
École Doctorale SPI Université Lille Nord de France

Algorithmic Contributions to
Qualitative Constraint-based Spatial

and Temporal Reasoning

THÈSE

présentée et soutenue publiquement le 27 février 2017

pour l’obtention du

Doctorat de l’Université d’Artois

(spécialité Informatique)

par

Michael Sioutis

Rapporteurs : Philippe Balbiani - Directeur de Recherche CNRS, IRIT
Maroua Bouzid - Professeur Université de Caen Basse-Normandie

Examinateurs : Mehul Bhatt - Professeur Université de Brême (Allemagne)
Jean-François Condotta - Professeur Université d’Artois (Co-directeur)
Bertrand Mazure - Professeur Université d’Artois (Co-directeur)
Yakoub Salhi - Mâıtre de Conférences Université d’Artois (Co-encadrant)

Invité : Gérard Ligozat - Professeur Université Paris-Sud 11

Centre de Recherche en Informatique de Lens — UMR 8188

Acknowledgments

I would like to thank the Centre de Recherche en Informatique de Lens (CRIL), the Univer-
sité d’Artois, and the region of Nord-Pas-de-Calais (which has become a part of the new region
Hauts-de-France as of 1 January 2016) for funding my PhD studies. In particular, I would like
to thank the CRIL laboratory for offering me an office and the technical resources to work on
my thesis and, most importantly, for providing me with an environment of brilliant researchers
that kept me motivated and in pursuit of my full potential.

I would like to thank my advisors, Professors Jean-François Condotta and Bertrand Mazure
and Assistant Professor Yakoub Salhi, for trusting me to undertake this thesis topic under their
guidance and direction. Each of them contributed in a different, yet always positive, way to my
work. I would especially like to mention Jean-François Condotta, who I was fortunate enough
to meet in Paris prior to my PhD journey, and who was one of the major reasons I decided to
move to Lens and become a member of the CRIL team.

I would like to thank Professor Sanjiang Li for collaborating with me on several research prob-
lems and for inviting me to the University of Technology Sydney (UTS) in Australia, where I
was also honored to get to know and collaborate with one of his excellent PhD students, Shufeng
Kong, and an exceptional research fellow, Dr. Jae Hee Lee. Unfortunately, it was only after my
stay in Australia that I also got to know in person Dr. Zhiguo Long, another excellent researcher
and a former PhD student in UTS under the supervision of Professor Li. However, I had the
pleasure of collaborating with Dr. Long remotely during and after my research visit in UTS.

I would like to thank my family for their love and their support. Having a warm and wel-
coming place back in your home country, always makes things significantly easier.

I would like to thank my friends and collaborators, Panagiotis Liakos and Dr. Katia Papakon-
stantinopoulou, for keeping me in balance and for engaging in wonderful conversations with me
about science and otherwise.

Finally, special thanks go to Maria Kontogianni, for whom I have a deep affection. Special
thanks also go to my special friend on the other side of the Atlantic Ocean, Fátima Peñaloza.

i

ii

I dedicate this thesis to my late grandfather, Michael Sioutis, Sr.

iii

iv

Table of Contents

Chapter 1

Introduction 1

Partie I State of the Art 7

Chapter 2

Qualitative Spatial and Temporal Constraint Languages 9

2.1 Introduction . 9

2.2 Base Relations of Qualitative Constraint Languages 10

2.3 Cases of Qualitative Spatial and Temporal Constraint Languages 10

2.3.1 Point Algebra . 11

2.3.2 Cardinal Direction Calculus . 11

2.3.3 Interval Algebra . 11

2.3.4 Block Algebra . 13

2.3.5 RCC-8 . 14

2.3.6 9-intersection model (9-IM) . 15

2.3.7 Orientation Calculi . 17

2.4 Relational Operations . 18

2.5 Classes of Relations . 21

2.5.1 Distributive Subclasses of Relations 22

2.6 Conclusion . 23

Chapter 3

Reasoning with Qualitative Constraint Networks 25

3.1 Introduction . 25

3.2 Qualitative Constraint Networks (QCNs) . 26

3.3 Reasoning Problems Associated with QCNs 28

v

Table of Contents

3.3.1 Satisfiability Problem . 29

3.3.2 Minimal Labeling Problem . 30

3.3.3 Redundancy Problem . 31

3.4 Tractability of QCNs . 32

3.5 Algorithms for Reasoning with QCNs . 33

3.5.1 Algebraic Closure and �-consistency 34

3.5.2 Algorithms for the Satisfiability Problem of QCNs 41

3.5.3 Algorithms for the Minimal Labeling Problem of QCNs 46

3.5.4 Algorithms for the Redundancy Problem of QCNs 49

3.6 Constraint Properties of QCNs . 52

3.7 Decomposability of QCNs . 55

3.7.1 Decomposability in the CSP framework 59

3.8 Conclusion . 60

Chapter 4

Combining Space & Time into Qualitative Spatio-Temporal Frameworks 63

4.1 Introduction . 63

4.2 Linear Point-based Time Spatio-Temporal Logics 64

4.3 Spatio-Temporal Change based on Transition Constraints 70

4.4 Combining RCC-8 and Interval Algebra . 76

4.5 Spatio-Temporal Periodicity . 79

4.6 Conclusion . 82

Partie II Contributions 85

Chapter 5

Efficient Algorithms for tackling Qualitative Constraint Networks 87

5.1 Introduction . 87

5.2 Partial Algebraic Closure and Partial �-consistency 88

5.2.1 The PWC Algorithm . 97

5.2.2 The iPWC Algorithm . 98

5.3 Directional Algebraic Closure and Directional �-consistency 109

5.3.1 The DWC Algorithm . 111

5.4 Efficient Algorithms for the Satisfiability Problem of QCNs 115

5.4.1 The PartialConsistency Algorithm . 117

vi

5.4.2 The IterativePartialConsistency Algorithm 119

5.4.3 Reasoners . 119

5.4.4 Experimental evaluation . 124

5.5 Efficient Algorithms for the Minimal Labeling Problem of QCNs 133

5.5.1 Experimental Evaluation . 140

5.6 Efficient Algorithms for the Redundancy Problem of QCNs 143

5.6.1 Experimental Evaluation . 146

5.7 Towards Efficient Utilization of Parallelism 147

5.7.1 Partitioning Graphs and Non-Soundness 147

5.7.2 A Simple Decomposition Scheme for Sound and Efficient Use of Par-

allelism . 152

5.7.3 Experimental Evaluation . 157

5.8 Conclusion and Future Work . 159

Chapter 6

Enriching Qualitative Spatio-Temporal Reasoning 161

6.1 Introduction . 161

6.2 Revisiting the Satisfiability Problem in L1 162

6.3 Capturing Spatio-Temporal Behaviour in L1 166

6.3.1 Spatio-Temporal Periodicity . 166

6.3.2 Spatio-Temporal Smoothness and Continuity 168

6.4 Semantic tableau for L1 . 170

6.4.1 Rules for Constructing a Semantic Tableau 171

6.4.2 Systematic Construction of a Semantic Tableau 172

6.4.3 Soundness and Completeness of our Semantic Tableau Method 175

6.5 Ordering Spatio-Temporal Sequences to meet Transition Constraints 178

6.5.1 Spatio-Temporal Sequence Ordering Problems 179

6.5.2 Constraining Spatio-Temporal Sequences with Point Algebra 189

6.6 Conclusion and Future Work . 192

Chapter 7

Conclusion and Future Work 195

Bibliography 199

vii

Table of Contents

viii

List of Tables

2.1 Definition of the various relations of RCC; relations in bold are included in RCC-8 14
2.2 Converse tables for (a) Point Algebra, (b) Cardinal Direction Calculus, (c) Interval

Algebra, and (d) RCC-8 . 18
2.3 Weak composition tables for (a) Point Algebra and (b) RCC-8 20
2.4 Axioms for relation algebras, where r, s, t ∈ 2B . 21

3.1 Weighting scheme for Interval Algebra base relations 39

5.1 Triangulation time based on different methods . 122
5.2 Tabular overview of our reasoners . 123
5.3 Evaluation with real-world RCC-8 datasets . 126
5.4 Performance comparison on CPU time . 146
5.5 Effect on obtaining non-redundant relations . 146
5.6 Characteristics of real RCC-8 networks . 156
5.7 Biconnected components of real RCC-8 networks 156
5.8 Performance comparison based on elapsed time 158

ix

List of Tables

x

List of Figures

2.1 The base relations of Point Algebra . 11
2.2 The base relations of Cardinal Direction Calculus 11
2.3 The base relations of Interval Algebra . 12
2.4 The base relation (o,mi, s) of Block Algebra . 13
2.5 The base relations of RCC-8 . 15
2.6 A geometric interpretation of the 8 relations between two regions with connected

boundaries (symbol ¬ stands for not, hence, ¬∅ is a non-empty set) 16
2.7 Three possible configurations for regions x, y, z when we have EC(x, y) and

NTPP (y, z) . 19
2.8 The lattice of Interval Algebra . 22

3.1 A QCN of RCC-8 along with its spatial configuration (note that region y has a hole) 27
3.2 Binary operations on QCNs . 28
3.3 A RCC-8 network (left) and its minimal network (right) 30
3.4 A RCC-8 network (left) and its prime network (right) 32
3.5 Patching two QCNs . 53
3.6 RCC-8 configurations . 54
3.7 A graph (upper part) and its tree decomposition (lower part) 55

4.1 Left: segmented cell bodies (green), lobulated cell nuclei (yellow and red) and
background (black), Middle: segmented cell nucleus extending outside border of
host cell (red pixels), Right: the result of applying a morphological erosion oper-
ator; here the original partially overlaps relation changes to proper part 70

4.2 A conceptual neighbourhood graph of RCC-8 . 71
4.3 Example of a spatio-temporal sequence based on RCC-8 72
4.4 Transition graph of the spatio-temporal sequence in Figure 4.3 73
4.5 An example UPQCN U of RCC-8 . 80
4.6 The motif of the UPQCN U of RCC-8 shown in Figure 4.5 81
4.7 Solution of the UPQCN U of RCC-8 shown in Figure 4.5 (i>2) 82

5.1 Example of a chordal graph . 89
5.2 Triangulation of the underlying constraint graph of a QCN 91
5.3 Pruning capacity of �-consistency restricted to a triangulation of the constraint

graph of a QCN (partial �-consistency) and standard �-consistency on that QCN 92
5.4 Pruning capacity of �-consistency (PC) over partial �-consistency (PPC) 93
5.5 A non-complete chordal graph G . 94
5.6 The] operation on two QCNs accompanied by their respective graphs 99
5.7 QCNs with respect to their constraint graphs . 102

xi

List of Figures

5.8 Structures of a random regular graph with an average degree k = 9 and a scale-free
graph with a preferential attachment m = 2, both having 100 nodes 106

5.9 Performance comparison of iPWC and PWC for RCC-8 networks 108
5.10 Hash table based adjacency list for representing a chordal RCC-8 network 121
5.11 Performance comparison for random scale-free RCC-8 networks 125
5.12 Evidence of the power law node degree distribution of the real datasets considered 127
5.13 Matrix representations of different graph configurations of adm1 127
5.14 Experiment with random regular networks . 128
5.15 Experiment with random scale-free-like networks 130
5.16 Experiment with hard random scale-free-like networks 131
5.17 Experiment with hard random scale-free-like networks and a SAT implementation 132
5.18 CPU time for series S(n, d, 6.5) of IA . 141
5.19 CPU time for instances of RCC-8 not forced to be consistent 142
5.20 A graph and its partitioning graph with the parts comprising it (also contained

in dashed circles in the initial graph) . 148
5.21 A graph and its partitioning graph with the parts comprising it (also contained

in dashed circles in the initial graph) . 149
5.22 A chordal graph and its partitioning graph with the parts comprising it (also

contained in dashed circles in the initial graph) 151
5.23 A graph G (top) with its biconnected components (middle) and its tree decompo-

sition (bottom) . 152
5.24 A separable constraint graph with an articulation vertex v 157

6.1 A countably infinite sequence of satisfiable atomic QCNs that agree on their com-
mon part . 163

6.2 A countably infinite sequence of satisfiable atomic QCNs that contains a sub-
sequence which begins and ends with two QCNs representing the same set of spatial
constraints (i.e., a sub-sequence which defines a loop between two QCNs) (a); we
can reduce the sub-sequence to just considering the first QCN and patch it with
the QCN following the sub-sequence (b) . 164

6.3 A LUPQCN formula φ over timeline t . 166
6.4 A countably infinite sequence of not trivially inconsistent and �-consistent QCNs,

where there exists a point of time t after which the QCNs in the sequence represent
the same set of constraints . 167

6.5 A L1 formula and its simplified tableau . 175
6.6 The example spatio-temporal sequence and its corresponding transition graph of

Section 4.3 . 179
6.7 A conceptual neighbourhood graph . 181
6.8 Example of the construction of a transition graph through algorithm Arachni . . . 184
6.9 Example of a QSCN of Rectangle Algebra . 191

xii

Chapter 1

Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study in Artificial In-
telligence and, particularly, in Knowledge Representation, which deals with the fundamental
cognitive concepts of space and time in an abstract manner. This qualitative manner of deal-
ing with space and time is in line with the qualitative abstractions of spatial and temporal
aspects of the common-sense background knowledge on which the human perspective of physi-
cal reality is based. For instance, in natural language we use verbs such as inside, before, and
north of to spatially or temporally relate one object with another object or oneself, without
resorting to providing quantitative information about these entities. More formally, qualitative
spatial and temporal reasoning restricts the rich mathematical theories that deal with spatial and
temporal entities to simple qualitative constraint languages. The conciseness of the constraint
languages used in the qualitative approach provides a promising framework that further boosts
research and applications in spatial and temporal reasoning, as it allows for rather inexpensive
reasoning about entities located in space and time. For example, some of these calculi may
be implemented for handling spatial Geographic Information Systems (GIS) queries efficiently
and some may be used for navigating and communicating with a mobile robot [Hazarika, 2012;
Bhatt et al., 2011].

The first constraint language to deal with space or time in a qualitative manner was proposed
by Allen in [Allen, 1981; Allen, 1983], called Interval Algebra, and it has been mostly used for
reasoning about time ever since. Allen wanted to define a framework for reasoning about time
in the context of natural language processing that would be reliable and efficient enough for
reasoning about extracted and newly indrocuded temporal information in a qualitative manner.
In particular, Interval Algebra uses intervals on the timeline to represent entities corresponding
to actions, events, or tasks. Interval Algebra has become one of the most well-known qualitative
constraint languages, due to its use for representing and reasoning about temporal information
in various applications. Specifically, typical applications of Interval Algebra involve planning and
scheduling [Allen and Koomen, 1983; Allen, 1991; Pelavin and Allen, 1987; Dorn, 1995], natural
language processing [Song and Cohen, 1988], temporal databases [Snodgrass, 1987; Chen and
Zaniolo, 1998], multimedia databases [Little and Ghafoor, 1993], molecular biology [Golumbic
and Shamir, 1993] (e.g., arrangement of DNA segments/intervals along a linear chain involves
particular temporal-like problems [Benzer, 1959]), and workflow [Lu et al., 2006].

Inspired by the success of Interval Algebra, Randell, Cui, and Cohn developed the Region
Connection Calculus (RCC) in [Randell et al., 1992]. As its name suggests, the Region Connection
Calculus studies the different relations that can be defined between regions in some topological
space; these relations are based on the primitive relation of connection. As an example of a

1

Chapter 1. Introduction

relation of the Region Connection Calculus, the relation disconnected between two regions x and
y suggests that none of the points of region x connects with a point of region y, and vice versa.
Two of its fragments, namely, RCC-8 and RCC-5 (a sublanguage of RCC-8 where no significance is
attached to boundaries of regions), have been used in several real-life applications. In particular,
Bouzy in [Bouzy, 2001] used the RCC-8 qualitative constraint language in programming the Go
game, and Andreas et al. in [Lattner et al., 2005] used RCC-5 to set up assistance systems in
intelligent vehicles. Other typical applications of the Region Connection Calculus involve GIS,
robot navigation, high level vision, and natural language processing [Bhatt et al., 2011].

In the literature, there have also been efforts towards combining space and time in an inter-
related manner and, consequently, forming spatio-temporal formalisms. With such qualitative
spatio-temporal frameworks, we can represent for example the fact that a given region was con-
tained in another region at one point in time and externally connected to that region at a next
point of time, or even the fact that a point will always move towards a particular direction over
time. Towards constraint-based qualitative spatio-temporal reasoning, most of the work has re-
lied on formalisms based on the propositional temporal logic (PTL), also known as linear temporal
logic, and some qualitative spatial constraint language, like the RCC-8 language we referenced
earlier (cf. [Wolter and Zakharyaschev, 2003; Wolter and Zakharyaschev, 2000b]). PTL [Huth
and Ryan, 2004] is the well known temporal logic comprising operators U (until), # (next point
in time), 2 (always), and 3 (eventually) over various flows in time, such as 〈N, <〉. Other spatio-
temporal reasoning frameworks consider temporal sequences of spatial QCNs. These sequences
allow one to describe a spatial configuration that evolves and changes over time. Indeed, solving
the spatial QCNs in such a given sequence will in turn yield a sequence of scenarios constituting
a timeline, upon which the different states of a qualitative spatial configuration that evolves over
time can be viewed. An example of a published work on spatio-temporal sequences is the work of
Westphal et al. in [Westphal et al., 2013]. Another natural approach to obtain a spatio-temporal
formalism is to temporalize the RCC-8 language using the Interval Algebra language. The com-
putational complexity of that approach has been studied in [Gerevini and Nebel, 2002]. Dealing
with a qualitative spatio-temporal formalism gives rise to various interesing problems, such as
the ones related to periodicity and recurring patterns that can appear in temporalized QCNs.

In the context of our thesis, we push the envelope in the field of qualitative spatial and tem-
poral reasoning by making contributions with respect to several of its key aspects. In particular,
given a knowledge base of qualitative spatial or temporal information, we define novel local con-
sistency conditions and related techniques to efficiently solve the fundamental reasoning problems
that are associated with such knowledge bases. These reasoning problems consist of the satisfia-
bility problem, which is the problem of deciding whether there exists a quantitative interpretation
of all the entities of a knowledge base such that all of its qualitative relations are satisfied by
that interpretation (such an interpretation being called a solution), the minimal labeling problem,
which is the problem of determining all the atoms for each of the qualitative relations of a knowl-
edge base that participate in at least one of its solutions, and the redundancy problem, which is
the problem of obtaining all the non-redundant qualitative relations of a knowledge base, i.e.,
those qualitative relations that do not contain at least one atom participating in a solution of the
modified knowledge base that results by removing these qualitative relations. Further, we enrich
the field of spatio-temporal formalisms that combine space and time in an interrelated manner
by making contributions with respect to a qualitative spatio-temporal logic that results by com-
bining the propositional temporal logic (PTL) with a qualitative spatial constraint language, and
by investigating the task of ordering a temporal sequence of qualitative spatial configurations to
meet certain transition constraints. Regarding the spatio-temporal logic, we also present a first
semantic tableau method that given a formula φ of that logic systematically searches for a model

2

for φ.

Organization of the Thesis

In Chapter 2, we make an overview of some well-known qualitative constraint languages for
reasoning about time and space and we describe in detail the different elements that constitute
such formalisms. In particular, we discuss the notion of the base relations, which are used
to represent particular qualitative configurations between spatial or temporal entities and are
therefore in the heart of any qualitative constraint-based formalism. Further, we delve into the
relational operations that are defined in order to be able to reason with a qualitative constraint
language. Moreover, we focus on qualitative constraint languages based on points, intervals,
blocks, or regions, and we also go through some aspects of orientation and the means by which
it can be handled.

In Chapter 3, we formally introduce the notion of a qualitative constraint network (QCN),
and draw the connection between the base relations and the relational operations we presented
in Chapter 2 and some useful local consistency conditions for characterizing QCNs. In short, a
QCN comprises a set of variables corresponding to a set of spatial or temporal entities and a set
of relations that constrain the possible qualitative configurations between the different entities.
What is more, and with regard to a given QCN, we present the fundamental reasoning problems
that are associated with it, as well as the state of the art algorithms for dealing with those
reasoning problems. Specifically, these problems consist of the satisfiability problem, that is, the
problem of deciding whether there exists an interpretation of all the variables of the QCN such
that all of its constraints are satisfied by this interpretation (such an interpretation being called a
solution), and the closely related minimal labeling problem and redundancy problem. The minimal
labeling problem is the problem of determining all the base relations for each of the constraints
of a QCN that participate in at least one of its solutions, whilst the redundancy problem is the
problem of obtaining all the constraints of a QCN that do not contain at least one base relation
participating in a solution of the modified QCN that results by removing these constraints.
Further, we explain some constraint properties of QCNs, and finally make a discussion on some
decomposability aspects of QCNs considered in the literature.

In Chapter 4, we review the state of the art frameworks that combine space and time in an
interrelated manner. Towards constraint-based qualitative spatio-temporal reasoning, most of
the work has relied on formalisms based on the propositional temporal logic (PTL), also known
as linear temporal logic, and some qualitative spatial constraint language, like RCC-8 [Wolter
and Zakharyaschev, 2003; Wolter and Zakharyaschev, 2000b]. PTL [Huth and Ryan, 2004] is the
well known temporal logic comprising operators U (until), # (next point in time), 2 (always),
and 3 (eventually) over various flows in time, such as 〈N, <〉. Other spatio-temporal reasoning
frameworks consider temporal sequences of spatial QCNs. These sequences allow one to describe
a spatial configuration that evolves and changes over time. Indeed, solving the spatial QCNs in
such a given sequence will in turn yield a sequence of scenarios constituting a timeline, upon
which the different states of a qualitative spatial configuration that evolves over time can be
viewed. We also explore a qualitative constraint-based spatio-temporal formalism that results
from combining the temporal language of Interval Algebra with the spatial one of RCC-8, and
we close that chapter with a discussion on the notions of periodicity and recurring patterns that
can appear in temporalized QCNs.

In Chapter 5, we present our contributions in the context of qualitative constraint-based spa-
tial and temporal reasoning. These contributions involve novel and efficient algorithms that go
beyond the state of the art algorithms for reasoning with qualitative constraint networks (QCNs).

3

Chapter 1. Introduction

In particular, we define new local consistency conditions and new algorithms for enforcing those
conditions, which we compare both theoretically and experimentally to the local consistency
conditions and their respective algorithms that were presented in Section 3.5 of Chapter 3. Our
contributions range over the entire spectrum of fundamental reasoning problems in qualitative
constraint-based spatial and temporal reasoning. Specifically, we demonstrate both in theory
and in practice how the satisfiability problem, the minimal labeling problem, and the redundancy
problem of a given QCN can be dealt with efficiently through the use of our novel techniques.
Furthermore, we address an issue in the literature regarding a non-sound approach that utilizes
parallelism to check the satisfiability of RCC-8 networks. To this end, we provide the appropriate
fixes for that approach, but also present our own approach of a simple decomposition scheme
that exploits the sparse and loosely connected structure of the constraint graphs of very large
real-world QCNs and paves the way for efficient utilization of parallelism to solve all the aforemen-
tioned fundamental reasoning tasks. The contributions to be presented in that chapter draw from
the published works in [Sioutis, 2014; Amaneddine et al., 2013; Sioutis and Condotta, 2014b;
Sioutis et al., 2015i; Sioutis et al., 2015h; Sioutis et al., 2015f; Sioutis and Condotta, 2014c;
Sioutis and Condotta, 2014a; Sioutis et al., 2015g; Sioutis et al., 2016b; Sioutis et al., 2016a;
Sioutis et al., 2016c]. Finally, we conclude that chapter and give some directions for future work
both in the field of qualitative constraint-based spatial and temporal reasoning and in the field
of quantitative constraint-based spatial and temporal reasoning. With respect to the latter field,
and inspired from our contribution in the former field that handles redundancy in a QCN [Sioutis
et al., 2015f], we briefly discuss a contribution of ours towards dealing with redundant informa-
tion in the Simple Temporal Problem (STP) [Dechter et al., 1991], presented in detail in [Lee et
al., 2016].

In Chapter 6, we present our contributions with respect to formalisms that combine spatial
and temporal reasoning in an interrelated manner. In particular, we study the qualitative spatio-
temporal logic that results by combining the propositional temporal logic (PTL) with a qualitative
spatial constraint language, namely, the L1 logic that was presented in Section 4.2 of this thesis,
and investigate the implication of certain flexible constraint properties in qualitative spatio-
temporal reasoning. We use these properties to strengthen results regarding the complexity of the
satisfiability problem in L1, by replacing a stricter condition used in literature and, consequently,
generalizing to more qualitative spatial constraint languages. Further, we identify fragments of
the L1 logic that capture significant aspects of spatio-temporal change. In particular, we address
the issue of periodical, and smoothness and continuity constraints between spatial configurations,
and obtain results on their computational aspects. Regarding periodicity, we strengthen related
results that exist in the literature, by re-establishing conditions that allow for tractability and,
again, generalizing to a larger class of qualitative spatial constraint languages. Further, we
present a first semantic tableau method that given a L1 formula φ systematically searches for a
model for φ. Our approach builds on Wolper’s tableau method for PTL, while the ideas provided
can be carried to other tableau methods for PTL as well. We prove the correctness of our
tableau method for L1 using the aforementioned strengthened results regarding the satisfiability
problem in L1. Moreover, we investigate the task of ordering a temporal sequence of qualitative
spatial configurations to meet certain transition constraints. This ordering is constrained by
the use of conceptual neighbourhood graphs defined on qualitative spatial constraint languages.
Specifically, we show that the problem of ordering a sequence of qualitative spatial configurations
to meet such transition constraints is NP-complete for several well-known qualitative constraint
languages, such as RCC-8 and Interval Algebra. Based on this result, we also propose a framework
where the temporal aspect of a sequence of qualitative spatial configurations is constrained by
a Point Algebra network, and again show that the enhanced problem is in NP when considering

4

the aforementioned languages. These results lie within the area of Graph Traversal and allow
for many practical and diverse applications, such as identifying optimal routes in mobile robot
navigation, modelling changes of topology in biological processes, and computing sequences of
segmentation steps used in image processing algorithms. The contributions to be presented
in that chapter draw from the published works in [Sioutis et al., 2015b; Sioutis et al., 2015e;
Sioutis et al., 2014; Sioutis et al., 2015c; Sioutis et al., 2015a; Sioutis et al., 2015d]. Finally,
we conclude that chapter and give some directions for future work. In particular, we discuss
the implication of using determined entities (constants) for a given qualitative spatial constraint
language (cf. [Li et al., 2013; Liu et al., 2011]) and whether qualitative spatio-temporal reasoning
can benefit from a recent advancement regarding the modal logic S5 [Salhi and Sioutis, 2015].

In Chapter 7, we conclude our thesis and give some directions for future research. With
respect to future research in particular, we provide directions that are in relation to the work we
presented in this thesis, but also directions that lie outside the field of qualitative spatial and
temporal reasoning and close to the field of graph theory.

5

Chapter 1. Introduction

6

Part I

State of the Art

7

Chapter 2

Qualitative Spatial and Temporal
Constraint Languages

2.1 Introduction

A qualitative constraint-based formalism for reasoning about time and space considers a set of
base relations that represent particular qualitative configurations between spatial or temporal
entities. Using these relations, we can abstract certain reasoning tasks involving spatial or tem-
poral constraints of numerical values, which would otherwise be very difficult or even impossible
to deal with if quantitative information were to be considered in the first place. Indeed, as we will
see later on, a qualitative representation of spatial or temporal information allows implementing
efficient methods of reasoning.

The first qualitative constraint language was proposed by Allen in [Allen, 1981; Allen, 1983],
called Interval Algebra, mostly used for reasoning about time. Allen wanted to define a framework
for reasoning about time in the context of natural language processing that would be reliable
and efficient enough for reasoning about extracted and newly indrocuded temporal information
in a qualitative manner. Interval Algebra uses intervals on the timeline to represent entities
corresponding to actions, events, or tasks. A set of particular relations, called base relations,
that correspond to the possible qualitative configurations between two intervals can then be
considered. For instance, the relation precedes is a base relation of Interval Algebra and it is
typically used to denote the fact that a task is executed strictly before an other. With respect
to space, the most well-known and studied spatial formalism is that of the Region Connection
Calculus (RCC) [Randell et al., 1992], proposed by Randell, Cui, and Cohn. As its name suggests,
the Region Connection Calculus can be used to represent and reason about spatial relations
between regions, which can be interpreted as subsets of some topological space. As such, the
spatial relations considered are topological relations. An example of such a relation is the relation
partially overlapping, which suggests that two regions share some interior points.

In this chapter, we make an overview of some well-known qualitative constraint languages and
we describe in detail the different elements that constitute such a qualitative constraint-based
formalism, namely, the notion of the base relations, which is in the heart of such formalisms, as
well as the relational operations used in order to reason with them.

9

Chapter 2. Qualitative Spatial and Temporal Constraint Languages

2.2 Base Relations of Qualitative Constraint Languages

A qualitative temporal or spatial constraint language is based on a finite set B of relations, called
the set of base relations. These relations are defined on a domain D and have the same arity ε, for
some integer ε > 1. The domain D itself contains elements that correspond to spatial or temporal
entities with respect to a given level of granularity. For instance, there can be defined infinitely
many time points or temporal intervals in the timeline and infinitely many spatial regions in
a two or three dimensional space. The base relations of the set B of a particular qualitative
constraint language can be used to represent the definite knowledge between any two or more
entities with respect to the given level of granularity. Every tuple of ε elements of D can satisfy
at most one single base relation b ∈ B. In fact, the base relations of set B are jointly exhaustive
and pairwise disjoint (JEPD) relations. Formally, the base relations of set B satisfy the following
properties:

• ⋃b∈B b =

ε times︷ ︸︸ ︷
D× . . .× D (jointly exhaustive);

• ∀b, b′ ∈ B such that b 6= b′, we have that b ∩ b′ = ∅ (pairwise disjoint).

The indefinite knowledge between any two or more entities can be represented by unions of
possible base relations. We represent a union of base relations b1 ∪ . . . ∪ bj , with j ≤ |B|, by the
set {b1, . . . , bj} containing them. Hence, 2B represents the total set of relations of the considered
qualitative constraint language including the empty relation, denoted by ∅, that corresponds to a
relation that does not contain any of the available base relations. Without any ambiguity, B will
also denote the universal relation, which is the union of all the base relations of the considered
qualitative constraint language. Further, we identify a relation of 2B that correponds to the
identity relation for Dε, denoted by Id. For most of the qualitative constraint languages, the
identity relation Id corresponds to a single base relation, i.e., Id = b for some b ∈ B.

It will be said that ε elements x1, . . . , xε ∈ D satisfy a base relation b ∈ B, denoted by
b(x1, . . . , xε), if and only if (x1, . . . , xε) ∈ b. Likewise, for a relation r ∈ 2B and a set of ε
elements x1, . . . , xε ∈ D, it will be said that elements x1, . . . , xε satisfy relation r, denoted by
r(x1, . . . , xε), if and only if there exists a base relation b ∈ r such that b(x1, . . . , xε). In the case
where an arity of ε = 2 is considered, the infix notation might also be used. For instance, given
two elements x, y ∈ D, a base relation b ∈ B, and a relation r ∈ 2B, x b y and x r y correspond to
b(x, y) and r(x, y) respectively. Further, in the entirety of this thesis, we assume that B ⊃ {Id}.

In what follows in our thesis, we will mostly be concerned with binary qualitative constraint
languages [Ladkin and Maddux, 1994], i.e., qualitative constraint languages based on a set of
base relations with an arity ε = 2. We will explicitly mention the arity whenever we refer to a
qualitative constraint language of greater arity.

2.3 Cases of Qualitative Spatial and Temporal Constraint Lan-
guages

In this section we review some of the most well-known and dominant qualitative spatial and
temporal constraint languages, such as Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, and RCC-8, that will be the focus of our thesis.

10

2.3. Cases of Qualitative Spatial and Temporal Constraint Languages

x y y x x, y

x precedes y x follows y x equals y

Figure 2.1: The base relations of Point Algebra

2.3.1 Point Algebra

The qualitative temporal constraint language of Point Algebra (PA) [Vilain et al., 1990; van Beek
and Cohen, 1990; van Beek, 1992] uses points to represent temporal entities (e.g., events) and
the following three base relations to reason about the relative position of those temporal entities
in the timeline: precedes (<), equals (=), and follows (>) (see Figure 2.1). These three base
relations considered by Point Algebra are interpreted on a set with a linear ordering relation. In
particular, considering the points on the line of rational numbers and the usual ordering relation
<, the three base relations of Point Algebra are defined in the following manner: precedes =
{(x, y) ∈ Q×Q | x < y}, follows = {(x, y) ∈ Q×Q | y < x}, and equals = {(x, y) ∈ Q×Q | x = y}.
Based on these three base relations, we can define eight relations of Point Algebra in total that
correspond to the set 2B = {{<,=, >}, {<,>}, {<,=}, {=, >}, {<}, {>}, {=}, ∅}. As an
example, relation {<,>} allows us to represent the knowledge that an event occurs before or
after another event, but not at the same time. Further, two events x, y ∈ Q satisfy relation
{<,>} if and only if x 6= y.

2.3.2 Cardinal Direction Calculus

The Cardinal Direction Calculus (CDC) [Ligozat, 1998; Frank, 1991] is a qualitative constraint
language with a spatial aspect and can be seen as an extension of the qualitative constraint
language of Point Algebra discussed earlier. The entities of the domain D are points in the
Euclidean plane and are equipped with an orthogonal reference. In particular, the relative
position between two entities is determined by the Point Algebra base relations that are derived
from projections of those points on the two axes. As such, we obtain nine possible base relations
between two given entities x and y in Cardinal Direction Calculus, namely, east (E), north (N),
south (S), west (W), northeast (NE), northwest (NW), southwest (SW), southeast (SE), and
equals (EQ). These base relations can be viewed in Figure 2.2.

2.3.3 Interval Algebra

The qualitative constraint language of Interval Algebra (IA) [Allen, 1981; Allen, 1983] is one of
the most well-known qualitative constraint formalisms, primarily because it is the first one to be

x

y

y

x
y

N(x, y)

x
x, yx

y

S(y, x)

SE(x, y)

NW (y, x)

E(x, y)

W (y, x)

SW (x, y)

NE(y, x)

EQ(x, y)

Figure 2.2: The base relations of Cardinal Direction Calculus

11

Chapter 2. Qualitative Spatial and Temporal Constraint Languages

Y

precedes

meets

overlaps

starts

during

finishes

equals

p

m

o

s

d

f

eq

pi

mi

oi

si

di

fi

eq

X

X
Y

X

X

X

X

Y

Y

Y

Y

Y

X

Figure 2.3: The base relations of Interval Algebra

proposed and studied in the literature and has been used to represent and reason with temporal
information in applications in planning and scheduling [Allen and Koomen, 1983; Allen, 1991;
Pelavin and Allen, 1987; Dorn, 1995], in natural language processing [Song and Cohen, 1988], in
temporal databases [Snodgrass, 1987; Chen and Zaniolo, 1998], in multimedia databases [Little
and Ghafoor, 1993], in molecular biology [Golumbic and Shamir, 1993] (e.g., arrangement of
DNA segments/intervals along a linear chain involves particular temporal-like problems [Benzer,
1959]), and in workflow [Lu et al., 2006]. Entities in Interval Algebra correspond to events or
actions and are represented by intervals in the timeline. In particular, Interval Algebra considers
the following thirteen base relations: equals (=), precedes (p), precedes inverse (pi), meets (m),
meets inverse (mi), overlaps (o), overlaps inverse (oi), starts (s), starts inverse (si), during
(d), during inverse (di), finishes (f), and finishes inverse (fi) (see Figure 2.3). Each of the
aforementioned base relations corresponds to a particular configuration of the four endpoints
of the two intervals (we have two endpoints for each interval) and allow representing a relative
position between two given temporal entities. As an example, given two temporal intervals (or,
equivalently, two Interval Algebra entities) x and y such that the base relation x d y holds, we
have that both endpoints of the temporal interval x are properly contained in the interval that is
defined by the two endpoints of the temporal interval y. In this particular case, the base relation
during (d) can describe a situation where a temporal activity is executed within the execution
time window of another temporal activity. Note that Interval Algebra can be interpreted as a
spatial calculus as well. For instance, the base relation during can describe a situation where
a line segment is part of a bigger line segment, hence, certain topological relationships can be
represented as well.

At this point, let us formally introduce the domain and the base relations of Interval Algebra.
The domain D of Interval Algebra is defined to be the set of intervals on the line of rational num-
bers (with the usual ordering relation< being used for ordering the corresponding endpoints), i.e.,
D = {x = (x−, x+) ∈ Q×Q | x− < x+}. Then, each base relation can be defined by appropriately
constraining the endpoints of the two temporal intervals at hand. Thus, the base relation during
that we saw earlier, is defined as during = {(x, y) ∈ D× D | x− > y− and x+ < y+}. As another
example, the relations starts is defined as starts = = {(x, y) ∈ D× D | x− = y− and x+ < y+}.
Note that in the first related published work with respect to Interval Algebra, Allen consid-
ers only nine base relations, as he groups the base relations d, s, f (and the inverses of those
base relations di, si, fi) together into a unique base relation (a unique inverse base relation

12

2.3. Cases of Qualitative Spatial and Temporal Constraint Languages

respectively).
A particular extension of Interval Algebra considers the case where the entities can be either

intervals (as defined earlier) or points. As such, we can have qualitative relations between two
intervals as in Interval Algebra, qualitative relations between two points as in Point Algebra,
but also qualitative relations between an interval and a point in a unique calculus [Vilain, 1982].
Concerning this extension, Vilain comments: “We should state that including points along with
intervals in the domain of our system only minimally complicates the deduction algorithms. The
polynomial complexity results and the consistency maintenance remain unaffected”. In other
words, allowing basic time objects to be either time intervals or time points does not alter in a
significant way the framework of Interval Algebra.

2.3.4 Block Algebra

The qualitative constraint language of Block Algebra (BA) [Balbiani et al., 1998; Balbiani et al.,
2002] is a natural generalization of the Interval Algebra constraint language to the n-dimensional
Euclidean space with an orthogonal basis. The entities of Block Algebra are called n-blocks, or
simply blocks when there is no confusion regarding the considered dimension. These blocks have
their sides parallel to the reference axes. Every base relation of this qualitative constaint language
is binary and characterized by an n-tuple of Interval Algebra base relations. The ith element of
such a tuple corresponds to the base relation that is satisfied by the intervals that result from
the orthogonal projections of two given blocks on the ith axis. As an example, let us consider
the base relation (o,mi, s) that is satisfied by the two 3-blocks depicted in Figure 2.4. Indeed,
if we project the two blocks on the x axis we get two intervals that satisfy the Interval Algebra
base relation overlaps, if we project the two blocks on the y axis we get two intervals that satisfy
the Interval Algebra base relation meets inverse, and, finally, if we project the two blocks on the
z axis we get two intervals that satisfy the Interval Algebra base relation starts. Clearly, if we
consider n-blocks, we will obtain 13n base relations of Block Algebra. It is worth noting that
the particular Block Algebra calculus of 1-blocks corresponds to the Interval Algebra calculus,
and the particular Block Algebra calculus of 2-blocks to the 2-Block Algebra calculus, studied
in [Balbiani et al., 1998].

Another natural generalization of the Interval Algebra constraint language can be obtained
by considering a different, more general, type of entities. In particular, an interval in the context

x

y

z

a

b

Figure 2.4: The base relation (o,mi, s) of Block Algebra

13

Chapter 2. Qualitative Spatial and Temporal Constraint Languages

of Interval Algebra is just a pair of ordered time points. We can extend somewhat further this
notion and define a generalized interval as an ordered, finite sequence of points in a linear order.
We also call a generalized interval with n-points an n-interval [Ligozat, 1991]. More generally,
for any subset Z of the set of integers Z, a Z-interval is a n-interval where n belongs to Z. In
this way, Interval Algebra is the calculus of 2-intervals. This notion of generalized intervals is
close to the notion of non-convex intervals studied in [Ladkin, 1986]. In particular, the calculus
of non-convex intervals presented in [Ladkin, 1986] is the calculus of e-intervals, where e is the
set of even integers [Ligozat, 1991]. The qualitative relation between two generalized intervals is
determined by the Interval Algebra base relations that are satisfied between each pair of intervals
comprising the respective generalized intervals. The interested reader may also see the works
presented in [Balbiani et al., 2000; Condotta, 2004], where a complete study of Block Algebra
and the calculus of generalized intervals, as well as a comparison between those two formalisms,
takes place.

2.3.5 RCC-8

Topology is perhaps the most fundamental aspect of space and certainly one that has been
studied extensively within the mathematical literature. The Region Connection Calculus (RCC)
is the dominant topological approach to represent and reason about topological relations [Randell
et al., 1992]. RCC abstractly describes regions that are non-empty regular closed subsets of some
topological space that do not have to be internally connected and do not have a particular
dimension, by their possible relations to each other. In particular, for any spatial region X
in RCC we have that X = c(i(X)), where i(·) specifies the topological interior of a spatial
region and c(·) the topological closure [Renz, 2002a]. RCC is based on a single primitive relation
between spatial regions, relation C [Clarke, 1981]. The intended topological interpretation of

Table 2.1: Definition of the various relations of RCC; relations in bold are included in RCC-8

Relation Description Definition
C(x, y) connects with primitive relation

DC(x, y) disconnected ¬C(x, y)
P (x, y) part ∀z[C(z, x)→ C(z, y)]

PP (x, y) proper part P (x, y) ∧ ¬P (y, x)
EQ(x, y) equals P (x, y) ∧ P (y, x)
O(x, y) overlaps ∃z[P (z, x) ∧ P (z, y)]

PO(x, y) partially overlaps O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x)
DR(x, y) discrete ¬O(x, y)

TPP(x, y) tangential proper part PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)]
EC(x, y) externally connected C(x, y) ∧ ¬O(x, y)

NTPP(x, y) non-tangential proper
part

PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)]

Pi(x, y) part inverse P (y, x)
PPi(x, y) proper part inverse PP (y, x)

TPPi(x, y) tangential proper part
inverse

TPP (y, x)

NTPPi(x, y) non-tangential proper
part inverse

NTPP (y, x)

14

2.3. Cases of Qualitative Spatial and Temporal Constraint Languages

x x

x

x

x
x

xy y

y x = y

y y

y
y

DC(x, y) EC(x, y)

PO(x, y) EQ(x, y)

TPP (x, y) NTPP (x, y)

TPPi(x, y) NTPPi(x, y)

Figure 2.5: The base relations of RCC-8

C(a, b), where a and b are spatial regions, is that a and b are connected if and only if their
topological closures share a common point. This primitive can be used to define many predicates
and functions which capture interesting and useful topological distinctions [Gotts, 1994; Gotts,
1996]. Table 2.1 shows the definitions of the RCC relations with respect to the primitive relation
C. Of particular importance are those relations that form a set of jointly exhaustive and pairwise
disjoint relations, viz., a set of base relations as specified in Section 2.2. The set of base relations
of RCC are the following: disconnected (DC), externally connected (EC), equals (EQ), partially
overlapping (PO), tangential proper part (TPP), tangential proper part inverse (TPPi), non-
tangential proper part (NTPP), and non-tangential proper part inverse (NTPPi). These eight
base relations form the RCC-8 constraint language and are depicted in Figure 2.5 (for the 2-
dimensional case).

2.3.6 9-intersection model (9-IM)

Another approach to represent and reason about topological relations is based on the 9-intersection
model. In the 9-intersection model each spatial region is characterized by 3 sets of points, each
of which holds information about its interior (◦), its boundary (∂), and its exterior (−). Thus,
all relations between two spatial regions are defined by a 3×3 matrix, in which every entry takes
one of two values, denoting whether the intersection of two point sets for two spatial regions is
empty or not. The 3× 3 matrix for a relation R between two regions A and B is shown below:

R(A,B) =

A ◦ ∩B ◦ A ◦ ∩ ∂B A ◦ ∩B−
∂A ∩B ◦ ∂A ∩ ∂B ∂A ∩B−
A− ∩B ◦ A− ∩ ∂B A− ∩B−

The 3 × 3 matrix would normally yield exactly 29 spatial relations, but taking into account
the physical reality of 2-dimensional space and some specific assumptions about the nature of
regions, viz., that they are 2-dimensional, internally connected (one-piece), without holes, and
only emptiness or non-emptiness of the intersection is taken into account, it turns out that the
there are exactly 8 remaining matrices, which correspond to the RCC-8 relations. A geometric
interpretation of the 8 relations between two regions with connected boundaries is shown in
Figure 2.6. These relations are also often mentioned as Egenhofer relations [Egenhofer and
Herring, 1991]. By definition, Egenhofer places stronger constraints on the domain of regions
than RCC-8, as we saw earlier that RCC-8 considers a more general domain, viz., regions that
are non-empty regular closed subsets of some topological space that do not have to be internally
connected and do not have a particular dimension. This fact makes reasoning in the 9-intersection
model more complex than reasoning with RCC-8 [Renz and Nebel, 2007; Grigni et al., 1995].
Further, to reason about regions with holes, one would have to define relations not only between

15

Chapter 2. Qualitative Spatial and Temporal Constraint Languages

B° ∂ B B
_

A°
∂A

A
_

¬∅ ∅ ∅
¬∅ ¬∅ ∅
¬∅ ¬∅ ¬∅

B° ∂ B B
_

A°
∂A

A
_

¬∅ ¬∅ ¬∅
∅ ¬∅ ¬∅
∅ ∅ ¬∅

B° ∂ B B
_

A°
∂A

A
_

¬∅ ¬∅ ¬∅
¬∅ ¬∅ ¬∅
¬∅ ¬∅ ¬∅

B° ∂ B B
_

A°
∂A

A
_

∅ ∅ ¬∅
∅ ∅ ¬∅

¬∅ ¬∅ ¬∅

B° ∂ B B
_

A°
∂A

A
_

¬∅ ¬∅ ¬∅
∅ ∅ ¬∅
∅ ∅ ¬∅

B° ∂ B B
_

A°
∂A

A
_

¬∅ ∅ ∅
¬∅ ∅ ∅
¬∅ ¬∅ ¬∅

B° ∂ B B
_

A°
∂A

A
_

¬∅ ∅ ∅
∅ ¬∅ ∅
∅ ∅ ¬∅

B° ∂ B B
_

A°
∂ A

A
_

∅ ∅ ¬∅
∅ ¬∅ ¬∅

¬∅ ¬∅ ¬∅

>

A B

A B

�

�

�

�

4.2.1

4.2 Relations between two Lines with Codimension 0

Figure 3: A geometric interpretation of the 8 relations between two regions with connected bound-
aries

Condition (1) holds for any two non-empty cells.

Conditions (2)–(4) hold for any two non-empty cells, and , of the same dimension. If the
dimension of is greater than the dimension of then only the first part of each condition
applies.

Condition (5) holds for any two cells with non-empty boundaries.

Conditions (6)–(12) apply only to regions with codimension 0.

Line Conditions.

Lines are non-empty cells with non-empty boundaries, therefore, Conditions (1)–(5) apply. Addi-
tional constraints must hold for two lines due to the property of the spatial data model that another
point exists between any two distinct points; therefore, if the exterior of one line intersects with the
boundary of another line, the exterior must also intersect with the interior of the other line. This
implies:

13

Figure 2.6: A geometric interpretation of the 8 relations between two regions with connected
boundaries (symbol ¬ stands for not, hence, ¬∅ is a non-empty set)

each pair of regions, but also between each hole of each region and the other region and each
of its holes, adding to the computational complexity of the reasoning proccess [Egenhofer et al.,
1994].

As we explained earlier, Egenhofer relations are the derived relations of the 9-intersection
model when considering specific assumptions about the nature of a spatial region. Other as-
sumptions can be made to derive new sets of relations. Clementini took into account the codi-
mension of intersection, extending the representation in each matrix cell by the dimension of the
intersection rather than simply specifying whether the intersection is empty or not [Clementini
and Di Felice, 1995]. The dimensionally extended 9-intersection model (DE-9IM), is commonly
refered to as the Clementini intersection pattern matrix [Clementini et al., 1994]. The Clementini
intersection pattern matrix for a relation R between two regions A and B is shown below:

R(A,B) =

dim(A ◦ ∩B ◦) dim(A ◦ ∩ ∂B) dim(A ◦ ∩B−)
dim(∂A ∩B ◦) dim(∂A ∩ ∂B) dim(∂A ∩B−)
dim(A− ∩B ◦) dim(A− ∩ ∂B) dim(A− ∩B−)

where dim is the maximum number of dimensions of the intersection (∩) of the interior (◦),

16

2.3. Cases of Qualitative Spatial and Temporal Constraint Languages

boundary (∂), and exterior (−) of regions A and B. The maximum number of dimensions of
the intersection is 0 for points, 1 for lines, and 2 for areas. The interested reader may find more
information about possible relations between areas, lines and points, and their respective calculi
that can be defined in the dimensionally extended 9-intersection model in [Clementini et al.,
1993].

2.3.7 Orientation Calculi

Orientation relations describe the orientation between two spatial entities with respect to a third
object. As such, a binary relation between a primary spatial entity and a reference spatial entity
is, in general, not sufficient to describe the orientation between those entities, since some kind of
frame of reference must also be considered [Cohn, 1997]; after doing so, one is then able to define
an explicit ternary relation upon the primary spatial entity, the reference spatial entity, and the
frame of reference. Many orientation constraint languages are defined using this approach [Freksa,
1992; Isli and Cohn, 2000; Schlieder, 1993; Röhrig, 1994], while others presuppose an immutable
extrinsic frame of reference (e.g., gravitation, a fixed coordinate system) as in the calculus of
dinstances and cardinal directions presented in [Frank, 1992] (also cf. [Hernández, 1994]) or a
natural intrinsic orientation that is exhbitited by certain spatial entities (e.g., humans, buildings)
as in the OPRAm calculus presented in [Moratz et al., 2005; Mossakowski and Moratz, 2012;
Moratz, 2006].

Regarding orientation constraint languages based on explicit ternary relations, of particu-
lar interest is the approach of Schlieder where triples of points are mapped to one of the three
qualitative values +, 0, and −, denoting anticlockwise, colinear, and clockwise orientations re-
spectively [Schlieder, 1993]. The approach of Schlieder can be used for reasoning about visible
locations in qualitative navigation tasks [Schlieder, 1993], for shape description [Schlieder, 1996],
or to develop a qualitative constraint language for reasoning about the relative orientation of
pairs of line segments [Schlieder, 1995]. Another important ternary orientation constraint lan-
guage is that of Röhrig [Röhrig, 1994; Röhrig, 1993] which is based on the ternary relation
CY CORD(x, y, z) that is true in the 2-dimensional space when x, y, and z are in clockwise
orientation. Röhrig also demonstrates how some qualitative constraint languages can be inter-
preted using the CY CORD(x, y, z) relation and, thus, exploit his reasoning system that builds
on that relation [Röhrig, 1993].

Regarding orientation constraint languages based on an extrinsic frame of reference, it is
most common to use some global reference direction, which allows the orientation between two
objects to be represented with respect to the reference direction using just binary relations (e.g.,
compass directions as in [Frank, 1992]). Such approaches were later generalised to form the Star
algebra [Renz and Mitra, 2004; Mitra, 2004; Mitra, 2002].

Regarding orientation constraint languages based on a natural intrinsic orientation, the
OPRAm calculus [Moratz et al., 2005; Mossakowski and Moratz, 2012; Moratz, 2006] is among
the most seasoned qualitative constraint languages for reasoning about qualitative relative di-
rection information. In OPRAm, oriented points, i.e., pairs of a point and a direction on the
2-dimensional plane, serve as the basic entities since they are the simplest spatial entities that
have an intrinsic orientation. Sets of base relations can have adjustable granularity levels in this
calculus. Further, OPRAm offers simple geometric rules for computing the calculus’s composi-
tions based on triples of oriented points.

17

Chapter 2. Qualitative Spatial and Temporal Constraint Languages

2.4 Relational Operations

Given a set of base relations B of a qualitative constraint language, we have that B is closed under
the converse operation (−1). In particular, the converse operation associates a relation r−1 ∈ 2B

with each base relation b ∈ B, which is defined by r−1 = {b′ ∈ B | ∃x, y ∈ D with x b y and y b′ x}.
The converse operation can be generalized to the total set of relations 2B as follows. For each
relation r ∈ 2B, r−1 is defined by r−1 =

⋃
b∈r b

−1. For every x, y ∈ D and r ∈ 2B, it also
holds that y r−1 x if x r y. The inverse is not necessarily true in the general case [Dylla et
al., 2013]. For most of the qualitative constraint languages, there exists for each base rela-
tion b ∈ B a single base relation of B that corresponds to the converse of b, viz., the relation
{(y, x) | (x, y) ∈ b}. For these languages, the converse relation of any base relation b ∈ B is
b−1, which is a base relation of B. Moreover, for every x, y ∈ D and r ∈ 2B we have that
x r y if and only if y r−1 x. Examples of qualitative constraint languages for which the con-
verse of a base relation corresponds to a relation comprising more than one base relations are
the Cardinal Direction (Relations) Calculus (CDR) [Skiadopoulos and Koubarakis, 2005] and
its recently introduced rectangular variant (RDR) [Navarrete et al., 2013]. The converse of a
relation 2B can be obtained from a converse table which stores the converse base relation b−1

for each base relation b ∈ B. The converse tables of some of the most well-known qualitative
constraints languages that we presented earlier are given in Table 2.2. Given for example the
RCC-8 relation {DC,TPPi,NTPP} we can easily derive its converse relation, viz., relation
{DC,TPP,NTPPi}, thus, {DC,TPPi,NTPP}−1 = {DC,TPP,NTPPi}.

Appart from the converse operation (−1), 2B is also equipped with the usual set-theoretic
operations, viz., union and intersection, and the weak composition operation denoted by sym-
bol � [Renz and Ligozat, 2005]. Given two relations r, r′ ∈ 2B, r ∪ r′ corresponds to a relation
of 2B that comprises the base relations of B that exist in either r or r′. In a similar manner,
r ∩ r′ corresponds to a relation of 2B that comprises the base relations of B that exist in both
r and r′. The weak composition operation is a bit more complex to define than the relational
operations we discussed so far. Let us first recall the relational composition which is defined
by b ◦ b′={(x, y)|∃z : (x, z) ∈ b ∧ (z, y) ∈ b′} for two base relations b, b′ ∈ B. According to the
definition of relational composition, we have to look at an infinite number of tuples in order to

Table 2.2: Converse tables for (a) Point Algebra, (b) Cardinal Direction Calculus, (c) Interval
Algebra, and (d) RCC-8

(a)

b b−1

< >

> <

= =

(b)

b b−1

N S

NW SE

W E

SW NE

S N

SE NW

E W

NE SW

EQ EQ

(c)

b b−1

b bi

bi b

o oi

oi o

m mi

mi m

d di

di d

si s

s si

f fi

fi f

eq eq

(d)

b b−1

DC DC

EC EC

PO PO

TPP TPPi

TPPi TPP

NTPP NTPPi

NTPPi NTPP

EQ EQ

18

2.4. Relational Operations

z

y x
z

y

x

z

yx

NTPP (x, z) TPP (x, z) PO(x, z)

Figure 2.7: Three possible configurations for regions x, y, z when we have EC(x, y) and
NTPP (y, z)

compute the composition of base relations, which is clearly not feasible. Fortunately, many do-
mains such as points or intervals in a timeline are ordered or, otherwise, well-structured domains
and composition can be computed using the semantics of the relations. However, for domains
such as arbitrary spatial regions that are more vague and where there is no common representa-
tion for the entities we consider, computing the true composition is not feasible and composition
has to be approximated by using a weaker variant of it, called weak composition [Renz and
Ligozat, 2005]. Formally, the weak composition (�) of two base relations b, b′ ∈ B is defined as
the strongest relation r ∈ 2B which contains b ◦ b′, or formally, b � b′={b′′ ∈ B|b′′∩(b ◦ b′) 6= ∅}.
The advantage of weak composition is that we stay within the given set of relations 2B while
applying the algebraic operations, as 2B is by definition closed under weak composition, union,
intersection, and converse.

