Estimations de dispersion et de Strichartz dans un domaine cylindrique convexe

par Len Meas

Thèse de doctorat en Mathématiques

Sous la direction de Gilles Lebeau et de Danela Oana Ivanovici.

Soutenue le 29-06-2017

à Côte d'Azur , dans le cadre de École doctorale Sciences fondamentales et appliquées (Nice) , en partenariat avec Université de Nice (établissement de préparation) , Laboratoire J.-A. Dieudonné (Nice) (laboratoire) et de Laboratoire Jean Alexandre Dieudonné (laboratoire) .


  • Résumé

    Dans ce travail, nous allons établir des estimations de dispersion et des applications aux inégalités de Strichartz pour les solutions de l’équation des ondes dans un domaine cylindrique convexe Ω ⊂ R³ à bord C∞, ∂Ω ≠ ∅. Les estimations de dispersion sont classiquement utilisées pour prouver les estimations de Strichartz. Dans un domaine Ω général, des estimations de Strichartz ont été démontrées par Blair, Smith, Sogge [6,7]. Des estimations optimales ont été prouvées dans [29] lorsque Ω est strictement convexe. Le cas des domaines cylindriques que nous considérons ici généralise les resultats de [29] dans le cas où la courbure positive dépend de l'angle d'incidence et s'annule dans certaines directions.

  • Titre traduit

    Dispersive and Strichartz estimates for the wave equation inside cylindrical convex domains


  • Résumé

    In this work, we establish local in time dispersive estimates and its application to Strichartz estimates for solutions of the model case Dirichlet wave equation inside cylindrical convex domains Ω ⊂ R³ with smooth boundary ∂Ω ≠ ∅. Let us recall that dispersive estimates are key ingredients to prove Strichartz estimates. Strichartz estimates for waves inside an arbitrary domain Ω have been proved by Blair, Smith, Sogge [6,7]. Optimal estimates in strictly convex domains have been obtained in [29]. Our case of cylindrical domains is an extension of the result of [29] in the case where the nonnegative curvature radius depends on the incident angle and vanishes in some directions.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.