the reintroduction approach and extend the previous deterministic framework to take into consideration stochastic factors arising from the environment or from introductions themselves. Finally, we consider an individual-based model to study the effects of demographic stochasticity which is inherent to small populations. These different approaches allow to investigate the temporal distribution of introductions and determine which introduction strategies maximize the probability of success of introductions.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Côte d'Azur. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.