As an example, let us consider the RCC-8 base relations of EC and NTPP . The weak
composition EC � NTPP yields the set of base relations {NTPP , TPP , PO}, as shown in
Figure 2.7. The obtained set corresponds to all the base relations that can be possible between
regions x and z when we have that EC(x, y) and NTPP (y, z). Let us now also see why RCC-8,
for instance, has only weak composition and not relational composition. Consider the RCC-8 set
of constraints {TPP (x, y), EC(x, z), TPP (z, y)}. It can be verified that TPP ∈ EC � TPP ,
EC ∈ TPP �TPP−1, and TPP ∈ EC−1 �TPP . As such, assuming that relational composition
holds, we should be able to extract a valid configuration using and starting with any of the
infinite available tuples that satisfy relation TPP or EC. However, if we pick a tuple (x, y)
for satisfying relation TPP such that y is instantiated as a region with two disconnected pieces
and x completely fills one piece, then z cannot be instiantiated. So, TPP 6∈ EC ◦ TPP and,
consequently, relational composition does not hold for RCC-8.

As noted earlier, well-structured domains such as points or intervals in a timeline are ordered
and composition can be computed using the semantics of the relations. For example, for Point
Algebra and Interval Algebra, with their usual domains based on Q as presented earlier, weak
composition is equivalent to relational composition, i.e., we have that r � r′ = r ◦ r′ for every
r, r′ ∈ 2B. For qualitative constraint languages for which relational composition does not hold,
we have that r ◦ r′ ⊂ r � r′ for some r, r′ ∈ 2B, as we also demonstrated in the case of RCC-8.
A complete analysis on the relations of RCC-8 for which relational composition does not hold
is provided in [Li and Wang, 2006]. The weak composition operation can be generalized to the
total set of relations 2B as follows. For every r, r′ ∈ 2B, we have that r � r′ =

⋃
b∈r,b′∈r′ b � b′.

The weak composition of two relations r, r′ ∈ 2B can be facilitated by a weak composition
table which stores the weak compositions among all base relations of the considered qualitative
constraint language. The weak composition tables of Point Algebra and RCC-8 are given in
Table 2.3. Given for example the RCC-8 relations {TPP,NTPP} and {TPP} we can easily

19

Chapter 2. Qualitative Spatial and Temporal Constraint Languages

Table 2.3: Weak composition tables for (a) Point Algebra and (b) RCC-8

(a)

� < > =

< < B <

> B > >

= < > =

(b)

� DC EC PO TPP NTPP TPPi NTPPi EQ

DC B DC, EC,
PO,
TPP ,
NTPP

DC, EC,
PO,
TPP ,
NTPP

DC, EC,
PO,
TPP ,
NTPP

DC, EC,
PO,
TPP ,
NTPP

DC DC DC

EC DC, EC,
PO,

TPPi,
NTPPi

DC, EC,
PO,
TPP ,
TPPi,
EQ

DC, EC,
PO,
TPP ,
NTPP

EC, PO,
TPP ,
NTPP

PO,
TPP ,
NTPP

DC, EC DC EC

PO DC, EC,
PO,

TPPi,
NTPPi

DC, EC,
PO,

TPPi,
NTPPi

B PO,
TPP ,
NTPP

PO,
TPP ,
NTPP

DC, EC,
PO,

TPPi,
NTPPi

DC, EC,
PO,

TPPi,
NTPPi

PO

TPP DC DC, EC DC, EC,
PO,
TPP ,
NTPP

TPP ,
NTPP

NTPP DC, EC,
PO,
TPP ,
TPPi,
EQ

DC, EC,
PO,

TPPi,
NTPPi

TPP

NTPP DC DC DC, EC,
PO,
TPP ,
NTPP

NTPP NTPP DC, EC,
PO,
TPP ,
NTPP

B NTPP

TPPi DC, EC,
PO,

TPPi,
NTPPi

EC, PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPP ,
TPPi,
EQ

PO,
TPP ,
NTPP

TPPi,
NTPPi

NTPPi TPPi

NTPPi DC, EC,
PO,

TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPP ,
NTPP ,
TPPi,
NTPPi,

EQ

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

derive relation {TPP,NTPP} by performing the following operation: {TPP,NTPP} � {TPP}
= (TPP � TPP) ∪ (NTPP � TPP) = {TPP,NTPP} ∪ {NTPP} = {TPP,NTPP}.

The weak composition operation � along with the converse operation −1, and the total set
of relations 2B along with the identity relation Id of a qualitative constraint language (where B
is its set of base relations), form an algebraic structure (2B, Id, �,−1) which can correspond to
a relation algebra for some qualitative constraint languages in the sense of Tarski [Tarski, 1941;
Dylla et al., 2013]. This topic has been extensively discussed in [Ligozat and Renz, 2004; Dylla
et al., 2013]. In [Dylla et al., 2013] the authors thoroughly analyze existing qualitative constraint
languages and provide a classification involving different notions of relation algebra. In fact, we

20

2.5. Classes of Relations

Table 2.4: Axioms for relation algebras, where r, s, t ∈ 2B

Axiom Definition
∪-commutativity r ∪ s = s ∪ r
∪-associativity r ∪ (s ∪ t) = (r ∪ s) ∪ t
Huntington axiom r ∪ s ∪ r ∪ s = r
�-associativity r � (s � t) = (r � s) � t
�-distributivity (r ∪ s) � t = (r � t) ∪ (s � t)
identity law r � Id = r
−1-involution (r−1)−1 = r
−1-distributivity (r ∪ s)−1 = r−1 ∪ s−1

−1-involutive distributivity (r � s)−1 = s−1 � r−1

Tarski/de Morgan axiom r−1 � r � s ∪ s = s

have the following result:

Proposition 1 (cf. [Dylla et al., 2013]) Each of the qualitative constraint languages of Point
Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, and RCC-8 is a relation
algebra with the algebraic structure (2B, Id, �,−1).

In what follows, for a qualitative constraint language that is a relation algebra with the
algebraic structure (2B, Id, �,−1), we will simply say that it is a relation algebra as the algebraic
structure will always be of the same format.

In our context, a relation algebra is nothing more than a qualitative constraint language that
satisfies certain axioms. These axioms are listed in Table 2.4 and allow for several optimizations
when designing algorithms for reasoning with qualitative constraint languages. For instance,
�-associativity ensures that if we need to compute r � s � t for some relations r, s, t ∈ 2B, we can
do so by choosing to compute either r � (s � t) or (r � s) � t, i.e., we do not need to compute the
operation both from left to right and from right to left.

Due to the fact that the most interesting and well-known spatial and temporal calculi are
relation algebras (cf. Proposition 1), and for the sake of simplicity in the presentation of our
algorithms in what follows in the thesis, we will focus on qualitative constraint languages that
are relations algebras and, hence, satisfy the related axioms.

2.5 Classes of Relations

As mentioned earlier, 2B is by definition closed under weak composition, union, intersection, and
converse. In the context of the algorithms that are studied in this thesis, we deal with particular
subsets of relations of 2B that are closed under threee of the four aforementions relational oper-
ations, namely, weak composition, intersection, and converse. We call such subsets of relations
subclasses of relations. Clearly, the entire set of relations 2B is a class of relations by itself.
Formally, we define a subclass of relations as follows.

Definition 1 A subclass of relations is a subset A ⊆ 2B that contains the singleton relations of
2B and B and is closed under converse, intersection, and weak composition.

Given a relation r of 2B and a subclass A ⊆ 2B, A(r) will denote the smallest (with respect
to the number of base relations) relation of A including r.

21

Chapter 2. Qualitative Spatial and Temporal Constraint Languages

pi

p

mi

oi

f

d

s

eq

si

di

fi

m

o

Figure 2.8: The lattice of Interval Algebra

2.5.1 Distributive Subclasses of Relations

The notion of distributive subclasses of relations will be important in what follows in the thesis,
hence, we accomodate a separate section here to properly define it.

Given three relations r, r′, and r′′, we say that weak composition distributes over intersection
if we have that r � (r′ ∩ r′′) = (r ∩ r′) � (r ∩ r′′) and (r′ ∩ r′′) � r = (r′ ∩ r) � (r′′ ∩ r).

Definition 2 A subclass A ⊆ 2B is a distributive subclass if weak composition distributes over
non-empty intersections for all relations r, r′, r′′ ∈ A. A subclass A ⊆ 2B is a maximal distribu-
tive subclass if there exists no other distributive subclass that properly contains A.

The distributivity of a class of relations is a new concept introduced in [Duckham et al., 2014;
Li et al., 2015a] and thoroughly analysed in [Long and Li, 2015]. However, there exist several
examples in the literature where the authors implicitly or explicitly exploited the fact that for
certain subclasses of relations for a considered qualitative constraint language weak composition
distributes over non-empty intersection for all relations of that subclass. As an example, van Beek
and Cohen observed this property for the subclass of convex relations of Point Algebra [van Beek
and Cohen, 1990]. (This observation also exists in the PhD Thesis of van Beek [Van Beek, 1990].)
In another example of this property, Chandra and Pujari implicitly consider the distributivity
of a subclass of convex relations for RCC-8 in their proof of Theorem 8 in [Chandra and Pujari,
2005] that involves a special reasoning problem of RCC-8 networks, viz., the minimal labeling
problem, which we have already mentioned and briefly explained earlier on in the introductory
chapter of the thesis and will formally define later on in Section 3.3. More recently, Amaneddine
and Condotta in [Amaneddine and Condotta, 2012] identified maximal distributive subclasses of
relations for Point Algebra and Interval Algebra in their effort to guarantee a particular strong
characterization for networks of the aforementioned qualitative constraint languages through a
polynomial algorithm. What is more interesting, is the fact that all subclasses of convex relations
that have been defined in the literature for the most well-known qualitative constraint languages,

22

2.6. Conclusion

viz., Point Algebra, Interval Algebra, Cardinal Direction Calculus, Block Algebra, and RCC-8,
turn out to be maximal distributive sublasses of relations for these languages [Long and Li, 2015].
This is due to the fact that subclasses of convex relations and distributive subclasses of relations
share a very important common property, viz., they exhibit convexity in Helly’s sense [Danzer
et al., 1963]. As such, distributive subclasses of relations generalize the notion of subclasses of
convex relations.

However, for the sake of completeness, let us introduce the notion of convexity for relations
of qualitative constraint languages and its relationship with distributive subclasses of relations.
In general, to define a subclass of convex relations for a given qualitative constraint language,
one has to take into account the semantics of the base relations of the set B of that language
and assume a geometrical characterization of the language as well, and first obtain a partial
ordering [Dushnik and Miller, 1941] on its set of base relations (B,�). Such a partially ordered
set is most often represented by a Hasse diagram [Birkhoff, 1948]. As an example, Ligozat in
[Ligozat, 1994] defines a partially ordered set (B,�) for Interval Algebra, which is represented
by the Hasse diagram shown in Figure 2.8 (referred to as a lattice due to the form of the Hasse
diagram depicting it). The interpretation of the lattice of Interval Algebra with respect to
convexity is as follows. For b1, b2 ∈ B with b1 � b2, we write [b1, b2] as the set of base relations b
such that b1 � b � b2, and call such a relation a convex relation. Hence, the total set of convex
relations can be obtained by enumerating the intervals in the lattice. For example, relation
{d, s, o,m} in Interval Algebra is convex as it correponds to interval [d,m] in the lattice. As we
will stick with distributive subclasses of relations in the context of this thesis, we will not delve
more into the details of convexity and convex relations. The interested reader is kindly asked to
refer to [Ligozat, 2011] for a complete analysis of the aforementioned notions.

An observation is that subclasses of convex relations for Point Algebra, Interval Algebra,
Cardinal Direction Calculus, Block Algebra, and RCC-8 are Helly [Long and Li, 2015]. A Helly
subclass of relations is defined as follows.

Definition 3 A subclass A ⊆ 2B is Helly if and only if for any n relations r1, r2, . . . rn ∈ A we
have:

n⋂

i=1

ri 6= ∅ iff (∀1 ≤ i, j ≤ n) ri ∩ rj 6= ∅

Then, we have the following result by Long and Li in [Long and Li, 2015]:

Theorem 1 ([Long and Li, 2015]) A subclass A ⊆ 2B for a qualitative constraint language
that is a relation algebra is distributive if and only if it is Helly.

Maximal distributive subclasses of qualitative spatial and temporal constraint languages can
be identified through an automatic procedure as described in [Long and Li, 2015]. In the simplest
case, identifying a maximal distributive subclass for some qualitative constrtaint language can

be done with a brute-force procedure that checks if ̂̂B ∪ Z satisfies distributivity for some subset
Z ⊂ 2B, where X̂ denotes the closure under converse, intersection, and weak composition for a
subset X ⊆ 2B.

2.6 Conclusion

In this chapter, we introduced various qualitative constraint-based formalisms for reasoning about
time and space. More precisely, we introduced the algebraic structure upon which such for-
malisms are defined, which comprises a set of base relations and certain standard relational

23

Chapter 2. Qualitative Spatial and Temporal Constraint Languages

operations. In particular, the set of base relations of a given qualitative constraint language
allows us to represent the definite knowledge between any two or more entities with respect to
the given level of granularity. Moreover, the indefinite knowledge between any two or more enti-
ties can be represented by unions of possible base relations. Regarding relational operations, we
defined the converse operation and the weak composition operation, both of which are essential
in being able to reason with the relations of a qualitative constraint language. For instance, given
two entities and the knowledge of how the first entity is related to the second one, the converse
operation allows us to obtain the knowledge of how the second entity is related to the first one.
The weak composition operation allows us to eliminate certain configurations among entities for
which we already have some partial knowledge. As an example, if we know that a temporal event
occurs before a second temporal event, which in turn occurs before a third temporal event, the
weak composition operation allows us to infer that the first temporal event occurs befores the
third temporal event. We used various representative examples to highlight the different types
of relations that are considered by a spatial or temporal qualitative constraint language. As a
matter of fact, we considered qualitative constraint languages based on points, intervals, blocks,
and even regions, and we also focused on some aspects of orientation and the means by which it
can be handled. Of course, the list of qualitative constraint languages that we presented is far
from exhaustive, but it is sufficient for motivating our contributions that we will present later
on.

24

Chapter 3

Reasoning with Qualitative Constraint
Networks

3.1 Introduction

In this chapter, we formally introduce the notion of a qualitative constraint network (QCN), and
draw the connection between the relational operations presented in the previous chapter and
some useful local consistency conditions for characterizing QCNs. We present the fundamental
reasoning problems associated with QCNs, overview the state of the art algorithms for dealing
with those problems, and explain some constraint properties of QCNs. Finally, we discuss about
some decomposability aspects of QCNs considered in the literature.

A QCN comprises a set of variables corresponding to a set of spatial or temporal entities
and a set of relations that constrain the possible qualitative configurations between the different
entities. Given a QCN over a set of variables corresponding to a set of spatial or temporal entities,
we are particularly interested in its satisfiability problem, that is, deciding whether there exists
an interpretation of all the variables of the QCN such that all of its constraints are satisfied by
this interpretation; such an interpretation being called a solution. The satisfiability problem is
closely related to the minimal labeling problem and the redundancy problem, in the sense that the
latter two problems exhibit functions that build on the core algorithms used to obtain a solution
of a QCN. In particular, the minimal labeling problem is the problem of determining all the base
relations for each of the constraints of a QCN that participate in at least one of its solutions,
whilst the redundancy problem is the problem of obtaining all the non-redundant constraints of
a QCN, i.e., those constraints that do not contain at least one base relation participating in a
solution of the modified QCN that results by removing these constraints.

Depending on the subset of relations of a qualitative constraint language over which a given
QCN is defined, certain characterizations of that QCN can be established that allow us to deal with
the aforementioned reasoning problems in polynomial time; this is typically achieved through
the use of specialized local consistency conditions and related algorithms. Moreover, and always
in relation to the discussed reasoning problems, we will see how certain constraint properties in
the context of qualitative constraint-based reasoning allow us to exploit the structure of some
special cases of QCNs and deal with them in a more efficient manner.

25

Chapter 3. Reasoning with Qualitative Constraint Networks

3.2 Qualitative Constraint Networks (QCNs)

As we already discussed, qualitative constraint languages use relations to encode spatial or
temporal knowledge between entities. Hence, it comes natural to use constraints to capture
these relations. In what follows, sometimes we will refer to constraints as relations when it is
clear from the context that a particular relation along with some entities forms a constraint upon
those entities. The problem of reasoning about qualitative spatial or temporal information can be
modelled as an infinite-domain variant of a Constraint Satisfaction Problem (CSP) [Montanari,
1974], for which we use the term Qualitative Constraint Network (QCN). For instance, there are
infinitely many time points or temporal intervals in the timeline and infinitely many regions in
a two or three dimensional space. Formally, a QCN is defined as follows.

Definition 4 A qualitative constraint network (QCN) is a pair (V,C) where:

• V = {v1, . . . , vn} is a non-empty finite set of variables each of which corresponds to a set
of spatial or temporal entities;

• C is a mapping that associates a relation r ∈ 2B with each pair (v, v′) of V × V , that
relation being denoted by C(v, v′). Mapping C is such that C(v, v) = {Id} and C(v, v′) =
(C(v′, v))−1 for every v, v′ ∈ V .

An example of a QCN of RCC-8 is shown in Figure 3.1 along with a corresponding spatial
configuration. In particular, the QCN comprises the set of variables {x, y, z} and the constraints
C(x, y) = C(y, z) = C(z, x) = {EC}. Converse relations as well as Id loops are not mentioned
or shown in the figure for simplicity. Note that we always regard a QCN as a complete network.
In what follows, given a QCN N = (V,C) and v, v′ ∈ V , relation C(v, v′) will also be denoted by
N [v, v′]. We have the following definitions regarding QCNs:

Definition 5 Let N = (V,C) be a QCN, then:

• a partial solution of N on V ′ ⊆ V is a valuation σ of the variables of V ′ such that for each
pair of variables (u, v) ∈ V ′ × V ′, we have that σ(u) and σ(v) satisfy C(u, v), i.e., there
exists a base relation b ∈ C(u, v) such that (σ(u), σ(v)) ∈ b;

• a solution of N is a partial solution on V ;

• a QCN N ′ is equivalent to N if and only if it admits the same set of solutions with N ;

• a sub-QCN1 N ′ of N , denoted by N ′ ⊆ N , is a QCN (V ′, C ′) such that V ′ = V and
C ′(v, v′) ⊆ C(v, v′) ∀v, v′ ∈ V ;

• N is atomic if it comprises only singleton relations, where a singleton relation is a relation
{b} for some base relation b ∈ B;

• a scenario S of N is an atomic satisfiable sub-QCN of N ;

• a partial scenario of N on V ′ ⊆ V is a scenario restricted to constraints involving only
variables of V ′;

1This term is also found by the name “refined QCN” throughout the literature.

26

3.2. Qualitative Constraint Networks (QCNs)

y
z

x

x

y

z{EC}

{EC}

{EC}

Figure 3.1: A QCN of RCC-8 along with its spatial configuration (note that region y has a hole)

• a base relation b ∈ C(v, v′), with v, v′ ∈ V , is feasible (resp. unfeasible) iff there exists
(resp. there does not exist) a scenario S = (V,C ′) of N such that C ′(v, v′) = {b};

• the constraint graph of N is the graph (V,E), denoted by G(N), for which we have that
{v, v′} ∈ E iff C(v, v′) 6= B;2

• N is said to be trivially inconsistent iff ∃v, v′ ∈ V with C(v, v′) = ∅;

• ⊥V will denote the QCN N whose each constraint between each pair of variables (v, v′) ∈
V × V is defined by the empty relation ∅.

Let us further introduce some operations with respect to QCNs.
Given a QCN N = (V,C) and v, v′ ∈ V , we have that:

• N[v,v′]/r with r ∈ 2B yields the QCN N ′ = (V,C ′) defined by C ′(v, v′) = r, C ′(v′, v) = r−1

and C ′(y, w) = C(y, w) ∀(y, w) ∈ (V × V) \ {(v, v′), (v′, v)};

• N↓V ′ , with V ′ ⊆ V , yields the QCN N restricted to V ′.

Given two QCNs N = (V,C) and N ′ = (V,C ′) of the same set of variables V , we have that:

• N+N ′ yields the QCN N ′′ = (V,C ′′), where C ′′(v, v′) = C(v, v′)∪C ′(v, v′) for all v, v′ ∈ V .

Given two QCNs N = (V,C) and N ′ = (V ′, C ′) such that C(u, v) = C ′(u, v) for every
u, v ∈ V ∩ V ′, we have that:

• N ∪ N ′ yields the QCN N ′′ = (V ′′, C ′′), where V ′′ = V ∪ V ′, C ′′(u, v) = C ′′(v, u) = B
for all (u, v) ∈ (V \ V ′)× (V ′ \ V), C ′′(u, v) = C(u, v) for every u, v ∈ V , and C ′′(u, v) =
C ′(u, v) for every u, v ∈ V ′.

Finally, given a QCN N = (V,C) and a subclass A ⊆ 2B, we have that:

• A(N) yields the QCN N ′ = (V,C ′) defined by C ′(v, v′) = A(C(v, v′)) ∀v, v′ ∈ V .

The aforementioned binary operations on QCNs are presented in Figure 3.2 for clarity.

2Note that the constraint graph of a QCN does not involve the universal relation B as it is the non-restrictive
relation that contains all base relations, thus, it does not really pose a constraint. (The result of the weak
composition of any relation with the universal relation is the universal relation.)

27

Chapter 3. Reasoning with Qualitative Constraint Networks

x

y

z{DC,EC}

{EC,PO}

{PO, TPP}

x

y

w
{DC,EC}

{DC,PO, TPP}

{NTPP}

N1 N2

x

y

z{DC,EC}

{EC,PO}

{PO, TPP}

w

{DC,PO, TPP}

{NTPP}

N1 ∪N2

x

y

z{EC}

{EC,PO, TPP}

{TPP, TPPI}

x

y

z{DC}

{DC, TPP}

{NTPPI}

N3 N4

x

y

z{DC,EC}

{DC,EC, PO, TPP}

{TPP, TPPI,NTPPI}

N3 +N4

B

Figure 3.2: Binary operations on QCNs

3.3 Reasoning Problems Associated with QCNs

Given a QCN, we are particularly interested in its satisfiability problem, that is, the problem
of deciding whether there exists an interpretation of all the variables of the QCN such that all
its constraints are satisfied by this interpretation; such an interpretation being called a solution
as defined earlier. The satisfiability problem is closely related to the minimal labeling problem
(MLP) [Montanari, 1974] (cf. [Liu and Li, 2012]) and the redundancy problem [Duckham et al.,
2014; Li et al., 2015a], in the sense that the latter problems exhibit functions that build on the
core algorithms used to obtain a solution of a QCN. We will view the aforementioned reasoning
problems in detail in what follows.

28

3.3. Reasoning Problems Associated with QCNs

3.3.1 Satisfiability Problem

The satisfiability problem of QCN is among the most important problems associated with QCNs.
We can formally define the satisfiability problem of a QCN as follows.

Definition 6 The satisfiability problem, given a QCN N , is the problem of deciding whether N
is satisfiable, i.e., whether it admits a solution.

The satisfiability problem for most of the well-known qualitative constraint languages is NP-
complete. Specifically, and with the exception of Point Algebra, checking the satisfiability of an
arbitrary QCN of RCC-8, Cardinal Direction Calculus, Interval Algebra, or Block Algebra is NP-
complete [Renz and Nebel, 1999; Ligozat, 1998; Nebel and Bürckert, 1995; Balbiani et al., 2002].
Checking the satisfiability of a QCN of Point Algebra can be done in polynomial time [van Beek,
1992]. In the literature, the usual approach for solving the satisfiability problem of a given QCN
involves obtaining a scenario of that QCN. This is because we have a particular local consistency
condition for deciding the satisfiability of atomic QCNs for many qualitative constraint languages,
that we will discuss in a later section. Once the scenario is obtained, a solution of the QCN can
be constructed in polynomial time using some canonical model, i.e., a structure that allows to
model any satisfiable sentence of the qualitative constraint language. Of particular interest is the
case of RCC-8, for which several canonical models have been defined in order to obtain interesting
solutions, such as a domain of regular closed sets of the set of real numbers [Challita, 2012], a
domain of countably many homeomorphic disjoint components of some topological space [Li and
Wang, 2006; Li, 2006], and the usual domain of regions corresponding to regular closed subsets of
some topological space that do not have to be internally connected and do not have a particular
dimension [Renz, 2002a]. The canonical model of Renz, allows a simple representation of regions
with respect to a set of RCC-8 constraints, and, further, enables one to generate realizations in
any dimension d ≥ 1. As an example, let us view the QCN of RCC-8 in Figure 3.1. This QCN
is atomic and also, clearly, satisfiable. As such, the QCN is also a scenario of itself. A solution
σ of the QCN is shown to its left, where σ(x), σ(y), and σ(z) correspond to the 2-dimensional
shapes tagged with x, y, and z respectively in the figure. As our domain is infinite, note that we
can have an infinite number of solutions for any given scenario.

There have been many works in the literature that try to solve the satisfiability problem of a
non-tractable QCN3 in an efficient manner. All these works consider some kind of backtracking
search (either iterative or recursive), a preprocessing operation to prune off certain unfeasible
base relations that is based on a polynomial algorithm that makes use of weak composition,
and, most importantly, a subclass of relations of 2B with the property that QCNs defined over
that subclass become tractable [Nebel and Bürckert, 1995; Nebel, 1997; Renz and Nebel, 2001;
Renz, 1999; Renz and Nebel, 1999; Balbiani et al., 2002; Balbiani et al., 1999; Ligozat, 1998].
Of course, for tractable QCNs, dedicated polynomial algorithms have been defined, as is the
case for QCNs of Point Algebra where a polynomial method based on topological sort [Knuth,
1973] is defined in [van Beek, 1992, chap. 3]. We will review the approaches for solving the
satisfiability problem of QCNs in more detail in the following sections, and we will also present
our contributions for solving the satisfiability problem of QCNs later on in a separate chapter.

3In what follows, as a convention, by saying that a QCN N is tractable (resp. non-tractable), we mean that the
satisfiability problem for the class of QCNs that is defined by the restrictions imposed on N (if any) is tractable
(resp. non-tractable), i.e., solvable (resp. not solvable) by a deterministic Turing machine in polynomial time.

29

Chapter 3. Reasoning with Qualitative Constraint Networks

v0

v1

v2{NTPPi}

{EC, TPP}
{DC,PO}

v0

v1

v2{NTPPi}

{EC}
{DC}

Figure 3.3: A RCC-8 network (left) and its minimal network (right)

3.3.2 Minimal Labeling Problem

The minimal labeling problem (MLP), also known as the deductive closure problem, is a fun-
damental problem in qualitative spatial and temporal reasoning which involves making all the
constraints of a QCN minimal, i.e., obtaining the base relations participating in at least one
solution for each of the constraints of that network.

Definition 7 Given a QCN N = (V,C), we say that a relation C(v, v′), with v, v′ ∈ V , is
minimal if and only if every base relation b ∈ C(v, v′) is feasible.

Notably, the MLP of a QCN is equivalent to the corresponding satisfiability problem with
respect to polynomial Turing-reductions. As such, verifying if a QCN comprises only minimal re-
lations is a NP-hard problem for QCNs for which the satisfiability problem is NP-complete (cf. [Liu
and Li, 2012]). Since their introduction in 1974 [Montanari, 1974], minimal constraint networks
have been the focus of study in both the constraint programming community (cf. [Gottlob,
2012]) and the qualitative spatial and temporal reasoning community [van Beek and Cohen, 1990;
Gerevini and Saetti, 2011; Liu and Li, 2012; Chandra and Pujari, 2005; Amaneddine and Con-
dotta, 2013; Bessière et al., 1996; Gerevini and Schubert, 1995; Amaneddine and Condotta, 2012].
We define the notion of a minimal QCN as follows.

Definition 8 A QCN N = (V,C) is minimal if and only if ∀v, v′ ∈ V we have that C(v, v′) is
minimal.

Finally, the MLP of a QCN can be formally defined as follows.

Definition 9 Given a QCN N , the minimal labeling problem (MLP) is the problem of obtaining
the largest (with respect to ⊆) minimal sub-QCN N ′ of N .

Solving the MLP of a given QCN involves prunning off unfeasible base relations iteratively
until a state is reached where no more unfeasible base relations exist. In that state, all the
constraints of the (possibly) modified QCN will be minimal and, thus, we will have obtained a
minimal QCN. The unique equivalent minimal sub-QCN of a QCN N is denoted by Nmin. As
an example, let us view the QCN N of RCC-8 in Figure 3.3 on the left hand. Network N is
satisfiable, but not minimal, as it comprises unfeasible base relations. In particular, the base
relation PO between variables v1 and v2 is unfeasible as PO 6∈ {NTPPi}−1 � {EC, TPP} and,
thus, it cannot participate in a solution. Likewise, base relation TPP (v0, v1) is unfeasible as
TPP 6∈ {NTPPi} � {DC,PO} and, thus, it also cannot participate in a solution. By removing
the aforementioned two unfeasible base relations we obtain the minimal network on the right
hand of the figure, i.e., network Nmin.

In the literature, the works on obtaining the equivalent minimal sub-QCN of a QCN N
have focused on identifying particular subclasses of relations of 2B for the qualitative constraint

30

3.3. Reasoning Problems Associated with QCNs

language considered for which minimality can be guaranteed through a polynomial algorithm [van
Beek and Cohen, 1990; Gerevini and Saetti, 2007; Gerevini and Saetti, 2011; Liu and Li, 2012;
Chandra and Pujari, 2005; Amaneddine and Condotta, 2013; Bessière et al., 1996; Gerevini and
Schubert, 1995; Amaneddine and Condotta, 2012]. In the particular case of [Amaneddine and
Condotta, 2013], the authors go a step further by proposing a backtracking search algorithm
that iteratively prunes off unfeasible base relations of a given QCN N until Nmin is obtained. We
will review the approaches for solving the MLP of QCNs in more detail in the following sections,
and we will also present our contributions for solving the MLP of QCNs later on in a separate
chapter.

3.3.3 Redundancy Problem

Recently, the important problem of deriving redundancy in a RCC-8 network was considered
and already well established in [Duckham et al., 2014; Li et al., 2015a]. For a RCC-8 network
N a constraint is redundant, if removing that constraint from N (i.e., replacing that constraint
with the universal relation) does not change the solution set of N . A prime network of N is a
network which contains no redundant constraints, but has the same solution set as N . Finding a
prime network can be useful in many applications such as computing, storing, and compressing
the relationships between spatial objects and hence saving space for storage and communication,
facilitating comparison between different networks, merging networks [Condotta et al., 2008;
Condotta et al., 2009], aiding quering in spatially-enhanced databases [Nikolaou and Koubarakis,
2013; Open Geospatial Consortium, 2012], unveiling the essential network structure of a network
(e.g., being a tree or of bounded treewidth [Bodirsky and Wölfl, 2011]), and adjusting geometrical
objects to meet topological constraints [Wallgrün, 2012]. We refer the reader to [Li et al., 2015a]
for a well depicted real motivational example and further application possibilities. In [Li et al.,
2015a], the notion of redundancy is also generalized to qualitative constraint languages other
than just RCC-8.

Given a QCN N = (V,C), we say that N entails a relation r(v, v′) ∈ 2B, with v, v′ ∈ V ,
if for every solution σ of N , the relation defined by (σ(v), σ(v′)) is a base relation b such that
b ∈ r(v, v′). A relation C(v, v′) in N is redundant if network N[v,v′]/B entails C(v, v′). Note
that by definition every universal relation B in a QCN is redundant. Recalling the fact that
the constraint graph of a QCN involves all the non-universal relations, we trivially obtain the
following lemma:

Lemma 1 Given a QCN N = (V,C) and its constraint graph G(N) = (V,E), a relation N [v, v′]
with v, v′ ∈ V is redundant if {v, v′} 6∈ E.

We recall the definition of a reducible and a prime QCN.

Definition 10 A QCN N = (V,C) is reducible if it comprises a redundant relation other than
relation B, and irreducible otherwise. An equivalent to N irreducible QCN N ′ = (V,C ′) such
that C ′(v, v′) ⊆ C(v, v′) ∀v, v′ ∈ V if C ′(v, v′) 6= B is called a prime QCN of N . If a prime QCN
of N is also unique, it is denoted by Nprime.

Given an arbitrary QCNN , finding a prime QCN ofN is clearly at least as hard as determining
if N is reducible. We then have the following result for QCNs for which the satisfiability problem
is NP-complete.

Proposition 2 ([Li et al., 2015a]) Let N = (V,C) be a QCN for which the satisfiability prob-
lem is NP-complete. It is co-NP-complete to decide if a relation C(v, v′), with v, v′ ∈ V , is
redundant in N .

31

Chapter 3. Reasoning with Qualitative Constraint Networks

v0

v1

v2{NTPPi}

{EC}
{DC} B

v0

v1

v2{NTPPi}

{EC}

Figure 3.4: A RCC-8 network (left) and its prime network (right)

We can now formally define the redundancy problem of a QCN as follows.

Definition 11 Given a QCN N , the redundancy problem is the problem of determining a prime
QCN of N .

The redundancy problem was first approached by Egenhofer and Sharma for topological
constraints [Egenhofer and Sharma, 1993], where they observed that a minimal set of constraints
(i.e., a prime network) contains somewhere between (n−1) and (n2−n)/2 non-univesral relations,
but without providing any efficient algorithms for deriving such a minimal set even for atomic
networks. In a recent paper, Wallgrün proposed two algorithms to approximately find the prime
network [Wallgrün, 2012]. As observed in [Wallgrün, 2012], and later explored in more detail in [Li
et al., 2015a], neither of these two algorithms is guaranteed to provide the optimal simplification.
The redundancy problem is also related to the minimal labeling problem that we defined earlier,
in the sense that to obtain a minimal network we remove “unnecessary” base relations from each
constraint. In a similar manner, to obtain a prime network we remove “redundant” constraints
from the qualitative constraint network. As an example, let us view the QCN N of RCC-8 in
Figure 3.4 on the left hand. Network N satisfiable, but not irreducible, as it comprises redundant
relations. In particular, the relation {DC} between variables v1 and v2 is redundant as it can
be entailed by N[v1,v2]/B and, thus, can be replaced with relation B (that denotes the lack of a
constraint between two entities in a QCN). By removing that redundant relation we obtain the
equivalent to N and irreducible network on the right hand of the figure, i.e., network Nprime.

As already noted, the redundancy problem of QCNs has only recently been formally estab-
lished in terms of providing efficient algorithms for obtaining optimal solutions [Duckham et al.,
2014; Li et al., 2015a]. In particular, in [Duckham et al., 2014; Li et al., 2015a] it is proven that
QCNs defined over particular subclasses of relations of 2B can yield their unique prime networks
with the aid of a polynomial algorithm. We will review the approaches for solving the redun-
dancy problem of QCNs in more detail in the following sections, and we will also present our
contributions for solving the redundancy problem of QCNs later on in a separate chapter.

3.4 Tractability of QCNs

Earlier in this chapter, there has been some mentioning of particular subclasses of relations of
2B with the property that QCNs defined over that subclass become tractable. We will simply
refer to such subclasses of relations as tractable subclasses of relations. A tractable subclass of
relations is defined as follows.

Definition 12 A subclass A ⊆ 2B is a tractable subclass if a QCN N comprising only relations
from A is tractable. A subclass A ⊆ 2B is a maximal tractable subclass if there exists no other
tractable subclass that properly contains A.

32

3.5. Algorithms for Reasoning with QCNs

For many qualitative constraint languages, the essence of the notion of tractability for a
given subclass A ⊆ 2B lies in the fact that a satisfiable QCN defined over such a subclass can be
polynomially refined to an atomic satisfiable sub-QCN, viz., a scenario, for which a particular
local consistency condition can be used to verify its satisfiability [Huang, 2012; Renz, 2007]. If
a QCN N = (V,C) over a tractable subclass of relations is unsatisfiable, it will be polynomially
refined to ⊥V . For example, the maximal tractable subclasses for RCC-8 and IA are the classes
Ĥ8, C8, and Q8 [Renz, 1999; Renz and Nebel, 2001], and HIA [Nebel and Bürckert, 1995; Nebel,
1997], respectively. Classes Ĥ8 and HIA contain exactly those relations that are transformed to
propositional Horn formulas when using the propositional encodings of RCC-8 and IA respectively.
Further, and for RCC-8 in particular, let us denote by NP8 the set of relations that by themselves
result in NP-completeness when combined with the set of singleton relations, defined as follows
in [Renz, 1999].

NP8 = { r | ({PO} 6⊆ r and ({NTPP} ⊆ r or {TPP} ⊆ r)
and ({NTPPi} ⊆ r or {TPPi} ⊆ r)}

∪ {{EC,NTPP,EQ}, {DC,EC,NTPP,EQ},
{EC,NTPPi,EQ}, {DC,EC,NTPPi,EQ}}

Then, the maximal tractable subclasses for RCC-8 are defined using the NP8 set of relations
as follows ([Renz, 1999]).

Ĥ8 = (2B \ NP8) \ { r | ({EQ,NTPP} ⊆ r and {TPP} 6⊆ r)
or ({EQ,NTPPi} ⊆ r and {TPPi} 6⊆ r)}

C8 = (2B \ NP8) \ { r | ({EC} ⊂ r and {PO} 6⊆ r) and
r ∩ {TPP,NTPP, TPPi,NTPPi,EQ} 6= ∅}

Q8 = (2B \ NP8) \ { r | ({EQ} ⊂ r and {PO} 6⊆ r) and
r ∩ {TPP,NTPP, TPPi,NTPPi} 6= ∅}

If we denote by P8 the set of relations 2B \NP8 (i.e., the set of relations where every relation
belongs to at least one of the classes Ĥ8, C8, and Q8), then all relations of P8 not contained
in C8 contain EC and all relations of P8 not contained in Q8 contain EQ [Renz, 1999]. The
propositional encoding of either C8 or Q8 is neither a Horn formula nor a Krom formula, but
classes C8 and Q8 themselves are directly related to class Ĥ8 in the sense that any QCN defined
over either C8 or Q8 can be polynomially refined to a sub-QCN defined over Ĥ8 [Renz, 1999].

In general, large tractable subclasses of qualitative spatial and temporal constraint lan-
guages can be identified without any manual intervention and without the need for additional
NP-hardness proofs, through an automatic procedure as described in [Renz, 2007]. However,
maximality of the tractable subclasses of relations obtained through the aforementioned pro-
cedure is not guaranteed for the qualitative constraint languages and, thus, a formal analy-
sis of the qualitative constraint language at hand is still required [Renz, 2007]. As a final
note, we consider maximal tractable subclasses of relations that by definition include all the
singleton relations of the considered qualitative constraint language. For certain qualitative
constraint languages, such as Interval Algebra, other subsets of their relations that do not
contain all of the singleton relations can also be maximally tractable [Krokhin et al., 2001;
Krokhin et al., 2003].

3.5 Algorithms for Reasoning with QCNs

We present here the state of the art algorithms that are used for qualitative spatial and temporal
reasoning. Further, we make the connection with the reasoning problems presented in Section 3.3

33

Chapter 3. Reasoning with Qualitative Constraint Networks

along with certain properties of subclasses of relations by referring to related results where
applicable.

3.5.1 Algebraic Closure and �-consistency
Given a QCN N = (V,C), the method of algebraic closure [Ligozat and Renz, 2004] (also
called closure under weak composition) removes certain base relations that are guaranteed to not
participate in any solution of N . The algebraic closure applies the following iterative operation
until a fixed state is reached:

∀vi, vk, vj ∈ V, C(vi, vj)← C(vi, vj) ∩ (C(vi, vk) � C(vk, vj))

Due to the definition of the weak composition operation denoted by symbol �, the algebraic
closure method is sound as it only removes base relations that do not participate in any solution
of a given qualitative constraint network. Every time the algebraic closure method results in
the assignment of the empty relation ∅ to a constraint of a given qualitative constraint network,
we can conclude that the given network is unsatisfiable. However, in general, it is not complete
for deciding the satisfiability of any qualitative constraint network, i.e., we cannot conclude the
satisfiability of an arbitrary qualitative constraint network if the algebraic closure method does
not result in the assignment of the empty relation ∅ to a constraint of the network at hand. We
will now present a local consistency, called �-consistency, that is directly related to the algebraic
closure method.

Definition 13 A QCN N = (V,C) is said to be �-consistent if and only if we have that C(vi, vj)
⊆ C(vi, vk) � C(vk, vj), ∀vi, vk, vj ∈ V .

The �-consistent QCN obtained after the application of the algebraic closure method on a
QCN N is unique and equivalent to N . Further, it is called the closure of N under �-consistency
and it is denoted by �(N). Network �(N) corresponds to the largest (with respect to ⊆) �-
consistent sub-QCN of N . Given two QCNs N = (V,C) and N ′ = (V,C ′) we have the following
properties with respect to �-consistency:

• �(N) ⊆ N (Dominance);

• �(N) is equivalent to N (Equivalence);

• �(�(N)) = �(N) (Idempotence);

• if N ′ ⊆ N then �(N ′) ⊆ �(N) (Monotonicity).

Interestingly, �-consistency is able to decide the satisfiability of atomic QCNs for many qual-
itative constraint languages. In fact, �-consistency provides the particular local consistency
condition we were referring to in Sections 3.3.1 and 3.4. In particular, we have the following
result by reviewing all the related literature for the satisfiability problem of a QCN of Point Al-
gebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8 [van Beek, 1992;
Ligozat, 1996; Nebel, 1995; Nebel and Bürckert, 1995; Nebel, 1997; Renz and Nebel, 2001;
Renz, 1999; Renz and Nebel, 1999; Balbiani et al., 2002; Balbiani et al., 1999; Ligozat, 1998], or
by simply consulting [Dylla et al., 2013] which summarises the related contributions:

Proposition 3 (cf. [Dylla et al., 2013]) Let N = (V,C) be an atomic QCN of Point Algebra,
Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8. Then, N is satisfiable
if and only if it is �-consistent.

34

3.5. Algorithms for Reasoning with QCNs

With respect to the discussion about tractable subclasses of relations in Section 3.4, and the
related literature, we can obtain the following result:

Proposition 4 ([Huang, 2012; Renz, 2007]) Let N = (V,C) be a QCN of Point Algebra,
Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8, defined over one of the
classes PPA, PCDC, HIA, HnIA, or Ĥ8, C8, and Q8 respectively. If N is not trivially inconsistent
and �-consistent, then N can be polynomially refined to an atomic �-consistent sub-QCN.

Due to Propositions 3 and 4, we can obtain the following result:

Proposition 5 Let N = (V,C) be a QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA, HnIA, or Ĥ8,
C8, and Q8 respectively. If N is not trivially inconsistent and �-consistent, then N is satisfiable.

Note that for Point Algebra the maximal tractable subclass of relations PPA4 coincides with
the total set of relations 2B. Also, we discussed in Section 3.3.1 that a QCN of Point Algebra
can be solved with a polynomial method based on topological sort as defined in [van Beek, 1992,
chap. 3]. This method takes O(n2) time for a given QCN of Point Algebra over n variables; on
the other hand, �-consistency, although more time consuming to enforce as we will see later on,
defines a more general approach and, hence, is still able to decide the satisfiability of that QCN.

It is important to remark that there exist qualitative constraint languages for which the
satisfiability of atomic QCNs cannot be decided by �-consistency. Such a qualitative constraint
language is the Star algebra ST ARrm, for m = 4, which is also a relation algebra [Renz and
Mitra, 2004]. The satisfiability problem of an atomic QCN of ST ARr4 is tractable, i.e., it can
be solved in polynomial time, but it cannot be done so with the use of �-consistency. In fact,
atomic QCNs of ST ARr4 are solvable through a polynomial reduction to a particular instance of
linear programming [Schrijver, 1986].

Let us list the following two properties for a given qualitative constraint language L that we
will refer to from here on where necessary:

• L is a relation algebra;

• every �-consistent atomic QCN of L is satisfiable.

Regarding the minimal labeling problem, the use of �-consistency in the literature provides
us with the following result:

Theorem 2 ([Long and Li, 2015]) Let N = (V,C) be a QCN defined over a distributive sub-
class of relations of a qualitative constraint language that is a relation algebra and for which every
�-consistent atomic QCN is satisfiable. If N is not trivially inconsistent and �-consistent, then
N is minimal.

Due to Propositions 1 (at page 21) and 3 (which are also used in [Long and Li, 2015]) and
Theorem 2, we can obtain the following corollary:

Corollary 1 Let N = (V,C) be a QCN defined over a distributive subclass of relations of Point
Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8. If N is not
trivially inconsistent and �-consistent, then N is minimal.

4P stands for pre-convex [Ligozat, 2011].

35

Chapter 3. Reasoning with Qualitative Constraint Networks

Before moving on, let us recall the following definition of an all-different qualitative constraint
network:

Definition 14 Let N = (V,C) be a satisfiable QCN of a qualitative constraint language that is
a relation algebra and for which every �-consistent atomic QCN is satisfiable. Then, N is said
to be all-different iff ∀u, v ∈ V , with u 6= v, we have that N does not entail relation (u {EQ} v).

For the redundancy problem, Li et al. in [Li et al., 2015a] exploit �-consistency in the
following manner:

Lemma 2 ([Li et al., 2015a]) Let N = (V,C) be an all-different QCN defined over a dis-
tributive subclass of relations of a qualitative constraint language that is a relation algebra and
for which every �-consistent atomic QCN is satisfiable. If N is not trivially inconsistent and
�-consistent, then a relation N [v, v′], with v, v′ ∈ V , is non-redundant in N iff we have that
N [v, v′] 6= ⋂{N [v, v′′] � N [v′′, v′] | v′′ ∈ V \ {v, v′}}.

Then, due to Propositions 1 (at page 21) and 3 and Lemma 2, we can obtain the following
corollary:

Corollary 2 Let N = (V,C) be an all-different QCN defined over a distributive subclass of rela-
tions of Point Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8.
If N is not trivially inconsistent and �-consistent, then a relation N [v, v′], with v, v′ ∈ V , is
non-redundant in N iff we have that N [v, v′] 6= ⋂{N [v, v′′] � N [v′′, v′] | v′′ ∈ V \ {v, v′}}.

The aforementioned results regarding the redundancy problem of a given QCN N , allows
one to extract the total set of non-redundant constraints in N with a polynomial algorithm (in
particular, cubic in the number of variables of N) and construct Nprime as described in [Li et al.,
2015a]. We will present that algorithm in detail in Section 3.5.4.

Let us now discuss some complexity results with respect to �-consistency. Clearly, given
a QCN N = (V,C), �-consistency for N can be decided or determined in O(n3) time, where
n = |V |, as there exist at most n(n − 1)(n − 2) possible triples of variables in V and a single
check C(vi, vj) ⊆ C(vi, vk) � C(vk, vj) is performed for every such triple of variables vi, vj , vk ∈
V . Applying or enforcing �-consistency on N , i.e., making N �-consistent if it is not, requires the
implementation of the algebraic closure method through an algorithm. As �-consistency is closely
related to path consistency in the sense that �-consistency is a weaker notion of path consistency
where the relational composition operation ◦ is replaced by the weak composition operation
� [Renz and Ligozat, 2005], the algorithms that efficiently implement the algebraic closure method
are inspired by algorithms for enforcing path consistency in the CSP framework, in particular,
algorithms PC1 and PC2 [Mackworth and Freuder, 1985; Mackworth, 1977; Montanari, 1974].

Algorithms that are based on PC1 are rather naive in their approach. In particular, they
operate as follows. Given a QCN N = (V,C), PC1-based algorithms contain an inner loop
that closes N under weak composition by performing the C(vi, vj) ← C(vi, vj) ∩ (C(vi, vk) �
C(vk, vj)) consistency operation ∀vi, vk, vj ∈ V . Clearly, and as noted earlier, since there are
O(n3) many such triples, where n = |V |, this inner loop costs O(n3) time. However, there also
exists an outer loop that is resumed every time there has been a removal of at least one base
relation from some constraint of N during the iteration of the inner loop. Since there can be
at most O(n2|B|) base relations in N , the outer loop can be executed a total of O(n2) times.
As such, the worst-case runtime of PC1-based algorithms is O(n5), and the best-case runtime
is Ω(n3) which occurs when the QCN is already �-consistent and only one iteration through the

36

3.5. Algorithms for Reasoning with QCNs

outer loop is needed. On the other hand, PC2-based algorithms can achieve a worst-case runtime
of O(n3) for that same QCN N . In the context of QCNs, PC2-based algorithms use a dedicated
data structure (usually a queue as we will see later) that is initialized with all the constraints
of a given QCN N = (V,C) over n variables that need to be processed, which can be at most
O(n2) in number. A main loop selects and removes a constraint from the data structure and
performs O(n) consistency operations which consider all triples of variables that involve that
constraint. As an example, if the constraint C(vi, vj) is chosen, with vi, vj ∈ V , the consistency
operations C(vi, vk) ← C(vi, vk) ∩ (C(vi, vj) � C(vj , vk)) and C(vk, vj) ← C(vk, vj) ∩ (C(vk, vi)
� C(vi, vj)) are performed for every vk ∈ V . Since every constraint of N can have at most |B|
base relations, it follows that every constraint of N can be revised (i.e., one of its base relations
can be prunned off during a consistency operation) a total of O(|B|) times (constant). When a
constraint is revised, it is added to the data structure –if it does not already exist there– as it
can affect other constraints through its participation in follow up consistency operations. Thus,
at any point of the execution, the data structure only keeps track of the constraints that need
to be processed in a follow up consistency operation. In addition, and as mentioned earlier, the
total number of constraints that can exist in the data structure is bounded by O(n2), which
constitutes the memory footprint of the algorithm. Hence, the worst-case runtime of PC2-based
algorithms is O(n3), and the best-case runtime is the same as with PC1-based algorithms, viz.,
Ω(n3).

The WC Algorithm

An algorithm that implements the algebraic closure method, and that is based on the PC2
algorithm, is provided in Algorithm 1, called WC, where a queue is assumed as the primary
data structure for storing constraints to be processed. Given a QCN N = (V,C), the queue is
initialized with all the pairs of variables in V which correspond to the constraints of N (line 2).
The consistency operations take place in lines 6 and 13. Notice that whenever a constraint is
modified by a reduction of its set of base relations (lines 7 and 14), it is appropriately added
back to the queue (lines 10, 12, 17, and 19).

Proposition 6 ([Allen, 1983; Vilain et al., 1990]) Given a QCN N of a qualitative con-
straint language that is a relation algebra, algorithm WC terminates and returns �(N).

Given a QCN N = (V,C), and as explained earlier for PC2-based algorithms, algorithm
WC enforces �-consistency on N in O(|V |3|B|) time. Variations of the WC algorithm exist with
respect to the selection of the next constraint to be processed, but also the choice of the data
structure for storing the constraints to be processed. It also very important to define techniques
that will allow for fast weak composition, intersection, and converse operations. Let us discuss
some of these approaches.

Data Structures. Regarding the choice of the data structure, the most common approach,
and to the best of our knowledge the solely used one nowadays, is based on opting for some
queue data structure.

In the past, dedicated n×n (0, 1)-matrices have also been used to store the pairs of variables
corresponding to the constraints of a given QCN to be processed within a �-consistency enforcing
algorithm. However, accessing the set of contraints that need to be processed alone takes O(n2)
time, as a full iteration of the matrix needs to be performed in any case to identify the pairs
of variables that are assigned the value of 1, i.e., that need to be processed (as opposed to the

37

Chapter 3. Reasoning with Qualitative Constraint Networks

Algorithm 1: WC(N)
in : A QCN N = (V,C) of a qualitative constraint language that is a relation algebra.
output : �(N).

1 begin
2 Q ← {(vi, vj) | vi, vj ∈ V with 0 ≤ i ≤ j < |V |};
3 while Q 6= ∅ do
4 (vi, vj) ← Q.pop();
5 foreach vk ∈ V do
6 t ← C(vi, vk) ∩ (C(vi, vj) � C(vj , vk));
7 if t 6= C(vi, vk) then
8 C(vi, vk) ← t; C(vk, vi) ← t−1;
9 if i ≤ k then

10 Q ← Q ∪ {(vi, vk)};
11 else
12 Q ← Q ∪ {(vk, vi)};

13 t ← C(vk, vj) ∩ (C(vk, vi) � C(vi, vj));
14 if t 6= C(vk, vj) then
15 C(vk, vj) ← t; C(vj , vk) ← t−1;
16 if k ≤ j then
17 Q ← Q ∪ {(vk, vj)};
18 else
19 Q ← Q ∪ {(vj , vk)};

20 return N ;

value of 0). Due to this inefficient (for the particular use case) storage design, the worst-case
runtime of the �-consistency enforcing algorithm can be increased to O(n4). Indeed, consider
the case where in each iteration only a single constraint is modified by a reduction of its set of
base relations. Thus, there can be at most O(n2|B|) iterations. This alone is not a problem, as
we explained earlier in this section that each such modified constraint participates in O(n) con-
sistency operations which consider all triples of variables that involve that constraint. However,
in each iteration we iterate O(n2) elements of the matrix and, thus, have an additional O(n2)
overhead.

In the case where a queue is used, given a QCN N = (V,C) over n variables, we already
saw that the queue is initialized with all the O(n2) pairs of variables in V which correspond
to the constraints of N . In particular, each entity of the queue correlates with a unique pair
of variables corresponding to some constraint. A pair of variables can be added to the queue
with the push operation, and removed from it with the pop operation. Hence, a queue allows
us to both keep track of and iterate the minimum required number of constraints that need to
be processed in a follow up consistency operation within a �-consistency enforcing algorithm at
any point of its execution. Howerer, a queue can also have its disadvantages. Using a queue
as a data structure requires one to also maintain some additional data structure, such as a set
or a (0, 1)-matrix, dedicated for fast membership testing of a pair of variables corresponding to
a constraint. In particular, membership testing takes place when we want to check if a pair of
variables corresponding to a constraint already exists in the queue, so that we do not add it again
for revision. Since a queue is usually implemented as a doubly linked list or a modified dynamic
array, membership testing of a single item costs O(n2) time. On the other hand, membership
testing of a pair of variables will always take constant time when using a (0, 1)-matrix, and it

38

3.5. Algorithms for Reasoning with QCNs

Table 3.1: Weighting scheme for Interval Algebra base relations

relation eq p pi m mi o oi s si d di f fi

weight 1 3 3 2 2 4 4 2 2 4 3 2 2

will also take constant time on average when using a set of pairs of variables (although it can
take O(n2) time in the worst case).

Ordering of Constraints. Regarding the selection of the next constraint to be processed,
approaches have focused around queues and queuing strategies, and have varied from simply
opting to operate a queue in a FIFO (first in first out) or LIFO (last in first out) manner, to
applying some kind of specialized heuristic that selects the next constraint to be processed based
on some preference value.

With respect to the simpler approach, i.e., opting to operate the queue in a FIFO or LIFO
manner, none of the strategies has a clear advantage over the other. In general, a FIFO strategy
is better when dealing with a queue that contains more than thousands or even millions of pairs
of variables (this can easily be the case for a QCN over n variables with n ≥ 1000), because it is
important to make a first complete pass over the pairs of variables, perform all the consistency
operations in which they are involved, and unveil any inconsistencies among triples of variables
that might originally exist in the given QCN. On the other hand, a LIFO strategy can prove to be
more beneficial for queues of smaller size. A pair of variables corresponding to a recently modified
constraint which has been deemed more restrictive due to a reduction of its set of base relations,
might be more prone to result in a reduction of the set of base relations of other constraint
as well if used in a follow up consistency operation. Thus, pushing that pair of variables in
the queue last and immediately reusing it by popping it for reprocessing first, might unveil an
inconsistency faster. Due to each of the FIFO and LIFO strategies having its own benefits, it is
common to combine both strategies during the execution of a �-consistency enforcing algorithm.
For example, one can start off with a FIFO strategy to make a first complete pass over the
pairs of variables in the queue, and then repeatedly switch to a LIFO strategy whenever it feels
necessary to focus more on some particular pairs of variables (e.g., pairs of variables for which
the set of bease relations of the corresponding constraints was drastically reduced).

With respect to approaches that rely on some heuristic to select the next constraint to be
processed, all of them are based on assigning a preference value to a constraint. These approaches
are described in extent in [van Beek and Manchak, 1996; Renz and Nebel, 2001]. In particular,
there is the weight heuristic, an estimate of how much the constraint corresponding to a pair
of variables will restrict other constraints. Restrictiveness is measured for each base relation by
successively composing the base relation with every possible relation, and then summing up the
cardinalities of the resulting compositions. The result is then suitably scaled and a weight is
assigned to each base relation. As an illustration, the weighting scheme for the base relations
of Interval Algebra is shown in Table 3.1. The weight of a constraint is then given by the sum
of the weights of its base relations. For example, the weight of the relation {p, o, f} is 3 + 4
+ 2 = 9. The smaller the weight of a relation, the more restrictive the relation is. The most
restrictive relations are processed first; the reason for doing so is that they restrict the other
relations on average most and, therefore, render them less likely to be processed repeatedly in
the future. Chances are, that a relation which has lost less than half of its base relations due to
some consistency operation will be processed more until the termination of the algorithm than
a relation which has lost more than half of its base relations, likewise, due to some consistency

39

Chapter 3. Reasoning with Qualitative Constraint Networks

operation. In [Renz and Nebel, 2001], the authors exploit the fact that the RCC-8 constraint
language has a limited number of relations, viz., 28 in total, and compute the exact restrictiveness
by composing each relation (not just each base relation as in [van Beek and Manchak, 1996])
with every other relation and summing up the cardinalities of the resulting compositions. The
result is then scaled into weights from 1 (the most restrictive relations) to 16 (the least restrictive
relations). In its simplest form, the weight heuristic can correspond to the cardinality heuristic
where the weight of every base relation is set to one.

Apart from the weight and cardinality heuristics, there also exists the constrainedness heuris-
tic. The constrainedness heuristic is an estimate of how much a change in a relation will restrict
other relations. It is determined as follows. Given a QCN N = (V,C) over n variables, suppose
the pair of variables we are interested in is (vi, vj), with vi, vj ∈ V and 0 ≤ i ≤ j < n. The
constrainedness of the relation corresponding to the pair of variables (vi, vj), viz., C(vi, vj), is
the sum of the weights of the relations C(vk, vi) and C(vj , vk), for every k such that 0 ≤ k < n.
The intuition comes from examining the �-consistency algorithm in Algorithm 1 which would
propagate a change in relation C(vi, vj). We see that C(vi, vj) will be composed with C(vj , vk)
(line 6) and C(vk, vi) (line 13), for every k such that 0 ≤ k < n. As a side note, heuristics
that select the next constraint to be processed based on some preference value are usually im-
plemented with the use of a priority queue data structure. A priority queue is like a regular
queue data structure, but where additionally each element has a priority associated with it. In
a priority queue, an entity with high priority is served before an entity with low priority. If two
entities have the same priority, they are served according to their order in the queue. In the
context of QCNs, a priority queue is most often implemented with a heap and coupled with a
hash table data stucture that maps each pair of variables to an entry in the queue comprising the
pair of variables itself and a weight denoting its priority. As such, given a QCN over n variables,
using a priority queue in the �-consistency enforcing algorithm would allow membership testing
of an item to be performed in constant time and require a O(log(n2)) cost in time for adding or
removing an item.

Speeding Up Consistency Operations. Finally, in order to have a fast �-consistency en-
forcing algorithm, we need to have fast weak composition, intersection, and converse operations.

Regarding the intersection operation, the relations of a qualitative constraint language are
most efficiently implemented as bit vectors [van Beek and Manchak, 1996; Ladkin and Reinefeld,
1997]. In this way, the fast bit-wise AND operation can be used to perform the intersection
operation. For example, if we assign the bit vectors 00000001 and 00000010 to base relations DC
and EC of RCC-8 respectively, the bit vector 00000011 will correspond to relation DC ∪ EC.
Then, by intersecting 00000011 with 00000001, for example, we can immediately obtain base
relation DC. Note that the size of the bit-vector is |B|, with each of its bits corresponding to a
base relation.

As noted in Section 2.4, the converse of a relation 2B can be obtained from a converse table
which stores the converse base relation b−1 for each base relation b ∈ B. In fact, as most
qualitative constraint languages have a small number of relations with respect to the available
memory in modern computers that is required to store them, we do not need to only maintain
the converse table for each base relation, but can maintain a larger converse table that stores
the converse relation r−1 for each relation r ∈ 2B.

One can do something similar in the case of weak composition, i.e., she can opt to store the
entire weak composition table considering the weak compositions between all the relations and
not just the base relations. However, in this case, a 2-dimensional array would be required, which

40

3.5. Algorithms for Reasoning with QCNs

would have a O(22|B|) memory footprint (we consider here |B| to be a variable) and could pose
a challenge even for todays modern computers (e.g., consider the RCC-23 calculus with 23 base
relations, which in addition to RCC-8 allows reasoning about convexity [Cohn et al., 1997]). In
the case where storing a 2|B| × 2|B| 2-dimensional array is impractical, we can consider Hogge’s
method [Hogge, 1987] which uses four small tables instead of a single large one, in particular, one
with 22d|B|/2e entries, two with 2|B| entries, and one with 22b|B|/2c entries [Ladkin and Reinefeld,
1997]. The result of a weak composition can then be obtained by the union of the four array
accesses plus 3 shift operations and some logical ANDs. At the cost of a slight increase of
memory space, Hogge’s method can be improved to use only two tables, one with 2|B|+d|B|/2e

entries holding the d|B|/2e low order weak compositions, and the other one with 2|B|+b|B|/2c

entries holding the b|B|/2c high order weak compositions [Ladkin and Reinefeld, 1997].
In the case where even Hogge’s method is not directly applicable, caching for both weak com-

positions and converse results using hash tables can prove to be extremely beneficial as discussed
in [Ladkin and Reinefeld, 1997; Gantner et al., 2008; Westphal et al., 2009]. In particular, since
the number of entries in a hash table does not need to be directly dependent on the number of
base relations in general, caching can be especially interesting for large calculi where full pre-
computations, as discussed above, are impossible. Also, as a �-consistency enforcing algorithm
is a fixed point algorithm, and therefore the actual weak compositions that have to be calcu-
lated tend to be clustered, even small hash tables can prove to be useful [Gantner et al., 2008;
Westphal et al., 2009].

Hybrid Algorithms

A comprehensive comparative experimental study of different PC1-based and PC2-based �-
consistency enforcing algorithms, different data structures, and different heuristic implemen-
tations takes place in [Saade, 2008; Condotta et al., 2006a]. This study also introduces new
heuristics corresponding to a combination of the existing heuristics that we discussed earlier. In
addition, a new algorithm is introduced, based on both PC1 and PC2. This algorithm firstly
performs a main loop in which all triples of variables of a given QCN participate in consistency
operations, in a similar way to PC1. Then, in a second phase, it operates in a similar way to
PC2, with the exception that the dedicated data structure that is normally initialized with all
the pairs of variables corresponding to the constraints of a given QCN that need to be processed,
is initialized only with the pairs of variables corresponding to constraints that were modified
during the first main PC1-like loop instead. This algorithm serves as a compromise between
PC1 and PC2-based �-consistency enforcing algorithms in terms of time and memory efficiency
(e.g., PC1-based algorithms do not need a dedicated data structure for storing constraints to be
processed). For more details, the reader may refer to the PhD Thesis of Saade [Saade, 2008].

3.5.2 Algorithms for the Satisfiability Problem of QCNs

In the case where a QCN is defined over a subclass of relations for which �-consistency alone is
able to decide satisfiability, and since algorithm WC is able to enforce �-consistency on a given
QCN of a relation algebra due to Proposition 6 (at page 37), we have the following result:

Proposition 7 ([Allen, 1983; Vilain et al., 1990]) Let A ∈ 2B be a subclass of relations of
a qualitative constraint language that is a relation algebra, over which not trivially inconsistent
and �-consistent QCNs are satisfiable. Then, given a QCN N = (V,C) defined over A, algorithm
WC terminates and returns ⊥V if and only if N is unsatisfiable.

41

Chapter 3. Reasoning with Qualitative Constraint Networks

Algorithm 2: Consistency(N , A)
in : A QCN N = (V,C), and a subclass A.
output : Null, or a refinement of network N over A.

1 begin
2 N ← WC(N);
3 if N = ⊥V then
4 return Null;

5 if ∀vi, vj ∈ V with i < j we have that C(vi, vj) ∈ A then
6 return N ;

7 choose a constraint C(vi, vj) with vi, vj ∈ V and i < j such that C(vi, vj) 6∈ A;
8 split C(vi, vj) into r1, ..., rk ∈ A: r1 ∪ ... ∪ rk = C(vi, vj);
9 foreach r ∈ {rl | 1 ≤ l ≤ k} do

10 N [vi, vj] ← r; N [vj , vi] ← r−1;
11 result ← Consistency(N , A);
12 if result 6= Null then
13 return result ;

14 return Null;

From Proposition 7 we can assert the following theorem:

Theorem 3 ([Allen, 1983; Vilain et al., 1990]) Let A ∈ 2B be a subclass of relations of a
qualitative constraint language that is a relation algebra, over which not trivially inconsistent and
�-consistent QCNs are satisfiable. Then, given a QCN N = (V,C) defined over A, algorithm WC
is sound and complete for deciding the satisfiability of N .

Then, due to Theorem 3, and Propositions 1 (at page 21), and 5 (at page 35), we have the
following result:

Corollary 3 Let N = (V,C) be a QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA, HnIA, or Ĥ8,
C8, and Q8 respectively. We have that algorithm WC is sound and complete for deciding the
satisfiability of N .

For the general case of QCNs, i.e., for QCNs that are not strictly defined over subclasses of
relations for which �-consistency alone is able to decide satisfiability, some kind of backtracking
algorihm must be used that operates on the basis of splitting the relations of a given QCN
into disjunctions of relations belonging to a tractable subclass for which �-consistency alone is
indeed able to decide satisfiability. Such a backtracking-based approach has been presented in the
context of qualitative spatial and temporal reasoning in [Nebel, 1997; Ladkin and Reinefeld, 1992;
Renz and Nebel, 2001]. This approach was then adopted for solving problems of simple temporal
constraints [Dechter et al., 1991] in [Stergiou and Koubarakis, 1998; Stergiou and Koubarakis,
2000]. A nice theoretical evaluation of selected general backtracking algorithms is presented
in [Kondrak and van Beek, 1997; Kondrak and van Beek, 1995].

The Consistency Algorithm

An algorithm that implements a backtracking search for solving general QCNs is provided in
Algorithm 2, called Consistency. Algorithm Consistency receives as input a QCN N = (V,C),

42

3.5. Algorithms for Reasoning with QCNs

and a subclass of relations A. First, �-consistency is enforced through the WC algorithm (line 2),
which we described in detail in Section 3.5.1. Then, granted that enforcing �-consistency did not
result in a trivially inconsistent network, algorithm Consistency chooses a constraint C(vi, vj)
with vi, vj ∈ V and i < j such that C(vi, vj) 6∈ A (line 7). In the case where such a constraint
does not exist, a not trivially inconsistent and �-consistent refinement of network N defined
over subclass A is returned as a solution. In any other case, constraint C(vi, vj) is split into
subrelations r1, ..., rk ∈ A, for which we have that r1 ∪ ...∪ rk = C(vi, vj) (line 8). Each of these
relations is instantiated accordingly to the constraint network N (line 10) and a recursive call is
initiated (line 11). When the algorithm termitates, it is guaranteed to return either Null (line 14),
or a not trivially inconsistent and �-consistent refinement of network N defined over subclass A
(line 13). Note that except for the first step, in all subsequent recursive calls of the Consistency
algorithm, the WC algorithm only has to be run for the paths that are possibly affected by
each prior instantiation, as explained in [Renz and Nebel, 2001; Gantner et al., 2008], which
takes O(n2) intersections and weak compositions, where n = |V |. (This detail is not included
in the WC algorithm.) To obtain this constraint incremental variation of the WC algorithm, it
suffices to replace the command Q ← {(vi, vj) | 0 ≤ i ≤ j < n} in line 2 of the WC algorithm,
with the command Q ← {(vi, vj)}, where vi, vj are the variables appearing in the constraint
C(vi, vj) in line 10 of the Consistency algorithm. As such, the WC algorithm can be seen as
approximating consistency for general QCNs, but also as realising forward checking [Dechter,
2003] in the backtracking algorithm by closing all triples of variables of a given QCN under weak
composition and eliminating base relations that are unfeasible.

Heuristics. It is most common, if not necessary, to implement some heuristics regarding con-
straint (line 7) and subrelation (line 9) selection, as they can overall improve the efficiency of the
backtracking algorithm [Renz and Nebel, 2001; van Beek and Manchak, 1996]. These involve the
cardinality heuristic for constraint selection, and the weight heuristic for subrelation selection.
With respect to the cardinality heuristic for constraint selection, a constraint with the smallest
number of subrelations (as specified in line 8 of the algorithm) is preferred among others. When
selecting a constraint, the cardinality heuristic can be further influenced by the weights of the
subrelations of a constraint (where the weights are assigned to the relations in a similar manner
to what we described for the �-consistency enforcing algorithm). In particular, the weights can
function as a tie-breaker for constraints sharing the same cardinality. With respect to the weight
heuristic for subrelation selection, the least restrictive subrelation is selected according to its
weight. In fact, the cardinality heuristic for constraint selection and the weight heuristic for sub-
relation selection correspond exactly to the minimum remaining values (MRV) heuristic and the
least-constraining value heuristic in the CSP framework respectively, both of which are described
in detail in [Russell and Norvig, 2010]. Further, the tie-breaker used in the cardinality heuristic
for constraint selection can be seen as the degree heuristic [Russell and Norvig, 2010], again, in
the CSP framework. The cardinality heuristic for constraint selection can also be combined with
a dynamic weight as a boost in the way that it is described by Boussemart et al. [Boussemart
et al., 2004]. In particular, in the context of QCNs, when a relation is reduced to the empty
relation, dynamic weights are increased based on the depth of the search tree (exactly as in
Mistral 5, a well-known CSP solver). Further, last conflict-based reasoning can be performed to
reduce the amount of thrashing [Lecoutre et al., 2006; Lecoutre et al., 2009], and eligible and
frozen constraints [Condotta et al., 2007] can be used to reduce the search space. In particular,
the concept of eligibility characterizes constraints that will not be used during the search, and

5http://homepages.laas.fr/ehebrard/mistral.html

43

http://homepages.laas.fr/ehebrard/mistral.html

Chapter 3. Reasoning with Qualitative Constraint Networks

the concept of frozen constraints describes exactly those constraints that can be instantiated to
a fixed value (thus, those constraints that can be frozen) in order to avoid uneccessary reprocess-
ing and updates. Finally, restart and nogood recording techniques can be used in the domain of
qualitative spatial and temporal reasoning in the way of [Katsirelos and Bacchus, 2005; Lecoutre
et al., 2007]. In fact, such techniques are applied orthogonally to the usual backtracking-based
approach for solving qualitative constraint satisfaction problem in [Westphal and Hué, 2012;
Westphal et al., 2010], where first evaluations show promising results.

Given a QCN N = (V,C), and a subclass A, the search space for algorithm Consistency is
O(α|V |

2
), where α is the branching factor (see line 8 of the Consistency algorithm) provided by

subclass A (e.g., α = 1.4375 for subclass Ĥ8 for RCC-8 [Renz and Nebel, 2001]). With respect
to the Consistency algorithm, we have the following result:

Proposition 8 ([Nebel, 1997; Renz and Nebel, 2001]) Let A ∈ 2B be a subclass of rela-
tions of a qualitative constraint language that is a relation algebra, over which not trivially in-
consistent and �-consistent QCNs are satisfiable. Then, given A, and a QCN N defined over 2B,
algorithm Consistency terminates and returns Null if and only if N is unsatisfiable.

From Proposition 8 we can assert the following theorem:

Theorem 4 ([Nebel, 1997; Renz and Nebel, 2001]) Let A ∈ 2B be a subclass of relations
of a qualitative constraint language that is a relation algebra, over which not trivially inconsistent
and �-consistent QCNs are satisfiable. Then, given A, and a QCN N defined over 2B, we have
that algorithm Consistency is sound and complete for deciding the satisfiability of N .

Then, due to Theorem 4, and Propositions 1 (at page 21), and 5 (at page 35), we have the
following result:

Corollary 4 Given one of the classes PCDC, HIA, HnIA, or Ĥ8, C8, and Q8, and a QCN N of
Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8 respectively, we have that
algorithm Consistency is sound and complete for deciding the satisfiability of N .

The IterativeConsistency Algorithm

We also present an additional algorithm, which is the iterative counterpart of the recursive
chronological backtracking algorithm Consistency. The recursive and iterative algorithms are
functionally equivalent. However, the iterative algorithm does not suffer from a recursion depth
or a recursion stack limit. Further, its structure, although a little more complex, makes it
easier to fine-tune it, performance-wise. We call the iterative algorithm IterativeConsistency,
presented in Algorithm 3. Again, we note that Consistency and IterativeConsistency are function-
ally equivalent. The advantage of IterativeConsistency over Consistency relies on the fact that it
does not suffer from a recursion depth or a recursion stack limit and it avoids the overhead of
costly recursive calls and call stack management altogether. In particular, and in the case where
Python is used, we have experimentally verified that the performance of an implementation of
the IterativeConsistency algorithm is in general around 5% better than the performance of an
implementation of the Consistency algorithm.

44

3.5. Algorithms for Reasoning with QCNs

Algorithm 3: IterativeConsistency(N , A)
in : A QCN N = (V,C), and a subclass A.
output : Null, or a refinement of network N over A.

1 begin
2 Stack ← list(∅) // Initialize stack;
3 N ← WC(N);
4 if N = ⊥V then
5 return Null;

6 while True do
7 if ∀vi, vj ∈ V with i < j we have that C(vi, vj) ∈ A then
8 return N ;

9 choose a constraint C(vi, vj) with vi, vj ∈ V and i < j such that C(vi, vj) 6∈ A;
10 split C(vi, vj) into r1, ..., rk ∈ A: r1 ∪ ... ∪ rk = C(vi, vj);
11 rvalues ← {rl | 1 ≤ l ≤ k};
12 while True do
13 if rvalues = ∅ then
14 while Stack 6= ∅ do
15 N , rvalues ← Stack.pop();
16 if rvalues then
17 break;

18 if rvalues = ∅ and Stack = ∅ then
19 return Null;

20 r ← rvalues.pop();
21 N ′ ← N ;
22 N [vi, vj] ← r; N [vj , vi] ← r−1;
23 N ← WC(N);
24 if N 6= ⊥V then
25 break;

26 N ← N ′;
27 Stack.append(N ′, rvalues);

Reasoners

We close this section with a small discussion on state of the art reasoners for solving general
QCNs. The first robust reasoners for QCNs of Interval Algebra and QCNs of RCC-8 appeared
in [Nebel, 1997] (viz., Nebel’s solver) and [Renz, 2002b; Renz and Nebel, 2001] (viz., Renz’s
solver), respectively. These reasoners were later superseded by GQR, a generic qualitative con-
straint reasoner that supports arbitrary qualitative constraint languages [Westphal et al., 2009;
Gantner et al., 2008]. For this purpose, any qualitative constraint language can be fed to GQR
through a description of its base relations, its identity relation, and the weak composition and
converse operations that are associated with its base relations. Additionally, tractable subclasses
of relations for a given qualitative constraint language can be specified. GQR stores a QCN over
n variables using a n× n constraint matrix, much like Nebel’s and Renz’s solvers. With respect
to this aspect, GQR handles the constraint matrix that represents a qualitative constraint net-
work more efficiently during backtracking search, i.e., it does not create a copy of the matrix at
each forward step of the backtracking algorithm (as is the case with Nebel’s and Renz’s solvers),
but it only keeps track of the constraints that are altered at each forward step to be able to

45

Chapter 3. Reasoning with Qualitative Constraint Networks

Algorithm 4: Minimize(N)
in : A QCN N = (V,C) defined over a subclass of relations of a qualitative constraint

language that is a relation algebra, over which not trivially inconsistent and �-consistent
QCNs are satisfiable.

output : Nmin.
1 begin
2 N ′ ← N ;
3 foreach vi, vj ∈ V with 0 ≤ i ≤ j < |V | do
4 foreach b ∈ N ′[vi, vj] do
5 if b 6∈WC(N ′[vi,vj]/{b})[vi, vj] then
6 N [vi, vj]← N [vi, vj] \ {b};
7 N [vj , vi]← N [vj , vi] \ {b−1};

8 return N ;

reconstruct the matrix in the case of backtracking. This alone has a tremendous positive effect
on the performance of GQR when compared with the performance of Nebel’s or Renz’s solver.
In addition, the search algorithms and heuristics in GQR have been fine-tuned over several years
of active development and are more efficient than the ones met in Nebel’s or Renz’s solver. In
fact, given the fact that Nebel’s and Renz’s solvers were implemented many years ago, parts
of their algorithms are simply outdated given the advances in constraint programming. GQR
incorporates many of the techniques that we have discussed in this chapter, as well as several
techniques from the CSP and SAT communities. More details on GQR can be found in the PhD
Thesis of Matthias Westphal [Westphal, 2014].

3.5.3 Algorithms for the Minimal Labeling Problem of QCNs

In the case where a QCN is defined over a subclass of relations for which �-consistency alone is
able to guarantee minimality, and since algorithm WC is able to enforce �-consistency on a given
QCN of a relation algebra due to Proposition 6 (at page 37), we have the following result:

Proposition 9 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that
is a relation algebra, over which not trivially inconsistent and �-consistent QCNs are minimal.
Then, given a satisfiable QCN N = (V,C) defined over A, algorithm WC terminates and returns
Nmin (viz., the unique equivalent minimal sub-QCN of N).

Then, due to Proposition 9 and Theorem 2 (at page 35), we have the following result:

Proposition 10 ([Long and Li, 2015]) Let N = (V,C) be a satisfiable QCN defined over a
distributive subclass of relations of a qualitative constraint language that is a relation algebra
and for which every �-consistent atomic QCN is satisfiable. Then, algorithm WC terminates and
returns Nmin.

Finally, due to Proposition 10, and Propositions 1 (at page 21) and 3 (at page 34), we have
the following result:

Corollary 5 Let N = (V,C) be a satisfiable QCN defined over a distributive subclass of relations
of Point Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8. We
have that algorithm WC terminates and returns Nmin.

46

3.5. Algorithms for Reasoning with QCNs

Algorithm 5: MinimizeSDCM(N ,A)
in : N = (V,C) a QCN on 2B, A a subclass of 2B.
output : A sub-QCN of N .

1 begin

// Step 1: Initialization

2 Ninit ← N ;
3 NF ← ⊥V ; NnonF ← ⊥V ;
4 N ← �(N);
5 NnonF ← Ninit \ N ;
6 if N = ⊥V then
7 return ⊥V ;

// Step 2: Minimization

8 while {v, v′ ∈ V | (N [v, v′] \ NF[v, v′]) 6= ∅} 6= ∅ do
9 Select v, v′ ∈ V such that (N [v, v′] \ NF[v, v′]) 6= ∅;

10 r ← N [v, v′] \ NF[v, v′];
11 N ′ ← MinSubQCN(N ,Ninit);
12 if N ′ = Null then
13 NnonF[v, v′]← NnonF ∪ r;
14 NnonF ← (NnonF[v, v′])−1;
15 else
16 NF[v, v′]← NF ∪ A(N ′);
17 N ← Ninit \ NnonF;

18 return NF;// Step 3: Return of the result

In the case where a QCN is defined over a subclass of relations for which �-consistency alone
is able to decide satisfiability, and since algorithm WC is able to enforce �-consistency on a given
QCN of a relation algebra due to Proposition 6 (at page 37), we can devise an algorithm based
on WC that will extract the unique equivalent minimal sub-QCN of that QCN by iterating all
of its constraints and minimizing them. Such an algorithm is presented in Algorithm 4, called
Minimize. We have the following result:

Proposition 11 ([Gerevini and Renz, 2002]) Let A ∈ 2B be a subclass of relations of a
qualitative constraint language that is a relation algebra, over which not trivially inconsistent
and �-consistent QCNs are satisfiable. Then, given a satisfiable QCN N = (V,C) defined over
A, algorithm Minimize terminates and returns Nmin.

Then, due to Proposition 11, and Propositions 1 (at page 21), and 5 (at page 35), we have
the following result:

Corollary 6 Let N = (V,C) be a satisfiable QCN of Point Algebra, Cardinal Direction Calculus,
Interval Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA, HnIA,
or Ĥ8, C8, and Q8 respectively. We have that algorithm Minimize terminates and returns Nmin.

Given a QCN N = (V,C) over n variables, algorithm Minimize runs in O(n5) time. Minimize
iterates a number of O(n2) constraints and calls algorithm WC for each one of the O(|B|) base
relations of a constraint; each such call requiring O(n3) time.

47

Chapter 3. Reasoning with Qualitative Constraint Networks

Algorithm 6: MinSubQCN(N ,Ninit)
in : Two QCNs N=(V,C) and Ninit=(V,Cinit) such that N ⊆ Ninit.
output : Null, or a �-consistent sub-QCN N ′ with A(N ′) ⊆ Ninit.

1 begin
2 N ′ ← WC(N);
3 if ∃vi, vj ∈ V such that N ′[vi, vj] = ∅ then
4 return Null;

5 if ∀vi, vj ∈ V we have that A(N ′[vi, vj]) ⊆ Ninit[vi, vj] then
6 return N ′;
7 choose a constraint N ′[vi, vj] with vi, vj ∈ V such that A(N ′[vi, vj]) 6⊆ Ninit[vi, vj];
8 split N ′[vi, vj] into r1, ..., rk ∈ A: r1 ∪ ... ∪ rk = N ′[vi, vj];
9 foreach r ∈ {rl | 1 ≤ l ≤ k} do

10 N ′[vi, vj]← r; N ′[vj , vi]← r−1;
11 result ← MinSubQCN(N ′,Ninit);
12 if result 6= Null then
13 return result ;

14 return Null;

For the general case of QCNs, i.e., for QCNs that are not strictly defined over subclasses of
relations for which �-consistency alone is able to decide satisfiability or guarantee minimality,
Amaneddine and Condotta in [Amaneddine and Condotta, 2013] present an algorithm that
essentially decomposes a given QCN N into a set of QCNs {�(N1), �(N2), . . . , �(Nk)}, where k is
some positive integer, such that �(N1) + �(N2) + . . .+ �(Nk) equals a sub-QCN of N and �(Ni),
with i ∈ {1, 2, . . . , k}, is a QCN defined over the subclass A ∈ 2B given as parameter. This
algorithm is called MinimizeSDCM and it is presented in Algorithm 5. Every such not trivially
inconsistent and �-consistent QCN �(Ni) that we mentioned earlier, is extracted through a call to
algorithm MinSubQCN, presented in Algorithm 6. Note that this function is very similar to the
one presented in Section 3.5.2 for solving the satisfiability problem of a QCN. With respect to
the reasoning behind algorithm MinimizeSDCM and Proposition 6 (at page 37), we are provided
with the following result:

Theorem 5 ([Amaneddine and Condotta, 2013]) Given a satisfiable QCN N = (V,C) and
a subclass A ⊆ 2B of relations of a qualitative constraint language that is a relation algebra and
over which not trivially inconsistent and �-consistent QCNs are minimal, we have that algorithm
MinimizeSDCM, with N and A as parameters, returns Nmin.

Then, due to Theorems 5 and 2 (at page 35) and the reasoning behind algorithm MinimizeSDCM,
we have the following result:

Theorem 6 ([Long and Li, 2015; Amaneddine and Condotta, 2013]) Given a satisfiable
QCN N = (V,C) and a distributive subclass A ⊆ 2B of relations of a qualitative constraint lan-
guage that is a relation algebra and for which every �-consistent atomic QCN is satisfiable, we
have that algorithm MinimizeSDCM, with N and A as parameters, returns Nmin.

Finally, due to Theorem 6, and Propositions 1 (at page 21) and 3 (at page 34), we have the
following result:

48

3.5. Algorithms for Reasoning with QCNs

Algorithm 7: Delphys(N)
in : An all-different QCN N defined over a distributive subclass of relations of a qualitative

constraint language that is a relation algebra and for which every �-consistent atomic
QCN is satisfiable.

output : χ, the set of non-redundant relations in �(N).
1 begin
2 χ← ∅;
3 N ′ ← WC(N);
4 Q ← {(vi, vj) | vi, vj ∈ V with 0 ≤ i < j < |V |};
5 while Q 6= ∅ do
6 (vi, vj) ← Q.pop();
7 τ ← ∅;
8 foreach vk ∈ V \ {vi, vj} do
9 t ← N ′[vi, vk] � N ′[vk, vj];

10 foreach b ∈ B do
11 if b 6∈ t then
12 τ ← τ ∪ {b};

13 if τ ∪N ′[vi, vj] 6= B then
14 χ ← χ ∪ {N ′[vi, vj]};

15 return χ;

Corollary 7 Given a satisfiable QCN N = (V,C) of Point Algebra, Cardinal Direction Calculus,
Interval Algebra, Block Algebra, or RCC-8 and a distributive subclass A ⊆ 2B of relations of the
respective qualitative constraint language, we have that algorithm MinimizeSDCM, with N and A

as parameters, terminates and returns Nmin.

3.5.4 Algorithms for the Redundancy Problem of QCNs

In the case where a QCNN is defined over a distributive subclass of relations, and since algorithm
WC is able to enforce �-consistency on a given QCN of a relation algebra due to Proposition 6
(at page 37), we can devise an algorithm based on WC that will extract the set of non-redundant
constraints in the closure under weak composition of N , viz., �(N), by implementing Lemma 2
(at page 36). Such an algorithm is presented in Algorithm 7, called Delphys. We have the
following result with respect to Delphys:

Proposition 12 ([Li et al., 2015a]) Let N = (V,C) be an all-different QCN defined over a
distributive subclass of relations of a qualitative constraint language that is a relation algebra and
for which every �-consistent atomic QCN is satisfiable. Then, algorithm Delphys terminates and
returns the set of non-redundant relations in �(N).

Then, due to Proposition 12, and Propositions 1 (at page 21) and 3 (at page 34), we have
the following result:

Corollary 8 Let N = (V,C) be a QCN defined over a distributive subclass of relations of Point
Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8. We have that
algorithm Delphys terminates and returns the set of non-redundant relations in �(N).

49

Chapter 3. Reasoning with Qualitative Constraint Networks

Algorithm 8: extractPrimeQCN(N)
in : A QCN N = (V,C) defined over a subclass of relations of a qualitative constraint

language that is a relation algebra, over which not trivially inconsistent and �-consistent
QCNs are satisfiable.

output : A prime QCN of N .
1 begin
2 C ′ ← map({((v, v′) : (B if v 6= v′ else {Id})) | v, v′ ∈ V });
3 Q ← {(vi, vj) | vi, vj ∈ V with 0 ≤ i < j < |V |};
4 while Q 6= ∅ do
5 (vi, vj) ← Q.pop();
6 flag ← True;
7 foreach b ∈ B \ C(vi, vj) do
8 if WC(N[vi,vj]/{b}) 6= ⊥V then
9 C ′(vi, vj) ← C(vi, vj); C ′(vj , vi) ← (C(vi, vj))

−1;
10 flag ← False; break;

11 if flag = True then
12 C(vi, vj) = C(vj , vi) = B;

13 return (V,C ′);

Clearly, given a QCN N = (V,C) over n variables, algorithm Delphys runs in O(n3) time as
the WC algorithm call in line 3 dominates the overall execution time.

We can construct the prime QCN of a given QCN of Point Algebra, Cardinal Direction
Calculus, or RCC-8 by exploiting the following result:

Proposition 13 ([Li et al., 2015a]) Let N = (V,C) be an all-different QCN defined over a
distributive subclass of relations of Point Algebra, Cardinal Direction Calculus, or RCC-8. Then,
we have that ∀u, v ∈ V a constraint N [u, v] is redundant in N if and only if �(N)[u, v] is
redundant in �(N).

In particular, due to Propositions 12, 13, 1 (at page 21), and 3 (at page 34), and by taking into
account the fact that given a QCN N we have that Nmin is unique, we obtain the following result
that allows us to extract the unique prime QCN out of a QCN that satisfies certain conditions:

Theorem 7 ([Li et al., 2015a]) Let N = (V,C) be an all-different QCN defined over a dis-
tributive subclass of relations of Point Algebra, Cardinal Direction Calculus, or RCC-8. Fur-
ther, let χ be the set of non-redundant relations in �(N). Then, ∀u, v ∈ V , we have that
Nprime[u, v] = N [u, v] if �(N)[u, v] ∈ χ and Nprime[u, v] = (B if u 6= v else {Id}) otherwise.

However, as already noted earlier, the aforementioned construction of a unique prime QCN
out of a given QCN is only possible for QCNs that satisfy certain conditions, i.e., QCNs defined
over a distributive subclass of relations of Point Algebra, Cardinal Direction Calculus, or RCC-8.
For QCNs of other qualitative constraint languages, or for QCNs defined over non-distributive
subclasses of relations, we have to follow a different approach for extracting their (non-unique in
the general case) prime networks. Let us consider the case where a QCN N = (V,C) is defined
over a subclass of relations for which �-consistency alone is able to decide satisfiability. To test
if a constraint C(u, v) for some u, v ∈ V is non-redundant in N , we need to check if there exists
a base relation b ∈ B \C(u, v) such that the QCN N[u,v]/{b} is satisfiable; this satisfiability check

50

3.5. Algorithms for Reasoning with QCNs

Algorithm 9: extractPrimeQCNSC(N ,A)
in : A QCN N = (V,C), and a subclass A.
output : A QCN (V,C ′).

1 begin
2 C ′ ← map({((v, v′) : (B if v 6= v′ else {Id})) | v, v′ ∈ V });
3 Q ← {(vi, vj) | vi, vj ∈ V with 0 ≤ i < j < |V |};
4 while Q 6= ∅ do
5 (vi, vj) ← Q.pop();
6 r ← B \ C(vi, vj);
7 if Consistency(N[vi,vj]/r,A) 6= Null then
8 C ′(vi, vj) ← C(vi, vj); C ′(vj , vi) ← (C(vi, vj))

−1;

9 else
10 C(vi, vj) = C(vj , vi) = B;

11 return (V,C ′);

can be achieved through �-consistency. We can apply this procedure iteratively to construct
a prime QCN out of a given QCN and, thus, devise algorithm extractPrimeQCN, presented in
Algorithm 8. We have the following result:

Proposition 14 ([Li et al., 2015a]) Let A ∈ 2B be a subclass of relations of a qualitative con-
straint language that is a relation algebra, over which not trivially inconsistent and �-consistent
QCNs are satisfiable. Then, given a QCN N = (V,C) defined over A, algorithm extractPrimeQCN
terminates and returns a prime QCN of N .

Then, due to Proposition 14, and Propositions 1 (at page 21), and 5 (at page 35), we have
the following result:

Corollary 9 Let N = (V,C) be a QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA, HnIA, or Ĥ8,
C8, and Q8 respectively. We have that algorithm extractPrimeQCN terminates and returns a
prime QCN of N .

Given a QCN N = (V,C) over n variables, algorithm extractPrimeQCN runs in O(n5) time.
The extractPrimeQCN algorithm iterates a number of O(n2) constraints and calls algorithm WC
for each one of the O(|B|−1) base relations not belonging to a constraint; each such call requiring
O(n3) time. It should be clear that the construction of a prime network depends on the order in
which the constraints are processed, as we already noted that a prime network of a given QCN
is in general not unique.

In the case where a QCN N = (V,C) is defined over 2B, we have to devise a different algo-
rithm than the one presented earlier. Such an algorithm will build on the Consistency algorithm
presented in Algorithm 2 and will use a subclass of relations for which �-consistency alone is able
to decide satisfiability. To test if a constraint C(u, v) for some u, v ∈ V is non-redundant in N ,
we need to check if the QCN that results by replacing relation C(u, v) with relation r = B\C(u, v)
in N is satisfiable; this satisfiability check can be achieved through the Consistency algorithm
along with a subclass of relations for which �-consistency alone is able to decide satisfiability.
We can apply this procedure iteratively to construct a prime QCN out of a given QCN and, thus,
devise algorithm extractPrimeQCNSC, presented in Algorithm 9. We have the following result:

51

Chapter 3. Reasoning with Qualitative Constraint Networks

Proposition 15 ([Li et al., 2015a]) Let A ∈ 2B be a subclass of relations of a qualitative con-
straint language that is a relation algebra, over which not trivially inconsistent and �-consistent
QCNs are satisfiable. Then, given A, and a QCN N defined over 2B, we have that algorithm
extractPrimeQCNSC terminates and returns a prime QCN of N .

Then, due to Propositions 15, 1 (at page 21), and 5 (at page 35), we have the following result:

Corollary 10 Given one of the classes PCDC, HIA, HnIA, or Ĥ8, C8, and Q8, and a QCN N of
Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8 respectively, we have that
algorithm extractPrimeQCNSC terminates and returns a prime QCN of N .

Given a QCN N = (V,C) over n variables, and a subclass A, the runtime of algorithm
extractPrimeQCNSC is O(α|V |

2 |V |2), as it iterates a number of O(n2) constraints and calls algo-
rithm Consistency for each one of the constraints; each such call operating on a O(α|V |

2
) search

space. We remind the reader that α is the branching factor provided by subclass A.
One might suggest that if a given QCN is defined over a subclass of relations for which �-

consistency alone is able to decide satisfiability, extractPrimeQCNSC can be modified by replacing
the call to algorithm Consistency in line 7 with a call to algorithm WC (and appropriately
modifying checks and input/output of the algorithm). This should give a faster version of the
extractPrimeQCN algorithm, as we would no longer be required to perform a satisfiability check
for each of the base relations not belonging to a constraint, but just one satisfiability check for the
complement of that constraint (where the complement of a relation r ∈ 2B is r = B\r). However,
in that case the algorithm would not be sound. The complement of a relation belonging to a
subclass of relations for which �-consistency alone is able to decide satisfiability, is not guaranteed
to also belong to the same subclass; it can be a relation that results in a QCN being non-tractable
in the general case.

3.6 Constraint Properties of QCNs

In this section we recall certain constraint and consistency properties that are closely related to
the contributions that we will present in later chapters of the thesis.

First, we recall the definitions of the constraint properties of patchwork and compactness in
the context of qualitative reasoning. The patchwork property was originally introduced in [Lutz
and Milicic, 2007] and was shown to hold for atomic QCNs of IA and RCC-8.

Definition 15 A qualitative temporal or spatial constraint language has patchwork, if for any
finite satisfiable qualitative constraint networks N = (V,C) and N ′ = (V ′, C ′) defined in this
language where for any u, v ∈ V ∩ V ′ we have that C(u, v) = C ′(u, v), the qualitative constraint
network N ∪N ′ is satisfiable.

In light of patchwork, which concerns finite satisfiable qualitative constraint networks, com-
pactness ensures satisfiability of an infinite sequence of finite satisfiable extensions of such a
qualitative constraint network.

Definition 16 A qualitative temporal or spatial constraint language has compactness, if any
infinite set of constraints defined in this language is satisfiable whenever all its finite subsets are
satisfiable.

52

3.6. Constraint Properties of QCNs

0

3

2

{DC}

{EQ}
0

2

1

{EC}

{PO}

{DC} {DC}

0

3

2

{DC}

{EQ}

1

{EC}

{PO}
{DC}

{EC}

Figure 3.5: Patching two QCNs

Intuitively, patchwork ensures that unifying two satisfiable constraint networks that agree
on their common part, i.e., on the constraints between their common variables, will yield a
satisfiable qualitative constraint network. As an example, we can view the two QCNs of RCC-8
in Figure 3.5. (Loops corresponding to singleton relation {EQ} and converses of constraints are
not shown for simplicity.) The QCNs are atomic as they comprise singleton relations, and are
also �-consistent, therefore, by application of the patchwork property their union is satisfiable
since they agree on the constraints between their common variables, namely, on C(0, 2) = {DC}.
Note that the universal relation that exists by definition between variables 1 and 3 in the unified
QCN would result to relation C(1, 3) = {EC} if we were to calculate it, but it is not necessary
to do so unless required by the specifics of a use case.

Let us now define global consistency and then give an example of how the former properties
combined are less strict than global consistency alone.

Definition 17 A QCN N = (V,C) is globally consistent if and only if, for any V ′ ⊂ V , every
partial solution on V ′ can be extended to a partial solution on V ′ ∪ {v} ⊆ V , for any v ∈ V \ V ′.

With respect to global consistency, we have the following result:

Theorem 8 ([Amaneddine and Condotta, 2012; Long and Li, 2015]) Let N = (V,C)
be a QCN defined over a distributive subclass of relations of Point Algebra, Cardinal Direction
Calculus, Interval Algebra, or Block Algebra. If N is not trivially inconsistent and �-consistent,
then N is globally consistent.

Patchwork is closely related to the global consistency property [Renz and Ligozat, 2005].
In particular, global consistency implies patchwork, but the opposite is not true. For example,
even though RCC-8 has patchwork [Huang, 2012], it does not have global consistency [Renz
and Ligozat, 2005]. For instance, let us consider the spatial configuration shown in the left of
Figure 3.6. Region y is a doughnut, and region x is externally connected to it, by occupying
its hole. Further, region z is externally connected to region y. For RCC-8 we know that the
constraint network {EC(x, y), EC(y, z), EC(x, z)} is satisfiable as it is �-consistent. However,
the valuation of region variables x and y is such that it is impossible to extend it with a valuation
of region variable z so that EC(x, z) may hold. Patchwork allows us to disregard any partial
valuations and focus on the satisfiability of the network. Then, we can consider a valuation that
respects the constraint network. Such a valuation is, for example, the one presented in the right
of Figure 3.6. As with RCC-8, global consistency is also not available in many of the derivative
constraint languages of RCC-8, such as the one that combines RCC-8 with size information about

53

Chapter 3. Reasoning with Qualitative Constraint Networks

y
x z

y
z

x

Figure 3.6: RCC-8 configurations

regions (by using Point Algebra relations to qualitative compare sizes among different regions),
presented in [Gerevini and Renz, 2002].

Li et al. in [Li et al., 2015a] give the following definition of the weakly global consistency
constraint property, which aims to redefine global consistency for qualitative constraint networks
in a qualitative sense:

Definition 18 A QCN N = (V,C) is weakly globally consistent iff, for any V ′ ⊂ V , every
partial scenario of N on V ′ can be extended to a partial scenario of N on V ′ ∪{v} ⊆ V , for any
v ∈ V \ V ′.

With respect to weakly global consistency, we have the following result:

Theorem 9 ([Long and Li, 2015]) Let N = (V,C) be a QCN defined over a distributive sub-
class of relations of a qualitative constraint language that is a relation algebra and for which every
�-consistent atomic QCN is satisfiable. If N is not trivially inconsistent and �-consistent, then
N is weakly globally consistent.

Due to Propositions 1 (at page 21) and 3 (at page 34) and Theorem 9, we can obtain the
following corollary:

Corollary 11 Let N = (V,C) be a QCN defined over a distributive subclass of relations of Point
Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8. If N is not
trivially inconsistent and �-consistent, then N is weakly globally consistent.

Finally, Huang generalized the use of patchwork for non-atomic QCNs [Huang, 2012], provid-
ing us with the following proposition:

Proposition 16 ([Huang, 2012]) Point Algebra, Interval Algebra, Cardinal Direction Calcu-
lus, Block Algebra, and RCC-8 have patchwork for not trivially inconsistent and �-consistent
QCNs defined over one of the classes PPA, PCDC, HIA, HnIA, and Ĥ8, C8, or Q8 respectively.

This last proposition greatly broadens the applicability of decomposition in the context of
QCNs, a practice that we will discuss in the next section, and that we adopt in most of our
contributions which we will describe in detail in later chapters.

Further, with respect to compactness, we have the following result:

Proposition 17 ([Huang, 2012]) Point Algebra, Interval Algebra, Cardinal Direction Calcu-
lus, Block Algebra, and RCC-8, have compactness.

54

3.7. Decomposability of QCNs

0

3

2

1

4

5

6

7

8

9

10

b c

d

e

f

g

h

{0,1,2}

{2,3,4}

{3,4,5}

{4,5,6}

{5,7}

a
{6,8}

{8,9}

{8,10}

Figure 3.7: A graph (upper part) and its tree decomposition (lower part)

3.7 Decomposability of QCNs

In this section we review some theoretical and practical results regarding decomposability6 and
tractability in qualitative spatial and temporal reasoning. The related approaches perform graph
decomposition to exploit some structural properties of the constraint graph of a given qualitative
constraint network and apply more efficiently the algorithms for satisfiability checking that we
discussed in Section 3.5. Further, they implicitly and to some extent use the patchwork property
that we presented earlier in Section 3.6, in the sense that it is considered either for atomic
qualitative constraint networks for which �-consistency implies satisfiability 7, or for not trivially
inconsistent qualitative constraint networks for which �-consistency allows obtaining a solution by
instantiating one variable of the qualitative constraint network at a time without backtracking (a
property close to global consistency). The concept of a tree decomposition (originally introduced
in [Halin, 1976]) will be essential in what follows. A tree decomposition is formally defined as
follows.

Definition 19 A tree decomposition of a graph G = (V,E) is a tuple (T,X) where T = (I, F)
is a tree and X = {Xi ⊆ V | i ∈ I} a collection of clusters (subsets of V) that satisfies the
following conditions:

1. For every v ∈ V there is at least one node i ∈ I such that v ∈ Xi.
6It is important to note that in the (older) literature the term of decomposability has been used to denote

global consistency, as in [van Beek and Dechter, 1995]. We use the term of decomposability to denote the existence
of any technique that involves the decomposition of the constraint graph of a given qualitative constraint network
in order to enhance the efficiency and scalability of reasoning.

7The patchwork property is then called the amalgamation property. The amalgamation property becomes
equivalent to the patchwork property for atomic qualitative constraint networks whenever �-consistency implies
satisfiability of these atomic qualitative constraint networks.

55

Chapter 3. Reasoning with Qualitative Constraint Networks

2. For every (u, v) ∈ E there exists a node i ∈ I such that both u, v ∈ Xi.

3. Let i1, i2, i3 be three nodes in I such that i2 lies on the path between i1 and i3 in T . Then,
if v ∈ V belongs to both Xi1 and Xi3, v must also belong to Xi2.

Let us view the example presented in Figure 3.7. In the upper part of the figure we can view
a graph G = (V,E), which can correspond to the structure of a constraint graph G(N) = (V,E)
of a QCN N , where V = {0,. . .,10} and E = {{0, 1},{1, 2},{0, 2},{2, 3},{2, 4},{3, 5},{4, 6},{5, 6},
{5, 7},{6, 8},{8, 9},{8, 10}}. For the moment, we consider only the solid edges to be part of G
and we disregard the dashed edges {3, 4} and {4, 5}. A tree decomposition of G comprises a
tree T = (I, F) with the set of nodes I = {a,b,c,d,e,f ,g,h,i} and a cluster Xi for every node
i ∈ I of that tree as shown in the lower part of the figure, e.g., Xa = {0, 1, 2}. The first two
conditions for a tuple (T,X) where T = (I, F) is a tree and X = {Xi ⊆ V | i ∈ I} a collection
of clusters being a tree decomposition of a graph G = (V,E), say that G is the union of the
subgraphs induced by Xi, for every i ∈ I. The third condition implies that these subgraphs are
organized roughly like a tree. In our previous example, it would be impossible to obtain the
same tree decomposition with an additional edge (6, 9), as there does not exist a node in the tree
decomposition that contains both 6 and 9.

Tree decompositions have been explicitly introduced in qualitative temporal reasoning by
Condotta et al. in [Condotta and D’Almeida, 2011], and implicitly in qualitative spatial and
temporal reasoning by Li et al. in [Li et al., 2009] and Huang et al. in [Huang et al., 2013]. (The
work presented in [Huang et al., 2013] properly contains the work presented in [Li et al., 2009],
thus, we will stick to the former reference in what follows.)

In [Condotta and D’Almeida, 2011] the authors apply �-consistency on the clusters of a
tree decomposition of the constraint graph of a QCN. The graphs induced by the clusters of
the tree decomposition are completed with the introduction of a new set of edges, called fill
edges, that correspond to the universal relation for a QCN. These fill edges for the example
graph of Figure 3.7 are edges {3, 4} and {4, 5}. As such, the clusters of the tree decomposition
are considered to be cliques, namely, sets of vertices such that every two vertices in a set are
connected by an edge. This filling is done for two reasons: (i) by definition �-consistency considers
a complete graph to decide the satisfiability of the corresponding qualitative constraint network,
and (ii) the common vertices between any two complete graphs induce a complete graph, thus,
the corresponding constraint networks will completely agree on the constraints between their
common variables and a patchwork-like property can be used. This property is then applied to
patch together the �-consistent QCNs of Interval Algebra defined over classHIA that correspond to
the graphs induced by the clusters of the tree decomposition in a tree-like manner and construct a
satisfiable qualitative constraint network. In particular, the authors in [Condotta and D’Almeida,
2011] introduce a new local consistency corresponding to the property of �-consistency restricted
to some subsets of variables of a QCN.

Definition 20 Let N = (V,C) be QCN and {X0, . . . , Xn} a family of subsets of V . Then, N is
said to be �X-consistent if and only if for every Xi ∈ X the QCN N↓X is �-consistent.

Then, by exploiting the notion of pre-convexity8 [Ligozat, 2011] that is exhibited by the
Interval Algebra relations of class HIA [Ligozat, 1996], Condotta and D’Almeida are able to
prove the following result:

8As noted in [Ligozat, 1996], pre-convexity exemplifies an interesting patchwork-like property, which might
be called generic global consistency, and is intermediate between minimality and global consistency. A solution
of a not trivially inconsistent and �-consistent QCN of Interval Algebra defined over pre-convex relations can be
obtained by instantiating one variable at a time without backtracking.

56

3.7. Decomposability of QCNs

Theorem 10 ([Condotta and D’Almeida, 2011]) Let N = (V,C) be a QCN defined over
class HIA of Interval Algebra, and (T,X) a tree decomposition of G(N). We have that if N is
not trivially inconsistent and �X-consistent, then N is satisfiable.

In [Huang et al., 2013] the authors enlist a structure known as a dtree (decomposition tree),
which, as the name suggests, is very close to a tree decomposition. Without going further into
detail, a dtree is a full binary tree where the root represents a given graph and for every non-leaf
node, its two children represent a partitioning of the parent graph into two subgraphs. Thus,
although a dtree is not a tree decomposition, it provides a way to construct a tree decomposition
out of a given graph. A dtree and a tree decomposition are therefore equivalent in the context of
qualitative spatial and temporal reasoning, since omitting �-consistency checks across children
of dtree nodes (as described in [Huang et al., 2013]) corresponds to omitting those checks across
clusters of the tree decomposition into which the dtree is converted, as has been specifically
pointed out in [Condotta and D’Almeida, 2011]. Similarly to [Condotta and D’Almeida, 2011],
children of dtree nodes are treated as cliques, and the amalgamation property (patchwork for
atomic QCNs) is considered to amalgamate �-consistent atomic QCNs in a tree-like recursive
manner and construct a satisfiable network. With respect to the equivalence that exists between
dtrees and tree decompositions, we can infer and grant the following theorem to the authors
of [Huang et al., 2013]:

Theorem 11 ([Huang et al., 2013]) Let N = (V,C) be an atomic QCN defined over a qual-
itative constraint language that has patchwork for �-consistent atomic QCNs, and (T,X) a tree
decomposition of G(N). We have that if N is �X-consistent, then N is satisfiable.

Consequently, by Proposition 16 (at page 54) and Theorem 11 we have the following result:

Corollary 12 Let N = (V,C) be an atomic QCN of Point Algebra, Cardinal Direction Calculus,
Interval Algebra, Block Algebra, or RCC-8, and (T,X) a tree decomposition of G(N). We have
that if N is �X-consistent, then N is satisfiable.

The aforementioned works are based on encodings of QCNs into Boolean formulas, viz., SAT
encodings. However, the formulas are constructed in a way such that each solution of the formula
corresponds to a not trivially inconsistent and �-consistent QCN with relations from the class of
relations at hand, and vice versa.

Before closing this section with a strong theoretical result that concerns tree decompositions
and the patchwork property for atomic QCNs, let us introduce the treewidth of a graph. The
width of a tree decomposition (T, {X1, . . . , Xn}) is max

1≤i≤n
|Xi| − 1. The treewidth of a graph G is

the minimum width possible for arbitrary tree decompositions of G. In the context of QCNs, the
treewidth of a QCN N is simply the treewidth of its constraint graph G(N).

Theorem 12 ([Bodirsky and Wölfl, 2011; Huang et al., 2013]) For any k, the satisfia-
bility problem for QCNs of treewidth at most k that are defined on a qualitative constraint language
that has patchwork for �-consistent atomic QCNs can be solved in polynomial time.

Consequently, by Proposition 16 (at page 54) and Theorem 12 we have the following result:

Corollary 13 For any k, the satisfiability problem for QCNs of Point Algebra, Cardinal Direc-
tion Calculus, Interval Algebra, Block Algebra, or RCC-8 of treewidth at most k can be solved in
polynomial time.

57

Chapter 3. Reasoning with Qualitative Constraint Networks

A detailed algorithm for Theorem 12 that builds on the proof sketch of [Bodirsky and Wölfl,
2011] is provided in [Huang et al., 2013]. In [Bodirsky and Dalmau, 2013; Bodirsky and Dalmau,
2006] the authors study CSPs over infinite domains using the concept of ω-categoricity [Hodges,
1997] from model theory. They use the domain D and the relations 2B of a given qualitative
constraint language defined on a set of base relations B to create a relational structure B (called
a template) that is ω-categorical. A relational structure B is called ω-categorical if all countable
models of the first-order theory of B are isomorphic to each other. Interestingly, Huang shows
that a qualitative constraint language over a relational structure B has compactness if B is
ω-categorical [Huang, 2012]. For example, the relational structure B = {Q, {<,=, >}}, which
is the rational numbers Q with the usual comparison relations, is ω-categorical, and hence the
problem of deciding whether a set of equalities and inequalities between rational variables is
satisfiable has compactness. As the aforementioned problem corresponds to the well-known
satisfiability checking problem of a QCN of Point Algebra, it is implied that Point Algebra has
compactness. Further, in [Bodirsky and Wölfl, 2011; Bodirsky and Dalmau, 2013] Bodirsky
et al. enlist the notions of treewidth and patchwork for atomic QCNs, and state that if the
domain and relations of a qualitative constraint language constitute an ω-categorical relational
structure, then problem instances of the qualitative constraint language of bounded treewidth
are tractable and can be efficiently solved by translation into Datalog programs. So, in fact, the
work presented in [Bodirsky and Wölfl, 2011] is a particular application of their more general
result; a result which applies to other qualitative constraint languages as well (e.g., it applies
to the qualitative constraint languages mentioned in Theorem 12). However, as the authors in
[Huang et al., 2013] note, it is not necessary to have compactness to prove Theorem 12 for the
related qualitative constraint languages, patchwork alone is sufficient.

Another interesting notion of decomposition is employed in [Broxvall, 2002], where they
decompose complex problem instances into several smaller and simpler instances that can be
solved independently using the following decomposition scheme:

Definition 21 Let N = (V,C) be a QCN of some qualitative constraint language. A partitioning
of N is a QCN Np = ({N1, . . . ,Nn}, Cp) with variables representing QCNs N1 = (V1, C1), . . .,
Nn = (Vn, Cn) such that:

• Vi ⊆ V for every i ∈ {1, . . . , n}.

• V =
⋃n
i=1 Vi and Vi, . . . , Vn are disjoint.

• For every u, v ∈ V we have that C(u, v) ∈ Ci for some i ∈ {1, . . . , n}, or u ∈ Vi, v ∈ Vj,
and C ′(Ni,Nj) ∈ Cp with C ′(Ni,Nj) ⊆ C(u, v) and i, j ∈ {1, . . . , n} with i 6= j.

• Np is satisfiable.

Given a QCN N = (V,C), a partitioning Np = ({N1, . . . ,Nn}, Cp) of N partitions the set of
variables V of N into exactly n sets, each of which is assigned to a distinct node of Np. Whenever
two variables of N reside in different nodes of Np, the relation holding between the two nodes of
Np is a subset of the relation holding between the two variables of N . In a sense, each node of
Np forms a QCN that has a subset of the set of variables of N as its set of variables, and original
relations between variables of N as its set of relations. It was proven in [Broxvall, 2002] that
if the set of relations of Np is sufficiently restricted, then the original network N is satisfiable
exactly when all the QCNs N1, . . ., Nn that correspond to the nodes of Np are individually
satisfiable. The relations of a given qualitative constraint language that satisfy this condition
are called partitioning relations. For example, the set of relations {{DC}, {PO}, {DC,PO}} for

58

3.7. Decomposability of QCNs

RCC-8 is a set of partitioning relations. Although the aforementioned technique is very elegant in
its conception, it was noted in [Broxvall, 2002] that useful instances of this kind of decomposition
can be difficult to identify, especially when the size of the set of partitioning relations is small
(as is the case with Interval Algebra and RCC-8), thus, deeming the technique impractical for
efficient reasoning with qualitative constraint languages.

The utility of taking advantage of the structure of qualitative constraint networks has already
been addressed in the context of heuristics for the �-consistency enforcing algorithms in the works
of [van Beek and Manchak, 1996; Renz and Nebel, 2001; Renz, 2002b] and discussed in Section3.5.
In particular, we remind the reader that the proposed heuristics target the denser parts of
the underlying constraint graph of a given qualitative constraint network, i.e., the qualitative
relations that consist of few base relations, as an effort to propagate constraints more efficiently
and also possibly resolve any local inconsistencies faster. Pruning unfeasible base relations off a
qualitative relation that already comprises very few base relations can almost immediately unveil
an inconsistency. However, these heuristics always consider a complete underlying constraint
graph of a given network. As such, they fail to completely isolate parts of the underlying
constraint graph of a given qualitative constraint network that are irrelevant to the process of
satisfiability checking; such parts being universal relations that do not belong to the clusters of a
tree decomposition corresponding to the constraint graph at hand. We demonstrated earlier that
it is possible to omit satisfiability checks across clusters of a tree decomposition corresponding
to the constraint graph of a given qualitative constraint network.

3.7.1 Decomposability in the CSP framework

A qualitative constraint network is most efficiently modelled as an infinite-domain variant of a
constraint satisfaction problem through the use of a relation algebra [Ladkin and Maddux, 1994],
which is also the approach we follow in our thesis. However, a qualitative constraint network
can also be encoded as a finite constraint satisfaction problem instance [Renz and Nebel, 2001;
Brand, 2004; Condotta et al., 2006b]. In particular, given a qualitative constraint network
(V,C) where |V | = n, we can obtain a constraint satisfaction problem instance as follows. Let
X denote the set of variables containing a variable xij for each pair of variables vi, vj ∈ V with
1 ≤ i < j ≤ n. Then, our instance has the form (X,B, DCon ∪ TCon), where DCon is the
set of domain constraints {(xij , Cij) | 1 ≤ i < j ≤ n} and TCon the set of ternary constraints
{((xij , xik, xkj), R�) | 1 ≤ i < j < k ≤ n} with R� = {(b, b′, b′′) ∈ B3 | b ∈ b′ � b′′}. Namely,
DCon restricts the values of a variable xij to the base relations of the corresponding qualitative
constraint Cij and TCon encodes all the consistent paths of length 2 in the network. The resulting
finite network has n(n−1)

2 variables and
(
n
3

)
ternary constraints. A solution of this finite instance

corresponds to an atomic �-consistent refinement of a given qualitative constraint network, and
vice versa [Condotta et al., 2006b]. The main disadvantage of this approach is that we are not
able to make use of maximal tractable subclasses of relations, which can seriously impact the
performance of satisfiability checking for calculi that heavily rely upon those subclasses, such
as RCC-8 and IA. However, for large-sized qualitative calculi (viz., comprising hundreds of base
relations) for which no tractable subclasses are known, a finite constraint satisfaction problem
encoding can provide a considerable performance gain [Westphal and Wölfl, 2009].

In light of the strong relation that exists between qualitative and “traditional” constraint
programming, it is worth mentioning some works in the latter paradigm that exploit the structure
of constraint graphs in a similar manner to what we presented in this section. The interested
reader may review the cited works and obtain a deeper understanding on the analogy that
exists between structural characteristics of qualitative constraint networks and finite constraint

59

Chapter 3. Reasoning with Qualitative Constraint Networks

satisfaction problem instances. What is more important, the cited works may drive future
research by enabling the reader to identify theoretical properties in the context of qualitative
spatial and temporal reasoning, that can be used to adopt certain techniques for exploiting the
structure of constraint graphs that exist in constraint programming.

In [Walsh, 2001], Walsh measures the impact that the structure of a constraint graph can
have on the performance of solving a typical constraint satisfaction problem, viz., the graph
coloring problem, which is the problem of coloring the vertices of a graph in such a way that no
two adjacent vertices share the same color.

In [Baget and Tognetti, 2001], Baget et al. proposes a backtracking algorithm for solving
constraint satisfaction problem instances that exploits the biconnected component subgraphs of
a given constraint graph to reduce search space, permanently removing values and compiling
partial solutions during exploitation.

In [Dechter and Pearl, 1989], Dechter et al. propose a constraint graph restructuring tech-
nique, based on tree decompositions, that guarantees that a large variety of queries could be
answered swiftly either by sequential backtrack-free procedures, or by distributed constraint
propagation methods.

Based on the work of Dechter et al. [Dechter and Pearl, 1989], Jégou et al. in [Jégou and
Terrioux, 2003] propose a framework for solving constraint satisfaction problem instances that
relies both on backtracking techniques and on the notion of tree decomposition of the constraint
graphs. Notably, this mixed approach has been implemented and used successfully for practical
constraint satisfaction problem solving [Jégou and Terrioux, 2003].

Jégou et al. in [Jégou et al., 2005] study several methods for computing a rough optimal tree
decomposition and assess their relevance for solving constraint satisfaction problem instances,
and the same authors went on to propose dynamic heuristics for efficient backtrack search on
tree decompositions of constraint graphs in [Jégou et al., 2006; Jégou et al., 2007].

Recently, in [Jégou and Terrioux, 2014a; Jégou and Terrioux, 2014b] Jégou et al. introduced
and exploited a new graph parameter called bag-connected tree-width which considers tree de-
compositions for which each cluster induces a connected graph. It is experimentally shown in
[Jégou and Terrioux, 2014b] that such bag-connected tree decompositions significantly improve
the solving of constraint satisfaction problem instances by decomposition methods.

Finally, a nice uniform presentation of the major structural constraint satisfaction problem
decomposition methods discussed here is given by Gottlob et al. in [Gottlob et al., 2000].

3.8 Conclusion

In this chapter, we formally introduced the notion of a qualitative constraint network (QCN),
drew the connection between the relational operations we presented in the previous chapter and
certain useful local consistency conditions for characterizing QCNs, presented the fundamental
reasoning problems that are associated with a QCN, viz., the satisfiability problem, the minimal
labeling problem, and the redundancy problem, and overviewed the state of the art algorithms
for dealing with those reasoning problems. Further, we explained some constraint properties of
QCNs and, finally, we presented certain particular decomposability aspects of QCNs considered
in the literature.

The discussion that took place in this chapter, will be relevant to the contributions that
we will present in Chapter 5. In particular, the theoretical results that we will obtain in that
chapter will be directly comparable to the theoretical results of this chapter, and the experimental
evaluations of our novel techniques will be made against state of the art methods so that a clear

60

3.8. Conclusion

picture can be drawn, showing the technical advance in the field of qualitative constraint-based
spatial and temporal reasoning.

61

Chapter 3. Reasoning with Qualitative Constraint Networks

62

Chapter 4

Combining Space & Time into
Qualitative Spatio-Temporal

Frameworks

4.1 Introduction

Time and space are fundamental cognitive concepts that have been the focus of study in many
scientific disciplines, including Artificial Intelligence and, in particular, Knowledge Representa-
tion, as we have witnessed up to this point. Specifically, Knowledge Representation has been
quite successful in dealing with the concepts of time and space, and has developed formalisms
that range from temporal and spatial databases [Story and Worboys, 1995], to quantitative
models developed in computational geometry [Preparata and Shamos, 1985] and qualitative
constraint languages and logical theories developed in qualitative reasoning [Hazarika, 2012;
Wolter and Zakharyaschev, 2003]. Regarding qualitative reasoning in particular, we have al-
ready reviewed in Chapter 2 some qualitative constraint-based formalisms for reasoning about
time and space that consider a set of base relations for representing particular qualitative con-
figurations between spatial or temporal entities.

In this chapter, we review the state of the art frameworks that combine space and time in
an interrelated manner. With such qualitative spatio-temporal frameworks, we can represent
for example the fact that a given region was contained in another region at one point in time
and externally connected to that region at a next point of time, or even the fact that a point
will always move towards a particular direction over time. Towards constraint-based qualitative
spatio-temporal reasoning, most of the work has relied on formalisms based on the proposi-
tional temporal logic (PTL), also known as linear temporal logic, and some qualitative spatial
constraint language, like RCC-8 [Wolter and Zakharyaschev, 2003; Wolter and Zakharyaschev,
2000b]. PTL [Huth and Ryan, 2004] is the well known temporal logic comprising operators U
(until), # (next point in time), 2 (always), and 3 (eventually) over various flows in time, such
as 〈N, <〉. Other spatio-temporal reasoning frameworks consider temporal sequences of spatial
QCNs. These sequences allow one to describe a spatial configuration that evolves and changes
over time. Indeed, solving the spatial QCNs in such a given sequence will in turn yield a sequence
of scenarios constituting a timeline, upon which the different states of a qualitative spatial con-
figuration that evolves over time can be viewed. We also explore a qualitative constraint-based
spatio-temporal formalism that results from combining the temporal language of Interval Alge-
bra with the spatial one of RCC-8, and we close the chapter with a discussion on the notions of

63

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

periodicity and recurring patterns that can appear in temporalized QCNs.

4.2 Linear Point-based Time Spatio-Temporal Logics

In general, a spatial QCN, as described in Section 3.2, constitutes a static spatial configuration
in some domain D, over a set of spatial variables V . To be able to describe a spatial configu-
ration that changes over time, we can combine the propositional temporal logic PTL [Huth and
Ryan, 2004; Pnueli, 1977] with a qualitative spatial constraint language in a unique formal-
ism [Kontchakov et al., 2007; Wolter and Zakharyaschev, 2003; Balbiani and Condotta, 2002].
The domain D of a QCN will always remain the same, but the spatial variables in it may spatially
change with the passing time (e.g., in shape, size, or orientation). We can interpret formulas of
such a spatio-temporal formalism using a spatio-temporal structure defined as follows.

Definition 22 Given a qualitative spatial constraint language based on a finite set of base rela-
tion B defined over a domain D and a set of spatial variables V , a ST-structure is a tupleMST =
(V,D,N, α), where α is a mapping that associates an element of D with each spatial variable of
V at a point of time i ∈ N, i.e., α : N→ (V → D). Thus, α(i) denotes the set of elements of D
that are associated with the set of spatial variables V at point of time i. By extending notation,
α(v, i), where v ∈ V , denotes the element of D that is associated with spatial variable v at point
of time i.

For the case of RCC-8 for example, if T is some topological space [Munkres, 2000], let R(T)
denote the set of all non-empty regular closed subsets in T . Then, the domain D of RCC-8 is
the set R(T), which can be infinite. As such, α would be a mapping associating an element of
R(T) with each spatial region variable at a point of time i ∈ N. In a sense, a ST-structure is a
pure two-dimensional structure of space and time. We can fix a moment in time, and then move
in the spatial dimension and represent the state of the spatial configuration at that moment in
time. Likewise, we can focus on a single spatial variable in the spatial configuration, and then
move in the temporal dimension and witness the evolution of that spatial variable through time.
We can construct several linear point-based time spatio-temporal logics through the application
of the temporal operators of PTL in our qualitative spatial constraint language of choice. The
most important and dominant of such logics follow.

The L0 logic. The set of atomic propositions AP in the case of standalone PTL is replaced by
the set of base relations B of the qualitative spatial constraint language considered. We will refer
to such a spatio-temporal formula over B as a L0 formula. Thus, given a set of spatial variables
V , the set of L0 formulas over B is inductively defined as follows. if P ∈ B, and u, v ∈ V , then
P (u, v) is a L0 formula, and if ψ and φ are L0 formulas then ¬φ, φ∨ ψ, #φ, 2φ, 3φ, and φU ψ
are L0 formulas. Formulas of the form 3φ and 2φ are abbreviations for >U φ and ¬(>U ¬φ)
respectively.

A simple example of a L0 formula is the following:

2NTPP (Nucleus, Cell)

The aforementioned L0 formula states that a nucleus will always be located inside its cell.
In fact, all L0 formulas are rather simple, in the sense that the expressive power of the L0 logic
is quite limited; one cannot correlate the states of a spatial variable between different points of
time. As a matter of fact, L0 formulas can be reduced to a sequence of spatial configurations that

64

4.2. Linear Point-based Time Spatio-Temporal Logics

are completely independent of one another, but we will see more about this in a later chapter
where we will make our contributions. However, the L0 logic is expressive enough for capturing
some aspects of spatial change. As illustration, we can have the following statements using the
L0 logic:

2(DC(V irus, Cell)→ 2DC(V irus, Cell) ∨#3EC(V irus, Cell))

2(EC(V irus, Cell)→ #3PO(V irus, Cell))

2(PO(V irus, Cell)→ #3TPP (V irus, Cell))

2(TPP (V irus, Cell)→ #3NTPP (V irus, Cell))

The aforementioned L0 formulas taken together can describe the process of a virus latching
onto a host cell and then getting inside of it. Indeed, the virus and the host cell are disconnected
at some moment in time, and they will either remain disconnected for ever (the virus itself will
die) or the virus will begin the process of infecting the cell by first latching onto it and then
getting inside of it (at which point it will survive and multiply).

Definition 23 Given a L0 formula φ over B, we write 〈MST, i〉 |= φ for the fact that MST

satisfies φ at point of time i, with i ∈ N (or formula φ is true in MST at point of time i). The
semantics is then defined as follows.

• 〈MST, i〉 |= P (v, v′) iff P (α(v, i), α(v′, i)), with P ∈ B

• 〈MST, i〉 |= ¬φ iff 〈MST, i〉 6|= φ

• 〈MST, i〉 |= φ ∨ ψ iff 〈MST, i〉 |= φ or 〈MST, i〉 |= ψ

• 〈MST, i〉 |= φU ψ if there exists a k ∈ N such that i ≤ k, 〈MST, k〉 |= ψ, and for all j ∈ N,
if i ≤ j and j < k then 〈MST, j〉 |= φ

• 〈MST, i〉 |= #φ iff 〈MST, i+ 1〉 |= φ

A ST-structureMST = (V,D,N, α), for which 〈MST, 0〉 |= φ, is a model for φ. It follows that
a L0 formula φ is satisfiable if there exists a model for it. The number of occurrences of symbols
in a L0 formula φ is denoted by length(φ) (as with every syntactical object). We then have the
following result:

Theorem 13 ([Gabelaia et al., 2005]) Checking the satisfiability of a L0 formula φ in a ST-
structure is PSPACE-complete (in length(φ)) if the satisfiability of QCNs defined in the considered
qualitative constraint language can be decided in PSPACE.

Due to Theorem 13 and Proposition 3 (at page 34), we can obtain the following corollary:

Corollary 14 Checking the satisfiability of a L0 formula in a ST-structure is PSPACE-complete
for the qualitative constraint languages of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, and RCC-8.

65

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

The L1 logic. To increase the expressiveness of the L0 logic we can allow the application of
operator # to spatial variables. Given a spatial variable X, #X represents the state of region
X at the next point of time. For example, we can have the following statement in RCC-8:

3NTPP (Cell,#Cell)

The aforementioned formula states that at some point of time a given cell will decrease in
size, or, equivalenty, that we will eventually have two consecutive points of time such that the
size of the cell in the first point of time will be larger than the size of the cell in the second
point of time. The formula essentially describes the process of aging for any given human cell.
The shrinking of a cell is a normal aging change that occurs in any human tissue. In a similar
manner, we can specify with the following statement that a given spatial object, like an implant
for instance, will never change its size:

2EQ(Implant,#Implant)

As an implant is a rigid technical device, its size does not change through time; the size of
an implant at any given point of time, will equal the size of the implant at the next point of
time. Further, we can use the # operator to specify that a spatial object has two distinct states,
allowing one for example to represent the cardiac cycle with the following simple statement:

2EQ(Heart,# #Heart)

The cardiac cycle consists of two distinct states, the systole (contraction), which is the part
of the cardiac cycle when the ventricles contract, and the diastole (enlargement), which is the
part of the cardiac cycle when the heart refills with blood following systole. As such, the size
of the heart right before systole will equal the size of the heart right after a cardiac cycle has
been completed (assuming that systole and diastole occur in two dinstinct consecutive points of
time). Finally, we can use auxiliary spatial variables to compare distinct spatial objects between
different time intervals. For example, we can have the following statement:

2EQ(X,#X) ∧ EQ(X,Neoplasm) ∧ (NTPP (Tissue,X) ∨ TPP (Tissue,X))

The aforementioned formula states that a tissue in its present state, i.e., an ensemble of
similar cells as it appears in the present state, will be part of a neoplasm at some future point
of time.

We call this enriched logic the L1 logic. The semantics of the L1 logic is the same with that
of the L0 logic, provided that we appropriately handle the application of operator # to spatial
variables. In particular, given a ST-structureMST = (V,D,N, α), a spatial variable v ∈ V , and
some positive integer m, we treat an assignment α(#mv, i), where i ∈ N, as follows.

α(#mv, i) = α(v, i+m) where i+m is the mth successor of i in 〈N, <〉
Like with the L0 logic, a L1 formula φ is satisfiable if there exists a model for it, and the

number of occurrences of symbols in it is denoted by length(φ). In what follows in the thesis with
respect to L1, we always assume that the satisfiability of atomic QCNs defined in the considered
qualitative constraint language can be decided in PSPACE. We then have the following result:

Theorem 14 ([Balbiani and Condotta, 2002]) Checking the satisfiability of a L1 formula
φ in a ST-structure is PSPACE-complete if satisfiable atomic QCNs defined in the considered
qualitative constraint language are globally consistent.

66

4.2. Linear Point-based Time Spatio-Temporal Logics

Due to Theorem 14 and Propositions 3 (at page 34) and 8 (at page 53), we can obtain the
following corollary:

Corollary 15 Checking the satisfiability of a L1 formula φ in a ST-structure is PSPACE-complete
for the qualitative constraint languages of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, and Block Algebra.

Interestingly, Gabelaia et al. in [Gabelaia et al., 2003; Gabelaia et al., 2005] restricted the
class of arbitrary topological spaces that serve as a domain basis for RCC-8 to the class of
topological spaces generated by maximal saws with countably many forks of each type, and
identified a completion property (as they call it), which basically translates to global consistency
for atomic QCNs of RCC-8 that are defined over that particular domain interpretation.9 As such,
we also have the following result:

Theorem 15 ([Gabelaia et al., 2005]) Checking the satisfiability of a L1 formula φ in a ST-
structure is PSPACE-complete for RCC-8 with respect to the class of topological spaces generated
by maximal saws with countably many forks of each type.

This result regarding RCC-8 was a substantial contribution, even under the aforementioned
domain restrictions, as until that point of time the complexity of that particular logic concerning
RCC-8 was known to be in EXPSPACE [Wolter and Zakharyaschev, 2000b].

The L2 logic. Let us revisit the previous example about the tissue and the neoplasm, in
particular, let us review the following statement:

2EQ(X,#X) ∧ EQ(X,Neoplasm) ∧ (NTPP (Tissue,X) ∨ TPP (Tissue,X))

As we already explained earlier, the aforementioned formula states that a tissue in its present
state, i.e., an entire ensemble of similar cells as it appears in the present state, will be part of a
neoplasm at some future point of time. Let us assume that we want to represent the knowledge
that each of the cells that constitutes the tissue will be part of the neoplasm at some possibly
distinct future point of time with respect to the other cells. In other words, as the neoplasm
evolves, it will engulf certain cells of the tissue at some points of time, while at other points of
time some rogue cells of the tissue that are already part of the neoplasm may stop being part of
the neoplasm because they will either die or return to a normal state. In the end, all of the cells of
the tissue will have been a part of the neoplasm, but each of the cells at its own possibly distinct
point of time with respect to the other cells. It is impossible to represent that knowledge using
the L1 logic. However, we can further enrich the logic by allowing the application of operators
3 and 2 to spatial variables. Let us examine the following statement:

NTPP (Tissue,3Neoplasm) ∨ TPP (Tissue,3Neoplasm)

We have that 3Neoplasm comprises all of the cells that will be part of the neoplasm at some
point of time in the future, i.e., 3Neoplasm represents the union of the cells that are part of
the neoplasm as it appears in some future point of time. In a similar manner, let us consider the
following sentence:

NTPP (Tissue,2Neoplasm) ∨ TPP (Tissue,2Neoplasm)

9A saw is a disjoint union of forks, with a fork being a three-point frame 〈{b, r, l}, R〉 such that bRr and bRl.

67

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

In this case, we have that 2Neoplasm comprises all of the common cells that will be part of
the neoplasm at all points of time in the future, i.e., 2Neoplasm represents the intersection of
the cells that are part of the neoplasm as it appears in some future point of time.

We call this further enriched logic the L2 logic. The semantics of the L2 logic includes the
semantics of the L1 logic, and considers two additions to appropriately handle the application of
operators 3 and 2 to spatial variables. In particular, given a ST-structureMST = (V,D,N, α),
a spatial variable v ∈ V , and some positive integer m, we treat the assignments α(2v, i) and
α(3v, i), where i ∈ N, as follows.

α(2v, i) = c(
⋂

j≥i
α(v, j))

α(3v, i) = c(
⋃

j≥i
α(v, j))

In the aforementioned definitions regarding α we have used c(·) to obtain the topological
closure of an intersection or a union of closed sets. Indeed, we have already established in
Section 2.3, and also mentioned earlier in this section, that the domain D of RCC-8 is the set
of all non-empty regular closed subsets in some topological space T ; a domain of closed sets is
also the case for the rest of the qualitative constraint languages that we consider in this thesis,
viz., the qualitative constraint languages of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, and Block Algebra. In the case of Interval Algebra for example, a domain value is a
tuple of the form (x−, x+), where x− and x+ both belong to Q and correspond to the starting and
the ending point respectively of a temporal interval. That temporal interval contains x− and x+

as its limit points, i.e., the set of rational numbers defined by tuple (x−, x+) is closed. The reason
that we have to use the closure operator c(·) to obtain the topological closure of an intersection
or a union of closed sets, is because that intersection or union may be one of infinitely many
closed sets and in that case the respective result may not be closed [Munkres, 2000]. However,
the use of the c(·) operator does not save us from several semantic complications [Wolter and
Zakharyaschev, 2003]. To simplify reasoning, we can impose a restriction to the domain at hand
so that it may yield only a finite number of realizations for any given spatial variable. In this
way, we will only have to deal with a finite number of intersections or unions of closed sets. To
this end, we can adopt the Finite State Assumption that is defined as follows.

Definition 24 Given a ST-structure MST = (V,D,N, α), we say that MST satisfies the Finite
State Assumption, or that MST is an FSA-structure, iff for every spatial variable v ∈ V there
are finitely many distinct values d1, d2, . . . , dm ∈ D, with m being a positive integer, such that
{α(v, i) | i ∈ N} = {d1, d2, . . . , dm}.

Like with the L1 logic, a L2 formula φ is satisfiable if there exists a model for it, and the
number of occurrences of symbols in it is denoted by length(φ). We then have the following
result:

Theorem 16 ([Wolter and Zakharyaschev, 2000b]) Checking the satisfiability of a L2 for-
mula φ of RCC-8 in a FSA-structure is in EXPSPACE.

Up to this point, we have presented an hierarchy of spatio-temporal logics, namely, the L0, L1,
and L2 logics, that is strictly based on a set of spatial variables where each variable respresents a
unary, non-complex, term that maps to some domain value. However, we can introduce Boolean
variable terms, which are combinations of spatial variables using the Boolean operators ∨, ∧,

68

4.2. Linear Point-based Time Spatio-Temporal Logics

and ¬, and obtain, as an example, BRCC-8 [Wolter and Zakharyaschev, 2000a], which is the
extension of RCC-8 that allows the use of Boolean variable terms as arguments of the RCC-8
predicates. For instance, we can have the following simple statement in BRCC-8:

EQ(Europe,Greece ∨Germany ∨ France ∨ . . .)

The aforementioned BRCC-8 formula states that Europe is the union of all the European
countries as we know them today. Note that this simple fact alone would be impossible to
express in RCC-8, given that Europe and all of its separate countries (at least as we know them
today) comprised our set of spatial variables. Regarding BRCC-8, it was shown to increase
the expressive power of RCC-8, while retaining the same computational behavior as RCC-8 in
arbitrary topological spaces [Wolter and Zakharyaschev, 2000a]. However, the combination of
BRCC-8 with certain temporal logics, such as PTL, may have a different computational behavior
than the combination of RCC-8 with those same logics. In the case of spatio-temporal logics
based on PTL for example, most of the resulting logics that consider BRCC-8 have a higher
computational complexity than the respective ones that consider RCC-8 (a generalization of
which to spatial calculi other than RCC-8 we presented here). Further, things become more
complicated when we consider only connected topological spaces to serve as a domain basis for
BRCC-8. For instance, in that case, the satisfiability problem for standalone BRCC-8 becomes
PSPACE-complete.

Finally, in the literature there has also been an effort to abstract and generalize the afore-
mentioned hierarchy of spatio-temporal logics into the, so called, propositional spatio-temporal
logic (PST) [Bennett et al., 2002]. PST is the Cartesian product of the temporal logic PTL and
the modal logic S4u, which is the Lewis modal system S4 [Lewis and Langford, 1932] augmented
with the universal modality � [Goranko and Passy, 1992]. The motivation behind developing
the S4u modal logic lay in the fact that, in the past, Tsao-Chen [Tsao-Chen, 1938] and later
McKinsey and Tarski [McKinsey and Tarski, 1948] interpreted the necessity operator of the
Lewis modal system S4 as the interior operator of topological spaces and proved that S4 is sound
and complete with respect to this interpretation (cf. [Chagrov and Zakharyaschev, 1997]). As
the satisfiability problem for S4 was then proved to be PSPACE-complete by Ladner [Ladner,
1977], the works of Tsao-Chen, and McKinsey and Tarksi, implied that there could be a com-
putationally viable encoding for describing a general class of topological relations. Indeed, the
augmented S4u encoding provided a decision procedure for a spatial language that could express
a large class of topological relations including all those in RCC-8 and BRCC-8 [Bennett, 1996;
Bennett, 1998; Wolter and Zakharyaschev, 2003]. However, the combination of PTL and the
modal logic S4u, namely, the PST logic, resulted in it being “too expressive”. In particular, the
satisfiability problem for PST formulas over the discrete flow of time N was shown to be undecid-
able in [Gabelaia et al., 2003]. The same undecidability result also holds for simpler fragments of
PST, such as the one where only the temporal operator 2 is used and the universal modality �
is not used at all [Gabelaia et al., 2003]. Another undecidable spatio-temporal theory is that of
Muller proposed in [Muller, 1998; Muller, 2002], which is basically a first-order axiomatization of
spatio-temporal entities based on the Region Connection Calculus. Delving a little deeper into
modal logics, there have been multimodal logic approaches to qualitative spatio-temporal reason-
ing studied in the works of Burrieza et al. [Burrieza and Ojeda-Aciego, 2005; Burrieza et al., 2011;
Burrieza et al., 2009], Muñoz-Velasco et al. [Muñoz-Velasco et al., 2014], and Golinska-Pilarek
et al. [Golinska-Pilarek and Muñoz-Velasco, 2012]. These approaches are based on extentions of
modal logics, such as dynamic logics and variations thereof [Harel et al., 2000], and are concerned
with formalizing several spatio-temporal notions such as closeness, distance, and velocity.

69

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

Figure 4.1: Left: segmented cell bodies (green), lobulated cell nuclei (yellow and red) and back-
ground (black), Middle: segmented cell nucleus extending outside border of host cell (red pixels),
Right: the result of applying a morphological erosion operator; here the original partially overlaps
relation changes to proper part

4.3 Spatio-Temporal Change based on Transition Constraints

In this section, we focus on a particular spatio-temporal reasoning framework that considers
temporal sequences of spatial QCNs. These sequences allow us to describe a spatial configuration
that evolves and changes over time. Indeed, solving the spatial QCNs in such a given sequence
will in turn yield a sequence of scenarios constituting a timeline, upon which the different states
of a qualitative spatial configuration that evolves over time can be viewed. This modelling can
have many practical and diverse applications, from identifying optimal routes in mobile robot
navigation, to modelling changes of topology in biological processes and computing sequences of
segmentation steps used in image processing algorithms. All these application examples can be
modelled as a sequence of successive spatial QCNs where we look for ways to solve the QCNs in
such a manner that an assumed set of a priori constraints are satisfied by the obtained sequence
of scenarios. For example, in the case of a phagocyte ingesting food, one constraint may be that
the food has to be part of a food vacuole in the animal before it can be digested and absorbed.

We have already claimed that this abstraction has practical applications and now give a
detailed example to better motivate the subject of this section. In [Randell et al., 2013] the
authors use a discrete version of the spatial logic RCC (from which the constraint language
RCC-8 is derived) called DM (for Discrete Mereotopology) to model the topological organization
of segmented cells and their parts and cellular structure in tissue. The domain model assumes an
a priori constraint that cell nuclei form parts of their host cells, however in the example shown in
Figure 4.1 the RCC-8 relation returned is partially overlaps and not proper part. There are several
reasons why this scenario may happen in practice, e.g., if the regions initially segmented out as
cell nuclei are being over-segmented, or variations in the histological stain density results in a
less than optimal threshold level being selected. The result means the labelled regions extracted
from the image cannot be a model. The task then is to repair the segmentation to restore
consistency and/or optimise the sequence of segmentation steps needed. As such, a conceptual
neighbourhood graph for DM is used to encode legal topological transitions, and successive states
from a start to end state are generated, and then optimised. Paths through the network are then
cashed out as a series of image processing segmentation steps. A single histological image may
have many hundreds of cells, and the generation of symbolic models may or may not be realised
in an actual image. Moreoever, some segmentation operations on regions will reduce their size

70

4.3. Spatio-Temporal Change based on Transition Constraints

x x x

x

x x

x

y y y

x ≡ y

y y

y
y

DC(x, y) EC(x, y)

PO(x, y)

EQ(x, y)

TPP (x, y) NTPP (x, y)

TPPi(x, y) NTPPi(x, y)

Figure 4.2: A conceptual neighbourhood graph of RCC-8

and may fragment a region into sub-parts, or separated regions that increase their size may
merge, so the computational task of finding an optimal segmentation model can easily grow in
complexity.

We have mentioned the notion of a conceptual neighbourhood graph in our previous brief
introduction, but before formally defining it, we need to introduce the concept of conceptually
neighbouring relations for a given qualitative constraint language. This concept is strongly
related to the continuity and proximity that these relations might exhibit. In particular, we
recall the following definition from [Freksa, 1991]:

Definition 25 ([Freksa, 1991]) Given a qualitative constraint language based on a finite set of
base relations B defined over a domain D, we have that two base relations b, b′ ∈ B are conceptual
neighbours with respect to a pair of entities, if they can be directly transformed into one another
through continuous deformation (e.g., in shape, size, or position) of the entities.

As an example, in RCC-8 the base relationsDC and EC with respect to a pair of entities (x, y)
are conceptual neighbours, since a continuous movement of the spatial entity x towards spatial
entity y may cause a direct transition from relation DC to relation EC. On the other hand, and
again with respect to the pair of entities (x, y), the relations DC and PO are not conceptual
neighbours since a transition between those relations must go through relation EC. Another
example in Interval Algebra considers relations m (meets) and o (overlaps). These relations are
conceptual neighbours since an entity can directly overlap another entity after having met it
first.

Clearly, by Definition 25 it follows that every base relation is a conceptual neighbour of itself,
however, we do not depict any loops in our graphs in what follows for simplicity. Conceptu-
ally neighbouring relations in any given qualitative constraint language can be captured with a
conceptual neighbourhood graph, which is defined as follows.

Definition 26 ([Freksa, 1991]) Given a qualitative constraint language based on a finite set of
base relations B defined over a domain D, a conceptual neighbourhood graph10 of that language
is a graph Γ = (B, E) where E = {{b, b′} | b, b′ ∈ B, and b and b′ are conceptual neighbours}.

10Actually, Freska in [Freksa, 1991] uses the term neighbourhood structure to describe what we formally define
here as a graph.

71

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

ta tb tc td te tf
t

Na Nb Nc Nd Ne Nf

x x x x x x

y
y y

y
y y

z z

z z z

z

Figure 4.3: Example of a spatio-temporal sequence based on RCC-8

Conceptual neighbourhood graphs can be established for all qualitative constraint languages,
a subset of which can be found in [Freksa, 1991; Santos and Moreira, 2009; Egenhofer, 2010].
It is important to note that conceptual neighbourhood graphs are not unique for a qualitative
constraint language as they can be subject to further restrictions, such as constraints subject to
user preference, or restrictions on deformation.

As an example, the conceptual neighbourhood graph of RCC-8 is depicted in Figure 4.2. The
dashed edges represent transitions of base relations that are not allowed if we require that regions
do not change size. Indeed, if we require that regions do not change size, it is impossible for a
region x that is properly contained in another region y to be equal to y in a following point of
time, as x cannot grow bigger and y cannot become smaller.

Next, we define the notion of a qualitative spatio-temporal sequence, which is nothing more
than a sequence of spatial QCNs. The ordering of the QCNs in the aforementioned sequence
constitutes a timeline that can potentially allow us to view how a spatial configuration evolves
over time. We can define a qualitative spatio-temporal sequence (QSS) as follows.

Definition 27 A qualitative spatio-temporal sequence (QSS) S is a sequence (N1 = (V,C1),
N2 = (V,C2), . . ., Nk = (V,Ck)) of k QCNs over a set of n variables V , for some positive
integers k and n.

An atomic QSS is a QSS that comprises only atomic QCNs. Further, a solution and a scenario
of a QSS is the sequence of solutions and scenarios of all its QCNs respectively. Other notions of
QSSs, such as equivalence or consistency, are completely analogous to those of QCNs.

An example of an atomic spatio-temporal sequence based on RCC-8 is given in Figure 4.3.
Figure 4.3 depicts the sequence (Na = (V,Ca), Nb = (V,Cb), Nc = (V,Cc), Nd = (V,Cd),
Ne = (V,Ce), Nf = (V,Cf)), where V = {x, y, z} and Na, Nb, Nc, Nd, Ne, and Nf are RCC-8
configurations over V . In particular, Na defines the set of constraints {DC(x, y), DC(y, z),
DC(x, z)}, Nb defines the set of constraints {EC(x, y), DC(y, z), DC(x, z)}, Nc defines the
set of constraints {EC(x, y), DC(y, z), EC(x, z)}, Nd defines the set of constraints {PO(x, y),
DC(y, z), EC(x, z)}, Ne defines the set of constraints {TPPi(x, y), DC(y, z), EC(x, z)}, and
finally Nf defines the set of constraints {NTPPi(x, y), DC(y, z), DC(x, z)}. Each spatial QCN
in the sequence corresponds to a unique point of time in the timeline t. For example, spatial
configuration Nc corresponds to the point of time tc in the timeline t. Thus, the ordering of the
spatial QCNs in a given sequence yields a spatio-temporal configuration that describes how a
spatial configuration evolves over time.

At this point, we can extend the notion of conceptually neighbouring relations to the notion
of conceptually neighbouring atomic QCNs as follows.

72

4.3. Spatio-Temporal Change based on Transition Constraints

Na Nb

Nc

NdNe

Nf

Figure 4.4: Transition graph of the spatio-temporal sequence in Figure 4.3

Definition 28 Given a qualitative constraint language and a conceptual neighbourhood graph Γ
of that language, we have that two atomic QCNs N = (V,C) and N ′ = (V,C ′) are conceptual
neighbours with respect to Γ if ∀u, v ∈ V we have that b and b′ are conceptual neighbours with
respect to Γ, where b and b′ are the base relations corresponding to the singleton relations C(u, v)
and C ′(u, v) respectively.

Intuitively, two atomic QCNs are conceptual neighbours if they can transition from one
another through a continuous (and possible even simultaneous) transformation of their base
relations to conceptually neighbouring base relations. We can also give the following definition
of a conceptual neighbourhood graph for a set of atomic QCNs, but to avoid any confusion with
the conceptual neighbourhood graph of the base relations of a qualitative constraint language
we will refer to it as a transition graph:11

Definition 29 Given a qualitative constraint language, a conceptual neighbourhood graph Γ of
that language, and a satisfiable atomic QSS S = (N1, N2, . . ., Nk), the transition graph of S
defined with respect to Γ is the graph M = ({N1, N2, . . ., Nk}, E) where E = {{Ni,Nj} |
Ni,Nj ∈ {N1, N2, . . ., Nk}; and Ni and Nj are conceptual neighbours with respect to Γ}.

The transition graph of a satisfiable atomic QSS S of k QCNs encodes all the conceptually
allowed transitions between its spatial QCNs, i.e., it encodes all the pairs of atomic QCNs that
are conceptual neighbours with respect to an assumed conceptual neighbourhood graph. Clearly,
if the QCNs are defined over a set of variables V , it takes O(|V |2) time to calculate if a transition
is possible between the QCNs of a given pair of QCNs. As the transition graph of S has k nodes
and, thus, O(k2) possible edges, i.e., pairs of QCNs, obtaining the entire transition graph can
be done in polynomial time. It is also the case that every node, i.e., every QCN, in a transition
graph is a conceptual neighbour of itself.

As an example, the transition graph of the spatio-temporal sequence depicted in Figure 4.3
defined with respect to the conceptual neighbourhood graph in Figure 4.2, is shown in Figure 4.4.
Indeed, we can have continuous transitions between the spatial QCNs in the pairs (Na,Nb),
(Nb,Nc), (Nc,Nd), (Nd,Ne), (Ne,Nf) of consecutive QCNs in the sequence (Na, Nb, Nc, Nd,
Ne, Nf), but also continuous transitions between spatial configurations Na and Nc (i.e., the pair
(Na,Nc)), and Nb and Nd (i.e., the pair (Nb,Nd)).

Now, we introduce the main reasoning problem of this section. Given a qualitative spatio-
temporal sequence of QCNs defined over a qualitative constraint language and a conceptual

11In fact, the reader can easily verify that in the case where we have the set of all possible atomic QCNs over
exactly two spatial entities for a given qualitative constraint language, the transition graph defined by those QCNs
corresponds to the conceptual neighbourhood graph of that language.

73

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

neighbourhood graph of that language, we would like to solve the QCNs and extract scenarios
of them such that the scenarios in every pair of consecutive scenarios in the obtained sequence
are conceptual neighbours with respect to the conceptual neighbourhood graph. We call this
problem the sequence solving problem (SSP) and define it as follows.

Definition 30 Given a qualitative constraint language, a conceptual neighbourhood graph Γ of
that language, and a QSS S = (N1, N2, . . ., Nk), the SSP for S is the problem of obtaining a
scenario (S1, S2, . . ., Sk) of S such that the scenarios Si and Si+1 in every pair of consecutive
scenarios (Si, Si+1) in the sequence are conceptual neighbours with respect to Γ.

Equivalently, the SSP for a given qualitative spatio-temporal sequence S = (N1, N2, . . .,
Nk) and a respective conceptual neighbourhood graph Γ, can be defined as the problem of
obtaining a scenario (S1, S2, . . ., Sk) of S such that (S1, S2, . . ., Sk) itself defines a path in the
transition graph of that scenario with respect to Γ. For example, it is easy to see that the pairs
of consecutive QCNs of the satisfiable atomic spatio-temporal sequence depicted in Figure 4.3,
correspond to a path illustrated with dashed arrows in the transition graph of that sequence
depicted in Figure 4.4. In this particular example, as the sequence is satisfiable and atomic, the
aforementioned QCNs are scenarios of themselves. As such, (Na, Nb, Nc, Nd, Ne, Nf), as viewed
in Figure 4.4, defines a path in the transition graph of the unique scenario of the spatio-temporal
sequence depicted in Figure 4.3 with respect to the conceptual neighbourhood graph of RCC-8
depicted in Figure 4.2.

We then have the following result from Westphal et al. in [Westphal et al., 2013]:

Theorem 17 ([Westphal et al., 2013]) Let S be a QSS of Point Algebra and Γ the usual
conceptual neighbourhood graph of Point Algebra, viz., ({<,=, >}, {{<,=}, {=, >}}) (omitting
loops). Then, deciding whether there is a solution of the SSP for S with respect to Γ is a NP-
complete problem.

Westphal et al. present another interesting result that provides a sufficient condition to
decide whether there is a solution of the SSP for a given qualitative spatio-temporal sequence of
Point Algebra. The result follows.

Proposition 18 ([Westphal et al., 2013]) Let S = (N1 = (V,C1), N2 = (V,C2), . . ., Nk =
(V,Ck)) be a QSS of Point Algebra and Γ the usual conceptual neighbourhood graph of Point
Algebra, viz., ({<,=, >}, {{<,=}, {=, >}}) (omitting loops). Then, there is a solution of the
SSP for S with respect to Γ if:

• for each 1 ≤ k′ ≤ k, we have that Nk′ is not trivially inconsistent and �-consistent;

• for each 1 ≤ k′ < k, and for any scenario Sk′↓V ′ of Nk′ and any scenario Sk′+1↓V ′ of
Nk′+1 both restricted to any same set of two variables V ′ ⊆ V , we have that Sk′↓V ′ and
Sk′+1↓V ′ are conceptual neighbours with respect to Γ.

As noted in [Westphal et al., 2013], the result of Proposition 18 might help to define interesting
heuristics and domain splitting strategies in qualitative constraint-based spatial and temporal
reasoning for arbitrary QCNs, much like what was intended with the domain-based decomposition
scheme in [Broxvall, 2002] that we explored in Section 3.7. Further, the aforementioned results
naturally extend to other point-based formalisms such as, e.g., Cardinal Direction Calculus,
Interval Algebra, and Block Algebra and are thus important.

74

4.3. Spatio-Temporal Change based on Transition Constraints

The results of this section consider the simple notion of a conceptual neighbourhood graph
as defined by Freska in [Freksa, 1991], which encodes the conceptual proximity and continuity
between the base relations of a qualitative constraint language in a highly abstract manner. How-
ever, this high level of abstraction can be inadequate for many form of continuous motion, since
trasnition graphs based on conceptual neighbourhood graphs only consider the spatial change of
one entity without taking into account simultaneous spatial changes of other entities at a given
point of time. Due to this limination, there have been extensions of conceptual neighbourhood
graphs defined in the literature, such as the notion of directed conceptual neighbourhood graphs
proposed by Galton in [Galton, 2001] and the concept of generalized conceptual neighbourhood
graphs presented by Ragni et al. in [Ragni and Wölfl, 2005]. Directed conceptual neighbourhood
graphs characterize continuity by means of dominance and dominance spaces, which formalize
the notion of continuous change in the context of qualitative reasoning. As a motivational ex-
ample towards defining dominance, Galton considers a quantitative entity X with real values.
This entity can be described qualitatively by saying that is strictly positive (state p), strictly
negative (state n), or zero (state z). Then, by considering some time interval i, if X is in state
n thoughout i, and if it is in another state in one of the bounding points of i, this other state
can only be z, hence, z dominates n. Galton goes on to introduce the concept of dominance
between qualitative states and shows how standard conceptual neighbourhood graphs can be
extended to directed ones. Ragni et al. deal with the question whether there exists a continuous
transition from an initial spatial configuration to a final spatial configuration when the set of
all possible transitions is restricted by certain transition graphs. They define the concept of
generalized conceptual neighbourhood graphs, which extend conceptual neighbourhood graphs
as we described them in this section, in the sense that they encode possible transitions between
spatial configurations of a fixed number of base relations and not just between base relations. As
such, generalized conceptual neighbourhood graphs can be seen as particular cases of transition
graphs (in the way they are explained in Definition 29). However, an additional parameter in
the definition of a generalized conceptual neighbourhood graph enables one to exactly specify
how many spatial entities are allowed to change (e.g., in shape, size, or orientation) for a con-
tinuous transition between two spatial configurations to take place. This allows for reasoning
about spatial objects in stricter and more user-controllable dynamic settings. It should also be
clear that we can examine qualitative spatio-temporal sequences of some calculus with respect
to any graph, even user defined ones that may have nothing to do with continuity and proximity
between spatial configurations.

Finally, it is important to note that the notion of continuous transitions between spatial
configurations is closely related to Qualitative Simulation [Kuipers, 1985; Kuipers, 1986; Kuipers,
1993; Kuipers, 1994], at least as it appears in the context of qualitative spatial and temporal
reasoning. In particular, qualitative simulation starts with a qualitative differential equation
model (QDE), which is an abstraction of an ordinary differential equation that consists of a set
of real-valued variables and functional, algebraic, and differential constraints among them, and
a qualitative description of an initial state of that QDE model. Given a qualitative description
of a state, qualitative simulation predicts all the possible qualitative state descriptions that can
be direct successors of the current state description. By repeating this process we get a graph
of qualitative state descriptions, called a behavior graph, in which the paths starting from the
root are the possible qualitative behaviors. The graph of qualitative states is pruned according
to criteria derived from the theory of ordinary differential equations, in order to preserve the
guarantee that all possible behaviors are predicted. As such, qualitative simulation predicts the
set of possible behaviors consistent with a qualitative differential equation model of the world. Its
value comes from the ability to express natural types of incomplete knowledge of the world, and

75

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

the ability to derive a provably complete set of possible behaviors in spite of the incompleteness
of the model. In the context of qualitative spatial and temporal reasoning, we could consider
our initial state to be that of a spatial or temporal configuration. Then, we would like to
compute all the possible direct successors of that state description, which in this case would
correspond to all the possible spatial configurations that could be obtained through continuous
transitions from the initial state. By repeating this process we would get a transition graph of
spatial configurations, in which the paths starting from the root would be the possible spatial
configurations. In fact, this type of qualitative spatio-temporal simulation has been considered
in the work of Cui et al. in [Cui et al., 1992], where a qualitative simulation program for handling
topological information is presented. It is interesting to note that the algorithm of [Cui et al.,
1992] is illustrated with a real-world example of a simulation of phagocytosis and exocytosis,
two processes used by unicellular organisms for garnering food and expelling waste material
respectively. Before closing off this section, it is worth mentioning the Transition Calculus of
Gooday et al. [Gooday and Galton, 1997]. The Transition Calculus serves as a high-level approach
in which transitions are directly modelled in terms of the state changes that they bring about. As
such, the Transition Calculus can provide a more natural way of representing and solving many
transition and change problems, and, therefore, it also naturally extends to the AI planning
domain. It should be mentioned that the Transition Calculus is primarily intended as a purely
high-level formalism and, thus, it does not restrict itself to the notion of continuous transitions
per se. However, spatial or temporal semantics about continuity can be encoded in the calculus
and enable it to operate as a framework for qualitative spatio-temporal simulation as well. With
respect to the notion of continuity and continuous changes in the spatial domain, Galton makes
a thorough study in [Galton, 1997; Galton, 2000] for both qualitative and quantitative spatial
state representations. A general work that introduces a constraint-based framework for studying
infinite qualitative simulations concerned with contingencies such as time, space, shape, size,
abstracted into a finite set of qualitative relations, is presented in [Apt and Brand, 2006]. In
particular, in [Apt and Brand, 2006] qualitative simulations are defined by a combination of
constraints that formalize the background knowledge concerned with qualitative reasoning and
appropriate inter-state constraints that are formulated using linear temporal logic.

4.4 Combining RCC-8 and Interval Algebra

In the previous sections, we have discussed combinations of qualitative spatial constraint lan-
guages with certain modal logics to create an hierarchy of qualitative spatio-temporal logics, and
we have also reviewed the case where a sequence of spatial QCNs is used to describe continuous
spatial change of spatial entities over the timeline that underlies the sequence. In this section
we present a spatio-temporal formalism that it based entirely on constraints.

The dominant qualitative spatial and temporal constraint languages in Artificial Intelligence
are RCC-8 and Interval Algebra respectively. It is then only natural to combine these two
languages into a unique qualitative constraint-based spatio-temporal formalism. In [Gerevini
and Nebel, 2002], the authors use Interval Algebra to temporalize RCC-8 and present the spatio-
temporal constraint calculus (STCC). For example, given an RCC-8 formula PO(x, y), they assign
to it a temporal interval i, which means that the RCC-8 formula must be true at every point
between the endpoints of the interval i. In a sense, we can view a STCC network as a QCN
of Interval Algebra that has a set of spatial QCNs as its set of variables. Formally, a STCC is
defined as follows.

Definition 31 A spatio-temporal constraint calculus STCC network is a QCN (W,R) of Interval

76

4.4. Combining RCC-8 and Interval Algebra

Algebra where:

• W = {N1 = (V,C1), N2 = (V,C2), . . ., Nk = (V,Ck)} is a non-empty finite set of spatial
QCNs of RCC-8 defined over a non-empty finite set of variables V corresponding to spatial
entities;

• R is the usual constraint mapping in a QCN as defined in Definition 4.

Then, a solution of a STCC network is defined as follows.

Definition 32 Let N = (W,R) be a STCC network over n spatial QCNs of RCC-8. A solution
of N consists of:

• a solution of the underlying QCN of Interval Algebra where the n spatial QCNs of RCC-8
are viewed as variables of the Interval Algebra network;

• a solution for each of the n spatial QCNs of RCC-8 that holds at every point between the
endpoints of the temporal interval upon which each spatial QCN of RCC-8 is defined.

As illustration, we can have the simple STCC networkN = (W,R), whereW is the set of QCNs
of RCC-8 {N1,N2} defined by the sets of constraints {PO(x, y)} and {EC(x, y)} respectively,
and R is a mapping that associates the singleton Interval Algebra relation {m} (meets) with
the previous pair of spatial QCNs (which are treated as if they were the temporal variables of
the underlying QCN of Interval Algebra). As such, the underlying QCN of Interval Algebra is
defined by the singleton constraint {m(N1,N2)}.

Let σ be a solution of the STCC network N . Then σ will comprise a solution of the underlying
QCN of Interval Algebra, denoted by σIA, and a solution of each of the spatial QCNs N1 and
N2, denoted by σ1 and σ2, respectively. Let as assume that σIA is such that σIA(N1) = [0, 1]
and σIA(N2) = [1, 2]. Then, the solution σ1 of N1 holds at every point between the endpoints of
interval [0, 1], i.e., it is true for interval (0, 1), and, likewise, the solution σ2 of N2 holds at every
point between the endpoints of interval [1, 2], i.e., it is true for interval (1, 2).

As checking whether a STCC network has a solution involves checking whether the associated
QCNs of Interval Algebra and RCC-8 have a solution, it comes rather natural that checking
whether a STCC network has a solution is at least as difficult as checking whether a QCN of
Interval Algebra or RCC-8 has a solution, which is a NP-complete problem (see Section 3.3.1).
This bears the question of how much more the combination of Interval Algebra and RCC-8
increases the complexity of checking whether a STCC network has a solution. Hopefully, the
complexity does not increase at all. In particular, we have the following result:

Theorem 18 ([Gerevini and Nebel, 2002]) Deciding whether there is a solution of a STCC
network N is a NP-complete problem.

The result of Theorem 18 can be explained by the fact that given a STCC, one only needs
polynomially many points in the real line to construct a solution of the underlying QCN of Interval
Algebra, as well as polynomially many solutions of the associated QCNs of RCC-8. Moreover,
each solution of a QCN of RCC-8 can be constructed using size polynomial in the size of the
QCN, by employing some canonical model that allows this, such a model being for example the
one defined by Renz in [Renz, 2002a]. In all fairness to Gerevini and Nebel, and as noted also
by them in [Gerevini and Nebel, 2002], the result of Theorem 18 is strongly implied by the work
of Bennett et al. in [Bennett et al., 2002]. In particular, Bennett et al. describe a very similar

77

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

approach to the one of Gerevini et al. for spatio-temporal reasoning, by combining Interval
Algebra with BRCC-8 instead of RCC-8. We remind the reader that BRCC-8 is an extension
of RCC-8 that allows the use of Boolean variable terms as arguments of the RCC-8 predicates,
where a Boolean variable term is a combination of spatial variables using the Boolean operators
∨, ∧, and ¬. Another difference lies in the fact that Bennett et al. require that a solution of
an associated QCN of BRCC-8 in a given STCC network holds not only at every point between
the endpoints of the temporal interval upon which the spatial QCN of BRCC-8 is defined, but
also at the endpoints of that temporal interval. Thus, the approach of Gerevini et al. is a little
more flexible than the approach of Bennett et al. as it allows spatial configurations to change at
endpoints of temporal intervals.

There are some obvious shortcomings with the use of a STCC network to represent and reason
with spatio-temporal information. For example, given a STCC network N = ({N1,N2}, R), such
that the QCNs of RCC-8 N1 and N2 do not share any common solutions, we can only have that
R(N1,N2) ⊆ {m,mi, p, pi}. This is because since N1 and N2 do not share any common solutions,
it would be impossible to have a common solution that would be required in the case where the
two temporal intervals that are associated with the networks N1 and N2 respectively overlapped;
in more detail, a common solution would be required for both networks over that overlapping
part of the two intervals, as any two entities can only be given a single valuation at a specific
point of time. For instance, let us consider the simple STCC network N = (W,R), where W is
the set of QCNs of RCC-8 {N1,N2} defined by the sets of constraints {DC(x, y)} and {EQ(x, y)}
respectively. It is clear that these two networks do not share any common solution. Let us assume
that R is a mapping that associates any of the singleton Interval Algebra relations defined by
B \ {m,mi, p, pi}, for example, {d} (during), with the previous pair of spatial QCNs. As such,
the underlying QCN of Interval Algebra is defined by the singleton constraint {d(N1,N2)}. A
solution of the STCC network N should comprise a solution of the underlying QCN of Interval
Algebra, denoted by σIA, and a solution of each of the spatial QCNs N1 and N2. Let as assume
that σIA is such that σIA(N1) = [0, 1] and σIA(N2) = [0, 2]. This is indeed a valid solution of
the underlying QCN of Interval Algebra, as it satisfies base relation d(N1,N2). Next, we need to
have a common solution for each of the QCNs N1 and N2 that will hold at every point between
the endpoints of interval [0, 1] including the endpoint 1 itself (as it does not belong to a specified
Interval Algebra temporal interval, but occurs as a byproduct), i.e., that it will be true for
interval (0, 1]. This is not possible, as N1 and N2 do not share any common solutions. Thus, in
this particular case R should be a mapping that associates only some subrelation of the Interval
Algebra relation defined by {m,mi, p, pi} with the pair of spatial QCNs N1 and N2. However,
even the small Interval Algebra relation defined by {m,mi, p, pi} itself, leads to the total set of
relations of Interval Algebra when combined with the singleton relations of Interval Algebra and
closing the resulting set of relations under intersection, weak composition, and converse. Due to
this issue, and considering also the result of Theorem 18 as well as the fact that it is NP-hard to
decide the satisfiability of an arbitrary QCN of Interval Algebra, we have the following result:

Theorem 19 ([Gerevini and Nebel, 2002]) Let N be a STCC network defined over the set
of singleton and universal relations of RCC-8 and Interval Algebra. Then, deciding whether there
is a solution of N is a NP-complete problem.

The result of Theorem 19 does not leave much room for identifying large tactable fragments
of STCC, in contrast to the case with Interval Algebra and RCC-8 for which large tractable
subclasses of their relations have been indeed identified. This result also partially addresses an
open problem raised by Wolter et al. in [Wolter and Zakharyaschev, 2003], who questioned the

78

4.5. Spatio-Temporal Periodicity

existense of such large tractable fragments of STCC. Nevertheless, there exists a case where the
existence of a solution of an STCC network can be decided in polynomial time. In particular, we
have the following result:

Theorem 20 ([Gerevini and Nebel, 2002]) Let N be a STCC network such that the under-
lying QCN of Interval Algebra forms a scenario, and each of the associated QCNs of RCC-8 is
defined over a tractable subclass of relations. Then, deciding whether there is a solution of N
can be achieved in polynomial time.

Another shortcoming of STCC as a spatio-temporal calculus, is that it does not permit one to
state general laws of how the spatial configurations associated with a STCC network change; the
spatial configurations associated with a STCC network are unrelated to one another. Thus, one
cannot state for example that regions cannot change their size, or that spatial changes should
occur continuously. However, Gerevini et al. address this issue by forcing an additional set
of contraints into an STCC instance to the effect that changes have to be continuous and that
regions do not change size. Gerevini et al. go on to show that deciding whether there is a
solution of a given STCC network under the continuous change and size persistence constraints
remains a NP-complete problem. This is due the fact that given a candidate solution of a STCC
network, we can check if the continuous change and size persistence constraints are satisfied by
this solution in polynomial time.

An analogous effort to that of Gerevini et al. [Gerevini and Nebel, 2002] for presenting a
spatio-temporal formalism that it based entirely on constraints, is given by Ragni et al. in [Ragni
and Wölfl, 2006]. In particular, Ragni et al. investigate a constraint formalism that temporalizes
the Cardinal Direction Calculus using the Interval Algebra, much like Gerevini et al. temporalize
RCC-8. Further, Ragni et al. place emphasis on how continuous change of objects in Cardinal
Direction Calculus is reflected in changes of the respective qualitative relations expressing these
relative positions. They show how continuous change can be represented as a set of operations
to objects in grid-like structures, and based on this representation they propose a method for
encoding temporalized spatial constraint satisfaction problems as deterministic planning prob-
lems.

4.5 Spatio-Temporal Periodicity

In this section, we capture the notion of an ultimately periodic qualitative constraint network
(UPQCN) [Condotta et al., 2005]. A UPQCN is a temporalized QCN that evolves over time with
a recurrent pattern. In particular, let us consider a set of spatial entities whose spatial location
may change over time. At each point of time, an entity is associated with a given location.
We wish to be able to express the following three types of constraints: constraints between the
locations of two entities at a given point of time, constraints between the locations of two entities
at distinct points of time, and constraints between the locations of two entities that have to be
satisfied at all points of time following an initial point of time.

Let us assume that each integer t ≥ 0 corresponds to a point of time. Then, a UPQCN allows
us to represent qualitative constraints like the ones described in the following example. Let us
consider the qualitative constraint language of Point Algebra, which we will interpret in spatial
terms. In what follows, all considered entities are points on the rational line. With that being
said, we have three entities X, Y , and Z. The entities change positions over time according to
the following constraints: at point of time t = 0, X is left of both Y and Z; regarding points of
time t = 0 and t = 1, either the location of Z at point of time t = 0 is left of that at point of

79

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

x0

y0

{EC}

U

x1

y1

x2

y2

{NTPPI}

{DC} {DC}

{NTPPI}B

B

B

B

B

B

B

B

B

B

t = 0 t = 1(tmin) t = 2(tmax)

Figure 4.5: An example UPQCN U of RCC-8

time t = 1, or they coincide; regarding point of time t = 1 and all following points of time t ≥ 1,
the location of X is right of Y ; for all points of time t ≥ 1, X moves to the left and Y moves to
the right; for all points of time t ≥ 2, Z moves to the left and it stays to the left of X and to the
right of Z.

As we saw in our aforementioned example, a UPQCN allows us to specify certain periodic
constraints, which would be impossible to do with the use of a simple QCN. A UPQCN is formally
defined as follows.

Definition 33 A UPQCN is a structure (V , C, tmin, tmax), where V = {v0
0, . . ., v

0
n, . . ., v

tmax
0 ,

. . ., vtmax
n } is a finite set of variables, tmin and tmax are two integers such that 0 ≤ tmin ≤ tmax,

and C is a mapping that associates a relation C(v, v′) ∈ 2B with each pair (v, v′) of V × V .
Mapping C is such that C(v, v) = {Id} and C(v, v′) = (C(v′, v))−1 for every v, v′ ∈ V .

An example UPQCN of RCC-8 is shown in Figure 4.5. Intuitively, in a spatial context, each
variable vt ∈ V represents the occurrence of the spatial component of entity v at point of time
t, with t ∈ N. C(ut, vt

′
) is a constraint on the relative positions of the occurrence of u at point

of time t and that of v at point of time t′. The constraints expressed by C are twofold: firstly,
all constraints from 0 up to tmax have to be satisfied; secondly, all constraints from tmin to tmax
have to be satisfied up to tmax, but also on all subsequent periods {tmin+ t, . . . , tmax+ t}, where
t ∈ N. In other words, the structure defines both initial constraints (up to tmax), and a recurrent
pattern of constraints (from tmin to tmax), the motif, which repeats itself indefinitely. The motif
of a UPQCN U is defined as follows.

Definition 34 Let U = (V , C, tmin, tmax) be a UPQCN over n entities. The motif of U , denoted
by motif(U), is the QCN Nm = (Vm, Cm), where Vm = {vt | vt ∈ V and t ≤ lg}, with lg = tmax−
tmin, and ∀m,m′ ∈ {0, . . . , n} and ∀k, k′ ∈ {0, . . . , lg}, Cm(vkm, v

k′
m′) = C(vk+tmin

m , vk
′+tmin
m′).

As illustration, the motif of the example UPQCN U of RCC-8 shown in Figure 4.5 is provided
in Figure 4.6.

As in the case of a QCN, given a UPQCN U we are mainly interested in solving the satisfiability
problem associated with it, i.e., deciding whether U admits a solution. A solution of a UPQCN
is defined as follows.

80

4.5. Spatio-Temporal Periodicity

x0

y0

x1

y1

{DC} {DC}

{NTPPI}
B

B

B

Figure 4.6: The motif of the UPQCN U of RCC-8 shown in Figure 4.5

Definition 35 Let U = (V , C, tmin, tmax) be a UPQCN over n entities. A solution of U is a
valuation σ of the variables of V such that for each pair of variables (uti , vtj) ∈ V with ti < tj
we have:

• if tj ≤ tmax, then σ(uti) and σ(vtj) satisfy C(uti , vtj), i.e., there exists a base relation
b ∈ C(uti , vtj) such that (σ(uti), σ(vtj)) ∈ b;

• if ti ≥ tmin and tj−ti ≤ tmax−tmin then for all ti′, tj ′ such that tmin ≤ ti′ ≤ min{tmax, ti},
tmin ≤ tj

′ ≤ min{tmax, tj} and tj − ti = tj
′ − ti′, we have that σ(uti) and σ(vtj) satisfy

C(uti
′
, vtj

′
).

A solution of the example UPQCN U of RCC-8 shown in Figure 4.5 is provided in Figure 4.7.
Note that the valuation of the variables of U satisfy all of the constraints up to tmax (t = 2),
but also all of the constraints specified by the motif of U . For instance we have NTPPI(y0, y1),
NTPPI(y1, y2), NTPPI(y2, y3), and so on.

Other notions of UPQCNs, such as equivalence, consistency, or scenarios, are completely
analogous to those of QCNs.

With respect to the satisfiability problem of a UPQCN, we have the following result:

Theorem 21 ([Balbiani and Condotta, 2002]) Let A ∈ 2B be a subclass of relations of a
qualitative constraint language over which not trivially inconsistent and �-consistent QCNs are
globally consistent. Then, checking the satisfiability of a UPQCN U = (V , C, tmin) defined over
A can be achieved in polynomial time.

Due to Theorem 21 and Proposition 8 (at page 53), we can infer the following corollary:

Corollary 16 Checking the satisfiability of a UPQCN U = (V , C, tmin, tmax) defined over a
distributive subclass of relations of Point Algebra, Cardinal Direction Calculus, Interval Algebra,
or Block Algebra can be achieved in polynomial time.

Regarding arbitrary UPQCNs, we have the following result:

Theorem 22 ([Balbiani and Condotta, 2002]) Let A ∈ 2B be a subclass of relations of a
qualitative constraint language over which not trivially inconsistent and �-consistent QCNs are
globally consistent. Then, given A, checking the satisfiability of a UPQCN U = (V , C, tmin)
defined over 2B is in PSPACE.

Due to Theorem 22 and Proposition 8 (at page 53), we can obtain the following corollary:

81

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

x0

x1

y0

y1
y2 yi

x2

xi

Figure 4.7: Solution of the UPQCN U of RCC-8 shown in Figure 4.5 (i>2)

Corollary 17 Checking the satisfiability of a UPQCN U = (V , C, tmin, tmax) is in PSPACE
for the qualitative constraint languages of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, and Block Algebra.

It is worth mentioning that the idea of ultimately periodic constraints has also been ap-
plied to simple temporal constraints found under instances of the Simple Temporal Problem
(STP) [Dechter et al., 1991]. In particular, Condotta et al. in [Condotta et al., 2006c] extend
the notion of an STP to that of an ultimately periodic STP (UPSTP) in a similar manner to
what was described in this section. Interestingly, the study of temporal periodicy has also found
applications in fields outside of artificial intelligence, such as software verification [Bensalem et
al., 2007]. In [Bensalem et al., 2007], the authors study the problem of verifying that a cycle
in the flow chart of a program does not terminate, i.e., it becomes ultimately periodic. In par-
ticular, they present some exact and sufficient conditions for cycle non-termination and provide
an application for program verification, which allows for checking sequential and concurrent pro-
grams against temporal properties and using temporal logic as a guide to select test cases in such
programs.

4.6 Conclusion

Qualitative spatio-temporal frameworks combine space and time in an interrelated manner
and, hence, allow one to reason about time and space interdependently. Such qualitative
spatio-temporal frameworks allow performing reasoning tasks that would otherwise be impossi-
ble through the use of simple QCNs (as they were presented in Section 3.2). For example, these
frameworks allow us to represent the fact that a given region was partially overlapping another
region at one point in time and became disconnected from that region at some next point of
time.

In this chapter, we reviewed the state of the art qualitative spatio-temporal frameworks.
In particular, we presented an hierarchy of qualitative spatio-temporal logics that builds on a
combination of the propositional temporal logic (PTL) with certain spatial logics, we overviewed
a spatio-temporal reasoning framework that considers temporal sequences of spatial QCNs and
allows one to describe a spatial configuration that evolves and changes over time, and we also
explored a qualitative constraint-based spatio-temporal formalism that results from combining
the temporal language of Interval Algebra with the spatial one of RCC-8. Finally, we closed the

82

4.6. Conclusion

chapter with a discussion on the notions of periodicity and recurring patterns that can appear
in temporalized QCN.

The discussion that took place in this chapter, will be relevant to the contributions that we
will present in Chapter 6. In particular, the theoretical results that we obtain in that chapter are
directly comparable to the theoretical results of this chapter. Further, we will explain in detail
how our contributions there present a technical advance in the field of qualitative spatio-temporal
reasoning.

83

Chapter 4. Combining Space & Time into Qualitative Spatio-Temporal Frameworks

84

Part II

Contributions

85

Chapter 5

Efficient Algorithms for tackling
Qualitative Constraint Networks

5.1 Introduction

In this chapter, we present our contributions with respect to qualitative constraint-based spatial
and temporal reasoning, which involve novel and efficient algorithms that go beyond the state of
the art algorithms for reasoning with qualitative constraint networks (QCNs).

In particular, we define new local consistency conditions and new algorithms for enforcing
those conditions, which we compare both theoretically and experimentally to the local consistency
conditions and their respective algorithms that were presented in Section 3.5. Our contributions
range over the entire spectrum of fundamental reasoning problems in qualitative constraint-based
spatial and temporal reasoning. Specifically, we demonstrate both in theory and in practice how
the satisfiability problem, the minimal labeling problem, and the redundancy problem of a given
QCN (cf. Section 3.3) can be dealt with efficiently through the use of our novel techniques.

Furthermore, we address an issue in the literature regarding a non-sound approach that
utilizes parallelism to check the satisfiability of RCC-8 networks. To this end, we provide the
appropriate fixes for that approach, but also present our own approach of a simple decomposition
scheme that exploits the sparse and loosely connected structure of the constraint graphs of very
large real-world QCNs and paves the way for efficient utilization of parallelism to solve all the
aforementioned fundamental reasoning tasks.

The contributions to be presented in this chapter draw from the published works in [Sioutis,
2014; Amaneddine et al., 2013; Sioutis and Condotta, 2014b; Sioutis et al., 2015i; Sioutis et
al., 2015h; Sioutis et al., 2015f; Sioutis and Condotta, 2014c; Sioutis and Condotta, 2014a;
Sioutis et al., 2015g; Sioutis et al., 2016b; Sioutis et al., 2016a; Sioutis et al., 2016c].

Finally, in Section 5.8 we conclude the chapter and give some directions for future work
both in the field of qualitative constraint-based spatial and temporal reasoning and in the field
of quantitative constraint-based spatial and temporal reasoning. In particular, with respect to
the latter field, and inspired from our contribution in the former field that handles redundancy
in a QCN [Sioutis et al., 2015f], we have already made a step towards dealing with redundant
information in the Simple Temporal Problem (STP) [Dechter et al., 1991], presented in detail in
[Lee et al., 2016].

87

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

5.2 Partial Algebraic Closure and Partial �-consistency
Given a QCN N = (V,C) and a graph G = (V,E) the method of partial algebraic closure (also
called partial closure under weak composition) removes certain base relations corresponding to
the edges of graph G that are guaranteed to not participate in any solution of N . The partial
algebraic closure applies the following iterative operation until a fixed state is reached:

∀{vi, vk}, {vi, vj}, {vj , vk} ∈ E, C(vi, vj)← C(vi, vj) ∩ (C(vi, vk) � C(vk, vj))

Clearly, when G is a complete graph, the method of partial algebraic closure becomes equiv-
alent to the method of algebraic closure. It follows that the partial algebraic closure method is
sound as it only removes base relations that do not participate in any solution of a given qual-
itative constraint network, but is not complete for deciding the satisfiability of any qualitative
constraint network, i.e., we cannot conclude the satisfiability of an arbitrary qualitative con-
straint network if the partial algebraic closure method does not result in the assignment of the
empty relation ∅ to a constraint of the network at hand. We will now present a local consistency,
called partial �-consistency, that is directly related to the partial algebraic closure method and
results from restricting �-consistency, as presented in Section 3.5.1, to a subset of the set of edges
of the complete underlying graph of an input network.

Definition 36 A QCN N = (V,C) is said to be partially �-consistent with respect to a graph
G = (V,E), or, simply, �G-consistent, if and only if we have that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj),
∀{vi, vk}, {vi, vj}, {vj , vk} ∈ E.

The �G-consistent QCN obtained after the application of the partial algebraic closure method
on a QCN N with respect to a given graph G = (V,E) is equivalent to N and unique with
respect to the particular choice of graph G. However, it should be noted that given two graphs
G1 = (V,E1) and G2 = (V,E2) such that E1 6= E2, the �G1

-consistent and �G2
-consistent QCNs of

N may differ in some of their constraints. The �G-consistent QCN of N is called the closure of N
under �G-consistency and it is denoted by �G(N). Network �G(N) corresponds to the largest (with
respect to ⊆) �G-consistent sub-QCN of N . Given two QCNs N = (V,C) and N ′ = (V,C ′), and an
arbitrary graph G = (V,E), we can prove the following properties with respect to �G-consistency:

• �(N) ⊆ �G(N) ⊆ N (Dominance);

• �G(N) is equivalent to N (Equivalence);

• �G(�G(N)) = �
G(N) (Idempotence);

• if N ′ ⊆ N then �G(N ′) ⊆ �G(N) (Monotonicity).

The aforementioned properties follow directly from the fact that �G-consistency is equivalent
to �-consistency when G is a complete graph. Next, we will show how �G-consistency can be used
to decide the satisfiability of QCNs under certain conditions. To this end, it will be necessary to
introduce the notion of a chordal (or triangulated) graph.

Chordal graphs, triangulations, and perfect elimination orderings

We begin by introducing the definition of a chordal graph. The interested reader may find more
results regarding chordal graphs, and graph theory in general, in [Diestel, 2012].

88

5.2. Partial Algebraic Closure and Partial �-consistency

0

1 2

3 4

Figure 5.1: Example of a chordal graph

Algorithm 10: Triangulation(G)
in : A graph G = (V,E).
output : A triangulated graph G′ = (V,E′) with E ⊆ E′.

1 begin
2 α ← MaximumCardinalitySearch(G);
3 F (α) ← EliminationGame(G, α);
4 G′ = (V,E

⋃
F (α));

5 return G′;

Definition 37 Let G = (V,E) be an undirected graph. G is chordal (or triangulated) if every
cycle of length greater than 3 has a chord, which is an edge connecting two non-adjacent vertices
of the cycle.

The graph shown in Figure 5.1 consists of a cycle which is formed by five solid edges and
two dashed edges that correspond to its chords. As for this part, the graph is chordal. However,
removing one dashed edge would result in a non-chordal graph. Indeed, the other dashed edge
with three solid edges would form a cycle of length four with no chords. Chordality checking can
be done in O(|V |+ |E|) time for a given graph G = (V,E) with the maximum cardinality search
(MCS) algorithm which also constructs an elimination ordering α as a byproduct [Tarjan and
Yannakakis, 1984; Berry et al., 2002]. In particular, MCS visits the vertices of a graph in an order
such that, at any point, a vertex is visited that has the largest number of visited neighbours. If a
graph is not chordal, it can be made so by the addition of a set of new edges, called fill edges. This
process is called the elimination game and can run as fast as in O(|V |+ (|E⋃F (α)|)) time for a
given graph G = (V,E), where F (α) is the set of fill edges that result by following the elimination
ordering α, eliminating the nodes one by one, and connecting all nodes in the neighbourhood
of each eliminated node [Parter, 1961]. The obtained augmented graph G′ = (V,E

⋃
F (α)) is a

triangulation of G [Fulkerson and Gross, 1965]. A triangulation algorithm that makes use of the
aforementioned methods is presented in Algorithm 10, while the methods themselves are well
presented in [Berry et al., 2002].

Given a graph G = (V,E), with |V | = n, and a vertex v ∈ V , N(v) denotes the set of
neighbours of v in G, i.e., N(v) = {u | {u, v} ∈ E}. A vertex v ∈ V is said to be a simplicial
vertex ofG if the subgraph ofG induced byN(v) is complete. Further, let α : V →{0, 1, . . . , n−1}
be a bijection of V onto {0, 1, . . . , n − 1} serving as an elimination ordering of G, and let Gi
denote the subgraph of G induced by Vi = {α−1(0),α−1(1),. . .,α−1(i)}, with 0 ≤ i < n. (Note
that Gn−1 = G.) The elimination ordering (α−1(n− 1),α−1(n− 2),. . .,α−1(0)) of the vertices of
V is said to be a perfect elimination ordering of G, if for every n > i > 0, vertex α−1(i) is a
simplicial vertex of graph Gi. Then, we have the following theorem:

89

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Theorem 23 ([Fulkerson and Gross, 1965]) A graph G is chordal if and only if it admits a
perfect elimination ordering.

If the graph is already chordal, following an elimination ordering α produced by the maximum
cardinality search algorithm means that no fill edges are added, i.e., α is actually a perfect
elimination ordering [Tarjan and Yannakakis, 1984]. For example, a perfect elimination ordering
for the chordal graph shown in Figure 5.1 would be the ordering 1 → 3 → 4 → 2 → 0 of its
set of nodes. In general, it is desirable to achieve chordality with as few fill edges as possible.
However, obtaining an optimum graph triangulation is a NP-hard problem [Yannakakis, 1981].

In a QCN fill edges correspond to the universal relation B, i.e., the non-restrictive relation
that contains all base relations and represents the lack of any definite knowledge between two
entities. As such, the chordal constraint graph of a given QCN is exactly its constraint graph
augmented with edges corresponding to relation B to make it chordal. In what follows, we
will also use the term chordal QCN to emphasize that we only consider the constraints of the
QCN that correspond to the edges of a triangulation of its constraint graph; this term will be
particularly useful when visualizing QCNs.

After our brief introduction of chordal graphs and related notions, we demonstrate how
chordal graphs become relevant in the context of qualitative spatial reasoning, by presenting a
result that combines �G-consistency and chordal graphs to decide the satisfiability of a qualitative
constraint network. In particular, we prove the following result:

Proposition 19 Let N = (V,C) be a QCN defined over a subclass of relations of a qualitative
constraint language that has patchwork for not trivially inconsistent and �-consistent QCNs de-
fined over that subclass of relations, and G = (V,E) a chordal graph such that G(N) ⊆ G. If N
is not trivially inconsistent and �G-consistent, then N is satisfiable.

Proof. Let V = {v1, v2, . . . , vn} be the set of variables of N . Since G is a chordal graph,
by Theorem 23 we have that there exists a perfect elimination ordering of G. As such, let
α : V → {0, 1, . . . , n−1} be a bijection of V onto {0, 1, . . . , n−1} serving as a perfect elimination
ordering of G, i.e., α yields the perfect elimination ordering (α−1(n− 1),α−1(n− 2),. . .,α−1(0))
of G. We will show that N can be reduced to a sequence of completely overlapping, not trivially
inconsistent, and �-consistent QCNs. We remind the reader thatGi with i ∈ {0, . . . , n−1} denotes
the subgraph of G induced by {α−1(0),α−1(1),. . .,α−1(i)}. Let Si for some i ∈ {0, . . . , n − 1}
denote the subgraph of Gi induced by {α−1(i)} ∪ Ni(α

−1(i)), where Ni(α
−1(i)) denotes the set

of neighbours of α−1(i) in Gi. Given a vertex α−1(i) with i ∈ {1, . . . , n−1}, we have that α−1(i)
is a simplicial vertex of graph Gi, as our perfect elimination ordering is (α−1(n − 1),α−1(n −
2),. . .,α−1(0)). As such, we have that subgraph Si is complete for every i ∈ {0, . . . , n − 1};
specifically, Ni(α

−1(i)) induces a complete subgraph of Gi, which when augmented with the
vertex α−1(i) (which shares edges with all of the vertices of Ni(α

−1(i))) yields a complete graph.
Further, due to our construction, and as G is chordal, every induced cycle of G (that is not
a loop) lies in some graph Si with i ∈ {0, . . . , n − 1} and is a three-vertex cycle (triangle)
by definition. In other words, any subset of the set of vertices of G cannot induce a cycle
of G that is not a triangle of some graph Si with i ∈ {0, . . . , n − 1}. In addition, as N is
not trivially inconsistent and as �G-consistency guarantees that all paths of length 2 in G are
�-consistent, we have that the sequence (S0, S1, . . . , Sn−1) of complete graphs corresponds to
the sequence (N0 = (V (S0), C0),N1 = (V (S1), C1), . . . ,Nn−1 = (V (Sn−1), Cn−1)) of completely
overlapping, not trivially inconsistent, and �-consistent QCNs. In particular, the QCNs are

90

5.2. Partial Algebraic Closure and Partial �-consistency

v4

v2

v5

v1

v3v4

v2

v5

v1

v3

(a) (b)

Figure 5.2: Triangulation of the underlying constraint graph of a QCN

completely overlapping in the following sense: each induced cycle of G is a triangle of the complete
graph induced by V (Si) for some i ∈ {0, . . . , n− 1}, and for each j from 1 to n− 1 we obtain a
QCN N ′ =

⋃
j−1≥i≥0Ni, such that N ′[u, v] = Nj [u, v] ∀u, v ∈ (

⋃
j−1≥i≥0 V (Si))∩V (Sj), and we

have that (
⋃
j−1≥i≥0 Si)∩Sj defines a complete graph (see also the notion of pasting for chordal

graphs in [Diestel, 2012, Chapter 5]). As we have now satisfied the prerequisites for guaranteeing
applicability of patchwork for our QCNs, we can derive that

⋃
n−1≥i≥0Ni is a satisfiable QCN (by

applying patchwork n−1 times). As N =
⋃
n−1≥i≥0Ni, we can conclude that N is satisfiable. a

An example of Proposition 19 is shown in Figure 5.2. The constraint graph of a given network
N is shown in the left part of the figure (a). We triangulate this graph by adding edge v2, v3 that
is depicted as a dashed line in the right part of the figure (b). A perfect elimination ordering for
the obtained chordal graph would be the ordering v1 → v3 → v2 → v4 → v5 of its set of nodes. By
enforcing �-consistency on the chordal constraint graph we can check the consistency of network
N considering only 3 triangles of constraints, viz., (v1, v2, v3), (v2, v3, v4), and (v2, v4, v5). If we
had opted to complete the constraint graph and obtain the corresponding complete graph of
order 5, enforcing �-consistency would result in considering a total of 10 triangles of constraints.
In general, the number of cycles of length 3, viz. triangles, in a complete graph G of order n,
denoted by c3(G), is given by the mathematical expression c3(G) = n!/(6(n− 3)!).

Due to Propositions 19 and 16 (at page 54), we can obtain the following result:

Proposition 20 Let N = (V,C) be a QCN of Point Algebra, Cardinal Direction Calculus,
Interval Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA, HnIA,
or Ĥ8, C8, and Q8 respectively, and G = (V,E) a chordal graph such that G(N) ⊆ G. If N is
not trivially inconsistent and �G-consistent, then N is satisfiable.

The result of Proposition 19 can be directly compared with the result of Theorems 11 (at
page 57) and 10 (at page 57), due to the following proposition that correlates tree decompositions
and chordal graphs:

Proposition 21 ([Diestel, 2012]) A graph G is chordal if and only if it has a tree decomposi-
tion (T, {X1, . . . , Xn}) where cluster Xi is a clique of G for every i ∈ {1, . . . , n}.

Proposition 21 suggests that given a QCN N where G is a triangulation of G(N) and (T,X)
a tree decomposition of G, �G-consistency and �X -consistency are equivalent. Of course, we note
that tree decompositions in general do not necessarily yield chordal graphs by themselves, as
the clusters of a tree decomposition may not correspond to cliques. However, as in the case
of �X -consistency the clusters of a tree decomposition (T,X) are treated as cliques where �-
consistency is enforced on each and every one of them, every such tree decomposition corresponds

91

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

A

B

{DC}

C

{EC}

D

E

{TPPI}

{DC,TPPI}

{TPPI}

{DC,TPP}

{DC,TPP}

(a) chordal QCN

A

B

{DC}

C

{EC}

D

E

{TPPI}

{DC,TPPI}

{TPPI}

{DC}

{DC}

(b) standard QCN

Figure 5.3: Pruning capacity of �-consistency restricted to a triangulation of the constraint graph
of a QCN (partial �-consistency) and standard �-consistency on that QCN

to a chordal graph. Thus, our result can be seen as a generalization of both the results of
Theorems 11 and 10, since we also consider more general QCNs and not just atomic ones or
QCNs restricted to Interval Algebra.

Pruning Capacity of Partial �-consistency

Given Proposition 19 presented earlier and the property �(N) ⊆ �G(N) ⊆ N for a QCN N , the
question arises whether more pruning can indeed be obtained by enforcing �-consistency on an
input network rather than �-consistency restricted to a triangulation of the constraint graph
of that network (when considering the common edges of course). Further, if so, it would be
interesting to pinpoint how much more pruning we can obtain, as local consistency conditions
are in general used by satisfiability checking algorithms to efficiently propagate constraints during
search and prune the search space (read the discussion in Section 3.5.2). In addition, it would be
interesting to identify the case (if any) where �-consistency and partial �-consistency have the
exact same pruning capacity.

First, we show that even for tractable subclasses of relations of a given qualitative constraint
language, partial �-consistency does not yield the same pruning capacity as �-consistency in
general.

In Figure 5.3 we present an example of the pruning capacity of enforcing �-consistency re-
stricted to a triangulation of the constraint graph of a QCN (partial �-consistency) and standard
�-consistency on that QCN. For our example we use relations that are contained in all three
maximal tractable subclasses Ĥ8, C8, and Q8 of RCC-8. The (chordal) QCN in Figure 5.3a is
partially �-consistent with respect to its corresponding chordal constraint graph. Dashed edges
represent universal relations. However, the addition of edge {B,C} that completes the constraint
graph, shown in Figure 5.3b, results in the pruning of base relation TPP on the constraints cor-
responding to edges {C,E} and {D,E} when enforcing partial �-consistency with respect to that
complete (and chordal) constraint graph of the QCN, i.e., when enforcing �-consistency on that

92

5.2. Partial Algebraic Closure and Partial �-consistency

4 6 8 10 12 14 16
Average degree (d)

0.000

0.002

0.004

0.006

0.008

0.010

Ra
tio

 in
 %

Pruning capacity of PC over PPC

Figure 5.4: Pruning capacity of �-consistency (PC) over partial �-consistency (PPC)

QCN.
Thus, in the case of tractable QCNs we cannot have a result similar to the one provided

by Bliek and Sam-Haroud who consider convex CSPs and show that the pruning capacity of
enforcing path consistency restricted to a triangulation of the constraint graph of an input
network is equivalent to the pruning capacity of enforcing path consistency on that network
when considering the common edges [Bliek and Sam-Haroud, 1999].

We tried to find out approximately how much more pruning we can obtain on the com-
mon edges when opting to apply �-consistency on an input network rather than �-consistency
restricted to a triangulation of the constraint graph of that network. Therefore, we considered
networks of 100 nodes based on model A(n, d, l) [Renz and Nebel, 2001], with l = 4 (= |B|/2) rela-
tions per edge, and an average degree d between 4.5 and 16.0 with a 0.5 step. For each degree we
created 10000 networks. Regarding model A(n, d, l), network instances with an average degree d
between values 8.0 and 11.0 lie within the phase transition region, where it is equally possible for
networks to be consistent or inconsistent, and, thus, are harder to solve [Renz and Nebel, 2001].
We expect more pruning to occur in that particular region for �-consistency instead of partial
�-consistency, as more reasoning is required in general to decide the �-consistency of a network.
For each network we count the number of base relations that correspond to the common edges
between a triangulation and the completion of its constraint graph, after �-consistency has been
applied restricted to each respective graph. Then, we calculate a ratio ρ, which indicates how
many more base relations were pruned by �-consistency in comparison with partial �-consistency.

The results of our experiment are shown in Figure 5.4. Indeed, we were right on our expecta-
tion, as one can clearly see that the biggest ratios lie within the phase transition region, with the
small exception of degree 11.5, that lies marginally outside 8.0 and 11.0.12 In a sense, we obtain
similar experimental results to those of Bliek and Sam-Haroud in [Bliek and Sam-Haroud, 1999],
for a different kind of CSPs, viz., qualitative constraint networks over infinite domains. It is
important to note that �-consistency is able to prune more relations than partial �-consistency,
but only in a very small percentage. In the best case, the ratio is ∼ 0.009%, which translates to
one more base relation being pruned in every 10 000. Of course, this ratio is particular to RCC-8,
but qualitatively similar results can be obtained for other qualitative constraint languages as
well.

12Some small variations in the graph are normal and expected artifacts of random instance generation.

93

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Next, we present a result that is similar to the aforementioned main result of [Bliek and
Sam-Haroud, 1999], namely, we will show that for a QCN N defined over a maximal distributive
subclass of relations, the pruning capacity of �G-consistency and �-consistency is identical on the
common edges of a chordal graph G with G(N) ⊆ G and the complete graph of N .

First, we recall the following lemma that will allow us to make a chordal graph complete by
adding a single edge at a time and keeping all intermediate graphs chordal:

Lemma 3 ([Bliek and Sam-Haroud, 1999]) If G = (V,E) is a non-complete chordal graph,
then one can add a missing edge {u, v} with u, v ∈ V such that the graph G′ = (V,E ∪ {{u, v}})
is chordal and the graph induced by X = {x | {u, x}, {x, v} ∈ E} is complete.

We now proceed with proving the following result:

Proposition 22 Let N = (V,C) be a QCN defined over a distributive subclass of relations of a
qualitative constraint language that is a relation algebra and for which every �-consistent atomic
QCN is satisfiable, and G = (V,E) a chordal graph such that G(N) ⊆ G. Then, ∀{v, v′} ∈ E we
have that �(N)[v, v′] = �

G(N)[v, v′].

Proof. Suppose that N is �G-consistent and not trivially inconsistent. Note that if N is trivially
inconsistent, we will trivially have that �(N)[v, v′] = �

G(N)[v, v′] = ∅ ∀{v, v′} ∈ E, as desired, by
the dominance property of �G-consistency. We will add to graph G the missing edges one by one
until it becomes a complete graph. We will show that the constraints that correspond to the new
edges can be computed from existing constraints and without revising any existing constraints,
so that for each intermediate chordal graph G′ the network N will be �G′-consistent, and for the
final complete graph KV (KV denotes the complete graph on V) the network N will therefore
be �KV

-consistent, that is, �-consistent. Every edge is added according to Lemma 3 to retain a
chordal graph at all times. Consider graph G as shown in Figure 5.5.

vn−1 vj

x′

Figure 5.5: A non-complete chordal graph G

After adding edge e = {vn−1, vj} to G we obtain graph G′ = (V,E ∪ {e}). As e 6∈ E and
G(N) ⊆ G, initially N [vn−1, vj] = B. Let X = {x | {vn−1, x}, {x, vj} ∈ E} be the set of
variables that induce a complete graph, denoted in grey color in our figure. We will show that
the constraint corresponding to edge e can be computed (in particular, refined from B) as follows.

N [vn−1, vj]←
⋂
x∈X
N [vn−1, x] � N [x, vj] (5.1)

Note that by construction graphs A induced by {vn−1} ∪ X and B induced by X ∪ {vj} are
complete. Let us denote by NA and NB the QCNs of RCC-8 that correspond to graphs A and
B respectively. We need to show that network N is �G′-consistent. In particular, we need to
show that every path π of length 2 that goes through vn−1 and vj is consistent, as every other
path of length 2 is by assumption consistent. We need to consider two cases (reasoning is the

94

5.2. Partial Algebraic Closure and Partial �-consistency

same for symmetrical cases). With x′ ∈ X, either π = 〈vn−1, vj , x
′〉, or π = 〈vn−1, x

′, vj〉. If π =
〈vn−1, vj , x

′〉, we prove that for every base relation of N [vn−1, x
′], there exist base relations for

both N [vn−1, vj] as defined in (5.1) and N [vj , x
′], so that the path is consistent (i.e., N [vn−1, x

′]
⊆ N [vn−1, vj] � N [vj , x

′]). As graph A is complete, NA is �-consistent, and therefore due to
Theorems 2 (at page 35) and 9 (at page 54), NA is weakly globally consistent and minimal. Thus,
for every base relation of N [vn−1, x

′] there exist compatible base relations for all other constraints
in NA, i.e., there exists a scenario for NA, denoted by N SA . As V (A) ∩ V (B) = X induces a
complete graph, the assignment of base relations for every constraint in NA will define a partial
scenario for NB on X. Again, as graph B is complete, NB is �-consistent, and therefore due to
Theorems 2 (at page 35) and 9 (at page 54), NB is weakly globally consistent and minimal, thus,
this partial scenario can be extented to a scenario for NB, denoted by N SB . As such, N [vj , x

′] will
be also characterized by a base relation. Finally, relations N [vn−1, x] and N [x, vj] for all x ∈ X
participating in (5.1) will be characterized by base relations, thus, there exists a base relation for
N [vn−1, vj] too as clearly N SA ∪ N SB is �G-consistent and, thus, satisfiable due to Proposition 19.
If π = 〈vn−1, x

′, vj〉, by equation (5.1) we know that for every base relation of N [vn−1, vj] we can
find base relations for N [vn−1, x

′] and N [x′, vj], so that N [vn−1, vj] ⊆ N [vn−1, x
′] � N [x′, vj] can

hold. a
Then, due to Propositions 1 (at page 21), 16 (at page 54), and 22 we can obtain the following

corollary:

Corollary 18 Let N = (V,C) be a QCN defined over a distributive subclass of relations of Point
Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8, and G = (V,E)
a chordal graph such that G(N) ⊆ G. Then, ∀{v, v′} ∈ E we have that �(N)[v, v′] = �

G(N)[v, v′].

Regarding the minimal labeling problem, due to Theorem 2 (at page 35) and Proposition 22
we can assert the following result:

Theorem 24 Let N = (V,C) be a QCN defined over a distributive subclass of relations of a
qualitative constraint language that is a relation algebra and for which every �-consistent atomic
QCN is satisfiable, and G = (V,E) a chordal graph such that G(N) ⊆ G. If N is not trivially
inconsistent and �G-consistent, then ∀{v, v′} ∈ E we have that C(v, v′) is minimal.

Then, due to Theorem 24 and Propositions 1 (at page 21) and 3 (at page 34) we can obtain
the following corollary:

Corollary 19 Let N = (V,C) be a QCN defined over a distributive subclass of relations of Point
Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8, and G = (V,E)
a chordal graph such that G(N) ⊆ G. If N is not trivially inconsistent and �G-consistent, then
∀{v, v′} ∈ E we have that C(v, v′) is minimal.

Next, we move on to study the implication of partial �-consistency in the redundancy problem
of a QCN. In particular, we will now prove a result that allows us to obtain the same set of
non-redundant relations as the one provided by Lemma 2 (at page 36), more efficiently, through
the use of chordal graphs and partial �-consistency.

Proposition 23 Let N = (V,C) be an all-different QCN defined over a distributive subclass
of relations of a qualitative constraint language that is a relation algebra and for which every
�-consistent atomic QCN is satisfiable, and G = (V,E) a chordal graph such that G(N) ⊆ G.

95

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

If N is not trivially inconsistent and �G-consistent, then a relation �(N)[v, v′] is non-redundant in
�(N), iff we have that {v, v′} ∈ E(G(N)) and N [v, v′] 6= ⋂{N [v, v′′]�N [v′′, v′] | {v, v′′}, {v′′, v′} ∈
E, v′′ 6= v, v′}.

Proof. By Lemma 1 (at page 31) and the fact that for a QCNM we have that �(M) andM are
equivalent, it trivially follows that if {v, v′} 6∈ E(G(N)) then �(N)[v, v′] is redundant in �(N).
We will show that we can have the same set of non-redundant relations as the one suggested in
Lemma 2 (at page 36). Let �(N)[v, v′] with {v, v′} ∈ E(G(N)) be a relation in �(N), then by
Proposition 22 we have that �(N)[v, v′] = �

G(N)[v, v′] (= N [v, v′]). Let G′ = (V,E′ = E ∪ {e})
be the chordal graph that results by adding edge e = {u, v′} to G according to Lemma 3. We
will only consider the general case where |{x | {u, x}, {x, v′} ∈ E}| ≥ 2, as in any other case the
proof is trivial. It suffices to show that the next equation holds:

⋂{�G′(N)[v, v′′] � �G′(N)[v′′, v′] | {v, v′′}, {v′′, v′} ∈ E′, v′′ 6= v, v′} =⋂{�G(N)[v, v′′] � �G(N)[v′′, v′] | {v, v′′}, {v′′, v′} ∈ E, v′′ 6= v, v′} (5.2)

Equation (5.2) states that N [v, v′] is strictly contained in the intersection of all paths of length
2 that start with v and end with v′ in G iff N [v, v′] is strictly contained in the intersection of all
paths of length 2 that start with v and end with v′ in G′. If (5.2) holds, it follows that we can
add all edges necessary to obtain the paths of length 2 that start with v, end with v′, and go
through every v′′ ∈ V \ {v, v′}, and have that

⋂{�G(N)[v, v′′] � �G(N)[v′′, v′] | {v, v′′}, {v′′, v′} ∈
E, v′′ 6= v, v′} =

⋂{�(N)[v, v′′] � �(N)[v′′, v′] | v′′ ∈ V \ {v, v′}}, so that the necessary and
sufficient conditions specified in Lemma 2 (at page 36) and Proposition 23 are equivalent with
respect to deciding the redundancy of �(N)[v, v′]. By contradiction, let us assume that (5.2)
does not hold. In particular, we will assume that b is a base relation that is in the intersection
of all paths of length 2 that start with v and end with v′ in G, but not in the intersection of
all paths of length 2 that start with v and end with v′ in G′. Clearly, this is only possible
when b 6∈ N [v, u] � N [u, v′], where the new relation N [u, v′] is computed according to equation
(5.1) in the proof of Proposition 22, i.e., N [u, v′] is the intersection of all paths of length 2
that start with u and end with v′ in G. Thus, a path π = 〈u, x, v′〉 exists in G such that
b 6∈ N [v, u] � N [u, x] � N [x, v′]. Then, we have that b 6∈ N [v, x] � N [x, v′]. However, both {v, x}
and {x, v′} are in G and we already know that b ∈ N [v, v′′] � N [v′′, v′] for all v′′ ∈ V such that
{v, v′′}, {v′′, v′} ∈ E, thus, b ∈ N [v, x] � N [x, v′]. This is a contradiction, thus, (5.2) holds. a

Then, due to Propositions 1 (at page 21), 3 (at page 34) and 23, we can obtain the following
corollary:

Corollary 20 Let N = (V,C) be an all-different QCN defined over a distributive subclass of
relations of Point Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or
RCC-8, and G = (V,E) a chordal graph such that G(N) ⊆ G. If N is not trivially incon-
sistent and �G-consistent, then a relation �(N)[v, v′] is non-redundant in �(N), iff we have that
{v, v′} ∈ E(G(N)) and N [v, v′] 6= ⋂{N [v, v′′] � N [v′′, v′] | {v, v′′}, {v′′, v′} ∈ E, v′′ 6= v, v′}.

We now discuss some complexity results with respect to partial �-consistency. Clearly, given
a QCN N = (V,C) and a graph G = (V,E), �G-consistency for N can be decided or determined in
O(δ|E|) time, where δ is the maximum vertex degree of G, as for each pair of variables {vi, vj} ∈
E we can have at most δ variables vk ∈ V such that vi, vj , vk forms a triangle in G. Applying or
enforcing �G-consistency onN , i.e., makingN �G-consistent if it is not, requires the implementation
of the partial algebraic closure method through an algorithm. As �G-consistency is essentially �-
constistency restricted to a triangulation of the constraint graph of some network, the algorithms

96

5.2. Partial Algebraic Closure and Partial �-consistency

Algorithm 11: PWC(N , G)
in : A QCN N = (V,C) of a qualitative constraint language that is a relation algebra, and a

graph G = (V,E).
output : �G(N).

1 begin
2 Q ← {(vi, vj) | {vi, vj} ∈ E with 0 ≤ i ≤ j < |V |};
3 while Q 6= ∅ do
4 (vi, vj) ← Q.pop();
5 foreach vk ∈ V | {vi, vk}, {vj , vk} ∈ E do
6 t ← C(vi, vk) ∩ (C(vi, vj) � C(vj , vk));
7 if t 6= C(vi, vk) then
8 C(vi, vk) ← t; C(vk, vi) ← t−1;
9 if i ≤ k then

10 Q ← Q ∪ {(vi, vk)};
11 else
12 Q ← Q ∪ {(vk, vi)};

13 t ← C(vk, vj) ∩ (C(vk, vi) � C(vi, vj));
14 if t 6= C(vk, vj) then
15 C(vk, vj) ← t; C(vj , vk) ← t−1;
16 if k ≤ j then
17 Q ← Q ∪ {(vk, vj)};
18 else
19 Q ← Q ∪ {(vj , vk)};

20 return N ;

that efficiently implement the partial algebraic closure are based on the algorithms for enforcing
�-consistency on a given QCN, such as the WC algorithm we presented in Section 3.5.1.

5.2.1 The PWC Algorithm

An algorithm that implements the partial algebraic closure method, and that is based on the WC
algorithm we presented in Section 3.5.1, is provided in Algorithm 11, called PWC. Similarly to
how constraints are stored in algorithm WC, a queue is assumed as the primary data structure
for storing constraints to be processed. Given a QCN N = (V,C) and a graph G = (V,E), the
queue is initialized with all the pairs of variables in V which correspond to the edges of graph G
(line 2). Like in algorithm WC, standard consistency operations take place (lines 6 and 13), and
whenever a constraint is modified by a reduction of its set of base relations (lines 7 and 14), it
is appropriately added back to the queue (lines 10, 12, 17, and 19). In fact, the only differences
between algorithms WC and PWC are present in lines 2 and 5; these differences restrict the
application of algorithm WC to constraints corresponding to edges of graph G. As such, and due
to Proposition 6 (at page 37), we can assert the following proposition:

Proposition 24 Given a QCN N of a qualitative constraint language that is a relation algebra,
and a graph G = (V,E), algorithm PWC terminates and returns �G(N).

Given a QCN N = (V,C) and a graph G = (V,E), algorithm PWC enforces �G-consistency on
N in O(δ|E||B|) time, where δ is the maximum vertex degree of G, as for each pair of variables
{vi, vj} ∈ E we can have at most δ variables vk ∈ V such that vi, vj , vk forms a triangle in G

97

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

and the constraint corresponding to each such pair of variables can be revised at most |B| times.
The same variations of the WC algorithm that exist with respect to the selection of the next
constraint to be processed, but also the choice of the data structure for storing the constraints to
be processed, exist for the PWC algorithm too. Thus, the discussion on those variations which
took place in Section 3.5.1 applies here as well. However, we need to place some focus on how
a given graph G is stored within our algorithm, as the representation of graph G should allow
obtaining triangles of variables (line 5 of the PWC algorithm) as efficiently as possible. A graph
G is represented as a list, i.e., a sequence of index-value pairs where an index corresponds to some
variable (vertex of the graph G) and its associated value corresponds to the set of its neighbours
in the graph G. When a pair of variables (vi, vj) ∈ V is processed, the intersection between the
sets of neighbours of vertices vi and vj respectively is computed so as to obtain all triangles of
variables the pair of variables (vi, vj) is a part of. In the average case, the time complexity of this
operation is min({O(|N(vi)|), O(|N(vj)|)}) for any robust implementation. It should be clear
that the greater the maximum vertex degree of graph G, the greater the time complexity of the
previous operation will be. As such, the PWC algorithm is mostly suitable for QCNs with large
and sparse constraint graphs. However, for smaller QCNs one could precompute and store all
triangles of variables prior to the execution of the PWC algorithm. This works particularly well
when dealing with very hard to solve problems, such as the minimal labeling problem, which we
will discuss in the sequel.

5.2.2 The iPWC Algorithm

In this section, we present an algorithm that enforces partial �-consistency incrementally and is
able to reduce the number of consistency operations and constraint revisions that occur in the
standard PWC algorithm. In particular, given a QCN N = (V,C) and some graph G, the new
algorithm begins with a QCN that is defined on a single variable of N , for example N ↓{v} for
some v ∈ V , and augments that QCN with a new variable of V each time, while maintaining
�
G-consistency in the process, until it constructs the �G-consistent QCN of N on V . The idea is
very simple, yet quite powerful as we will see in the sequel. The term “incremental” has been
used in the literature to describe the problem of maintaining or enforcing partial �-consistency
for a fixed-sized network where new constraints among existing variables are added or existing
constraints are tightened. This approach is well described in the work of Gerevini [Gerevini, 2005]
for qualitative temporal reasoning (where complete constraint graphs are considered and, thus,
partial �-consistency is identical to �-consistency [Bliek and Sam-Haroud, 1999, chapt. 6]) and
the work of Planken et al. for the Simple Temporal Problem (STP) [Planken et al., 2010]. These
approaches differ from the algorithm that we will present, in that we consider extensions of a given
network with new spatial or temporal entities accompanied by new sets of constraints, and not
just subsequent edge tightenings within a fixed-sized network. In other words, our algorithm can
be considered as a vertex-incremental approach, whereas the aforementioned related approaches
can be considered as being edge-incremental.

Before we present the algorithm, we introduce some notations. Given a QCN N = (V,C) and
a graph G = (V,E), and a QCN N ′ = (V ′, C ′) and a graph G′ = (V ′, E′) such that V ′ \V = {v}
and ∀{u, u′} ∈ E′ we have that u = v or u′ = v, N]N ′ yields the QCN N ′′ = (V ′′, C ′′), where
V ′′ = V ∪V ′, C ′′(v, v′) = C ′′(v′, v) = B for all (v, v′) ∈ (V \V ′)×(V ′\V), C ′′(v, v′) = C(v, v′) for
all (v, v′) ∈ (V × V), and C ′′(v, v′) = C ′(v, v′) and C ′′(v′, v) = C ′(v′, v) for all (v, v′) ∈ {v}× V ′.
The] operation on QCNs is presented in Figure 5.6.

Next, we introduce a function that receives a �G-consistent QCN N = (V,C) with respect
to a graph G = (V,E), and a QCN N ′ = (V ′, C ′) along with a graph G′ = (V ′, E′) such that

98

5.2. Partial Algebraic Closure and Partial �-consistency

x

y

z{DC,EC}

{EC,PO}

{PO, TPP}

x

y

w
B

{DC,PO, TPP}

{NTPP}

N N ′

x

y

z{DC,EC}

{EC,PO}

{PO, TPP}

w

{DC,PO, TPP}

{NTPP}

N1]N2

B

x

y

z

G

x

y

w

G′

Figure 5.6: The] operation on two QCNs accompanied by their respective graphs

V ′ \ V = {v} and u = v or u′ = v ∀{u, u′} ∈ E′, and returns the �G′′-consistent QCN N] N ′,
where G′′ = (V ∪ V ′, E ∪ E′). The function is called AugmentQCN, presented in Algorithm 12.
Regarding function AugmentQCN, we prove the following lemma:

Lemma 4 Given a graph G = (V,E), a graph G′ = (V ′, E′) such that V ′ \ V = {v} and u = v
or u′ = v ∀{u, u′} ∈ E′, and a �G-consistent QCN N = (V,C) and a QCN N ′ = (V ′, C ′) of a
qualitative constraint language that is a relation algebra, function AugmentQCN terminates and
returns �G′′(N]N ′), where G′′ = (V ∪ V ′, E ∪ E′).

Proof. Due to Proposition 24 (at page 97), after AugmentQCN has terminated, N ′ will be
�
G′-consistent, as function AugmentQCN is equivalent to a variant of algorithm PWC that considers
a set of edges E ∪E′ (line 6), which is a superset of the set of edges E that would otherwise be
considered by the standard algorithm PWC when given N ′ and G′ as its input. Let (i, j, k) be
a triangle of variables that is introduced in N]N ′ due to the augmentation of N with N ′. In
particular, let {i, k}, {j, k} ∈ E′, and {i, j} ∈ E, and {k} = V ′ \ V . Since N is by assumption
�
G-consistent, it suffices to show that function AugmentQCN can correctly enforce �-consistency
on those triangles of variables; any revised constraint corresponding to a pair of variables in
the �-consistent triangles of variables will be added to the queue for revision and all possibly
affected paths of length 2 in G′′ will be treated by function AugmentQCN exactly as they would
be treated by algorithm PWC, hence, �G′′-consistency on N] N ′ will be correctly established.

99

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Algorithm 12: AugmentQCN(N , N ′, G, G′)
in : A graph G = (V,E), a graph G′ = (V ′, E′) such that V ′ \ V = {v} and u = v or u′ = v

∀{u, u′} ∈ E′, and a �G-consistent QCN N = (V,C) and a QCN N ′ = (V ′, C ′) of a
qualitative constraint language that is a relation algebra.

output : �G′′(N]N ′), where G′′ = (V ∪ V ′, E ∪ E′).
1 begin
2 N ′′ = (V ′′, C ′′)← N]N ′;
3 Q ← {(vi, vj) | {vi, vj} ∈ E′ with 0 ≤ i ≤ j < |V |};
4 while Q 6= ∅ do
5 (vi, vj) ← Q.pop();
6 foreach vk ∈ V | {vi, vk}, {vj , vk} ∈ E ∪ E′ do
7 t ← C ′′(vi, vk) ∩ (C ′′(vi, vj) � C ′′(vj , vk));
8 if t 6= C ′′(vi, vk) then
9 C ′′(vi, vk) ← t; C ′′(vk, vi) ← t−1;

10 if i ≤ k then
11 Q ← Q ∪ {(vi, vk)};
12 else
13 Q ← Q ∪ {(vk, vi)};

14 t ← C ′′(vk, vj) ∩ (C ′′(vk, vi) � C ′′(vi, vj));
15 if t 6= C ′′(vk, vj) then
16 C ′′(vk, vj) ← t; C ′′(vj , vk) ← t−1;
17 if k ≤ j then
18 Q ← Q ∪ {(vk, vj)};
19 else
20 Q ← Q ∪ {(vj , vk)};

21 return N ′′;

Regarding the triangle of variables (i, j, k), and assuming without loss of generality that k < i, j,
function AugmentQCN will initially include edges (k, i) and (k, j) in its queue. With respect to
edge (k, i), function AugmentQCN will perform the following consistency checks:

(N]N ′)[k, j] 6= (N]N ′)[k, j] ∩ ((N]N ′)[k, i] � (N]N ′)[i, j])

(N]N ′)[j, i] 6= (N]N ′)[j, i] ∩ ((N]N ′)[j, k] � (N]N ′)[k, i])
With respect to edge (k, j), function AugmentQCN will perform the following consistency oper-
ations:

(N]N ′)[k, i] 6= (N]N ′)[k, i] ∩ ((N]N ′)[k, j] � (N]N ′)[j, i])
(N]N ′)[i, j] 6= (N]N ′)[i, j] ∩ ((N]N ′)[i, k] � (N]N ′)[k, j])

We notice that out of all possible paths of length 2 in the the triangle of variables (i, j, k),
we miss the ones corresponding to the following consistency operations:

(N]N ′)[j, k] 6= (N]N ′)[j, k] ∩ ((N]N ′)[j, i] � (N]N ′)[i, k])

(N]N ′)[i, k] 6= (N]N ′)[i, k] ∩ ((N]N ′)[i, j] � (N]N ′)[j, k])

However, as our qualitative constraint language is a relation algebra, due to −1-involution
and −1-involutive distributivity we have that:

(N]N ′)[j, k] 6= (N]N ′)[j, k] ∩ ((N]N ′)[j, i] � (N]N ′)[i, k]) iff

100

5.2. Partial Algebraic Closure and Partial �-consistency

Algorithm 13: iPWC(N , G)
in : A QCN N = (V,C) of a qualitative constraint language that is a relation algebra, and a

graph G = (V,E).
output : �G(N).

1 begin
2 Vars← ∅;
3 GVars ← (Vars, ∅);
4 N ′ ← (∅,Null);
5 foreach v ∈ V do
6 Vars← Vars ∪ {v};
7 V ′ ← {v} ∪ {u ∈ Vars | {v, u} ∈ E};
8 G′ ← (V ′, {{v, u} | {v, u} ∈ E});
9 N ′ ← AugmentQCN(N ′,N↓V ′ , GVars, G

′);
10 GVars ← (Vars, E(GVars) ∪ E(G′));

11 N ← N ′;
12 return N ;

((N]N ′)[j, k])
−1 6= ((N]N ′)[j, k])

−1 ∩ (((N]N ′)[j, i] � (N]N ′)[i, k]))
−1 iff

(N]N ′)[k, j] 6= (N]N ′)[k, j] ∩ (((N]N ′)[i, k])
−1 � ((N]N ′)[j, i])−1

) iff

(N]N ′)[k, j] 6= (N]N ′)[k, j] ∩ ((N]N ′)[k, i] � (N]N ′)[j, i])

Similarly, we have that:

(N]N ′)[i, k] 6= (N]N ′)[i, k] ∩ ((N]N ′)[i, j] � (N]N ′)[j, k]) iff

((N]N ′)[i, k])
−1 6= ((N]N ′)[i, k])

−1 ∩ (((N]N ′)[i, j] � (N]N ′)[j, k]))
−1 iff

(N]N ′)[k, i] 6= (N]N ′)[k, i] ∩ (((N]N ′)[j, k])
−1 � ((N]N ′)[i, j])−1

) iff

(N]N ′)[k, i] 6= (N]N ′)[k, i] ∩ ((N]N ′)[k, j] � (N]N ′)[i, j])

Thus, the consistency operations performed by function AugmentQCN are already sufficient
for enforcing �-consistency in the triangle of variables (i, j, k). a

Next we present our algorithm that enforces partial �-consistency incrementally and is able to
reduce the number of consistency operations and constraint revisions that occur in the standard
PWC algorithm, as demonstrated in the proof of Lemma 4, but as we will also demonstrate with
a running example and an evaluation in the sequel. Our algorithm is presented in Algorithm 13
and is called iPWC. Given a QCN N = (V,C) and some graph G, algorithm iPWC essentially
begins with a QCN that is defined on a single variable of N (and that is by default and by
definition �-consistent), for example N ↓{v} for some v ∈ V , and augments that QCN with a new
variable of V each time, while maintaining �G-consistency in the process, until it constructs the
�
G-consistent QCN of N on V . Regarding algorithm iPWC, and due to Lemma 4, we can assert
the following proposition:

Proposition 25 Given a QCN N of a qualitative constraint language that is a relation algebra,
and a graph G = (V,E), algorithm iPWC terminates and returns �G(N).

101

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

0 3

1 2

TPP

EQ

DC ∨ EC

EC

*

0 ≡ 3

2

1

(a) consistent QCN along with a solution

0 3

1 2

EQ

DC

EQ

EQ

*

(b) inconsistent QCN

Figure 5.7: QCNs with respect to their constraint graphs

Starting with a single-entity QCNN1 and extending it with a new QCNNi of one new entity at
a time applying AugmentQCN a total of n−1 times for a given set of n entities (thus, 2 ≤ i ≤ n),
it follows that we will perform O(δ2|E2||B| + . . . + δn|En||B|) intersection and composition
operations on average for constructing a partially �-consistent QCN of n temporal or spatial
entities, where δi is the maximum vertex degree of graph ((G1 ∪ G2) ∪ . . .) ∪ Gi and O(|Ei|) is
the number of constraints that the new QCN Ni contributes to QCN ((N1]N2)] . . .)]Ni. As
δ2 ≤ . . . ≤ δn and |E2|∪ . . .∪|En| = |E|, it follows that the complexity of iPWC is asymptotically
upper bounded by O(δn|E||B|), which is the complexity of PWC. Thus, we increase on average
the performance of applying partial �-consistency with respect to algorithm PWC, and retain the
same worst-case complexity as algorithm PWC.

Running Example

Before moving on to our running example to better understand how algorithm iPWC and its
core function AugmentQCN operate, it is important to explain the notions of processed edges and
constraint checks. Given a QCN N = (V,C) and vi, vk, vj ∈ V , and a graph G = (V,E), an edge
e ∈ E is processed whenever it is popped out of the queue (line 5 in function AugmentQCN),
and a constraint check is performed whenever we compute relation r = C(vi, vj) ∩ (C(vi, vk)
� C(vk, vj)) and check if r ⊂ C(vi, vj), so that we can propagate its constrainedness (lines 7–8
and 14–15 in function AugmentQCN). In our running example we demonstrate how algorithm
iPWC is able to perform better than the one-shot partial �-consistency algorithm PWC presented
earlier. In what follows, we always give the graph G∪G′ of QCN N]N ′ as input to AugmentQCN
to facilitate description, as the initial network N along with graph G, and its augmentation N ′
along with graph G′, are easily identifiable at each step by viewing the figures and following our
line of reasoning.

Case of a satisfiable QCN. 13 Let us consider the satisfiable QCN of RCC-8 shown in Fig-
ure 5.7a. We will first build a partially �-consistent version of this network incrementally, using
function AugmentQCN repeatedly and exactly as it would be used by algorithm iPWC. We begin
with node 0 and add nodes 1, 2, and 3 one at each step. We always pop edges from the left of the
queue and push them to the right of it (i.e., in a right to left FIFO manner), and whenever needed
we use the converse relation corresponding to the constraint of an edge. First, ({0}, ∅) is given
as input to AugmentQCN with no edges whatsoever, the queue is initialized with an empty set

13To be exact, we consider a satisfiable QCN whose satisfiability can be detected by partial �-consistency.

102

5.2. Partial Algebraic Closure and Partial �-consistency

of edges, no edges are processed, and, thus, no constraint checks occur. Then, ({0, 1}, {{0, 1}})
is given as input to AugmentQCN, the queue is initialized with the set of edges {(0, 1)}, a single
edge is processed, and no constraint checks occur as there are no triangles in the network. Then,
({0, 1, 2}, {{0, 1}, {0, 2}, {1, 2}}) is given as input to AugmentQCN, the queue is initialized with
the set of edges {(1, 2)}, viz., the constraint edges that accompany the newly inserted entity 2.
Edge (0, 2) is not included in the queue as it corresponds to the universal relation B and we do not
consider it at all during initialization (this detail is not provided in algorithm iPWC). (The weak
composition between B and any other relation always yields the latter relation.) Edge (1, 2) is
popped out of the queue. Two constraint checks take place among edges {0, 1}, {0, 2}, and {1, 2},
leading to the pruning of the universal relation B corresponding to edge (0, 2) into the relation
DC ∨ EC, and edge (0, 2) is inserted in the queue which now holds the set of edges {(0, 2)}.
Edge (0, 2) is popped out of the queue. Two constraint checks take place among edges {0, 1},
{0, 2}, and {1, 2}, leading to no pruning of the relations corresponding to edges {0, 1} and {1, 2}.
Finally, ({0, 1, 2, 3}, {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {2, 3}}) is given as input to AugmentQCN, the
queue is initialized with the set of edges {(0, 3), (2, 3)}. Both edges are popped out of the queue,
each one leading to two constraint checks, with no further pruning of relations. In total we have
processed 5 edges and performed 8 constraint checks.

We now proceed with algorithm PWC. First, ({0, 1, 2, 3}, {{0, 1}, {0, 2}, {0, 3}, {1, 2},
{2, 3}}) is given as input to PWC. The queue is initialized with the set of edges {(0, 1), (0, 3),
(1, 2), (2, 3)}. Edge (0, 1) is popped out of the queue. Two constraint checks take place among
edges (0, 1),(0, 2), and (1, 2), leading to the pruning of the universal relation B corresponding to
edge (0, 2) into the relation DC ∨EC. Edge (0, 2) is inserted in the queue which now holds the
set of edges {(0, 3), (1, 2), (2, 3), (0, 2)}. All edges are popped out of the queue with no further
pruning of relations. Edges (0, 3), (1, 2), and (2, 3) lead to two constraint checks each, and edge
(0, 2) to four, as it is part of two triangles. In total we have processed 5 edges and performed
12 constraint checks. PWC proccesses the same number of edges as iPWC, but performs 4 more
constraint checks. The numbers may vary a bit depending on the order of the edges in the ini-
tialized queue (in our running example we have considered a sorted initial queue of edges), but
the trend is that for satisfiable QCNs, iPWC will perform less constraint checks than PWC, and
will process only slightly more edges than PWC, depending on whether an edge already exists
in the queue or not. (As PWC works with a large initial queue, an edge might not have to be
pushed/popped as often as it may already exist in the queue.)

Case of an unsatisfiable QCN. 14 Let us consider now the unsatisfiable QCN of RCC-8 shown
in Figure 5.7b. Regions 0, 1, 2, and 3 are all equal to each other (they are essentially the one
same region), thus, regions 0 and 3 cannot be disconnected. We will not go into detail as we
did with the case of the satisfiable QCN, by now the reader should be able to verify (assuming a
sorted initial queue of edges in every case) that iPWC processes in total 4 edges and performes
5 constraint checks, while PWC processes in total 2 edges and performes 3 constraint checks.
In fact, Figure 5.7b describes the worst case scenario for iPWC+, i.e., an inconsistency that
occurs when the last temporal or spatial entity is added to the network. By that point iPWC
will already have fully reasoned with all previous entities and their accompanying constraints.
On the other hand, PWC will always do a first iteration of the queue, and might be able to
immediately capture the inconsistency, as with our running example. Again, the numbers may
vary a bit depending on the order of the edges in the initialized queue, but the trend is that for
unsatisfiable QCNs, iPWC will perform more constraint checks than PWC, and will process more

14To be exact, we consider an unsatisfiable QCN whose unsatisfiability can be detected by partial �-consistency.

103

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

edges than PWC too.

Concluding our running example, we have observed that iPWC should perform better than
PWC in the case of satisfiable QCNs and worse than PWC in the case of unsatisfiable QCNs.
Further, iPWC works with a very small queue at each step. It is natural that a �-consistency
enforcing algorithm will run faster when there is an inconsistency in the input network, as the
inconsistency will potentially not allow the algorithm to reason exhaustively with the network
relations. Thus, we expect that the overall performance of iPWC should be better than that of
PWC in the average case. We are about to experimentally verify this in the next section.

Experimental evaluation

We evaluate the performance of an implementation of the iPWC algorithm against an implemen-
tation of the PWC algorithm for enforcing partial �-consistency on triangulations of constraint
graphs of QCNs. Note that by definition partial �-consistency does not involve chordal graphs,
but as chordal graphs play an important role in deciding the satisfiability of QCNs (see Propo-
sition 19) it is why we consider triangulations of constraint graphs of QCNs.15

Technical Specifications The experimentation was carried out on a computer with an Intel
Core 2 Duo P7350 processor with a 2.00 GHz frequency per CPU core, 4 GB RAM, and the
Lucid Lynx x86_64 OS (Ubuntu Linux). The implementations of iPWC and PWC were run with
the CPython interpreter that implements Python 2.6 (http://www.python.org/). Only one of
the CPU cores was used for the experiments. The implementations of iPWC and PWC can be
found online in the following address: http://www.cril.fr/~sioutis/work.php.

Dataset and Measures We considered random datasets consisting of large Interval Algebra
and RCC-8 networks generated by the BA(n,m) model [Barabasi and Albert, 1999], which we
introduce here, and the standard A(n, d, l) model [Renz and Nebel, 2001] used extensively in
literature.

The BA(n,m) model creates random scale-free graphs of order n and a preferential attachment
value m. We provide the following simple definition of a scale-free graph and elaborate on the
details:

Definition 38 Graphs with a power law tail in their node degree distribution are called scale-free
graphs.

The degree of a node in a graph is the number of connections it has to other nodes (i.e.,
the number of its neighbours) and the degree distribution P (k) is the probability distribution of
these degrees over the whole graph, i.e, P (k) is defined to be the fraction of nodes in the network
with degree k. Thus, if there is a total number of n nodes in a graph and nk of them have degree
k, we have that P (k) = nk/n. For scale-free graphs the degree distribution P (k) follows a power
law which can be expressed mathematically as P (k) ' k−γ , where 2 < γ < 3, although γ can lie
marginally outside these bounds [Choromański et al., 2013].

There are several models to create random scale-free graphs that rely on growth and prefer-
ential attachment [Bollobás, 2003]. Growth denotes the increase in the number of nodes in the
graph over time. Preferential attachment refers to the fact that new nodes tend to connect to

15In the sequel, we will see that in the presense of the patchwork property alone and the absence of any other
property, chordal graphs pose a minimal requirement for deciding the satisfiability of a QCN.

104

http://www.python.org/
http://www.cril.fr/~sioutis/work.php

5.2. Partial Algebraic Closure and Partial �-consistency

Algorithm 14: BA-Graph(n, m)
in : The number of nodes n, and the number of edges to attach from a new node to existing

nodes m.
output : A scale-free graph G.

1 begin
2 if m < 1 or m ≥ n then
3 raise RuntimeError, “Invalid operation”;

4 V ← {0, . . . ,m− 1}; E ← ∅;
5 targets ← V ;
6 repeatedNodes ← list(∅);
7 source ← m;
8 while source < n do
9 V ← V

⋃{source}; E ← E
⋃{(source, i) | i ∈ targets };

10 foreach i ∈ targets do
11 repeatedNodes.append(i);
12 repeatedNodes.append(source);

13 targets ← ∅;
14 while |targets| < m do
15 x ← random.choice(repeatedNodes);
16 targets.add(x);

17 source ← source + 1;

18 return G = (V,E);

existing nodes of large degree, which means that the more connected a node is, the more likely
it is to receive new links. Such higher degree nodes appear in descriptions of real-world networks
and have stronger ability to grab links added to the network [Barabasi and Albert, 1999]. For
example, if we were to describe the topological relations in Greece, Greece would be our major
hub that would relate topologically to all of its regions and cities, followed by smaller hubs that
would capture topological relations within the premises of a city or a neighborhood. It would
not really make sense to specify that the porch of a house is located inside Greece, when it is
already encoded that the house is located inside a city of Greece. Such natural and human-
made systems are most often described by scale-free graphs [Barabasi and Bonabeau, 2003;
Hein et al., 2006; Steyvers and Tenenbaum, 2005; Barabasi and Albert, 1999]. Further, in this
case Greece would be the higher degree node that would relate topologically to new regions (e.g.,
Imbros) in a deterministic and natural manner. In mathematical terms, preferential attachment
means that the probability that an existing node i with degree ki acquires a link with a new node
is p(ki) ' ki∑

j kj
. Among the different models to create random scale-free graphs, the Barabási-

Albert (BA) model is the most well-studied and widely known one [Barabasi and Albert, 1999;
Albert and Barabási, 2002]. The BA model considers growth and preferential attachment as
follows. Regarding growth, it starts with an initial number m0 of connected nodes and at each
following step it adds a new node with m ≤ m0 edges that link the new node to m different exist-
ing nodes in the graph. When choosing the m different existing nodes to which the new node will
be linked, the BA model assumes that the probability p that the new node will be connected to
node i depends on the degree ki of node i with a value given by the expression p = ki∑

j kj
, which

is the preferential attachment that we mentioned earlier. The degree distribution resulting from
the BA model is a power law of the form P (k) ' k−3, thus, it is able to create a subset of all the
scale-free graphs that are characterised by a value γ such that 2 < γ < 3. The scaling exponent

105

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

(a) regular graph (b) scale-free graph

Figure 5.8: Structures of a random regular graph with an average degree k = 9 and a scale-free
graph with a preferential attachment m = 2, both having 100 nodes

is independent of m, the only parameter in the model (other than the order of the graph one
would like to obtain of course). An algorithm that constructs a scale-free graph according to the
BA model is presented in Algorithm 14.

Scale-free graphs are particularly attractive when trying to retain the sparseness of graphs
(as partial �-consistency does) because they have the following characteristics:

• scale-free graphs are always sparse [Del Genio et al., 2011; Steyvers and Tenenbaum, 2005];

• scale-free graphs have a clustering coefficient distribution that also follows a power law,
which implies that many low-degree nodes are clustered together forming very dense sub-
graphs that are connected to each other through major hubs [Dorogovtsev et al., 2002].

Due to the aforementioned characteristics, scale-free graphs present themselves as excel-
lent candidates for triangulation, as sparseness keeps time complexity for triangulation low and
chordal graphs also exhibit a clustering structure [Golumbic, 2004], thus, they are able to fit
scale-free graphs quite effectively. As an illustration of scale-free graphs, Figure 5.8 depicts a
random regular graph, such as the ones used for experimental evaluation in the field of qualita-
tive constraint-based reasoning, and a random scale-free graph generated using the BA model.
Note that the bigger the node is, the higher its degree is (these are the hubs). An algorithm
that implements this model and generates QCNs of scale-free constraint graphs is shown in Al-
gorithm 15. For model BA(n,m) the average number of base relations per edge defaults to |B|/2,
where B is the set of base relations of the considered qualitative constraint language.

We describe the dataset used with regard to model BA(n,m). For RCC-8 we considered
30 networks for each size between 1000 and 10000 nodes with a 1000 step and a preferential
attachment value of m = 2. For this specific value of m and for the network sizes considered,
we found the networks to lie within the phase transition region, where it is equally possible for
networks to be satisfiable or unsatisfiable, thus, they are harder to solve. For IA we considered 30
networks for each size between 500 and 5000 nodes with a 500 step and a preferential attachment

106

5.2. Partial Algebraic Closure and Partial �-consistency

Algorithm 15: BA(n, m, A = ∅)
in : The number of nodes n, the number of edges to attach from a new node to existing

nodes m, and an optional subclass A.
output : A scale-free network N = (V,C).

1 begin
2 G ← BA-Graph(n, m);
3 V ← V (G);
4 C ← map({((v, v′) : (B if v 6= v′ else {EQ})) | v, v′ ∈ V (G)});
5 foreach {v, v′} ∈ E(G) do
6 C(v, v′) ← random.choice(2B if A = ∅ else A); C(v′, v) ← (C(v, v′))−1;

7 return N = (V,C);

value of m = 3. We found that for this specific value of m and for the network sizes considered,
the networks lie within the phase transition region, similarly to what was observed in the case of
RCC-8. However, we note that the phase transition for Interval Algebra occurs for a greater value
of m (viz., m = 3) than the value of m for RCC-8 (viz., m = 2). This is probably because Interval
Algebra is a bigger calculus than RCC-8, containing 13 base relations instead of 8 respectively,
which allows for satisfiable networks to be denser as there are more relations to be pruned and
more relations that can support consistency in the network.

Regarding model A(n, d, l), we considered 50 QCNs of RCC-8 of 1000 variables and 50 QCNs of
Interval Algebra of 500 variables in the phase transition region. As a reminder, and with respect
to model A(n, d, l), n stands for the number of nodes in a given network, d for the average
degree of its constraint graph, and l for the number of relations per edge in the constraint
graph. Regarding RCC-8, the phase transition region is obtained for values l = 4(= |B|/2) and
8.0 ≤ d ≤ 11.0 [Renz and Nebel, 2001], and regarding Interval Algebra, the phase transition
region is obtained for values l = 6.5(= |B|/2) and 9.0 ≤ d ≤ 12.0 [Nebel, 1997].

Regarding measures, our experimentation involves the average number of constraint checks
performed and te average number of edges processed by a local consistency enforcing algorithm
implementation, as well as the average and median (elapsed) CPU time of its operation. Note
that the latter measures are strongly correlated with the first ones, as the runtime of local
consistency enforcing algorithm implementations relies heavily on the number of constraint checks
performed and edges processed by those implementations.

Results With regard to model BA(n,m), and RCC-8 in particular, on the average case, i.e.,
when all networks are considered, iPWC processes around 26.8% more edges than PWC, as
shown in Figure 5.9a, iPWC performs around 15.3% less consistency checks than PWC, as shown
in Figure 5.9b, and, finally, regarding average CPU time, iPWC runs around 18.9% faster than
PWC, and 21.3% faster in the final step where networks of 10000 nodes are considered, as shown
in Figure 5.9c; for the networks of 10000 nodes, iPWC runs using an average time of 15.3 sec
per network and PWC using an average time of 19.4 sec per network. In Figure 5.9d we can also
see the median CPU time for satisfiable and unsatisfiable networks. The interesting thing to
note is that in the case of unsatisfiable networks the median allows us to discard some outlying
measurements that influence the average CPU time in Figure 5.9c. As our dataset consists of
a little more than 50% unsatisfiable networks for almost all network sizes, the diagram for the
median CPU time for the combined dataset of satisfiable and unsatisfiable networks is very close
to the dataset of the unsatisfiable networks only, as in almost all cases the median corresponds
to the CPU processing time of an unsatisfiable network. Thus, we did not include this diagram

107

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

0

5000

10000

15000

20000

25000

30000

35000

Av
er

ag
e

of

 p
ro

ce
ss

ed
 e

dg
es

PWC (all QCNs)
iPWC (all QCNs)
PWC (satisfiable QCNs)
iPWC (satisfiable QCNs)
PWC (unsatisfiable QCNs)
iPWC (unsatisfiable QCNs)

(a) Average # of processed edges

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

0

10000

20000

30000

40000

50000

Av
er

ag
e

of

 c
on

st
ra

in
t c

he
ck

s

PWC (all QCNs)
iPWC (all QCNs)
PWC (satisfiable QCNs)
iPWC (satisfiable QCNs)
PWC (unsatisfiable QCNs)
iPWC (unsatisfiable QCNs)

(b) Average # of constraint checks

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

0

5

10

15

20

25

30

35

40

Av
er

ag
e

C
PU

 ti
m

e
(s

ec
)

PWC (all QCNs)
iPWC (all QCNs)
PWC (satisfiable QCNs)
iPWC (satisfiable QCNs)
PWC (unsatisfiable QCNs)
iPWC (unsatisfiable QCNs)

(c) Average CPU time (sec)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

0

5

10

15

20

25

30

35

40
M

ed
ia

n
C

PU
 ti

m
e

(s
ec

)

PWC (satisfiable QCNs)
iPWC (satisfiable QCNs)
PWC (unsatisfiable QCNs)
iPWC (unsatisfiable QCNs)

(d) Median CPU time (sec)

Figure 5.9: Performance comparison of iPWC and PWC for RCC-8 networks

as it turned out to be pretty erratic and does not offer any additional information anyway.
With regard to model BA(n,m), and Interval Algebra in particular, on the average case,

iPWC runs around 27.4% faster than PWC, and 34.4% faster in the final step where networks of
5000 nodes are considered; for the networks of 5000 nodes, iPWC runs using an average time of
44 sec per network and PWC using an average time of 67.1 sec per network.

With regard to model A(n, d, l), it should suffice to note that our experimentation yielded
qualitatively similar results to those regarding model BA(n,m). In particular, for 50 RCC-8
networks of 1000 nodes and 50 IA networks of 500 nodes in the phase transition region there was
a speed-up of around 20% and 30% respectively.

At this point we conclude our experimentation. We have demonstrated that iPWC performs
better than PWC on average for random QCNs of IA and RCC-8. It should be noted that since
iPWC works with a small queue in each incrementation step (as it initially considers only the
constraints of a single network augmentation), in contrast to the queue utilized by PWC, iPWC
is also much more memory efficient.

108

5.3. Directional Algebraic Closure and Directional �-consistency

5.3 Directional Algebraic Closure and Directional �-consistency
Given a QCN N = (V,C), the method of directional algebraic closure (also called directional
closure under weak composition) removes certain base relations that are guaranteed to not par-
ticipate in any solution of N by closing N under weak composition with respect to a particular
ordering of its set of variables, i.e., with respect to a particular direction only. In particular,
the directional algebraic closure applies the following iterative operation until a fixed state is
reached:

∀vi, vk, vj ∈ V such that i, j < k, C(vi, vj)← C(vi, vj) ∩ (C(vi, vk) � C(vk, vj))

Clearly, the method of directional algebraic closure considers less consistency operations than the
method of algebraic closuse (which closes a given QCN with respect to all possible permutations
of its set of variables and, hence, with respect to all possible directions). As such, the directional
algebraic closure method is sound as it only removes base relations that do not participate in
any solution of a given qualitative constraint network, but is not complete for deciding the
satisfiability of any qualitative constraint network, i.e., we cannot conclude the satisfiability of
an arbitrary qualitative constraint network if the directional algebraic closure method does not
result in the assignment of the empty relation ∅ to a constraint of the network at hand. We will
now present a local consistency, called directional �-consistency, or simply ←−� -consistency, that
is directly related to the algebraic closure method and results from restricting �-consistency, as
presented in Section 3.5.1, to a particular ordering of the set of variables of an input network.

Definition 39 A QCN N = (V = {v0, v1, . . . , vn−1}, C) is said to be directionally �-consistent,
or, simply,←−� -consistent, if and only if we have that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj), ∀vi, vk, vj ∈
V with i, j < k.

Given a QCN N = (V,C) with some ordering of its variables, the ←−� -consistent QCN of N
obtained after the application of the directional algebraic closure method on N with respect to
that ordering of its variables is equivalent to N and unique with respect to that ordering of its
variables. However, it should be noted that given two different orderings of the set of variables
of N , the respective directionally �-consistent QCNs of N may differ in some of their constraints.
The ←−� -consistent QCN of N (with respect to a considered ordering of its set of variables) is
called the closure of N under directional �-consistency and it is denoted by ←−� (N). Network
←−� (N) corresponds to the largest (with respect to ⊆) ←−� -consistent sub-QCN of N with respect
to some ordering of its set of variables). Given two QCNs N = (V,C) and N ′ = (V,C ′), and a
particular ordering of the set of variables V , we can prove the following properties with respect
to ←−� -consistency:

• �(N) ⊆ ←−� (N) ⊆ N (Dominance);

• ←−� (N) is equivalent to N (Equivalence);

• ←−� (←−� (N)) = ←−� (N) (Idempotence);

• if N ′ ⊆ N then ←−� (N ′) ⊆ ←−� (N) (Monotonicity).

The aforementioned properties follow directly from the fact that ←−� -consistency corresponds
to �-consistency restricted to a particular ordering of the set of variables of an input network.
For simplicity, in what follows, when we state that a QCN is ←−� -consistent, the ordering of the

109

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

variables of that QCN for the use case at hand will be implicitly considered. That ordering, if
not provided separately, will be specified by the subscripts of the variables. For instance, a set
of variables {v0, v1, . . . , vn−1} specifies the ordered sequence of variables (v0, v1, . . . , vn−1). Next,
we will show how ←−� -consistency can be used to decide the satisfiability of QCNs under certain
conditions. To this end, it will be necessary to introduce the following result by Long and Li:

Theorem 25 ([Long and Li, 2015]) Let N = (V = {v0, v1, . . . , vn−1}, C) be a QCN defined
over a distributive subclass of relations of a qualitative constraint language that is a relation
algebra and for which every �-consistent atomic QCN is satisfiable. If we have that C(vi, vj) ⊆
C(vi, vn−1) � C(vn−1, vj) for all vi, vj ∈ V with i, j < n− 1, then N↓V \{vn−1} is satisfiable only
if N is satisfiable.

Using Theorem 25, we prove the following proposition:

Proposition 26 Let N = (V = {v0, v1, . . . , vn−1}, C) be a QCN defined over a distributive
subclass of relations of a qualitative constraint language that is a relation algebra and for which
every �-consistent atomic QCN is satisfiable. If N is not trivially inconsistent and ←−� -consistent,
then N is satisfiable.

Proof. Let Vl with 0 ≤ l < n denote the set of variables {v0,v1,. . .,vl}, i.e., the set of variables
of V from v0 up to (and including) vl. Then, due to N being ←−� -consistent, for each vk ∈ V
with 0 < k < n we have that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj) for all vi, vj ∈ V with i, j < k.
As such, by Theorem 25, for each k with 0 < k < n we have that N↓Vk−1

is unsatisfiable if
N↓Vk is unsatisfiable. By the “if. . .then” transitive property, we have that N↓V1 is unsatisfiable
if N↓V = N is unsatisfiable. Let us assume that N is indeed unsatisfiable. Then, as N↓V1 [v0, v0]
= N↓V1 [v1, v1] = {Id} by definition of a QCN, this can only mean that N↓V1 [v0, v1] = ∅, or,
equivalently, that N↓V1 [v1, v0] = ∅, as N↓V1 [v1, v0] = (N↓V1 [v0, v1])−1 by definition of a QCN.
This is a contradiction, as N is not trivially inconsistent. We can conclude that if N is ←−� -
consistent and not trivially inconsistent, then N is satisfiable. a

Due to Propositions 1 (at page 21), 3 (at page 34), and 26, we can obtain the following
corollary:

Corollary 21 Let N = (V = {v0, v1, . . . , vn−1}, C) be a QCN defined over a distributive subclass
of relations of Point Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or
RCC-8. If N is not trivially inconsistent and ←−� -consistent, then N is satisfiable.

We now discuss some complexity results with respect to directional �-consistency. Clearly,
given a QCNN = (V = {v0, v1, . . . , vn−1}, C),←−� -consistency forN can be decided or determined
in O(n3) time, where n = |V |, as there exist at most n(n−1)(n−2)/3 possible triples of variables
vi, vj , and vk in V such that i, j < k and a single check C(vi, vj) ⊆ C(vi, vk) � C(vk, vj) is
performed for every such triple of variables. Actually, in practice ←−� -consistency for N can be
decided in O(δ2|V |) time, where δ is the maximum vertex degree of the constraint graph G(N)
of N , if we choose to disregard the universal relations in N . This will become more apparent
when we will present our implementation of the directional algebraic closure method through an
algorithm for applying or enforcing directional �-consistency on N .

110

5.3. Directional Algebraic Closure and Directional �-consistency

Algorithm 16: DWC(N , α)
in : A QCN N = (V,C) of a qualitative constraint language that is a relation algebra with

|V | = n, and a bijection α of V onto {0, 1, . . . , n− 1}.
output : ←−� (N).

1 begin
2 G ← (V,E = E(G(N)));
3 for x from n− 1 to 1 do
4 v ← α−1(x);
5 adj ← {v′ | {v′, v} ∈ E ∧ α(v′) < α(v)};
6 foreach v′, v′′ ∈ adj do
7 if α(v′) < α(v′′) then
8 if {v′, v′′} 6∈ E then
9 E ← E ∪ {{v′, v′′}};

10 t = C(v′, v′′) ∩ (C(v′, v) � C(v, v′′));
11 if t 6= C(v′, v′′) then
12 C(v′, v′′) ← t; C(v′′, v′) ← t−1;

13 return N ;

5.3.1 The DWC Algorithm

An algorithm that implements the directional algebraic closure method is provided in Algo-
rithm 16, called DWC. As opposed to any of the local consistency enforcing algorithms that we
have discussed up to this point, viz., WC, PWC, and iPWC, algorithm DWC does not need a
queue to store constraints or any other data structure for that matter. Given a QCN N = (V,C)
with |V | = n and a bijection α of V onto {0, 1, . . . , n − 1}, we rewrite each variable u ∈ V as
vα(u). As such, the set of variables V will be the set {v0, v1, . . . , vn−1}. Upon termination of
algorithm DWC, we will have a network N ′ ⊆ N and for each vk ∈ V with 0 < k < n we will
have that N ′[vi, vj] ⊆ N ′[vi, vk] � N ′[vk, vj] for all vi, vj ∈ V with i, j < k. Thus, by definition
of ←−� -consistency, we have that N ′ will be ←−� -consistent, or, more precisely, that there exists a
QCN ←−� (N) such that N ′ = ←−� (N), viz., the ←−� -consistent QCN of N with respect to the con-
sidered ordering of the variables of V . Note that in each iteration of the outer loop (line 3) we
only choose constraints that correspond to non-universal relations (as a requirement to discard
of weak compositions that yield the universal relations) or contraints that have been involved
in a previous consistency operation; we keep track of these constraints through maintaing a
set of edges E that at any point contains the corresponding pairs of variables of all processed
constraints up to that point. Further, note that we exploit the properties of −1-involution and
−1-involutive distributivity met in a relation algebra to calculate the result of a weak composition
between two relations and its converse in a single step (line 7), i.e., given three variables vi,vj ,
and vk such that i < j < k, we only calculate C(vi, vj) ∩ (C(vi, vk) � C(vk, vj)), as C(vj , vi) ∩
(C(vj , vk) � C(vk, vi)) can be obtained by conversing C(vi, vj) ∩ (C(vi, vk) � C(vk, vj)) (line 12).
(The soundness of this technique has been proven formally in the proof of Lemma 4 at page 99.)
As such, we can assert the following proposition:

Proposition 27 Given a QCN N over n variables of a qualitative constraint language that is a
relation algebra, and a bijection α of V onto {0, 1, . . . , n − 1}, algorithm DWC terminates and
returns ←−� (N).

111

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Given a QCNN = (V,C), algorithm DWC has a runtime of O(δ2|V |), where δ is the maximum
vertex degree of the graph G utilized in its operation, as it iterates O(|V |) variables (lines 3–4)
and performs O(δ2) constant operations for the variable v at hand in each iteration (lines 5–12).
It should be noted that algorithm DWC is built on the idea of the variable elimination algorithm,
a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian
networks and Markov random fields [Zhang and Poole, 1994]. Notably, a variant of the variable
elimination algorithm has also been introduced for finite-domain constraint satisfaction problems
(CSPs) defined over connected row convex constraints [Deville et al., 1999] by Zhang et al.
in [Zhang and Marisetti, 2009; Zhang, 2007]. Of course, in our case variables are not really
eliminated in the process, they are just ignored, at some point, from further consideration.

Given a QCN N , we note that algorithm DWC may consider pairs of variables that do not
exist in E(G(N)) (lines 2–9), which are nevertheless involved in consistency operations with
respect to the constraints that are associated with them (lines 10–12). It would be interesting to
explore if there exists a condition such that no pair of variables that does not exist in E(G(N))
needs to be considered, as this would allow us to perform less consistency operations in general.
To this end, the bijection α that is given as input to algorithm VarElimination plays an important
role, as it defines the ordering in which the variables of V are eliminated. Let us show when
the ordering defined by α guarantees that no pair of variables that does not exist in E(G(N))
will be considered by algorithm VarElimination. To do so, we will first show that algorithm DWC
constructs a chordal graph as a byproduct. In particular we have the following result:

Proposition 28 Given a QCN N = (V,C), with |V | = n, and a bijection α : V → {0, 1, . . . , n−
1}, we have that upon termination of algorithm DWC, the internally used graph G will be a chordal
graph such that G(N) ⊆ G.

Proof. Graph G is initialized to (V,E = E(G(N))) (line 2), where V is also the set of vertices
of G(N). Let us show that G(N) ⊆ G and G is also chordal after the termination of algorithm
DWC. As defined earlier in this chapter, Gi is the subgraph of G induced by {α−1(0),α−1(1),. . .,
α−1(i)}, with 0 ≤ i < n. For each x from n− 1 to 1, line 5 provides us with the set of neighbors
of vertex α−1(x) in Gx, denoted by Nx(α−1(x)). Then, in lines 6–9 we add edges to E (if
not existing in E and, thus, neither in E(G(N))) such that every two vertices in Nx(α−1(x))
become connected by an edge in Gx. As such, vertex α−1(x) becomes a simplicial vertex of
Gx, since the subgraph of Gx induced by Nx(α−1(x)) becomes complete. (Note that the check
α(v′) < α(v′′) in line 7 for vertices v′, v′′ ∈ V does not cause a problem, as we deal with edges
that are not ordered pairs of vertices, but rather doubletons of vertices; this is also apparent
from our notation.) After processing the set of vertices {α−1(1),α−1(2),. . .,α−1(n − 1)} of V ,
we will have admitted a perfect elimination ordering (α−1(n − 1),α−1(n − 2),. . .,α−1(0)) of G
through the addition of new edges to the set of edges E when necessary. As such, we have that
the edge-augmented graph G = (V,E) of G(N) is a chordal graph by Theorem 23 (at page 90).
We can conclude that upon termination of algorithm DWC, the internally used graph G is a
chordal graph such that G(N) ⊆ G. a

As shown in the proof of Proposition 28, given a QCN N = (V,C), with |V | = n, and
a bijection α : V → {0, 1, . . . , n − 1}, algorithm VarElimination treats the ordering (α−1(n −
1),α−1(n− 2),. . .,α−1(0)) as a perfect elimination ordering of G(N) and consequently constructs
a chordal supergraph G of G(N). We can assert the following result:

Proposition 29 Given a QCN N = (V,C), with |V | = n, and a bijection α : V → {0, 1, . . . , n−
1}, we have that upon termination of algorithm DWC, the internally used graph G will be a chordal

112

5.3. Directional Algebraic Closure and Directional �-consistency

graph such that G(N) = G if (α−1(n−1),α−1(n−2),. . .,α−1(0)) is a perfect elimination ordering
of G(N).

Proposition 29 ensures that if its specified condition holds, then no pair of variables that
does not exist in E(G(N)) will be considered by algorithm DWC. We already saw earlier in this
chapter in our discussion about chordal graphs, tringulations, and perfect elimination orderings,
that a perfect elimination ordering of a given chordal graph is easily obtainable. As a reminder,
given a chordal graph G = (V,E), with |V | = n, we can obtain a perfect elimination ordering
of G in O(|V | + |E|) time using the maximum cardinality search (MCS) algorithm [Tarjan and
Yannakakis, 1984], which visits the vertices of a graph in an order such that, at any point, a
vertex is visited that has the largest number of visited neighbors. Consequently, MCS produces
a bijection α : V → {0, 1, . . . , n − 1} such that (α−1(n − 1),α−1(n − 2),. . .,α−1(0)) is a perfect
elimination ordering of G. Given a QCN N = (V,C), if G(N) is not chordal, MCS will define an
elimination ordering of the variables of N , which, although not perfect, in general will allow less
pairs of variables that do not exist in E(G(N)) to be considered by algorithm VarElimination,
than a randomly chosen elimination ordering. An alternative would be to use some special
greedy heuristic instead of the MCS algorithm to obtain an elimination ordering, the simplest
and fastest of which being the approximate minimum degree heuristic [Heggernes et al., 2001].
This heuristic has a runtime of O(|V ||E|) for a given graph G = (V,E) [Heggernes et al., 2001].
Thus, its use can still be an overkill for large QCNs, which are of our particular interest in this
chapter. Another choice is the minimum fill-in heuristic with a runtime of O(|V |3) [Rose, 1972;
Jégou and Terrioux, 2014b], which again makes its use prohibitive for large QCNs. However,
such heuristics can still prove to be beneficial when dealing with small QCNs.

Up to this point, we have showed how we can efficiently decide the satisfiability of a given
QCN defined over a distributive subclass of relations. Next, we will show how a scenario of
that QCN can actually be extracted. The contribution involves performing a generic backtrack-
free procedure for refining a ←−� -consistent and not trivially inconsistent QCN N defined over a
distributive subclass of relations to an atomic←−� -consistent sub-QCN of N . To this end, we have
the following result:

Proposition 30 Let N = (V = {v0, v1, . . . , vn−1}, C) be a ←−� -consistent and not trivially incon-
sistent QCN defined over a distributive subclass of relations of a qualitative constraint language
that is a relation algebra and for which every �-consistent atomic QCN is satisfiable. Then, N
can be refined to a scenario S of N as follows. For each k from 1 to n − 1, and for each i ∈
{0, . . . , k − 1}, do:

• C(vk, vi) ←
⋂k−1
j=0 C(vk, vj) � C(vj , vi);

• C(vk, vi) ← {b} for some b ∈ C(vk, vi);

• C(vi, vk) ← (C(vk, vi))
−1.

Proof. Let Vl with 0 ≤ l < n denote the set of variables {v0,v1,. . .,vl}, i.e., the set of variables
of V from v0 up to (and including) vl. By Proposition 26 (at page 110) we have that N is
satisfiable. As such, N↓Vl′ is satisfiable for some 0 ≤ l′ < n− 1 (as with any other restriction of
N to a proper subset of its variables). Since N↓Vl′ is satisfiable, we can refine it to a scenario
S↓Vl′ of N↓Vl′ , and have that N [vj , vj′] = S↓Vl′ [vj , vj′] for every j, j′ ∈ {0, . . . , l′}. We will show
that we can extend that scenario to a scenario of N↓Vl′+1

with our proposed construction that is
specified by the three successive operations listed in our proposition. It is clear that N↓Vl′+1

is

113

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

←−� -consistent with respect to the variable ordering {v0,v1,. . .,vl′+1} and not trivially inconsistent.
Let Ni with i ∈ {0, . . . , l′} denote

⋂l′

j=0N [vl′+1, vj] � S↓Vl′ [vj , vi]. First, we need to show that
Ni is not empty. By Theorem 1 (at page 23) it suffices to show that N [vl′+1, vj] � S↓Vl′ [vj , vi] ∩
N [vl′+1, vj′]�S↓Vl′ [vj′ , vi] 6= ∅ for all j, j′ ∈ {0, . . . , l′}. As N is defined on a qualitative constraint
language that is a relation algebra, due to the Peircean law that holds for relation algebras
(cf. [Dylla et al., 2013]), we have that N [vl′+1, vj] � S↓Vl′ [vj , vi] ∩ N [vl′+1, vj′] � S↓Vl′ [vj′ , vi] 6=
∅ iff N [vl′+1, vj′] � S↓Vl′ [vj′ , vi] � S↓Vl′ [vi, vj] ∩ N [vl′+1, vj] 6= ∅ iff N [vj′ , vl′+1] � N [vl′+1, vj] ∩
S↓Vl′ [vj′ , vi] � S↓Vl′ [vi, vj] 6= ∅. As S↓Vl′ [vj′ , vj] ⊆ S↓Vl′ [vj′ , vi] � S↓Vl′ [vi, vj] and S↓Vl′ [vj′ , vj] ⊆
N [vj′ , vl′+1]�N [vl′+1, vj], we have thatNi is not empty. As such, there exists a base relation b ∈ B
such that b ∈ Ni. Let us assign the base relation b to N [vl′+1, vi], and have that N [vl′+1, vi] = {b}
and N [vi, vl′+1] = {b−1}. We will now show that the refined N↓Vl′+1

remains ←−� -consistent with
respect to the variable ordering {v0,v1,. . .,vl′+1} and not trivially inconsistent. As b 6= ∅, N↓Vl′+1

remains not trivially inconsistent. To show that N↓Vl′+1
also remains ←−� -consistent with respect

to the considered variable ordering, we need to show that N [vj , vi] ⊆ N [vj , vl′+1] � N [vl′+1, vi],
i.e., N [vj , vi] ⊆ N [vj , vl′+1] � {b}, for every j ∈ {0, . . . , l′}. As b ∈ Ni, we have that {b} ⊆
N [vl′+1, vj] � N [vj , vi]. (Note that N [vj , vi] = S↓Vl′ [vj , vi].) Thus, {b} ∩ N [vl′+1, vj] � N [vj , vi]
6= ∅. Then, due to the Peircean law, we have that N [vj , vl′+1] � {b} ∩ N [vj , vi] 6= ∅. As N [vj , vi]
is a singleton relation, we can only have that N [vj , vi] ⊆ N [vj , vl′+1] � {b}. Up to this point,
we have shown that given any scenario S↓Vl′ of N↓Vl′ for some 0 ≤ l′ < n − 1, and as long as
N↓Vl′+1

remains ←−� -consistent and not trivially inconsistent, then, for any i ∈ {0, . . . , l′}, every
base relation b ∈ Ni is a feasible base relation of N↓Vl′+1

with regard to constraint N [vl′+1, vi].
Further, we showed that after assigning to N [vl′+1, vi] a base relation of Ni, the refined N↓Vl′+1

will remain ←−� -consistent and not trivially inconsistent. This property allows us to extend the
scenario S↓Vl′ to a scenario of N↓Vl′+1

by (i) choosing some not already considered constraint
N [vl′+1, vi] of N↓Vl′+1

, for some i ∈ {0, . . . , l′}, and calculating Ni with respect to the refined
N↓Vl′+1

that has resulted from the assignment of a base relation to each one of its already
considered constraints (if any), (ii) soundly assigning any base relation of Ni to N [vl′+1, vi] and,
thus, further refining N↓Vl′+1

, and (iii) repeating the procedure for all not already considered
constraints of N↓Vl′+1

by going back to (i). It is important to stress that in each loop of the
aforementioned procedure, a relation Ni, for some i ∈ {0, . . . , l′}, is by definition calculated with
respect to the refined N↓Vl′+1

that has resulted from the assignment of a base relation to each
one of its already considered constraints; in technical terms, in each loop, N↓Vl′+1

is mutated
(i.e., refined in our context) in place, and a calculation of some Ni takes into account the latest
refinement of N↓Vl′+1

. The procedure terminates when all unassigned constraints of N↓Vl′+1

have been considered, and N↓Vl′+1
has become an atomic and satisfiable (by Proposition 26

at page 110) QCN. Using this procedure, and with respect to k and i as they appear in our
proposition, we can refine N to a scenario S of N , by strictly following the ordering (1, . . . , n−1)
for k, and any permutation of the ordering (0, . . . , k − 1) for i. In particular, we start by
assigning to N [v0, v1] any base relation b such that b ∈ N [v0, v1], as N↓V1 being a QCN of two
variables is minimal and weakly globally consistent, and acquire the rest of the scenario up to
N incrementally, at which point N will have been refined to an atomic satisfiable QCN. a

Finally, we present an algorithm for extracting a scenario of a given satisfiable QCN N =
(V,C) defined over a distributive subclass of relations. The algorithm is given in Algorithm 17
and is called ExtractScenario. First, algorithm ExtractSolution uses algorithm DWC to make N
←−� -consistent and, then, it applies the procedure specified in Proposition 30 to refine N to a
scenario of N .

114

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

Algorithm 17: ExtractScenario(N)
in : A satisfiable QCN N = (V,C) of a qualitative constraint language that is a

relation algebra and for which every �-consistent atomic QCN is satisfiable, with
|V | = n.

output: A scenario S of N .
1 begin
2 α← (f : V → {0, 1, . . . , n− 1}) s.t. α is bijective;
3 N ← DWC(N , α);
4 for x from 1 to n− 1 do
5 v ← α−1(x);
6 foreach v′ ∈ V | α(v′) < α(v) do
7 adj ← {v′′ ∈ V | α(v′′) < α(v)};
8 C(v, v′) ← ⋂

v′′∈adjC(v, v′′) � C(v′′, v′);
9 C(v, v′) ← {b} for some b ∈ C(v, v′);

10 C(v′, v) ← (C(v, v′))−1;

11 return N ;

With respect to algorithm ExtractScenario, we can assert the following theorem in relation to
Propositions 1 (at page 21) and 3 (at page 34):

Theorem 26 Given a satisfiable QCN N = (V,C), with |V | = n, defined over a distributive
subclass of relations of a qualitative constraint language that is a relation algebra and for which
every �-consistent atomic QCN is satisfiable, algorithm ExtractScenario terminates and returns a
scenario S of N .

Algorithm ExtractScenario has a runtime of O(|V |3), which includes the runtime of algorithm
DWC (line 3), and the time needed to iterate O(|V |) variables (lines 4–5) and realize O(|V |2)
constant operations for the variable v at hand in each iteration (lines 6–10).

5.4 Efficient Algorithms for the Satisfiability Problem of QCNs

In the case where a QCN is defined over a distributive subclass of relations, and since algorithm
DWC is able to enforce←−� -consistency on a given QCN of a relation algebra due to Proposition 27
(at page 111), we have the following result:

Proposition 31 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that
is a relation algebra, over which not trivially inconsistent and ←−� -consistent QCNs are satisfiable.
Then, given a QCN N = (V,C) defined over A, with |V | = n, and a bijection α of V onto
{0, 1, . . . , n − 1}, algorithm DWC terminates and returns a trivially inconsistent QCN ←−� (N) if
and only if N is unsatisfiable.

From Proposition 31 we can assert the following theorem:

Theorem 27 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that is
a relation algebra, over which not trivially inconsistent and ←−� -consistent QCNs are satisfiable.
Then, given a QCN N = (V,C) defined over A, with |V | = n, and a bijection α of V onto
{0, 1, . . . , n− 1}, algorithm DWC is sound and complete for deciding the satisfiability of N .

115

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

From Theorem 27 and Proposition 26 (at page 110) we can assert the following theorem:

Theorem 28 Let A ∈ 2B be a distributive subclass of relations of a qualitative constraint lan-
guage that is a relation algebra and for which every �-consistent atomic QCN is satisfiable.
Then, given a QCN N = (V,C) defined over A, with |V | = n, and a bijection α of V onto
{0, 1, . . . , n− 1}, algorithm DWC is sound and complete for deciding the satisfiability of N .

Finally, due to Theorem 28, and Propositions 1 (at page 21) and 3 (at page 34), we have the
following result:

Corollary 22 Let N = (V,C) be a QCN defined over a distributive subclass of relations of Point
Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8. We have that
algorithm DWC is sound and complete for deciding the satisfiability of N .

In the case where a QCN is defined over a subclass of relations of a qualitative constraint
language that has patchwork for not trivially inconsistent and �-consistent QCNs defined over
that subclass of relations, and since algorithm PWC is able to enforce partial �-consistency on
a given QCN of a relation algebra due to Proposition 24 (at page 97), by Proposition 19 (at
page 90) we can obtain the following result:

Proposition 32 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that is
a relation algebra and has patchwork for not trivially inconsistent and �-consistent QCNs defined
over that subclass of relations. Then, given a QCN N = (V,C) defined over A and a chordal graph
G = (V,E) such that G(N) ⊆ G, algorithm PWC terminates and returns a trivially inconsistent
QCN �

G(N) if and only if N is unsatisfiable.

From Proposition 32 we can assert the following theorem:

Theorem 29 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that is a
relation algebra and has patchwork for not trivially inconsistent and �-consistent QCNs defined
over that subclass of relations. Then, given a QCN N = (V,C) defined over A and a chordal
graph G = (V,E) such that G(N) ⊆ G, algorithm PWC is sound and complete for deciding the
satisfiability of N

Then, due to Theorem 29 and Propositions 1 (at page 21) and 16 (at page 54), we have the
following result:

Corollary 23 Let N = (V,C) be a QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA, HnIA, or Ĥ8,
C8, and Q8 respectively. We have that algorithm PWC is sound and complete for deciding the
satisfiability of N .

Following the same line of reasoning and using Proposition 25 (at page 101), we can obtain
the following result as well:

Theorem 30 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that is a
relation algebra and has patchwork for not trivially inconsistent and �-consistent QCNs defined
over that subclass of relations. Then, given a QCN N = (V,C) defined over A and a chordal
graph G = (V,E) such that G(N) ⊆ G, algorithm iPWC is sound and complete for deciding the
satisfiability of N

116

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

Then, due to Theorem 30 and Propositions 1 (at page 21) and 16 (at page 54), we have the
following result:

Corollary 24 Let N = (V,C) be a QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA, HnIA, or Ĥ8,
C8, and Q8 respectively. We have that algorithm iPWC is sound and complete for deciding the
satisfiability of N .

For the general case of QCNs, i.e., for QCNs that are not strictly defined over subclasses
of relations for which partial or directional �-consistency alone are able to decide satisfiability,
some kind of backtracking algorithm must be used that operates on the basis of splitting the
relations of a given QCN into disjunctions of relations belonging to a tractable subclass for which
partial or directional �-consistency alone are indeed able to decide satisfiability. The approach
is completely similar to the one we presented in Section 3.5.2 with regard to the backtracking
algorithm involing �-consistency, in the sense that we will simply replace �-consistency with
partial �-consistency as the forward checking step of choice in the backtracking algorithm. In
what follows, and with respect to backtracking algorithms in particular, we will focus on partial �-
consistency only as it is a more general approach that allows for efficient backtracking algorithm
implementations. In particular, we have showed earlier that partial �-consistency is able to
decide the satisfiability of QCNs over maximal tractable subclasses of their relations, whereas
directional �-consistency applies to QCNs over distributive subclasses of relations, which are by
default properly contained in maximal tractable sublasses of relations; the bigger a subclass of
relations, the smaller the search space in a backtracking algorithm that utilizes that subclass of
relations (see Section 3.5.2), which is critical in its performance. However, we make a discussion
about how directional �-consistency can be utilized in a backtracking algorithm and we give some
directions for future work regarding that matter in the end of this section.

5.4.1 The PartialConsistency Algorithm

An algorithm that implements a backtracking search for solving general QCNs is provided in
Algorithm 18, called PartialConsistency. Algorithm PartialConsistency receives as input a QCN
N = (V,C), a graph G = (V,E), and a subclass of relations A. First, �G-consistency is en-
forced through the PWC algorithm (line 2), which we described in detail in Section 5.2.1. Then,
granted that enforcing �-consistency did not result in a trivially inconsistent network, algo-
rithm PartialConsistency chooses a constraint C(vi, vj) with {vi, vj} ∈ E such that C(vi, vj) 6∈ A

(line 7). In the case where such a constraint does not exist, a not trivially inconsistent and
�
G-consistent refinement of network N defined over subclass A is returned as a solution. In any
other case, constraint C(vi, vj) is split into subrelations r1, ..., rk ∈ A, for which we have that
r1∪...∪rk = C(vi, vj) (line 8). Each of these relations is instantiated accordingly to the constraint
network N (line 10) and a recursive call is initiated (line 11). When the algorithm termitates, it
is guaranteed to return either Null, or a not trivially inconsistent and �G-consistency refinement
of network N defined over subclass A otherwise (line 13). Note that except for the first step,
in all subsequent recursive calls of the PartialConsistency algorithm, the PWC algorithm only
has to be run for the paths that are possibly affected by each prior instantiation, which takes
O(|E|) intersections and weak compositions. (Note that this detail is not included in the PWC
algorithm.) To obtain this constraint incremental variation of the PWC algorithm, it suffices to
replace the command Q ← {(vi, vj) | {vi, vj} ∈ E with 0 ≤ i ≤ j < |V |} in line 2 of the PWC
algorithm, with the command Q← {(vi, vj)}, where vi, vj with i ≤ j are the variables appearing

117

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Algorithm 18: PartialConsistency(N , G, A)
in : A QCN N = (V,C), a graph G = (V,E), and a subclass A.
output : Null, or a refinement of network N over A.

1 begin
2 N ← PWC(N , G);
3 if ∃{vi, vj} ∈ E such that C(vi, vj) = ∅ then
4 return Null;

5 if ∀{vi, vj} ∈ E we have that C(vi, vj) ∈ A then
6 return N ;

7 choose a constraint C(vi, vj) with {vi, vj} ∈ E such that C(vi, vj) 6∈ A;
8 split C(vi, vj) into r1, ..., rk ∈ A: r1 ∪ ... ∪ rk = C(vi, vj);
9 foreach r ∈ {rl | 1 ≤ l ≤ k} do

10 N [vi, vj] ← r; N [vj , vi] ← r−1;
11 result ← PartialConsistency(N , G, A);
12 if result 6= Null then
13 return result ;

14 return Null;

in the constraint C(vi, vj) in line 10 of the PartialConsistency algorithm. As such, the PWC algo-
rithm can be seen as approximating consistency for general QCNs, but also as realising forward
checking in the backtracking algorithm by closing all triples of variables of a given QCN under
weak composition and eliminating base relations that are unfeasible. With respect to the first
step of algorithm PartialConsistency, we note that it is possible to replace the call to algorithm
PWC in line 2 with a call to algorithm iPWC instead and benefit from a notable performance gain
for achieving �G-consistency as we explained in Section 5.2.2. That being said, a call to algorithm
iPWC would not provide any benefits over a call to algorithm PWC with regard to all subsequent
steps of algorithm PartialConsistency; once �G-consistency is established vertex-incrementally on a
given QCN using algorithm iPWC, a constraint incremental variation of the iPWC algorithm will
operate exactly as a constraint incremental variation of the PWC algorithm (all vertices of G are
already considered and, thus, algorithm iPWC falls back to algorithm PWC since its objective of
establishing �G-consistency has already been achieved).

Heuristics. With respect to heuristics, the same heuristics regarding constraint and subre-
lation selection as well as other techniques described in the context of algorithm Consistency
(Algorithm 2 at page 42)—all of which are thoroughly presented in Section 3.5.2—apply for
algorithm PartialConsistency too. In the case of algorithm PartialConsistency, we can additionally
take into account the structural properties of the graph G that is given as input to algorithm
PartialConsistency. As an example, assuming that graph G contains more than one connected
components, it would be wise to initially focus on the QCNs corresponding to the smaller compo-
nents, as any inconsistency found there would immediately render the QCN corresponding to the
entire (disconnected) graph unsatisfiable and we would not have to explore bigger components
of the graph. Further, a structured graph G may contain vertices of a high average degree, at
least in comparison with other vertices. Therefore, it would be natural to start with constraints
corresponing to edges of high average degree vertices, as choosing a relation for those constraints
may result in a faster propagation overall and a quicker unveiling of a possible inconsistency.
This particular heuristic can be used in conjuction with the cardinality heuristic, which typically

118

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

prefers a constraint with the smallest number of subrelations without taking into account its
“neighbouring” constraints. Such heuristics have been explored for CSPs in the work of Walsh
in [Walsh, 2001], and can be easily carried to the field of constraint-based qualitative spatial and
temporal reasoning.

Given a QCN N = (V,C), a graph G = (V,E), and a subclass A, the search space for
algorithm PartialConsistency is O(α|E|), where α is the branching factor (see line 8 of the
PartialConsistency algorithm) provided by subclass A (e.g., α = 1.4375 for subclass Ĥ8 for
RCC-8 [Renz and Nebel, 2001]). With respect to the PartialConsistency algorithm, due to Propo-
sition 32 (at page 116) we have the following result:

Proposition 33 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that is
a relation algebra and has patchwork for not trivially inconsistent and �-consistent QCNs defined
over that subclass of relations. Then, given A, a QCN N defined over 2B, and a chordal graph
G = (V,E) such that G(N) ⊆ G, algorithm PartialConsistency terminates and returns Null if and
only if N is unsatisfiable.

From Proposition 33 we can assert the following theorem:

Theorem 31 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that is a
relation algebra and has patchwork for not trivially inconsistent and �-consistent QCNs defined
over that subclass of relations. Then, given A, a QCN N defined over 2B, and a chordal graph
G = (V,E) such that G(N) ⊆ G, algorithm PartialConsistency is sound and complete for deciding
the satisfiability of N .

Then, due to Theorem 31, and Propositions 1 (at page 21) and 16 (at page 54), we have the
following result:

Corollary 25 Given one of the classes PCDC, HIA, HnIA, or Ĥ8, C8, and Q8, a QCN N of
Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8 respectively, and a chordal
graph G = (V,E) such that G(N) ⊆ G, we have that algorithm PartialConsistency is sound and
complete for deciding the satisfiability of N .

5.4.2 The IterativePartialConsistency Algorithm

Like with the iterative counterpart of algorithm Consistency presented in Section 3.5.2, namely,
algorithm IterativeConsistency, we can obtain the iterative counterpart of algorithm Partial-
Consistency in a very similar manner. Again, the recursive and iterative algorithms are func-
tionally equivalent; however, the structure of the iterative algorithm makes it easier to fine-tune
it, performance-wise. We call the iterative algorithm IterativePartialConsistency, presented in
Algorithm 19.

5.4.3 Reasoners

In this section we describe our own implementations of qualitative reasoners for solving general
QCNs that build on the new techniques that we presented up to this point, and consequently our
practical approach of choice for tackling large scale-free QCNs of RCC-8. In order to obtain a
more complete comparison with the state of the art techniques that we presented in Section 3.5.2,
we also present our own implementation of a qualitative reasoner that builds strictly on those
techniques (much like GQR [Gantner et al., 2008]).

119

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Algorithm 19: IterativePartialConsistency(N , A)
in : A QCN N = (V,C), a graph G = (V,E), and a subclass A.
output : Null, or a refinement of network N over A.

1 begin
2 Stack ← list(∅) // Initialize stack;
3 N ← PWC(N , G);
4 if ∃{vi, vj} ∈ E such that C(vi, vj) = ∅ then
5 return Null;

6 while True do
7 if ∀{vi, vj} ∈ E we have that C(vi, vj) ∈ A then
8 return N ;

9 choose a constraint C(vi, vj) with {vi, vj} ∈ E such that C(vi, vj) 6∈ A;
10 split C(vi, vj) into r1, ..., rk ∈ A: r1 ∪ ... ∪ rk = C(vi, vj);
11 rvalues ← {rl | 1 ≤ l ≤ k};
12 while True do
13 if rvalues = ∅ then
14 while Stack 6= ∅ do
15 N , rvalues ← Stack.pop();
16 if rvalues then
17 break;

18 if rvalues = ∅ and Stack = ∅ then
19 return Null;

20 r ← rvalues.pop();
21 N ′ ← N ;
22 N [vi, vj] ← r; N [vj , vi] ← r−1;
23 N ← PWC(N , G);
24 if @{vi, vj} ∈ E such that C(vi, vj) = ∅ then
25 break;

26 N ← N ′;
27 Stack.append(N ′, rvalues);

Phalanx. We have implemented Phalanx in Python that is the generalized and code refactored
version of PyRCC8 [Sioutis and Koubarakis, 2012]. Phalanx supports small arbitrary binary
constraint calculi developed for spatial and temporal reasoning that are relation algebras, such
as RCC-8 [Randell et al., 1992] and Allen’s interval algebra (IA) [Allen, 1983], in a way similar
to GQR [Gantner et al., 2008]. Further, Phalanx presents significant improvements over PyRCC8
regarding scalability and speed. In particular, the new reasoner handles the constraint matrix
that represents a qualitative network more efficiently during backtracking search, i.e., it does
not create a copy of the matrix at each forward step of the backtracking algorithm (as is the
case with Renz’s solver [Renz and Nebel, 2001] or PyRCC8), but it only keeps track of the
values that are altered at each forward step to be able to reconstruct the matrix in the case
of backtracking. A similar mechanism is also used to keep track of unassigned constraints (i.e.,
constraints corresponding to relations that do not belong to maximal tractable subclasses of
relations and are decomposed to subrelations at each forward step of the backtracking algorithm)
that may dynamically change in number due to the appliance of �-consistency at each forward
step of the backtracking algorithm. For example, given a non-tractable RCC-8 network and a

120

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

0

1

2

3

n

···

{0:{EQ}, 1:{DC}, 3:{EC,DC}}

{n:{EQ}}

{1:{EQ}, 2:{DC}, 3:{PO}, 4:B}

{2:{EQ}, 4:{PO}}

{3:{EQ}, 4:{NTPP}, 5:{TPP,PO}}

0 1 2

3 4

n5

{DC}

{EC,DC}
{PO}

{DC}

{PO}

{TPP,PO}

{NTPP}

···

Figure 5.10: Hash table based adjacency list for representing a chordal RCC-8 network

maximal tractable subclass A, the �-consistency algorithm can prune a relation that belongs to
subclass A into a relation that does not belong to subclass A, and vice versa.16 This allows
us to apply the heuristics that deal with the selection of the next unassigned constraint faster,
as we keep our set of unassigned constraints minimal and do not have to go over the whole
set of variables each time to find the ones that are unassigned. The �-consistency algorithm
implementation has been also modified to better handle the cases where weak composition of
relations leads to the universal relation. In these cases we can continue the iterative operation of
the �-consistency algorithm since the intersection of the universal relation with any other relation
leaves the latter relation intact. Finally, there is a weight over learned weights dynamic heuristic
for unassigned constraint selection, as in the latest version of GQR, under release 150017.

Phalanx5. We have implemented Phalanx5 in Python that is the generalized and code refac-
tored version of PyRCC85 [Sioutis and Koubarakis, 2012]. Phalanx5 is essentially Phalanx
where the �-consistency algorithm has been replaced with a partial �-consistency algorithm, as
described in Section 5.2.1. Phalanx5 supports small arbitrary binary constraint calculi devel-
oped for spatial and temporal reasoning that are relation algebras, and for which Proposition 19
(at page 90) holds, such as RCC-8 [Randell et al., 1992] and Allen’s Interval Algebra (IA) [Allen,
1983]. Regarding triangulation, Phalanx5 is coupled with the implementation of the maxi-
mum cardinality search algorithm [Tarjan and Yannakakis, 1984] and a fast fill in procedure
(as presented in Algorithm 10 at page 89), as opposed to the heuristic based, but rather naive,
triangulation procedure implemented in [Sioutis and Koubarakis, 2012]. Though the maximum
cardinality search algorithm does not yield minimal triangulations if the constraint graph of
the input network is not chordal, it does guarantee that no fill edges are inserted if the graph
is indeed chordal, as explained earlier in the discussion around Algorithm 10 (at page 89). In
addition, even for the non-chordal cases, we obtain good results with this approach and have
a fine trade-off between time efficiency and good triangulations. As with the case of Phalanx
and PyRCC8, Phalanx5 presents significant improvements over PyRCC85 regarding scalability
and speed, by incorporating all the state of the art techniques that apply to Phalanx and were
mentioned earlier.

16Note that in the case where the RCC-8 network comprises only relations from the maximal tractable subclass
A (i.e., it is tractable), this would not be possible as A is closed under the �-consistency operations.

17http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/downloads/gqr-1500.tar.bz2

121

http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/downloads/gqr-1500.tar.bz2

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Table 5.1: Triangulation time based on different methods

triangulation method BA-Graph(10 000, 2)
MCS 2.26s
MD 112.004s
GFI −

Sarissa. We improve the state of the art techniques for tackling large scale-free QCNs of RCC-8 by
opting for a hash table based adjacency list to represent and reason with the chordal completion
of the constraint graph of an input network. The variables of the input network (or the nodes)
are represented by index numbers of a list, and each variable (or node) is associated with a
hash table that stores key-value pairs of variables and relations. Figure 5.10 shows how an
example chordal RCC-8 network is represented by our hash table based adjacency list approach.
Loops (of the identity relation EQ) have been omitted from the network. The dashed edge
(1, 4) corresponds to a fill edge that results after triangulating the initial non-chordal graph
consisting of solid edges. This fill edge is stored in the hash table based adjacency list as the
universal relation B. For a given QCN N = (V,C) and for G = (V,E) its chordal constraint
graph, our approach requires O(|V | + |E|b) memory, where b is the size needed to represent a
relation from the set of relations 2B of the qualitative constraint language at hand. Having a
constraint matrix to represent an input QCN (that is typically used by the reasoners Phalanx and
Phalanx5 presented earlier), results in a O(|V |2b) memory requirement, even if chordal graphs
are used leaving a big part of the matrix empty, as is the case with Phalanx5, or Sparrow for
IA [Chmeiss and Condotta, 2011]. Further, we still retain an O(1) average access and update
time complexity which becomes O(δ) in the amortized worst case, where δ is the maximum
vertex degree of the chordal constraint graph that corresponds to the input network. Given that
we target large scale-free, and, thus, sparse networks, this only incures a small penalty for the
related experiments performed. The partial �-implementation also benefits from this approach
as the queue data structure on which it is based has to use only O(|E|) of memory to store the
relations compared to the O(|V |2) memory requirement of Phalanx, GQR, and Renz’s solver. The
triangulation algorithm is based on Algorithm 10 (at page 89), as with Phalanx5. As mentioned
earlier in this chapter, an alternative would be to use some special greedy heuristic rather than
the maximum cardinality search (MCS) algorithm to obtain an elimination ordering, the simplest
and fastest of which being the minimum degree (MD) heuristic [Heggernes et al., 2001]. As noted
in [Heggernes et al., 2001], this heuristic has a time complexity of O(|V ||E|) for a given graph
G = (V,E), which is an overkill for the large networks that are of our interest here. Another
choice would be the (minimum) greedy fill-in (GFI) heuristic (used in [Amaneddine et al., 2013;
Chmeiss and Condotta, 2011]) with a time complexity ofO(|V |3) [Rose, 1972; Jégou and Terrioux,
2014b], which again marks it as prohibitive in our case. Nevertheless, we present in Table 5.1
the time needed to calculate a triangulation based on the aforementioned methods on average
per graph of a small dataset of 10 graphs created by the BA-Graph(10000, 2) generation model
(Algorithm 14 at page 105). The experiment was carried out on a computer with an Intel
Core 2 Quad Q9400 processor with a CPU frequency of 2.66 GHz, 8 GB RAM, and the Precise
Pangolin x86_64 OS (Ubuntu Linux), and shows that even for the simplest MD heuristic, the
triangulation operation alone for a given graph, takes more time than triangulating that graph
with MCS and solving the network corresponding to that graph with a reasoner, as observed
in Figure 5.15a (at page 130) for random network instances with constraint graphs of the same

122

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

Table 5.2: Tabular overview of our reasoners

reasoner data structure core algorithm decision capability
Phalanx adjacency matrix �-consistency arbitrary QCNs

Phalanx5 adjacency matrix partial �-consistency arbitrary QCNs
Sarissa hash table based adjacency list partial �-consistency arbitrary QCNs
Pyrrhus hash table based adjacency list ←−� -consistency distributive QCNs

type and order as the ones used in our experiment.18 Note that GFI was not able to compute a
triangulation within the 5-minute timeout it was given. Closing our parenthesis on the different
triangulations we explored, the techniques that we mentioned prior to our small comparison are
implemented under the hood of our new reasoner which is called Sarissa. Sarissa, as with our
other tools presented here, is a generic and open source qualitative reasoner written in Python,
a general-purpose, interpreted high-level programming language which enables rapid application
development. In the experimens that follow, Sarissa will be shown to greatly outperform state
of the art reasoners, such as GQR, for large RCC-8 networks of scale-free structure. However, in
defense of GQR which was found to perform poorly in [Sioutis and Koubarakis, 2012] under release
1418, we state that the latest version of GQR has undergone massive scalability improvements
and is currently the most complete and fastest reasoner for handling reasonably scaled random
regular qualitative networks, i.e., qualitative constraint networks with unstructured constraint
graphs. At this point, we can also claim that Renz’s solver [Renz and Nebel, 2001] has been fairly
outdated, as it will become apparent in the experiments that we employ it for. Finally, our hash
table based adjacency list allows extending a network with new nodes and edges in constant time.
This is particularly handy in the case of the vertex-incremental partial �-consistency algorithm
that we presented in Section 5.2.2, as it allows obtaining online partial �-consistency algorithm
implementations.

Pyrrhus. We implement the ←−� -consistency enforcing algorithm DWC (as presented in Algo-
rithm 16 at page 111) under the hood of a novel reasoner called Pyrrhus. Pyrrhus borrows the
same hash table based adjacency list structure to represent and reason with the chordal com-
pletion of the constraint graph of an input network from Sarissa. In the time of writting this
thesis, Pyrrhus cannot be used to solve arbitrary QCNs as it only implements Algorithm 16 (at
page 111), which can be used to soundly decide the satisfiability of a QCN that it strictly defined
over a distributive subclass of relations of a qualitative constraint language (see Theorem 28 at
page 116). For future work, we plan to devise an edge-incremental variant of the DWC algorithm
and fit it in a backtracking algorithm as a forward checking step; the role of the backtracking
algorithm will be to spawn a search tree given a QCN and retrieve a ←−� -consistent refinement
of that QCN that will be defined over a distributive subclass of relations. However, we will
demonstrate that Pyrrhus, even in its current state, can be extremely useful in deciding the satis-
fiability of real-world QCNs, as these QCNs are in general defined over base relations, the closure
of which under converse, intersection, and weak composition defines a distributive subclass of
relations. Finally, and as noted earlier, variable elimination orderings to be used alongside the
DWC algorithm are calculated with the use of the maximum cardinality search (MCS) algorithm.

A tabular overview of the reasoners presented in this section is given in Table 5.2. All tools
used in this thesis are open-source, under a free license, and comprise a new set of qualitative
reasoners that build on state of the art Artificial Intelligence techniques. They can be acquired

18We used the LibTW library for MD and GFI (http://treewidth.com/).

123

http://treewidth.com/

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

along with the datasets used in this thesis upon request from the author and also found online
in the following address: http://www.cril.fr/~sioutis/work.php.

5.4.4 Experimental evaluation

In this section, we evaluate the performance of our algorithms both for the particular case where
the QCNs are defined over a distributive subclass of relations (to showcase the importance of
←−� -consistency alone and its potential in future applications) and for the case where arbitrary
QCNs are concerned.

Evaluation with Distributive QCNs

We evaluate the performance of our implementation of the ←−� -consistency enforcing DWC al-
gorithm, against state of the art implementations of �G-consistency and �-consistency enforcing
algorithms, for checking the satisfiability of a given QCN defined over a distributive subclass of
relations. As noted earlier, algorithm DWC is implemented under the hood of the novel reasoner
Pyrrhus. A state of the art �G-consistency enforcing algorithm implementation is provided by rea-
soner Sarissa and a state of the art �-consistency enforcing algorithm implementation is provided
by reasoner Phalanx.

Technical Specifications The experimentation was carried out on a computer with an In-
tel Core i7-2820QM processor with a 2.30 GHz frequency per CPU core, 8 GB of RAM, and
the Trusty Tahr x86_64 OS (Ubuntu Linux). Pyrrhus, Sarissa, and Phalanx were run with
PyPy 2.2.119, which implements Python 2.7. Only one of the CPU cores was used.

Dataset and Measures We considered random RCC-8 networks generated by the BA(n,m)
model [Barabasi and Albert, 1999], the use of which in qualitative constraint-based reasoning
has been well motivated in the experimental evaluation that took place in Section 5.2.2, and
real-world RCC-8 datasets that have been recently used in [Sioutis et al., 2015f].

In particular, we used the BA(n,m) model (Algorithm 15 at page 107) to create random
scale-free graphs of order n with a preferential attachment value m; each such graph was then
treated as the constraint graph of a given QCN of RCC-8, by labeling the constraints of the QCN
corresponding to edges of the graph with relations from the maximal distributive subclass D64

8

of RCC-8 [Li et al., 2015b], and the rest of the constraints of the QCN strictly with the universal
relation, viz., B. We considered 10 satisfiable and 10 unsatisfiable RCC-8 network instances of
BA(n,m) for each order 1000 ≤ n ≤ 10000 of their constraint graphs with a 1000-vertex step and
a preferential attachment value of m = 2. Both satisfiable and unsatisfiable network instances
were randomly filtered out of a large number of 1 000 network instances to ensure validity of the
results. Regarding real-world RCC-8 datasets, we employed the ones recently used in [Sioutis
et al., 2015f], described as follows (in the description by constraints we mean non-universal
relations).

• nuts: an RCC-8 network of a nomenclature of territorial units with 2 235/3 176 vari-
ables/constraints.20

• adm1: an RCC-8 network of the administrative geography of Great Britain with 11 762/44 832
variables/constraints [Goodwin et al., 2008].

19http://pypy.org/
20Retrieved from: http://www.linkedopendata.gr/

124

http://www.cril.fr/~sioutis/work.php
http://pypy.org/
http://www.linkedopendata.gr/

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
of variables

102

103

104

105

106

107

av
g.

 #
 o

f c
on

st
ra

in
t c

he
ck

s

performance of three algorithm implementations for BA(n,m=2)

WC (SAT)
PWC (SAT)
DWC (SAT)
WC (UNSAT)
PWC (UNSAT)
DWC (UNSAT)

(a) Comparison on # of constraint checks

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
of variables

10-2

10-1

100

101

102

av
g.

 C
PU

 ti
m

e
(s

ec
)

performance of three algorithm implementations for BA(n,m=2)

WC (SAT)
PWC (SAT)
DWC (SAT)
WC (UNSAT)
PWC (UNSAT)
DWC (UNSAT)

(b) Comparison on CPU time

Figure 5.11: Performance comparison for random scale-free RCC-8 networks

• gadm1: an RCC-8 network of the German administrative units with 42 749/159 600 vari-
ables/constraints.20

• gadm2: an RCC-8 network of the world’s administrative areas with 276 729/589 573 vari-
ables/constraints.21

• adm2: an RCC-8 network of the administrative geography of Greece with 1 732 999/5 236 270
variables/constraints.20

The aforementioned datasets are satisfiable. Further, the relations of each dataset are contained
in one of the maximal distributive subclasses D41

8 and D64
8 of RCC-8 [Li et al., 2015b].

Our experimentation involves two measures, which we describe as follows. The first measure
considers the number of constraint checks performed by a local consistency enforcing algorithm
implementation. Given a QCN N = (V,C) and vi, vk, vj ∈ V , a constraint check is performed
when we compute relation r = C(vi, vj) ∩ (C(vi, vk) � C(vk, vj)) and check if r ⊂ C(vi, vj),
so that we can propagate its constrainedness. (Weak compositions that yield relation B are
disregarded.) The second measure concerns the CPU time and is strongly correlated with the
first one, as the runtime of local consistency enforcing algorithm implementations relies heavily
on the number of constraint checks performed.

Results In what follows, WC (for �-consistency or closure under weak composition) will de-
note the �-consistency enforcing algorithm implementation of Phalanx, PWC (for �G-consistency or
partial closure under weak composition) will denote the �G-consistency enforcing algorithm imple-
mentation of Sarissa, and DWC (for←−� -consistency or directional closure under weak composition)
will denote the ←−� -consistency enforcing algorithm implementation of Pyrrhus, viz., the imple-
mentation of algorithm DWC. As a final note, the maximum cardinality search algorithm was
used to obtain a variable elimination ordering for DWC, and a triangulation of the constraint
graph of a given QCN for PWC (to be able to make sound use of Proposition 19 at page 90).

Regarding random scale-free RCC-8 networks, the experimental results are shown in Fig-
ure 5.11. DWC performs significantly less constraint checks than PWC and WC for both satisfiable

21http://gadm.geovocab.org/

125

http://gadm.geovocab.org/

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Table 5.3: Evaluation with real-world RCC-8 datasets

network WC PWC DWC

nuts 0.12s
9 632

0.09s
5 808

0.08s
1 180

adm1 13 783.39s
1 287 288 879

83.36s
18 498 096

0.31s
92 266

gadm1 25 587.76s
1 927 158 080

105.07s
34 140 998

0.82s
339 611

gadm2 6.72s
1 891 032

1.61s
1 885 100

0.56s
483 377

adm2 ∞ 399.60s
118 799 994

2.25s
5 471 745

and unsatisfiable network instances, as shown in Figure 5.11a. In particular, across all network
instances of different size, DWC performs on average 98.2% and 99.8% less constraint checks than
PWC and WC respectively for satisfiable network instances, and 70.1% and 92.2% less constraint
checks than PWC and WC respectively for unsatisfiable network instances. This also reflects on
the CPU time, as shown in Figure 5.11b. In particular, across all network instances of different
size, DWC is on average 94.7% and 98.0% faster than PWC and WC respectively for satisfiable
network instances, and 20.8% and 1.8% faster than PWC and WC respectively for unsatisfiable
network instances. We note that for unsatisfiable network instances all approaches are in a vir-
tual tie, as they unveil the inconsistencies in centiseconds and any difference in performance is
thus marginal.

Regarding real-world RCC-8 datasets, the experimental results are summarized in Table 5.3,
where a fraction x

y denotes that an approach required x seconds of CPU time and performed y
constraint checks to decide the satisfiability of a given network instance. Symbol∞ denotes that
an implementation hit the memory limit. Again, we can see that DWC significantly outperforms
PWC and WC with regard to both the CPU time required and the number of constraint checks
performed for deciding the satisfiability of a network instance. It should suffice to mention that
for the largest of the network instances, viz., adm2, DWC decides its satisfiability in 2.25 sec,
when PWC requires 399.60 sec for the same task, and WC does not even complete that task as
it hits the memory limit after several hours of reasoning. The same trend holds for the number
of constraint checks performed by the different algorithm implementations.

In the context of Proposition 28 (at page 112), it is worth investigating how triangulations
can maintain the sparseness of scale-free structured real-world RCC-8 datasets. To backup our
argument about the scale-free-like structure of real RCC-8 networks, we present Figure 5.12 that
displays the power law degree distribution of two of our real networks. As gadm2 is a very large
network, we display its degree distribution in log-log scale where the power law function is seen
as a straight line [Barabasi and Albert, 1999]. We remind the reader that adm1 and gadm2
comprise 11 762/44 832 nodes/edges and 276 729/589 573 nodes/edges respectively. Triangulat-
ing the constraint graph of adm1 results in a total of 1 961 820 edges, which is 97% less than
completing the graph that results in (11 7622 − 11 762)/2 ' 70 million edges. Triangulating the
constraint graph of gadm2 results in a total of 596 574 edges, which is ∼ 99.99% less than com-
pleting the graph that results in (276 7292− 276 729)/2 ' 40 billion edges. In fact, adm1 consists
of some big cycles that result in the addition of plenty fill edges in its initial graph, as opposed
to gadm2. To obtain a better understanding on the effect of triangulation, Figure 5.13 depicts
the adjacency matrix of the initial constraint graph of adm1 (Figure 5.13a) and the matrix of the

126

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

0 50 100 150 200 250
Degree (k)

10-4

10
-3

10
-2

10-1

10
0

Fr
a
ct

io
n
 o

f
n

o
d
e
s

in
 n

e
tw

o
rk

 w
it

h
 d

e
g
re

e
 k

 (
P
(k

))

Power law distribution graph for admingeo

(a) degree distribution for adm1

10
0 10

1
10

2
10

3 10
4

10
5

Degree (k)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fr
a
ct

io
n
 o

f
n

o
d
e
s

in
 n

e
tw

o
rk

 w
it

h
 d

e
g
re

e
 k

 (
P
(k

))

Power law distribution graph for gadm-rdf

(b) degree distribution for gadm2

Figure 5.12: Evidence of the power law node degree distribution of the real datasets considered

(a) initial constraint graph of adm1 (b) chordal constraint graph of adm1

Figure 5.13: Matrix representations of different graph configurations of adm1

chordal constraint graph of adm1 (Figure 5.13b). We used gnuplot to create matrices of 800×800
pixels. For a given network of 8000 nodes for example, each pixel corresponds to a submatrix of
(8000/800)× (8000/800) size, which results by partitioning the initial matrix of (8000)× (8000)
size with a (8000/800) step for each row and each collumn. For a particular pixel, color white
indicates the complete absense of an edge in the (8000/800)× (8000/800) submatrix, and color
black a full of edges submatrix. In-between shades, such as light and dark grey, indicate, more
or less, how many edges the corresponding submatrix has. For a complete network, its adjacency
matrix would be completely black. In this particular example of adm1, we can see exactly how
a triangulation retains the sparseness of the initial graph (as opposed to a completion of that

127

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

100 200 300 400 500 600 700 800 900 1000
Number of nodes

0

1

2

3

4

5

6

CP
U

tim
e

(s
ec

)

Performance of five QSRs for A(n,3.5<=d<=12.0,l=4.0)

Phalanx
Phalanx
Sarissa
GQR
Renz's solver

(a) performance for regular networks

100 200 300 400 500 600 700 800 900 1000
Number of nodes

102

103

104

105

106

Nu
m

be
r o

f e
dg

es

of edges for graphs of A(n,3.5<=d<=12.0,l=4.0)

initial
chordal
complete

(b) edges considered for different graph configurations of
regular networks

Figure 5.14: Experiment with random regular networks

same graph).
It is worth noting that adm1 exhibits a strong locality of reference property [Liakos et al.,

2014a], i.e., adjacent nodes are close to each other with respect to their labelling and, thus, form
a dense part around the main diagonal of the graph’s adjacency matrix.

Evaluation with Arbitrary QCNs

We evaluate the performance of Sarissa, Renz’s solver [Renz and Nebel, 2001], GQR (release 1500)
[Gantner et al., 2008], Phalanx, and Phalanx5, with their best performing heuristics enabled.

Technical Specifications The experimentation was carried out on a computer with an Intel
Core 2 Quad Q9400 processor with a CPU frequency of 2.66 GHz, 8 GB RAM, and the Precise
Pangolin x86_64 OS (Ubuntu Linux). Renz’s solver and GQR were compiled with gcc/g++
4.6.3. Sarissa, Phalanx, and Phalanx5 were run with PyPy 1.922, which implements Python 2.
Only one of the CPU cores was used for the experiments.

Dataset and Measures We considered random datasets generated by two different models.
In particular, random datasets consist of RCC-8 networks generated by the usual A(n, d, l) model
[Renz and Nebel, 2001] and large RCC-8 networks generated by the BA(n,m) model. In short,
model A(n, d, l) creates random regular networks (like the one depicted in Figure 5.8a at page 106)
of size n, degree d, and an average number l of RCC-8 relations per edge, whereas model BA(n,m)
creates random scale-free-like networks (like the one depicted in Figure 5.8b at page 106) of size
n and a preferential attachment value m. For model BA(n,m) the average number of base RCC-8
relations per edge defaults to |B|/2, where B is the set of base relations of RCC-8. The average
CPU time per network was used as a comparison measure, as well as the number of edges
considered by each approach for different graph configurations of networks.

22http://pypy.org/

128

http://pypy.org/

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

Results For model A(n, d, l) we considered network sizes between 100 and 1000 nodes with a
100 step and l = 4 (= |B|/2) relations per edge. For each size series we created 270 networks
that span over a degree d between 3.5 and 12.0 with a 0.5 step, i.e., 15 network instances were
generated for each degree. Regarding model A(n, d, l), network instances with an average degree
d between values 8.0 and 11.0 lie within the phase transition region, where it is equally possible
for networks to be consistent or inconsistent and are, thus, harder to solve, as pointed out
in [Renz and Nebel, 2001]. The results are shown in Figure 5.14a. GQR clearly outperforms all
other reasoners with Phalanx coming close 2nd and Renz’s solver last. In the final step, when
networks of 1000 nodes are considered, Renz’s solver decides the networks using an average time
of 5.571 sec per network, GQR using 0.463 sec per network, Phalanx using 1.363 sec per network,
Phalanx5 using 2.675 sec per network, and Sarissa using 4.731 sec per network. In the particular
case of Sarissa and Phalanx5 that use chordal graphs we note that they pay an extra cost for
calculating the triangles of constraints for each appliance of partial �-consistency as these are
not precomputated and stored in advance for memory efficiency. As noted in Section 5.2.1, a
graph G in the PWC algorithm is represented as a list, i.e., a sequence of index-value pairs
where an index corresponds to some variable (vertex of the graph G) and its associated value
corresponds to the set of its neighbours in the graph G. When a pair of variables (vi, vj) ∈ V
is processed, the intersection between the sets of neighbours of vertices vi and vj respectively
is computed so as to obtain all triangles of variables the pair of variables (vi, vj) is a part of.
In the average case, the time complexity of this operation is min({O(|N(vi)|), O(|N(vj)|)}) for
any robust implementation. It should be clear that the greater the maximum vertex degree of
graph G, the greater the time complexity of the previous operation will be. Sarissa also pays an
additional cost for not being able to access or update relational values in constant worst case
time as it does not use a matrix. It is a fact that random regular networks are not triangulated
very efficiently with our approach, which results in dense chordal graphs in most of the cases.
This fact is depicted in Figure 5.14b where one can clearly see that the total number of edges in
a triangulated constraint graph of an initial random regular network, is very close to the total
number of edges in the completion of the constraint graph of that network. To be even more
precise, for the random regular network instances considered, their respective chordal constraint
graphs contained on average only 53% less edges than the completions of those graphs.

For model BA(n,m) we considered 30 networks for each size between 1000 and 10000 nodes
with a 1000 step and a preferential attachment value of m = 2. Regarding model BA(n,m), and
for the network sizes considered, we found that the phase transition region is defined for the
specific value of m = 2. A value of m = 1 yields networks that do not have any triangles of
constraints, and, therefore, are always consistent, and a value of m = 3 yields almost exclusively
inconsistent networks as the network size increases, that are very easy to decide. In particular,
we experimented with 50 network instances of 10000 nodes and a preferential attachment value of
m = 3, and none of them was consistent. The results for the network instances with a preferential
attachment value of m = 2 are shown in Figure 5.15a. Sarissa and Phalanx5 outperform all other
reasoners by a large scale, and Renz’s solver was able to solve only the networks of 1000 nodes
(slower than all others) as it quickly hit the memory limit in our computer due to many recursive
calls (leading to storing many copies of its constraint matrix). In the final step, when networks
of 10000 nodes are considered, GQR decides the networks using an average time of 85.727 sec
per network, Phalanx using 103.159 sec per network, Phalanx5 using 35.241 sec per network,
and Sarissa using 47.653 sec per network. Figure 5.15b depicts the number of edges that we
consider when using a chordal completion of the constraint graph corresponding to a random
scale-free-like network, rather than the (full) completion of that graph. In particular, for the
random scale-free-like networks instances considered, their respective chordal constraint graphs

129

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

0

20

40

60

80

100

120

CP
U

tim
e

(s
ec

)

Performance of five QSRs for BA(n,m=2)

Phalanx
Phalanx
Sarissa
GQR
Renz's solver

(a) performance for scale-free-like networks

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

103

104

105

106

107

108

Nu
m

be
r o

f e
dg

es

of edges for graphs of BA(n,m=2)

initial
chordal
complete

(b) edges considered for different graph configurations of
scale-free-like networks

Figure 5.15: Experiment with random scale-free-like networks

contained on average around 95% less edges than the completions of those graphs. This is a
huge improvement when compared with the 53% in the case of random regular networks. We
note that Sarissa is still burdened with the additional cost of not being able to access or update
relational values in constant worst case time.

We tried to push our implementations even further, and extended model BA(n,m) to generate
random scale-free-like instances using the NP8 set of RCC-8 relations [Renz and Nebel, 2001].
This set contains relations that do not belong to any maximal tractable subclass of RCC-8,
which significantly increases the search space of the problem. In particular, when using all
RCC-8 relations and the maximal tractable subclass Ĥ8 as a split set, the average branching
factor is 1.4375. For a network instance of n nodes this translates to a O(1.4375(n2−n)/2) search
space, as the n nodes will correspond to O(n2) unassigned constraints.23 On the other hand,
when using only NP8 relations, and again Ĥ8 as a split set, the average branching factor is
2.053, which given a network instance of n nodes translates to a O(2.05(n2−n)/2) search space.
As such, the search space in the latter case is O((2.053/1.434)(n2−n)/2) bigger than in the first
case, which seriously impacts evaluation. We call our new extended model BA(n,m,NP8).

For model BA(n,m,NP8) we considered 10 networks for each size between 500 and 3500 with
a 500 step and a preferential attachment value of m = 5. Regarding model BA(n,m,NP8), and
for the network sizes considered, we found that the phase transition region is defined for the
specific value of m = 5. In fact, for that value of m, checking the consistency of the network
instances is very time consuming, and, thus, we did not push the network sizes to an even larger
number. In any case, our dataset was sufficient to obtain a trend for the reasoners involved, and
networks of 3500 nodes can be qualified as large, especially when NP8 relations are considered.
The results for the hard network instances with a preferential attachment value of m = 5 are
shown in Figure 5.16a. Initially we considered five reasoners, the four that are mentioned in
the legend and Renz’s solver. However, Renz’s solver lacks the weight over learned weights
dynamic heuristic for variable selection and could not keep up with the rest of the reasoners
even for the smallest networks of 500 nodes. Further, it hit the memory limit. Sarissa has the

23However, this is an overestimation, as using the �-consistency algorithm as a preprocessing and forward
checking step in a backtracking algorithm significantly reduces search space [Ladkin and Reinefeld, 1997].

130

5.4. Efficient Algorithms for the Satisfiability Problem of QCNs

500 1000 1500 2000 2500 3000 3500
Number of nodes

100

101

102

103

CP
U

tim
e

(s
ec

)

Performance of five QSRs for BA(n,m=5,NP8)

Phalanx
Phalanx
Sarissa
GQR

(a) performance for hard scale-free-like networks

500 1000 1500 2000 2500 3000 3500
Number of nodes

103

104

105

106

107

N
um

be
r o

f e
dg

es

of edges for graphs of BA(n,m=5,NP8)

initial
chordal
complete

(b) edges considered for different graph configurations of
hard scale-free-like networks

Figure 5.16: Experiment with hard random scale-free-like networks

worst performance of all reasoners, deciding the networks of 3500 nodes using an average time
of 1294.27 sec per network. This was expected, since the increased search space for the hard
instances leads to massively more table lookups, wearing down the hash table based adjacency
list. However, the performance of Sarissa converges to the performance of GQR, which was the
biggest surprise in this experiment. Due to its more advanced heuristic mechanics (restarts
and nogood recording), we expected GQR to set the bar for this experiment. Judging by the
experiment with normal random scale-free-like networks, network sizes of 3500 nodes were not
really that of a challenge for GQR (Figure 5.15a). In particular, GQR starts off very well, but its
performance deteriotates very fast and is outrunned by both Phalanx5 and Phalanx by the time
when networks of 3000 nodes are considered. GQR should at least perform better than Phalanx
as it did for normal random scale-free-like networks (Figure 5.15a), since both implementations
use a matrix and GQR has more advanced heuristics.

In the final step, when networks of 3500 nodes are considered, GQR decides the networks
using an average time of 754.98 sec per network, Phalanx using 636.32 sec per network, Phalanx5
using 493.37 sec per network, and as already mentioned Sarissa using 1294.27 sec per network.
Figure 5.16b depicts the number of edges that we consider when using a chordal completion of
the constraint graph corresponding to a hard random scale-free-like network, rather than the
completion of that graph. In particular, for the hard random scale-free-like networks instances
considered, their respective chordal constraint graphs contained on average around 71% less
edges than the completions of those graphs.

To the best of our knowledge, the datasets used in this thesis with respect to checking the
satisfiability of QCNs are the biggest ones to date of all others that exist in the literature.

A compact SAT encoding for RCC-8

In [Huang et al., 2013] an implementation based on a compact SAT encoding is proposed for
RCC-8. The authors introduce the notion of a dtree (decomposition tree), which, in fact, can
be seen as a chordal graph, since a chordal graph yields a natural decomposition tree of its
cliques [Golumbic, 2004]. Further, the authors use a dedicated graph partitioning software with

131

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Phalanx Phalanx Sarissa SAT GQR0

2

4

6

8

10

12

CP
U

tim
e

(s
ec

)

Performance of five QSRs for BA(n=200,m=5,NP8)

Figure 5.17: Experiment with hard random scale-free-like networks and a SAT implementation

heuristics to partition the network, viz., hMETIS24, and do not rely in a linear time triangulation
of its underlying graph. The implementation is significantly outrunned by GQR under the older
release 1418 by the time networks of 150 nodes are considered (see Figure 13c in [Huang et al.,
2013, chapt. 6.4]). Here, we considered hard network instances of 3500 nodes, and were able to
perform better than GQR under its newest release, 1500. The compact SAT encoding presented
in [Huang et al., 2013] becomes too large when network sizes increase beyond a few hundred
nodes [Huang et al., 2013, chapt. 6.4].

Nevertheless, we decided to run a small experiment with the SAT-based implementation of
[Huang et al., 2013], the GQR reasoner under its newest release 1500, and our own reasoners
Phalanx, Phalanx5, and Sarissa. The benchmark that was used in [Huang et al., 2013] consisted
of RCC-8 networks generated by the H(n, d, l) model [Renz and Nebel, 2001]. Here, we considered
RCC-8 networks generated by the BA(n,m,NP8) model.25 In particular, we created 10 networks
with a size of 200 nodes and a preferential attachment value of m = 5. The size of 200 nodes
might seem too small, but some of the instances consumed over 2 GB when processed by the
SAT-based implementation. In any case, the size of 200 nodes is sufficient to draw a conclusion.
The results are shown in Figure 5.17. For a given hard RCC-8 network, Phalanx, Phalanx5, and
Sarissa all decide its consistency in approximately 0.4 sec, and GQR in around 0.1 sec. In fact,
most of the time consumed by our own reasoners was for initializing data structures and allowing
the JIT compiler of PyPy to kick in. On the other hand, the SAT-based implementation needed
nearly 12 sec to decide the consistency of a given RCC-8 network, on average. It follows that
state of the art SAT encodings are not able to tackle large scale-free-like RCC-8 networks.

At this point we conclude our experimental evaluation. We have presented a complete set of
experiments with several network generation models, and several graphs displaying the amount
of edges considered in each approach and the effect of the triangulations. Most importantly, we
have introduced a new model for generating RCC-8 networks, viz., BA(n,m[,NP8]), and have
identified the phase transition region for both normal and hard network instances of that model.
The techniques implemented in Sarissa can be easily adopted by any reasoner, such as GQR.

24http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
25We used this particular model because a SAT-based implementation deals quite well with hard instances when

compared with native reasoners [Westphal and Wölfl, 2009]. We verified this by conducting some experiments
with networks generated by the BA(n,m) model for which the SAT-based implementation considered here had
indeed even poorer performance when compared with the rest of the reasoners.

132

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

5.5. Efficient Algorithms for the Minimal Labeling Problem of QCNs

The outcome of our evaluation should be interpreted more as a comparison between different
techniques, and not just as a comparison between differently coded reasoners per se.

5.5 Efficient Algorithms for the Minimal Labeling Problem of
QCNs

In the case where a QCN is defined over a subclass of relations for which �-consistency alone
is able to guarantee minimality and partial �-consistency is able to maintain the same pruning
capacity as �-consistency with respect to the common edges between a given graph and the
completion of the constraint graph of that QCN, and since algorithm PWC is able to enforce
partial �-consistency on a given QCN of a relation algebra due to Proposition 24 (at page 97),
we have the following result:

Proposition 34 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that
is a relation algebra, over which not trivially inconsistent and �-consistent QCNs are minimal.
Then, given a satisfiable QCN N = (V,C) defined over A and a graph G = (V,E) such that
∀{v, v′} ∈ E we have that �(N)[v, v′] = �

G(N)[v, v′], algorithm PWC terminates and returns a
QCN N ′ = (V,C ′) such that ∀{v, v′} ∈ E we have that C ′(v, v′) is minimal.

Then, due to Propositions 22 (at page 94) and 34, and Theorem 2 (at page 35), we have the
following result:

Proposition 35 Let N = (V,C) be a satisfiable QCN defined over a distributive subclass of
relations of a qualitative constraint language that is a relation algebra and for which every �-
consistent atomic QCN is satisfiable, and G = (V,E) a chordal graph such that G(N) ⊆ G.
Then, algorithm PWC terminates and returns a QCN N ′ = (V,C ′) such that ∀{v, v′} ∈ E we
have that C ′(v, v′) is minimal.

Finally, due to Proposition 35, and Propositions 1 (at page 21) and 3 (at page 34), we have
the following result:

Corollary 26 Let N = (V,C) be a satisfiable QCN defined over a distributive subclass of rela-
tions of Point Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8.
We have that algorithm PWC terminates and returns a QCN N ′ = (V,C ′) such that ∀{v, v′} ∈ E
we have that C ′(v, v′) is minimal.

In the case where a QCN is defined over a subclass of relations of a qualitative constraint
language that has patchwork for not trivially inconsistent and �-consistent QCNs defined over
that subclass of relations, and since algorithm PWC is able to enforce partial �-consistency on a
given QCN of a relation algebra due to Proposition 24 (at page 97), we can devise an algorithm
based on PWC that will extract the minimal relations of that QCN corresponding to edges of
the graph that is given as input to PWC under the conditions specified in Proposition 19 (at
page 90). Such an algorithm is presented in Algorithm 20, called PartialMinimize. We have the
following result:

Proposition 36 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that is
a relation algebra and has patchwork for not trivially inconsistent and �-consistent QCNs defined
over that subclass of relations. Then, given a QCN N = (V,C) defined over A and a chordal
graph G = (V,E) such that G(N) ⊆ G, algorithm PartialMinimize terminates and returns a QCN
N ′ = (V,C ′) such that ∀{v, v′} ∈ E we have that C ′(v, v′) is minimal.

133

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Algorithm 20: PartialMinimize(N , G)
in : A QCN N = (V,C) defined over a subclass of relations of a qualitative constraint

language that is a relation algebra and has patchwork for not trivially inconsistent and
�-consistent QCNs defined over that subclass of relations, and a graph G = (V,E).

output : A QCN N ′ = (V,C ′) such that ∀{v, v′} ∈ E we have that C ′(v, v′) is minimal.
1 begin
2 N ′ ← N ;
3 foreach {vi, vj} ∈ E with 0 ≤ i ≤ j < |V | do
4 foreach b ∈ N ′[vi, vj] do
5 if b 6∈ PWC(N ′[vi,vj]/{b}, G)[vi, vj] then
6 N [vi, vj]← N [vi, vj] \ {b};
7 N [vj , vi]← N [vj , vi] \ {b−1};

8 return N ;

Then, due to Proposition 36 and Propositions 1 (at page 21) and 16 (at page 54), we have
the following result:

Corollary 27 Let N = (V,C) be a satisfiable QCN of Point Algebra, Cardinal Direction Calcu-
lus, Interval Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA,
HnIA, or Ĥ8, C8, and Q8 respectively, and G = (V,E) a chordal graph such that G(N) ⊆ G.
We have that algorithm PartialMinimize terminates and returns a QCN N ′ = (V,C ′) such that
∀{v, v′} ∈ E we have that C ′(v, v′) is minimal.

Given a QCN N = (V,C) and a graph G = (V,E), algorithm PartialMinimize runs in
O(δ|E|2|B|2) time. PartialMinimize iterates a number of O(|E|) constraints and calls algorithm
PWC for each one of the O(|B|) base relations of a constraint; each such call requiring O(δ|E||B|)
time.

Before we consider the case of arbitrary QCNs, we will introduce and study a new form of
partial consistency for QCNs, called ◆G-consistency, where G is a graph on the set of variables V
of the considered QCN. Intuitively, a QCN N on V is ◆G-consistent iff for every pair of variables
(v, v′) and every base relation b ∈ N [v, v′], after instantiating N [v, v′] with {b} and computing
the closure under �G-consistency, N [v, v′] is defined by {b}. Formally, ◆G-consistency of a QCN is
defined as follows.

Definition 40 Let N = (V,C) be a QCN and G = (V,E) a graph. N is said to be ◆G-consistent
iff ∀{v, v′} ∈ E and ∀b ∈ N [v, v′], {b} = �

G(N[v,v′]/{b})[v, v
′].

If G is a complete graph, i.e., G = KV , we can easily verify that ◆G-consistency corresponds to
�
B-consistency of the familly of �f -consistencies studied in [Condotta and Lecoutre, 2010]. Inter-
estingly, ◆G-consistency can also be seen as a partial singleton arc consistency (SAC) [Debruyne
and Bessière, 1997] for QCNs. Given a QCN N = (V,C) and a graph G = (V,E), for every b ∈ B
and every v, v′ ∈ V , we will say that b is ◆G-consistent for N [v, v′] iff {b} = �

G(N[v,v′]/{b})[v, v
′].

We have the following proposition:

Proposition 37 Let N = (V,C) and N ′ = (V,C ′) be two QCNs such that N ⊆ N ′, and
G = (V,E) a graph. For every b ∈ B and every v, v′ ∈ V , if b is ◆G-consistent for N [v, v′] then b
is ◆G-consistent for N ′[v, v′].

134

5.5. Efficient Algorithms for the Minimal Labeling Problem of QCNs

Algorithm 21: Make◆G(N ,G)
in : A QCN N = (V,C) of a qualitative constraint language that is a relation algebra, and a

graph G = (V,E).
output : ◆G(N).

1 begin
2 repeat
3 N ′ ← N ;
4 foreach {vi, vj} ∈ E with 0 ≤ i ≤ j < |V | do
5 foreach b ∈ N ′[vi, vj] do
6 if b 6∈ PWC(N ′[vi,vj]/{b}, G)[vi, vj] then
7 N [vi, vj]← N [vi, vj] \ {b};
8 N [vj , vi]← N [vj , vi] \ {b−1};

9 until N = N ′;
10 return N ;

Proof. Suppose that �G(N[v,v′]/{b})[v, v
′] = {b}. Since we know that N ⊆ N ′, we have that

N[v,v′]/{b} ⊆ N ′[v,v′]/{b}. Therefore, by monotonicity of �G we have that �G(N[v,v′]/{b}) ⊆ �G(N ′[v,v′]/{b}).
Since �G(N[v,v′]/{b})[v, v

′] = {b} and �G(N ′[v,v′]/{b})[v, v′] ⊆ {b}, we can conclude that �G(N ′[v,v′]/{b})[v,
v′] = {b}. a
Next, we prove the following properties to show that there exists a closure under ◆G-consistency
as with �G-consistency:

Proposition 38 Let V be a set of variables and G = (V,E) a graph. We have: (1) for any
QCNs N1 and N2 defined on V , if N1 and N2 are ◆G-consistent, then N1 + N2 is ◆G-consistent,
and (2) every scenario S defined on V is a ◆G-consistent QCN.

Proof. (1) Let v, v′ ∈ V and b ∈ (N1 + N2)[v, v′]. Suppose that N1 and N2 are ◆G-consistent.
It is clear that b ∈ N1[v, v′] and/or b ∈ N2[v, v′]. Suppose that b ∈ N1[v, v′] (the other case is
similar). Since N1 is ◆G-consistent, we have that b is ◆G-consistent for N1[v, v′]. Therefore, since
N1 ⊆ N1 +N2, from Proposition 37 we have that b is ◆G-consistent for (N1 +N2)[v, v′]. (2) Every
scenario S defined on V is �-consistent and, hence, �G-consistent. Moreover, ∀v, v′ ∈ V and
∀b ∈ S[v, v′], S[v, v′] = {b}. Thus, ∀v, v′ ∈ V and b ∈ S[v, v′] we have that �G(S[v,v′]/{b})[v, v

′] =
�
G(S)[v, v′] = S[v, v′] = {b}. a
From Property (1) of the aforementioned proposition we can assert that for a QCN N = (V,C)
and a graph G = (V,E) there exists a unique largest ◆G-consistent sub-QCN of N , i.e., a clo-
sure of N under ◆G-consistency. By denoting this closure by ◆G(N), we have that ◆G(N) =
{N ′ | N ′ ⊆ N and N ′ is ◆G-consistent}. Further, we have that ◆G(N) is equivalent to N since
from Property (2) of the previous proposition we know that every scenario S of N is a ◆G(N)
sub-QCN of N .

A naive algorithm for enforing ◆G-consistency is presented in Algorithm 21 and it is called
Make◆G. Given a QCN N = (V,C) and a graph G = (V,E), algorithm Make◆G allows computing
◆

G(N) with a worst-case time complexity of O(δ|E|3|B|3), where δ is the maximum vertex degree
of graph G.

We can prove the following result:

Proposition 39 Let N = (V,C) be a QCN and G = (V,E) a graph. If N is ◆G-consistent then
N is �G-consistent.

135

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Proof. Suppose that N is ◆G-consistent and let (v, v′′), (v, v′), (v′, v′′) ∈ E. We will show
that N [v, v′′] ⊆ N [v, v′] � N [v′, v′′]. Since N is ◆G-consistent, we have that ∀b ∈ N [v, v′′], {b} =
�
G(N[v,v′′]/{b})[v, v

′′]. Therefore, ∀b ∈ N [v, v′′], b ∈ N [v, v′]�N [v′, v′′]. Hence, N [v, v′′] ⊆ N [v, v′]�
N [v′, v′′]. a

Note that, in the general case, a �G-consistent QCN is not necessary ◆G-consistent.
Now, we show that for QCNs defined over a subclass A of relations of a qualitative constraint

language that has patchwork for not trivially inconsistent and �-consistent QCNs defined over
that subclass of relations, enforcing ◆G-consistency with respect to a chordal graph G(N) ⊆ G
ensures the feasibility of the base relations belonging to the constraints of N that correspond to
edges of G.

Proposition 40 Let A ⊆ 2B be a subclass of relations of a qualitative constraint language that
has patchwork for not trivially inconsistent and �-consistent QCNs defined over that subclass of
relations, N = (V,C) a not trivially inconsistent QCN defined over A, and G = (V,E) a chordal
graph such that G(N) ⊆ G. We have:

(1) for every (v, v′) ∈ E and every b ∈ N [v, v′], b is ◆G-consistent for N [v, v′] iff b ∈ Nmin[v, v′];

(2) for every (v, v′) ∈ E, Nmin[v, v′] = ◆

G(N)[v, v′].

Proof. (1) Consider a base relation b which is ◆G-consistent for N [v, v′] with (v, v′) ∈ E. Let
N ′ be the QCN defined by N ′ = �

G(N[v,v′]/{b}). Let us suppose that N ′ is trivially inconsistent.
Since N is not trivially inconsistent, G is chordal and N ′ is �G-consistent, we can show that
N ′[v, v′] = ∅. There is a contradiction. Therefore, N ′ is not trivially inconsistent. Moreover,
as N[v,v′]/{b} is defined over A, we know that N ′ is also defined over A. Consequently, from
Proposition 19 (at page 90) we can assert that N ′ admits a scenario S. S is also a scenario of
N since N ′ ⊆ N . Since N ′[v, v′] = {b}, we can infer that S[v, v′] = {b}. We can conclude that
b ∈ Nmin[v, v′]. Now, consider b ∈ Nmin[v, v′] with (v, v′) ∈ E. There exists a scenario S of N
such that S[v, v′] = {b}. From Proposition 38 we have that S is ◆G-consistent. Therefore, b is
◆

G-consistent for S[v, v′]. From Proposition 37 we can conclude that b is ◆G-consistent for N [v, v′]
as S ⊆ N . Next, (2) can be established directly from (1) and the fact that ◆G(N) is an equivalent
QCN of N for which every base relation b ∈ ◆G(N)[v, v′] with (v, v′) ∈ E is ◆G-consistent for
N [v, v′]. a
From the aforementioned proposition, we can notice that for a not trivially inconsistent QCN N
defined over a subclass A of relations of a qualitative constraint language that has patchwork for
not trivially inconsistent and �-consistent QCNs defined over that subclass of relations and for a
chordal graph G such that G(N) ⊆ G, we can compute ◆G(N) using algorithm Make◆G whitout
its outer loop. In fact, in this particular case, algorithm Make◆G will fall back to algorithm
PartialMinimize that we presented earlier, which has a worst-case runtime of O(δ|E|2|B|2).

Before considering the next result, note that given two QCNs N and N ′ defined on V and
a graph G = (V,E), NG/N ′ denotes the QCN N ′′ = (V,C ′′) defined by N ′′[v, v′] = N ′[v, v′] if
(v, v′) ∈ E, and N ′′[v, v′] = N [v, v′] otherwise. We have the following result which will be useful
in the sequel:

Proposition 41 Let N , N ′, N ′′ be three QCNs defined on V , A a subclass of relations of a
qualitative constraint language that has patchwork for not trivially inconsistent and �-consistent
QCNs defined over that subclass of relations, and G a chordal graph such that: G(N) ⊆ G, N ′
is an equivalent sub-QCN of N , N ′′ is a not trivially inconsistent and �G-consistent sub-QCN of
N ′ with A(N ′′) ⊆G N ′. By denoting N ′G/A(N ′′) by N ∗, we have:

136

5.5. Efficient Algorithms for the Minimal Labeling Problem of QCNs

Algorithm 22: Minimize(N ,A)
in : N = (V,C) a QCN on 2B, A a subclass of 2B.
output : A sub-QCN of N .

1 begin

// Step 1: Initialization

2 NI ← N ; N ∗ ← ⊥V ;
3 G = (V,E)← Triangulation(G(N)); N ← WC(N);
4 if N = ⊥V then
5 return ⊥V ;

// Step 2: Minimization w.r.t. G

6 while not (N ∗ =G N) do
7 select {v, v′} ∈ E such that N ∗[v, v′] ⊂ N [v, v′];
8 r ← N [v, v′] \ N ∗[v, v′]; r′ ← N [v, v′];
9 N ′ ← �

G-SubQCN(N[v,v′]/r, G,A);
10 if N ′ = Null then
11 N [v, v′]← r′ \ r; N [v′, v]← (r′ \ r)−1;
12 else
13 N ′′ ← NG/A(N ′);
14 N ∗ ← extractFeasible(N ′′,N ∗,G);

// Step 3: End of the minimization

15 while N ∗ ⊂ N do
16 select v, v′ ∈ V such that N ∗[v, v′] ⊂ N [v, v′];
17 r ← N [v, v′] \ N ∗[v, v′]; r′ ← N [v, v′];
18 N [v, v′]← r; N [v′, v]← r

−1

;
19 N ′ ← �

G-SubQCN(N ,KV ,A);
20 if N ′ = Null then
21 N [v, v′]← r′ \ r; N [v′, v]← (r′ \ r)−1;
22 else
23 N [v, v′]← r′; N [v′, v]← (r′)−1;
24 N ∗ ← extractFeasible(A(N ′),N ∗,KV);

25 return N ∗;// Step 4: Return of the result

(1) N ∗ is a satisfiable QCN;

(2) each ◆G-consistent base relation of N ∗[v, v′] with (v, v′) ∈ E is a feasible relation of N ;

(3) each ◆KV
-consistent base relation of N ∗ is a feasible relation of N .

Proof. (1) NG/N ∗ is clearly a not trivially inconsistent and �G-consistent QCN defined over A

such that G(NG/N ∗) ⊆ G. From Proposition 19 (at page 90) we know that NG/N ∗ is satisfiable
and admits a scenario S. As N is equivalent to N ′, we have that S is a scenario of N ′G/N ∗ . By
remarking that N ′G/N ∗ and N ∗ are equal, we can affirm that S is a scenario of N ∗. (2) Consider
a ◆G-consistent base relation b of N ∗[v, v′] with (v, v′) ∈ E. As N ∗ ⊆ NG/N ∗ , from Proposition 37
we have that b is a ◆G-consistent base relation of NG/N ∗ [v, v′]. From Proposition 40, we can assert
that b is a feasible base relation of NG/N ∗ . We can conclude that b is also a feasible base relation
of N since NG/N ∗ ⊆ N . (3) Each ◆KV

-consistent base relation b of N ∗ is also a ◆KV
-consistent

137

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Algorithm 23: �G-SubQCN(N ,G,A)
in : A QCN N=(V,C) of a qualitative constraint language that is a relation algebra, a graph

G=(V,E), a subclass A.
output : Null, or a �G-consistent sub-QCN N ′ of N with A(N ′) ⊆G N .

1 begin
2 N ′ ← PWC(N , G);
3 if ∃{vi, vj} ∈ E such that N ′[vi, vj] = ∅ then
4 return Null;

5 if ∀vi, vj ∈ V we have that A(N ′[vi, vj]) ⊆ N [vi, vj] then
6 return N ′;
7 choose a constraint N ′[vi, vj] with vi, vj ∈ V such that A(N ′[vi, vj]) 6⊆ N [vi, vj];
8 split N ′[vi, vj] into r1, ..., rk ∈ A: r1 ∪ ... ∪ rk = N ′[vi, vj];
9 foreach r ∈ {rl | 1 ≤ l ≤ k} do

10 N ′[vi, vj]← r; N ′[vj , vi]← r−1;
11 result ← �

G-SubQCN(N ′,G,A);
12 if result 6= Null then
13 return result ;

14 return Null;

base relation of N since N ∗ ⊆ N . From Proposition 40 (by using KV as a chordal graph) we
can conclude that b is a feasible base relation of N . a

Finally, in order to solve the MLP for arbitrary QCNs, we present in this section the algorithm
Minimize, presented in Algorithm 22. Minimize has two parameters, the first one being a QCN
N = (V,C) for which we aim to derive the feasible base relations, and the second one being a
subclass A of relations of a qualitative constraint language that has patchwork for not trivially
inconsistent and �-consistent QCNs defined over that subclass of relations. Minimize proceeds in
an iterative manner that we explain as follows. In each iteration, a relation r is defined by a
set of untreated base relations of a constraint N [v, v′], followed by the derivation of a consistent
sub-QCN N ′′ of N defined over A, for which N ′′[v, v′] contains some base relations of r and, in
particular, feasible relations of N . In the case where such a sub-QCN does not exist, the base
relations of r are not feasible. This process continues until all base relations of N are treated.
The expected efficiency of function Minimize is due, on one hand, to the fact that several feasible
(or unfeasible) base relations are derived in each iteration and, on the other hand, to the fact
that searching for the subQCN N ′′ and deriving feasible base relations can be made efficiently by
applying partial consistencies �G-consistency and ◆G-consistency for a given subclass A of relations
of a qualitative constraint language that has patchwork for not trivially inconsistent and �-
consistent QCNs defined over that subclass of relations, where G is a chordal graph such that
G(N) ⊆ G.

Next, we consider the auxiliary function �G-SubQCN. This function has the following three
parameters: a QCN N = (V,C), a graph G = (V,E), and a subclass A ⊆ 2B. Note that
this function is very similar to the one presented in Section 5.4 for solving the satisfiability
problem of a QCN. Function �G-SubQCN aims to derive and return a not trivially inconsistent and
�
G-consistent QCN N ′, such that N ′ ⊆ N , A(N ′) ⊆G N , and N ′[v, v′] = N [v, v′] ∀{v, v′} 6∈ E.
In the case where such a QCN N ′ does not exist, the function returns Null. For this purpose,
a backtrack search is realized by performing the closure under �G-consistency through a call to
algorithm PWC for propagating constraints and ensuring that the result is �G-consistent. In each

138

5.5. Efficient Algorithms for the Minimal Labeling Problem of QCNs

Algorithm 24: extractFeasible(N ,N ′,G)
in : Two QCNs N and N ′ on V of a qualitative constraint language that is a relation

algebra, and a graph G = (V,E).
output : N ′ in which are added ◆G-consistent base relations of N [v, v′] with {v, v′} ∈ E and

�
KV

-consistent base relations of N [v, v′] with {v, v′} 6∈ E.
1 begin
2 foreach v, v′ ∈ V do
3 foreach b ∈ N [v, v′] \ N ′[v, v′] do
4 if {v, v′} ∈ E and {b} = PWC(N[v,v′]/{b}, G)[v, v′] then
5 N ′[v, v′]← N ′[v, v′] ∪ {b};
6 N ′[v′, v]← N ′[v′, v] ∪ {b−1};
7 else if {v, v′} 6∈ E and {b} = WC(N[v,v′]/{b})[v, v

′] then
8 N ′[v, v′]← N ′[v, v′] ∪ {b};
9 N ′[v′, v]← N ′[v′, v] ∪ {b−1};

10 return N ′;

step, a constraint corresponding to an edge of G is selected and split into non-empty relations
of A. Then, this constraint is iteratively instantiated with each of these relations. The search
continues through recursive calls of �G-SubQCN.

We can assert the following result:

Proposition 42 Let N = (V,C) be a QCN, G = (V,E) a graph, and A ⊆ 2B a subclass of
a qualitative constraint language that is a relation algebra. If N is satisfiable, then function
�
G-SubQCN with N , G, A as parameters returns a not trivially inconsistent and �G-consistent
QCN N ′, such that A(N ′) ⊆G N and N ′[v, v′] = N [v, v′] ∀{v, v′} 6∈ E.

Algorithm Minimize uses also another auxiliary function, called extractFeasible, that takes as
parameters two QCNs N and N ′ defined on V and a graph G = (V,E). This function returns
N ′ augmented with ◆G-consistent base relations b belonging to N [v, v′] with {v, v′} ∈ E, and
◆

KV
-consistent base relations b belonging to N [v, v′] with {v, v′} 6∈ E.
Now, we describe in detail algorithm Minimize. Minimize takes as parameters a QCN N =

(V,C), for which we want to calculate the feasible base relations, and a subclass A ⊆ 2B of
relations of a qualitative constraint language that has patchwork for not trivially inconsistent
and �-consistent QCNs defined over that subclass of relations. To begin with, Minimize comprises
the following four successive steps: the initialization of different variables, the calculation of the
feasible base relations corresponding to the edges in the set of edges E of a chordal graph, the
minimization step by considering the constraints not corresponding to E, and finally, the return
of the result.

The different variables initialized in the first step are: NI , N ∗, and G. NI allows saving the
initial state of the QCN N given as parameter. The QCN N ∗ accumulates the base relations of
N detected as feasible during the treatment, and is therefore initialized to ⊥V . At the end of the
treatment, N ∗ will be the minimal QCN of NI . G is initialized to a chordal (triangulated) graph
of G(N). After these initializations, an optional preliminary treatment is performed (line 3) by
calculating the closure under �-consistency of N . Its aim is to quickly eliminate some unfeasible
base relations. In the case where N is detected as trivially inconsistent, NI is unsatisfiable and
⊥V is returned (line 5). In the contrary case, we continue the treatment. We note here that

139

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

during this process, and until the end of the treatment, N is an equivalent sub-QCN of NI . Only
unfeasible base relations will be removed from N .

In the second step (line 6), the constraints of NI corresponding to the edges in the set of
edges E are treated until all base relations of these constraints are detected as feasible and
accumulated into N ∗, or as unfeasible and removed from N . For this purpose, a pair {v, v′} ∈ E
such that N [v, v′] contains some non-marked feasible base relations is selected in line 7. These
base relations correspond to the relation r (line 8). In line 9, a QCN N ′ is computed through
a call to �G-SubQCN with N [v, v′]/r, G, and A as parameters. Two cases must be considered:
N ′ = Null, and N ′ 6= Null. In the case where N ′ = Null, we can affirm from Proposition 42 that
N [v, v′]/r is unsatisfiable and, therefore, the base relations of r are unfeasible for N and also
for NI , since these two QCNs are equivalent. The base relations of r can be removed from N
(line 11). Now, suppose that N ′ 6= Null. In line 13, the QCN NG/A(N ′) is saved into N ′′. From
Proposition 41 we know that each ◆G-consistent base relation of N ′′[v′′, v′′′] with {v′′, v′′′} ∈ E
and each ◆KV

-consistent base relation of N ′′[v′′, v′′′] with {v′′, v′′′} 6∈ E are feasible relations of NI
and can be added to N ∗ (line 14). Notice that since N ′′ is satisfiable, at least one newly detected
feasible base relation b ∈ r is added to N ∗[v, v′]. Following the second step, all base relations of
the constraints NI [v, v′] with {v, v′} ∈ E have been treated. The third step of Minimize finishes
the minimization of NI by considering the constraints NI [v, v′] with {v, v′} 6∈ E. Notice that
some base relations of these constraints have already been detected as feasible in the second step.
As the third step is very similar to the second step we are not going to describe it in detail.

Following the third step we can then affirm due to Propositions 42 and 41 that the QCN N ∗
returned in line 25 corresponds to the minimal QCN of NI . Thus, we can establish the following
main result:

Theorem 32 Given a satisfiable QCN N = (V,C) and a subclass A ⊆ 2B of relations of a
qualitative constraint language that is a relation algebra and has patchwork for not trivially in-
consistent and �-consistent QCNs defined over that subclass of relations, we have that algorithm
Minimize, with N and A as parameters, terminates and returns Nmin.

Then, due to Theorem 32 and Propositions 1 (at page 21) and 16 (at page 54), we have the
following result:

Corollary 28 Given a satisfiable QCN N = (V,C) of Point Algebra, Cardinal Direction Calcu-
lus, Interval Algebra, Block Algebra, or RCC-8 and one of the classes PPA, PCDC, HIA, HnIA, or
Ĥ8, C8, and Q8 respectively, we have that algorithm Minimize, with N and A the given class as
parameters, terminates and returns Nmin.

5.5.1 Experimental Evaluation

We evaluate an implementation of the approach that we presented in this section, namely, the
Minimize algorithm, against two approaches that we describe as follows. The first approach,
which we call NaiveMin, refers to a naive minimization algorithm which (after pruning some
unfeasible base relations with the weak composition) consists of testing in an iterative way the
feasibility of every base relation of each of the constraints of the QCN through the use of a method
that solves the satisfiability problem (here the function �G-SubQCN using the subclasses HIA or
Ĥ8 and the complete graph as parameters). As a first step, the constraint containing the base
relation b to be tested is replaced with the singleton constraint {b}. Then, the satisfiability check
with respect to the obtained QCN is executed in order to obtain the feasibility or the unfeasibility
of b. The second approach is essentially the Minimize algorithm itself where a complete graph is
used in all cases.

140

5.5. Efficient Algorithms for the Minimal Labeling Problem of QCNs

0

20

40

60

80

100

120

140

160

180

200

220

4 6 8 10 12 14 16 18 20 22

C
P
U

T
im

e
(s
)

densityNonTrivial (d)

NaiveMin n=40
MinimizeGIF n=40
MinimizeKV

n=40
NaiveMin n=50

MinimizeGIF n=50
MinimizeKV

n=50
MinimizeGIF n=60
MinimizeKV

n=60

Figure 5.18: CPU time for series S(n, d, 6.5) of IA

Technical Specifications The experimentation was carried out on a computer with an Intel
Core 2 Quad Q9400 processor with a CPU frequency of 2.66 GHz, 8 GB RAM, and the Precise
Pangolin x86_64 OS (Ubuntu Linux). The implementation of the different functions was done
using the C programming language, and the gcc/g++ 4.6.3 compiler was used for compilation.
Regarding the implementation, and as we will deal with small-sized QCNs in the evaluation that
follows (because of the computational difficulty posed by the MLP), we precomputed all triangles
of constraints for each particular use case of the evaluation and reserved a special queue structure
for storing them; that way, the underlying PWC algorithm will run as efficiently as possible.26

Finally, only one of the CPU cores was used for the experiments.

Dataset and Measures In order to study the behavior of algorithm Minimize, we conducted
experiments with QCNs of IA and RCC-8. These QCNs were generated from the model S [Nebel,
1996; Nebel, 1997]. This model can generate random satisfiable QCNs according to three param-
eters, n, d, and s, where n is the number of variables of the generated QCNs, d is the average
number of variables connected with a non-trivial constraint (i.e., a constraint defined by a rela-
tion other than B), and s is the average number of base relations of a non-trivial constraint. For
this model, the satisfiability of a generated QCN is guaranteed by augmenting it with a scenario.
A set of QCNs generated according the model S using the parameters n, d and s will be denoted
by S(n, d, s). We will present experiments with instances issued from the series S(n, d, |B|/2),

26In relation to the implementation note, we remind the reader of our discussion in Section 5.2.1 where we
explained the complexity of obtaining a triangle of constraints with respect to a graph when given a particular
edge of that graph, and advocated the precomputation of all triangles of constraints with respect to that graph
when the size of the QCN allows it.

141

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

0

20

40

4 6 8 10 12 14

C
P
U

T
im

e
(s
)

degreeNonTrivial (d)

NaiveMin n=60
MinimizeKV

n=60
MinimizeGIF n=60

Figure 5.19: CPU time for instances of RCC-8 not forced to be consistent

with n varying from 30 to 60 with an incremental step of 10, and d varying from 4 to 22 with an
incremental step of 0.5. For each series, we generated 50 QCNs. The subclasses of relations used
as parameters for function Minimize are the two maximal tractable subclasses HIA for IA and Ĥ8

for RCC-8. The CPU time per each series was considered as a comparison measure. Further, a
timeout of 5 hours was given for each series.

As a side note, and as also discussed earlier in this chapter, a linear technique to triangulate
a graph consists of adding extra edges produced by eliminating vertices one by one. Many
heuristics have been proposed to order the vertices (cf. [Cano and Moral, 1994]), here we use the
GreedyFillIn heuristic (GIF) [Bodlaender and Koster, 2010] to triangulate the constraint graph
of a QCN (line 3 of the Minimize algorithm) and obtain a chordal graph.

Results In what follows, MinimizeGIF denotes the function Minimize with the use of GIF trian-
gulation, whereas MinimizeKV

denotes the function Minimize where the chordal graph used is the
complete graph KV .

For every series, we note that the general approach used by Minimize greatly outperforms
the naive approach followed by NaiveMin. As an example, consider Figure 5.18 which illustrates
the CPU time required by the three functions to solve the series S(40, d, 6.5) and S(50, d, 6.5)
of IA. Note that for n > 50, function NaiveMin cannot solve the series of IA in the 5 hours
given as timeout. Further, by comparing the CPU time required by MinimizeKV

and MinimizeGIF,
the latter approach has significantly better performance. Using judicious triangulations as the
one offered by the GIF heuristic increases the efficiency of the detection of the feasability or the
unfeasibility of the base relations belonging to a constraint associated with an edge of the graph
issued by the triangulation (in Step 2 of Minimize).

Similar results were obtained for QCNs of RCC-8, for instances not forced to be satisfiable
(see Figure 5.19).

142

5.6. Efficient Algorithms for the Redundancy Problem of QCNs

Algorithm 25: Delphys5(N)
in : An all-different QCN N defined over a distributive subclass of relations of a qualitative

constraint language that is a relation algebra and for which every �-consistent atomic
QCN is satisfiable.

output : χ, the set of non-redundant relations in �(N).
1 begin
2 χ← ∅;
3 G← Triangulation(G(N));
4 N ′ ← PWC(N , G);
5 Q ← {(vi, vj) | {vi, vj} ∈ E(G(N)) with 0 ≤ i < j < |V |};
6 while Q 6= ∅ do
7 (vi, vj) ← Q.pop();
8 τ ← ∅;
9 foreach vk such that {vi, vk}, {vk, vj} ∈ E(G) do

10 t ← N ′[vi, vk] � N ′[vk, vj];
11 foreach b ∈ B do
12 if b 6∈ t then
13 τ ← τ ∪ {b};

14 if τ ∪N ′[vi, vj] 6= B then
15 χ ← χ ∪ {N ′[vi, vj]};

16 return χ;

5.6 Efficient Algorithms for the Redundancy Problem of QCNs

In the case where a QCN N is defined over a distributive subclass of relations, and since algo-
rithm PWC is able to enforce partial �-consistency on a given QCN of a relation algebra due to
Proposition 24 (at page 97), we can devise an algorithm based on PWC that will effiently extract
the set of non-redundant constraints in the closure under weak composition of N , viz., �(N), by
implementing Proposition 23 (at page 95). That set of non-redundant relations will be essen-
tially the same as the one provided by Lemma 2 (at page 36). Such an algorithm is presented in
Algorithm 25, called Delphys5. We have the following result with respect to Delphys5:

Proposition 43 Let N = (V,C) be an all-different QCN defined over a distributive subclass
of relations of a qualitative constraint language that is a relation algebra and for which every
�-consistent atomic QCN is satisfiable. Then, algorithm Delphys5 terminates and returns the
set of non-redundant relations in �(N).

Then, due to Proposition 43, and Propositions 1 (at page 21) and 3 (at page 34), we have
the following result:

Corollary 29 Let N = (V,C) be a QCN defined over a distributive subclass of relations of Point
Algebra, Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8. We have that
algorithm Delphys5 terminates and returns the set of non-redundant relations in �(N).

Clearly, given a QCN N = (V,C), algorithm Delphys runs in O(δ|E||B|) time, where δ denotes
the maximum vertex degree of a triangulation G of G(N), as the PWC algorithm call in line 4
dominates the overall execution time and the triangulation procedure in line 3 is linear in the
size of G [Parter, 1961; Diestel, 2012].

143

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Algorithm 26: extractPrimeQCN5(N)
in : A QCN N = (V,C) defined over a subclass of relations of a qualitative constraint

language that is a relation algebra and has patchwork for not trivially inconsistent and
�-consistent QCNs defined over that subclass of relations.

output : A prime QCN of N .
1 begin
2 C ′ ← map({((v, v′) : (B if v 6= v′ else {Id})) | v, v′ ∈ V });
3 G← Triangulation(G(N));
4 Q ← {(vi, vj) | {vi, vj} ∈ E(G(N)) with 0 ≤ i < j < |V |};
5 while Q 6= ∅ do
6 (vi, vj) ← Q.pop();
7 flag ← True;
8 foreach b ∈ B \ C(vi, vj) do
9 if PWC(N[vi,vj]/{b}, G) 6= ⊥V then

10 C ′(vi, vj) ← C(vi, vj); C ′(vj , vi) ← (C(vi, vj))
−1;

11 flag ← False; break;

12 if flag = True then
13 C(vi, vj) = C(vj , vi) = B;

14 return (V,C ′);

Then, due to Propositions 43, 13 (at page 50), 1 (at page 21), and 3 (at page 34), and by
taking into account the fact that given a QCN N we have that Nmin is unique, we can construct
the prime QCN of a given QCN of Point Algebra, Cardinal Direction Calculus, or RCC-8 by
exploiting Theorem 7 (at page 50), as it was presented in Section 3.5.4.

Theorem 7 (at page 50) allows us to construct a unique prime QCN out of a given QCN only for
QCNs that satisfy certain conditions, i.e., QCNs defined over a distributive subclass of relations of
Point Algebra, Cardinal Direction Calculus, or RCC-8. For QCNs of other qualitative constraint
languages, or for QCNs defined over non-distributive subclasses of relations, we have to follow a
different approach for extracting their (non-unique in the general case) prime networks. Let us
consider the case where a QCN N = (V,C) is defined over a subclass of relations of a qualitative
constraint language that has patchwork for not trivially inconsistent and �-consistent QCNs
defined over that subclass of relations. To test if a constraint C(u, v) for some {u, v} ∈ E(G(N))
is non-redundant inN , we need to check if there exists a base relation b ∈ B\C(u, v) such that the
QCN N[u,v]/{b} is satisfiable; this satisfiability check can be achieved through partial �-consistency
provided that a triangulation of the constraint graph of the given QCN is considered. (Note that
due to Lemma 1 at page 31 we already know that given a QCN N = (V,C), a relation N [v, v′]
with v, v′ ∈ V is redundant if {v, v′} 6∈ E(G(N)).) We can apply this procedure iteratively
to construct a prime QCN out of a given QCN and, thus, devise algorithm extractPrimeQCN5,
presented in Algorithm 26. We have the following result:

Proposition 44 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that
is a relation algebra and has patchwork for not trivially inconsistent and �-consistent QCNs
defined over that subclass of relations. Then, given a QCN N = (V,C) defined over A, algorithm
extractPrimeQCN5 terminates and returns a prime QCN of N .

Then, due to Propositions 44, 1 (at page 21), and 16 (at page 54), we have the following
result:

144

5.6. Efficient Algorithms for the Redundancy Problem of QCNs

Algorithm 27: extractPrimeQCNSC5(N ,A)
in : A QCN N = (V,C), and a subclass A.
output : A QCN (V,C ′).

1 begin
2 C ′ ← map({((v, v′) : (B if v 6= v′ else {Id})) | v, v′ ∈ V });
3 G← Triangulation(G(N));
4 Q ← {(vi, vj) | {vi, vj} ∈ E(G(N)) with 0 ≤ i < j < |V |};
5 while Q 6= ∅ do
6 (vi, vj) ← Q.pop();
7 r ← B \ C(vi, vj);
8 if PartialConsistency(N[vi,vj]/r, G,A) 6= Null then
9 C ′(vi, vj) ← C(vi, vj); C ′(vj , vi) ← (C(vi, vj))

−1;

10 else
11 C(vi, vj) = C(vj , vi) = B;

12 return (V,C ′);

Corollary 30 Let N = (V,C) be a QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8, defined over one of the classes PPA, PCDC, HIA, HnIA, or Ĥ8,
C8, and Q8 respectively. We have that algorithm extractPrimeQCN5 terminates and returns a
prime QCN of N .

Given a QCN N = (V,C), algorithm extractPrimeQCN runs in O(δ|E||E′||B|2) time, where
E′ denotes the set of edges of the constraint graph G(N), E the set of edges of a triangulation
G of that graph, and δ the maximum vertex degree of G. The extractPrimeQCN5 algorithm
iterates a number of O(|E′|) constraints and calls algorithm PWC for each one of the O(|B| − 1)
base relations not belonging to a constraint; each such call requiring O(δ|E||B|) time. It should
be clear that the construction of a prime network depends on the order in which the constraints
are processed, as we already noted that a prime network of a given QCN is in general not unique.

In the case of an arbitrary QCN, i.e., a QCN N = (V,C) that is defined over 2B, we have
to devise a different algorithm than the one presented earlier. Such an algorithm will build on
the PartialConsistency algorithm presented in Algorithm 18 and will use a subclass of relations
of a qualitative constraint language that has patchwork for not trivially inconsistent and �-
consistent QCNs defined over that subclass of relations. To test if a constraint C(u, v) for some
{u, v} ∈ E(G(N)) is non-redundant in N , we need to check if the QCN that results by replacing
relation C(u, v) with relation r = B \ C(u, v) in N is satisfiable; this satisfiability check can
be achieved through the PartialConsistency algorithm along with a subclass of relations of a
qualitative constraint language that has patchwork for not trivially inconsistent and �-consistent
QCNs defined over that subclass of relations. We can apply this procedure iteratively to construct
a prime QCN out of a given QCN and, thus, devise algorithm extractPrimeQCNSC5, presented
in Algorithm 27. We have the following result:

Proposition 45 Let A ∈ 2B be a subclass of relations of a qualitative constraint language that is
a relation algebra and has patchwork for not trivially inconsistent and �-consistent QCNs defined
over that subclass of relations. Then, given A, and a QCN N defined over 2B, we have that
algorithm extractPrimeQCNSC5 terminates and returns a prime QCN of N .

Then, due to Propositions 45, 1 (at page 21), and 16 (at page 54), we have the following
result:

145

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Table 5.4: Performance comparison on CPU time

network Delphys Delphys5 speedup (%)
nuts 0.26s 0.19s 26.9%
adm1 25 536.93s 222.33s 99.1%
gadm1 140 685.26s 329.43s 99.8%
gadm2 9.18s 2.34s 74.5%
adm2 ∞ 1 069.51s ∼ 100%

Table 5.5: Effect on obtaining non-redundant relations

network initial # of relations non-redundant # of relations decrease (%)
nuts 3 176 2 249 29.19%
adm1 44 832 44 601 0.52%
gadm1 159 600 158 440 0.73%
gadm2 589 573 292 331 50.42%
adm2 5 236 270 1 798 132 65.66%

Corollary 31 Given one of the classes PCDC, HIA, HnIA, or Ĥ8, C8, and Q8, and a QCN N of
Cardinal Direction Calculus, Interval Algebra, Block Algebra, or RCC-8 respectively, we have that
algorithm extractPrimeQCNSC5 terminates and returns a prime QCN of N .

Given a QCN N = (V,C), and a subclass A, the runtime of algorithm extractPrimeQCNSC5
is O(α|E||E′|), where E′ denotes the set of edges of the constraint graph G(N) and E the set of
edges of a triangulation of that graph, as it iterates a number of O(|E′|) constraints and calls
algorithm PartiaConsistency for each one of the constraints; each such call operating on a O(α|E|)
search space. We remind the reader that α is the branching factor provided by subclass A, e.g.,
α = 1.4375 for subclass Ĥ8 for RCC-8 [Renz and Nebel, 2001]).

5.6.1 Experimental Evaluation

In this section, we compare the performance of Delphys5 with that of Delphys (presented in
Section 3.5.4).

Technical Specifications The experiments were carried out on a computer with an Intel
Core 2 Quad Q9400 processor with a CPU frequency of 2.66 GHz per core, 8 GB RAM, and the
Precise Pangolin x86_64 OS. Both Delphys5 and Delphys were written in pure Python and run
with PyPy 2.4.0 (http://pypy.org/). Only one of the CPU cores was used.

Dataset and Measures We considered the real-world RCC-8 datasets that we used in Sec-
tion 5.4.4, namely, nuts, adm1, gadm1, gadm2, and adm2. The aforementioned network instances
are satisfiable. They comprise relations that are properly contained in any of the two maximal
distributive subclasses D41

8 and D64
8 for RCC8. Also, some identical regions were properly amal-

gamated to satisfy the uniqueness property. We use the CPU time and the reduction in the
number of constraints as our measures.

Results The results on the performance of Delphys5 and Delphys are shown in Table 5.4.
Note that symbol ∞ signifies that a reasoner hits the memory limit. The speedup for Delphys5
reaches as high as nearly 100% for the cases where Delphys was actually able to reason with the

146

http://pypy.org/

5.7. Towards Efficient Utilization of Parallelism

networks (e.g., gadm1). Table 5.5 shows the decrease that we can achieve with respect to the
total number of non-redundant relations that we can obtain from an initial network, which allows
one to construct sparse constraint graphs that boost various graph related tasks such as storing,
querying, representing, and reasoning. Note that the constraint graphs of the initial networks
are sparse, thus, a lot of redundancy is already avoided. Still, for the biggest network of the
dataset, namely, adm2, the decrease is around 66%, which yields a number of non-redundant
relations that is almost linear to the number of the vertices of that network, confirming a similar
observation in [Li et al., 2015a].27

5.7 Towards Efficient Utilization of Parallelism

In this section, we present a simple decomposition scheme that exploits the sparse and loosely
connected structure of the constraint graphs of very large real-world QCNs, which have been
of high interest in the recent literature [Nikolaou and Koubarakis, 2014; Sioutis and Condotta,
2014b; Sioutis, 2014], and paves the way for efficient utilization of parallelism. Our approach
is based on extracting the smaller QCNs that correspond to the biconnected components of
the constraint graph of a given large QCN and reasoning with these smaller biconnected QCNs
completely separately, in a parallel or serial fashion, which, as our experimentation suggests,
significantly decongests search when solving non-tractable QCNs.

However, before we proceed with the description of our method, we will first address certain
issues with the decomposition-based approach presented in [Nikolaou and Koubarakis, 2014] that
utilizes parallelism to check the satisfiability of QCNs of RCC-8. In particular, we will prove that
the aforementioned approach lacks soundness, as the notion of a partitioning graph defined in
that work is not coherent with the use of patchwork upon which it solely relies, in two ways,
which we enumerate and analyse.

5.7.1 Partitioning Graphs and Non-Soundness

Let G = (V,E) be a graph and k a positive integer. If U ⊆ V , then G(U) will denote the
subgraph of G that is induced by the set of vertices U . A set {Vi ⊆ V | 1 ≤ i ≤ k} with k

pairwise-disjoint elements such that
k⋃
i=1

Vi = V , is called a k-way partitioning of G [Bichot and

Siarry, 2011]. Finally, let ∅ denote the empty, edgeless, graph. We recall the following definition
of a partitioning graph from [Nikolaou and Koubarakis, 2014]:

Definition 41 Let G = (V,E) be a graph and {V1, . . . , Vk} a k-way partitioning of G for some
positive integer k. A partitioning graph P of G is a tuple (VP , EP , λP , GP), where VP =
{v1, . . . , vk} is the set of its nodes, Ep the set of its edges, λP : VP → 2V a function that
maps each node of P to a partition (subset of V) of G, and GP a set of k subgraphs (parts) of
G. The following conditions must be satisfied:

• If Gi ∈ GP then the set of vertices of Gi is a superset U of λP (vi) and the set of its edges
is E(G(U)).

• Any edge in G should be present in at least one subgraph Gi ∈ GP .
27Of course, Delphys would have achieved the same decrease, had it been able to reason with such large

networks.

147

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

0

2

1 3

0

2

1

0

2

3

G G1 G2

a b

P

{G1} {G2}

Figure 5.20: A graph and its partitioning graph with the parts comprising it (also contained in
dashed circles in the initial graph)

• An edge {vi, vj} belongs to EP if and only if Gi ∩Gj 6= ∅ (i.e., if and only if the subgraphs
Gi and Gj corresponding to nodes vi and vj respectively share a common edge).

Let G be a graph and P = (VP , EP , λP , GP) its partitioning graph. Then, an edge e of G
present in more than one subgraph Gi ∈ GP is called a global edge. An edge e of G present in
exactly one subgraph Gi ∈ GP is called a local edge.

We will now enumerate the issues that lead to non-soundness and provide counter-examples
for each case. The reader is kindly asked to refer to [Nikolaou and Koubarakis, 2014] and check
that the flaws pointed out here are actually present in [Nikolaou and Koubarakis, 2014].

The issues that we will enumerate will allow us to infer the following fact:

Proposition 46 The main result of [Nikolaou and Koubarakis, 2014] with respect to checking the
satisfiability of a QCN of RCC-8 does not hold. In particular, Propositions 2 and 3 in [Nikolaou
and Koubarakis, 2014] do not hold.

We begin with the first issue.

Issue 1 The first issue has to do with the fact that a complete agreement on the constraints
between the common variables of two networks is not achieved in order to allow the applicability
of patchwork. Let us consider the example of Figure 5.20. Graph G is partitioned into two
parts, namely, G1 and G2. The partitioning graph is shown in the lower part of the figure, and it
comprises the set of nodes {a, b} and an empty set of edges. Node a corresponds to subgraph G1

and node b to subgraph G2. Its set of edges EP is empty as subgraphs G1 and G2 do not share
a common edge (that would otherwise be the global edge (0, 2)), thus, the only possible edge
(a, b) does not exist. In [Nikolaou and Koubarakis, 2014] the authors perform �-consistency on
the subgraphs of a graph separately, in a parallel fashion, and then rely on the set of edges EP to
identify the subgraphs among which a complete agreement has to be ensured (the reader is kindly
asked to refer to line 7 in the function of Algorithm 2 in [Nikolaou and Koubarakis, 2014]). If, as in
this example, such an edge does not exist, a complete agreement is never achieved. This can be the
cause of failing to identify inconsistencies. Let us assume that graphG, as depicted in Figure 5.20,
is the constraint graph of a given QCN comprising constraints C01 = C12 = C23 = C30 = {TPP}.

148

5.7. Towards Efficient Utilization of Parallelism

0

2

1

3

G
a b

P

{G1} {G2}

4

5

6

7

0

2

1

3

4

60

2

1

3

5

7

G1

G4
G3

G2

c d

{G3} {G4}

Figure 5.21: A graph and its partitioning graph with the parts comprising it (also contained in
dashed circles in the initial graph)

This yields an unsatisfiable network, as it basically infers that region 0 is properly contained in
region 2, and vice versa. Applying �-consistency on that network would result in the empty
relation assignment for constraint C02 (inconsistency). However, that constraint is never checked
in our example. Although the authors implicitly complete subgraphs G1 and G2 in order to
apply �-consistency, they do not complete these subgraphs when computing their intersection,
as clearly specified in the last bullet of Definition 41. Even if they did implicitly consider complete
subgraphs for that part of the definition, and the edge (a, b) indeed existed, line 7 in the function
of Algorithm 2 in [Nikolaou and Koubarakis, 2014] still requires that an agreement should only
be achieved for every common edge of G1 and G2 (the initial non-complete subgraphs), which is
none. If they implicitly considered complete subgraphs for that part of the algorithm too, then
this particular issue for a 2-way partitioning would be resolved. We have also verified this issue
experimentally with the implementation used in [Nikolaou and Koubarakis, 2014].

Before proceeding to the next issue, let us assume that the first issue is fixed with everything
that we propose, and a 2-way partitioning is actually valid for applying patchwork. We mean to
show, that the concept of a partitioning graph is beyond repair, unless it is structured in a way
that it defines a tree decomposition, which defeats the purpose of having to define a partitioning
graph in the first place.

The second issue follows.

Issue 2 This issue has to do with the fact that even if the first issue is resolved, the partitioning
graph can suffer from the existence of cycles that are created by subgraphs of a given graph.
Let us consider the example of Figure 5.21. Graph G is partitioned into four parts, namely,
G1, G2, G3, and G4. The partitioning graph is shown in the lower part of the figure, and the
correspondence between its sets of nodes and edges with the different subgraphs should be clear
up to this point. Note that all subgraphs are complete, thus, they completely overlap with each
other on the common vertices. For example, graph G1 completely overlaps with graph G2 on the
edges of the graph defined on the single common vertex 0, as their intersection yields the complete

149

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

graph on singe vertex 0. Although such an overlap is trivial, as a complete graph on a single vertex
(singleton graph) does not have any edges, it is sufficient to ensure the applicability of patchwork
for the corresponding constraint networks. (Our example can be easily extended to non-trivial
overlaps.) However, due to the last bullet of Definition 41, the partitioning graph is unable to
obtain any edges, as there can exist no global edges. In fact, even if some edges existed in EP , in
any possible combination and amount, the partitioning graph would still fail to detect the cycle
that is constructed by the complete subgraphs G1, G2, G3, and G4, namely, the cycle defined
by vertices 0, 1, 2, and 3. This cycle, as shown in the example of Figure 5.20, can harbor an
inconsistency. Such a cycle exists also in [Nikolaou and Koubarakis, 2014, Fig. 1] between vertices
3, 4, 5, and 7 there. Patchwork alone is only valid for tree decompositions, as tree decompositions
guarantee acyclicity of cliques and, thus, do not harbor cycles with potential inconsistencies that
cannot be detected by the application of �-consistency on the different cliques. This issue was
again verified experimentally.

Essentially, the approach defines a partial algorithm; a given satisfiable QCN will be shown to
be satisfiable, as the approach in [Nikolaou and Koubarakis, 2014] due to disregarding constraints
operates on a less restrictive constraint graph of the input network where constraint propagation
and consistency checks are limited, whilst an unsatisfiable QCN may be shown to be satisfiable.

Impact on Performance The main contribution of [Nikolaou and Koubarakis, 2014] lies in
the performance of its offered implementation, as it promises efficiency that goes well beyond the
state of the art. Computing a good k-way partitioning28 alone is among the graph partitioning
problems that fall under the category of NP-hard problems [Garey et al., 1976], and solutions
to these problems are generally derived using heuristics and approximation algorithms, such
as the ones offered by the METIS29 software employed in [Nikolaou and Koubarakis, 2014].
We leave aside any extra computational complexity that would result from needing to restrict
a partitioning graph to being a tree decomposition (e.g., by identifying cycles or using some
recursion as in [Huang et al., 2013]), and focus on native search. As explained in Section 3.5.2,
native search in qualitative spatial and temporal reasoning is bound to the number of constraints
of a given QCN, and not to its number of variables as in “traditional” constraint programming.
This is because, in a sense, the constraints of a given QCN are the true variables for which we
have to assign some relation. Indeed, the search space defined in [Nikolaou and Koubarakis,
2014] relies mainly on the number of constraints of a given QCN. In particular, we can recall the
following proposition from [Nikolaou and Koubarakis, 2014]:

Proposition 47 ([Nikolaou and Koubarakis, 2014]) Let G = (V,E) be the constraint graph
of a QCN of RCC-8 and P a partitioning graph of G with k parts. The search space of algorithm
DConsistency [Nikolaou and Koubarakis, 2014] is O(|B|g(|B|gkm3 + kαlm3)), where g is the num-
ber of global edges, l and m the maximum number of local edges and vertices respectively among
all parts of P , and α the branching factor of the subclass of relations employed. If Π denotes the
aforementioned search space, then given p processing units and assuming a balanced partitioning
among the k parts (i.e., m = |V |/k), the elapsed running time of algorithm DConsistency is
O(Π

p).

We showed earlier that some global edges can be disregarded, thus, parameter g as defined
in Proposition 47 leads to a significantly reduced search space for the implementation considered

28Good in terms of obtaining smaller components that meet specific properties, for example, a good partitioning
can be defined as one in which the number of edges running between separated components is small.

29http://glaros.dtc.umn.edu/gkhome/views/metis

150

http://glaros.dtc.umn.edu/gkhome/views/metis

5.7. Towards Efficient Utilization of Parallelism

0 21

G
a b

P

{G1} {G2}

4

5

3

1

3

4

4

5

21

3

0

G1

G3

G2

c{G3}

Figure 5.22: A chordal graph and its partitioning graph with the parts comprising it (also
contained in dashed circles in the initial graph)

in [Nikolaou and Koubarakis, 2014] with respect to the one that should normally be considered,
as g has an exponential contribution. However, even in that case, a re-evaluation of the imple-
mentation used in [Nikolaou and Koubarakis, 2014] against state of the art solvers, showed that
it performs very poorly with respect to the state of the art [Sioutis, 2014]. The work in [Sioutis,
2014] does not deal with any of the issues that we dealt with here as it assumes a partition-
ing graph to implicitly define a tree decomposition, thus, [Sioutis, 2014] presents mostly lower
bounds on the performance of the implementation used in [Nikolaou and Koubarakis, 2014].

Fixing the Issues We noted earlier that the concept of a partitioning graph is beyond repair,
unless it is structured in a way that it defines a tree decomposition. It may seem tempting as
a quick hack to triangulate the constraint graph of a given QCN of RCC-8 and, thus, obtain a
chordal constraint graph of that QCN, and feed it directly to the partitioning algorithm described
in [Nikolaou and Koubarakis, 2014]. This may still yield non-soundness; we explain as follows.
Consider the example shown in Figure 5.22 where the chordal graph G is partitioned into 3
subgraphs. The partitioning graph P is such that it is unable to capture/break the cycle defined
by vertices 1, 3, and 4. This cycle may harbor an inconsistency, which will not be detected by
the application of �-consistency on the different parts of the partitioning graph.

One way to force a partitioning graph into defining a tree decomposition is using METIS in a
recursive manner, as it is done in [Huang et al., 2013]. In particular, one has to initially partition
a given graph G into two parts, and then recursively apply the same procedure on the obtained
parts, until no further partitioning can occur. However, this can be a costly operation. A faster
way is to rely on chordal graphs (tree decompositions into cliques), which can both be constructed
and also yield a natural tree decomposition of their cliques in linear time [Diestel, 2012]. The
graphs induced by the cliques can then be collected at no extra cost and serve as the parts of
the partitioning graph; consequently, the approach described in [Nikolaou and Koubarakis, 2014]
can then be carried out with soundness and completeness.

151

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

v0 v1 v2 v3

v4 v5 v6

v7 v8 v9 v10v11

v12

v13

v0 v1 v2 v3

v4 v5 v6

v6

v9 v10

v5

v7 v8

v7 v11v10v13 v12 v13 v8 v9

G

G1 G2 G3 G4

G5 G6 G7 G8

a b

c d e f

T

{v5,v7,v8}

{v0,v1,v4,v5}

{v7,v11}

{v8,v9}

{v6,v9,v10}

{v10,v13}

{v12,v13}

g

h{v2,v3,v6}

Figure 5.23: A graph G (top) with its biconnected components (middle) and its tree decompo-
sition (bottom)

5.7.2 A Simple Decomposition Scheme for Sound and Efficient Use of Paral-
lelism

As noted earlier, in [Nikolaou and Koubarakis, 2014] the authors provided a parallel imple-
mentation for checking the satisfiability of a QCN of RCC-8, which however lacks soundness
(Proposition 46 at page 148). Now, we present a simple decomposition scheme that exploits the
sparse and loosely connected structure of the constraint graphs of very large real-world QCNs
and allows for sound and efficient utilization of parallelism. Our approach is based on extracting
the smaller QCNs that correspond to the biconnected components of the constraint graph of a
given large QCN and reasoning with these smaller biconnected QCNs completely separately, in a
parallel or serial fashion, which, as our experimentation suggests, significantly decongests search
when solving non-tractable QCNs.

First, we recall a definition from [Dechter, 2003] regarding biconnected graphs and compo-
nents.

Definition 42 A connected graph G is said to have an articulation vertex u if there exist vertices
v and v′ such that all paths connecting v and v′ pass through u. A graph that has an articulation
vertex is called separable, and one that has none is called biconnected. A maximal subgraph with
no articulation vertices is called a biconnected component.

Intuitively, an articulation vertex is any vertex whose removal increases the number of con-
nected components in a given graph. From [Dechter, 2003] we also have the following property:

152

5.7. Towards Efficient Utilization of Parallelism

Property 1 ([Dechter, 2003]) Let G be a graph and {G1, . . . , Gn} its biconnected components.
Then, there exists a tree decomposition (T, {X1, . . . , Xn}) of G, where cluster Xi ⊆ V (G) induces
the biconnected component Gi of G, for every i ∈ {1, . . . , n}.

Let us now view the discussed notions in an example. Figure 5.23 depicts a graph G, along
with its biconnected components, and its tree decomposition. Vertices in grey color are the
articulation vertices of G. The tree decomposition comprises a tree T = (I, F) and a cluster
Xi for every node i ∈ I of that tree, e.g., Xa = {v0, v1, v4, v5}. We can obtain the following
proposition:

Proposition 48 Let N be a QCN defined on a language that has patchwork for satisfiable atomic
QCNs, and let {G1, . . . , Gk} be the biconnected components of its constraint graph G(N). Then,
N is satisfiable iff Ni is satisfiable for every i ∈ {1, . . . , k}, where Ni is N↓V (Gi).

Proof. By Property 1, the constraint graph G(N) has a tree decomposition (T, {X1, . . . , Xk}),
where cluster Xi induces Gi, for every i ∈ {1, . . . , k}. We can also infer by Definition 42, that
∀i, j ∈ {1, . . . , k} with i 6= j, V (Gi)∩V (Gj) contains at most one vertex u. If Ni is satisfiable for
every i ∈ {1, . . . , k}, we can obtain a satisfiable atomic sub-QCN of Ni, i.e., a scenario Si of Ni,
for every i ∈ {1, . . . , k}. For any possible scenarios and any i, j ∈ {1, . . . , k} with i 6= j, we will
have that Si = (V (Gi), Ci) and Sj = (V (Gj), Cj) will always agree on the single unary constraint
that is defined by a single vertex u ∈ V (Gi)∩V (Gj) whenever we have that V (Gi)∩V (Gj) 6= ∅,
i.e., Ci(u, u) = Cj(u, u) = {Id}, as by Definition 4 (at page 26) we have that for any QCN
M = (V,C), C(v, v) = {Id} ∀v ∈ V . Similarly to the proof of Proposition 19 (at page 90), we
can apply patchwork to patch together all the satisfiable atomic QCNs Si with i ∈ {1, . . . , k} in
a sequential manner and, thus, derive the satisfiability of N . If N is satisfiable, then, clearly, Ni
will be satisfiable for every i ∈ {1, . . . , k}. a

Consequently, by Propositions 48, 3 (at page 34), and 16 (at page 54), we have the following
result:

Corollary 32 Let N be a QCN of Point Algebra, Cardinal Direction Calculus, Interval Algebra,
Block Algebra, or RCC-8, and let {G1, . . . , Gk} be the biconnected components of its constraint
graph G(N). Then, N is satisfiable iff Ni is satisfiable for every i ∈ {1, . . . , k}, where Ni is
N↓V (Gi).

It is important to note that the proof of Proposition 48 is based on tree decompositions whose
nodes correspond to clusters where any two clusters share at most one vertex with each other. In
case two clusters share more than one vertex with each other, the involved QCNs should be, for
instance (and among other conditions), not trivially inconsistent, �-consistent, and defined over
a subclass of relations of a qualitative constraint language that has patchwork for not trivially
inconsistent and �-consistent QCNs defined over that subclass of relations, as it is specified in
Proposition 19 (at page 90) and considered in [Sioutis and Koubarakis, 2012] for RCC-8 and in
[Chmeiss and Condotta, 2011] for IA respectively. A simple algorithm for obtaining a collection
of QCNs that correspond to the biconnected components of the constraint graph of a given QCN
is presented in Algorithm 28. Note that in lines 2–3 we immediately return the input QCN if
it is trivially inconsistent, as it would not make any sense to continue with the decomposition
procedure. Function BCSubgraphs(G) in line 4 returns the biconnected components of a graph
G = (V,E) and has a runtime of O(|E|) [Dechter, 2003]. Note that in line 4 we keep only
the components of order greater than 2, as any not trivially inconsistent qualitative constraint

153

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Algorithm 28: Decomposer(N)
in : A QCN N = (V,C).
output : A collection of QCNs.

1 begin
2 if ∃{v, v′} ∈ E(G(N)) with C(v, v′) = ∅ then
3 return {(V,C)};
4 S ← {g | g ∈ BCSubgraphs(G(N)); and |V (g)| > 2};
5 χ ← ∅;
6 while S 6= ∅ do
7 g ← S.pop();
8 Vg ← V (g); Eg ← E(g);
9 Cg ← map({((v, v′) : (B if v 6= v′ else {Id})) | v, v′ ∈ Vg});

10 foreach {v, v′} ∈ Eg do
11 Cg(v, v′) ← C(v, v′); Cg(v′, v) ← C(v′, v);

12 χ ← χ ∪ {(Vg, Cg)};
13 return χ;

Algorithm 29: Solver+(N)
in : A QCN N = (V,C).
output : True, or False.

1 begin
2 foreach n ∈ Decomposer(N) do
3 if not ‖ Solver(n) ‖ then
4 return False;

5 return True;

network of less than 3 variables is trivially satisfiable (by definition of a base relation). In what
follows, we always consider components of order greater than 2. Based on algorithm Decomposer,
we can obtain an algorithm to increase the performance of any given state of the art solver that
is sound and complete for checking the satisfiability of a given QCN N defined on a language
that has patchwork for satisfiable atomic QCNs; that algorithm is presented in Algorithm 29.
Let us denote any such given state of the art solver by Solver. Then, Algorithm 29 will use Solver
to decide the satisfiability of the QCNs that correspond to the biconnected components of the
constraint graph of N . The enclosure with symbol ‖ for Solver denotes the fact that Solver can
be used in a parallel or serial fashion.

Regarding the MLP, we can have the following result:

Proposition 49 Let N = (V,C) be a satisfiable QCN defined on a language that has patchwork
for satisfiable atomic QCNs, and let {G1, . . . , Gk} be the biconnected components of its constraint
graph G(N). Then, a base relation b ∈ C(u, v), with u, v ∈ V (Gi), is feasible (resp. unfeasible)
iff there exists (resp. there does not exist) a scenario Si = (Vi, C

′
i) of Ni = (Vi, Ci) such that

C ′i(u, v) = {b}, where Ni is N↓V (Gi), for some i ∈ {1, . . . , k}.

Proof. Let N ′ = (V,C ′) be the QCN defined by C ′(u, v) = {b}, C ′(v, u) = {b}−1, and C ′(y, w) =
C(y, w) ∀(y, w) ∈ (V ×V)\{(u, v), (v, u)}. Further, let Ni′ = (Vi, Ci

′) be the restriction of N ′ to
V (Gi), viz., N ′↓V (Gi). Then, by Proposition 48 and as Gi is a biconnected component of G(N),

154

5.7. Towards Efficient Utilization of Parallelism

we know that N ′ is satisfiable iff Ni′ is satisfiable; in addition, any scenario Si = (Vi, C
′′
i) of Ni′

is the restriction of some scenario S = (V,C ′′) of N ′ to Vi, and any scenario S = (V,C ′′) of N ′
is the extension of some scenario Si = (Vi, C

′′
i) of Ni′ to V . As such, the feasibility of b can be

characterized by considering Ni instead of N . a
Given a satisfiable QCN N = (V,C), Proposition 49 allows one to quickly characterize the

feasibility of a base relation b ∈ C(u, v), with u, v ∈ V (G′), where G′ is a biconnected component
of the constraint graph G(N). If u, v 6∈ V (G′) for any biconnected component G′ of G(N), then
b belongs to a constraint that is labeled with the universal relation B and its feasibility can still
be efficiently characterized under certain conditions by a function similar to extractFeasible as
described in [Amaneddine et al., 2013].

Consequently, by Propositions 49, 3 (at page 34), and 16 (at page 54), we have the following
result:

Corollary 33 Let N be a satisfiable QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8, and let {G1, . . . , Gk} be the biconnected components of its
constraint graph G(N). Then, a base relation b ∈ C(u, v), with u, v ∈ V (Gi), is feasible (resp.
unfeasible) iff there exists (resp. there does not exist) a scenario Si = (Vi, C

′
i) of Ni = (Vi, Ci)

such that C ′i(u, v) = {b}, where Ni is N↓V (Gi), for some i ∈ {1, . . . , k}.

Regarding the redundancy problem, we can have the following result:

Proposition 50 Let N = (V,C) be a satisfiable QCN defined on a language that has patchwork
for satisfiable atomic QCNs, and let {G1, . . . , Gk} be the biconnected components of its constraint
graph G(N). Then, a relation C(u, v), with u, v ∈ V , is non-redundant in N iff {u, v} ∈ E(Gi)
and C(u, v) is non-redundant in Ni = (Vi, Ci), where Ni is N↓V (Gi), for some i ∈ {1, . . . , k}.

Proof. Clearly, a relation C(u, v) is redundant in N if {v, v′} 6∈ E(Gi) for any i ∈ {1, . . . , k}, as
it will correspond to the universal relation B. Let us consider a relation C(u, v) where {u, v} ∈
E(Gi) for some i ∈ {1, . . . , k}. Let N ′ = (V,C ′) be the QCN defined by C ′(u, v) = B \ C(u, v),
C ′(v, u) = B \ (C(u, v))−1, and C ′(y, w) = C(y, w) ∀(y, w) ∈ (V × V) \ {(u, v), (v, u)}. Further,
let Ni′ = (Vi, Ci

′) be the restriction of N ′ to V (Gi), viz., N ′↓V (Gi). Then, by Proposition 48 and
as Gi is a biconnected component of G(N), we know that N ′ is satisfiable iff Ni′ is satisfiable; in
addition, any scenario Si = (Vi, C

′′
i) of Ni′ is the restriction of some scenario S = (V,C ′′) of N ′

to Vi, and any scenario S = (V,C ′′) of N ′ is the extension of some scenario Si = (Vi, C
′′
i) of Ni′

to V . Finally, since for any scenario there exists a solution that satisfies all of its base relations,
the redundancy of C(u, v) can be characterized by considering Ni instead of N . a

Consequently, by Propositions 50, 3 (at page 34), and 16 (at page 54), we have the following
result:

Corollary 34 Let N be a satisfiable QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8, and let {G1, . . . , Gk} be the biconnected components of its
constraint graph G(N). Then, a relation C(u, v), with u, v ∈ V , is non-redundant in N iff
{u, v} ∈ E(Gi) and C(u, v) is non-redundant in Ni = (Vi, Ci), where Ni is N↓V (Gi), for some
i ∈ {1, . . . , k}.

Reviewing a Real-World Dataset

We review the real-world RCC-8 datasets that we used in Section 5.4.4, and which were also
used in [Nikolaou and Koubarakis, 2014], namely, nuts, adm1, gadm1, gadm2, and adm2. The

155

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Table 5.6: Characteristics of real RCC-8 networks

network # of nodes # of edges avg. degree
nuts 2 235 3 176 2.84
adm1 11 762 44 832 7.62
gadm1 42 749 159 600 7.47
gadm2 276 729 589 573 4.26
adm2 1 732 999 5 236 270 6.04

Table 5.7: Biconnected components of real RCC-8 networks

network # of components max order median order min order
nuts 64 52 8 3
adm1 5 11 666 30 3
gadm1 166 19 864 6 3
gadm2 2 285 2 371 18 3
adm2 2 889 22 808 579 4

aforementioned network instances are tractable and contain at most two base RCC-8 relations
per edge. The characteristics of the constraint graphs of these networks are presented in Table 5.6.

As it can be seen, the constraint graphs of the networks vary in order, but they are all
relatively sparse. This comes as no surprise, as real-world graphs often present a scale-free
structure [Barabasi and Bonabeau, 2003], which results in them being sparse [Del Genio et al.,
2011]. This was also discussed again in detail in Section 5.2.2 Thus, we expect these constraint
graphs to be loosely connected and yield a high number of biconnected components. We can view
information regarding the biconnected components of the constraint graphs of our networks in
Table 5.7 (where by max order, median order, and min order we refer to the maximum, median,
and minimum number of vertices, respectively, met among the biconnected components).

The findings are quite impressive, in the sense that the maximum order among the bicon-
nected components of a constraint graph is significantly smaller than the order of that graph.
For example, the constraint graph of the biggest real RCC-8 network, namely, adm2, has an order
of value 1 732 999, but the maximum order among its biconnected components is only of value
22 808. Note also that, as the median metric suggests, most of the biconnected components of
a graph have an order much closer to the minimum order than the maximum order among the
biconnected components of that graph.

Instances for evaluating the satisfiability checking performance of the reasoners for non-
tractable QCNs, which are of our interest here, were constructed in [Nikolaou and Koubarakis,
2014] with the introduction of NP8 relations [Renz and Nebel, 2001] in the networks’ edges.
These instances will be denoted by hard-nuts, hard-adm1, and hard-gadm1 in the evaluation
that follows, and are structurally identical to networks nuts, adm1, and gadm1 respectively, i.e.,
their constraint graphs have the same characteristics as those presented in Tables 5.6 and 5.7.

As [Nikolaou and Koubarakis, 2014] suggests, some state of the art reasoners, such as
GQR [Gantner et al., 2008], use a matrix to represent a QCN N = (V,C), which has a O(|V |2)
memory requirement. It would be impossible to store a graph of the order of adm2 in a matrix as
we would need ∼ 3TB of memory. Even if memory was not the issue, the time complexity alone
of a �-consistency algorithm would explode, while the backtracking algorithm that is typically
used for tackling non-tractable QCNs and makes use of �-consistency as a forward checking step,
would suffer from an increased search space. Heuristics for the backtracking algorithm would
also have a hard time distinguishing between biconnected components. Consider for example a

156

5.7. Towards Efficient Utilization of Parallelism

v

Ni

Nj

ui

uj

· · ·

· · ·
{r1, r2}

{l1, l2, l3}

r1 r2

l1 l2 l3l1 · · ·

· · ·

···
···

···
···

···
···

Figure 5.24: A separable constraint graph with an articulation vertex v

situation where the backtracking algorithm backtracks from an instatiation of a constraint in a
biconnected component to an instantiation of a constraint in a different biconnected component.
Since the constraints belong to different biconnected components, we have already shown that
they are completely unrelated to each other (i.e., satisfying one constraint does not affect the
other in any way); nevertheless, they might still define a huge branch in the search-tree that
is spawned by the backtracking algorithm. Such a situation is depicted in Figure 5.24, which
presents two QCNs Ni = (Vi, Ci) and Nj = (Vj , Cj) such that Vi ∩ Vj = {v}. Let us assume that
their constraint graphs are biconnected. Then, the constraint graph of Ni ∪ Nj has G(Ni) and
G(Nj) as its biconnected components. It is clear that the valuation of constraint Ci(ui, v) with
any of the values r1 or r2 does not affect the satisifiability or unsatisfiability of the valuation of
constraint Cj(v, uj) with any of the values l1, l2, or l3, and vice versa. However, if we choose not
to treat the biconnected components separately, a huge branch might be defined, as viewed in
Figure 5.24, that could otherwise be entirely avoided. Proposition 48 (at page 153) allows us to
treat the QCNs that correspond to biconnected components completely separately, in a parallel
or serial fashion, and avoid the aforementioned bothersome issues.

5.7.3 Experimental Evaluation

In this section, we evaluate our decomposition scheme with a variety of different solvers in the
literature. If Solver is the name of a reasoner, Solver+ denotes the use of Algorithm 29 with that
reasoner.

Technical Specifications The experiments were carried out on a computer with an Intel
Core 2 Quad Q9400 processor with a CPU frequency of 2.66 GHz per core, 8 GB RAM, and the
Precise Pangolin x86_64 OS. GQR (under version 1500) was compiled with gcc/g++ 4.6.3 and
Sarissa, Phalanx, and Phalanx5 [Sioutis and Condotta, 2014b] (all under version 0.2) were run
with PyPy 2.4.030, which fully implements Python 2.7.8. For all reasoners, the best performing

30http://pypy.org

157

http://pypy.org

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

Table 5.8: Performance comparison based on elapsed time

solver GQR GQR+ Pha. Pha.+ Sar. Sar.+ Pha.5 Pha.5+
hard-nuts 2.0s 0.1s 4.0s 0.6s 0.8s 0.6s 0.9s 0.6s
hard-adm1 4.7E3s 5.2E3s 3.4E3s 3.7E3s 161.5s 137.7s 98.3s 97.4s
hard-gadm1 1.4E4s 1.2s 1.0E5s 3.5s 2.0E3s 3.4s 1.1E3s 3.0s

heuristics were enabled. (Obviously, we did not consider the implementation of [Nikolaou and
Koubarakis, 2014] in our evaluation as it is not sound.) We chose to reason in a serial fashion,
from smaller to bigger QCN, so as to stress how much more �-consistency and the backtracking
algorithm that utilizes it along with the heuristics in each reasoner benefit from reasoning with
the smaller biconnected QCNs than reasoning with the initial large and loosely connected QCN,
when both approaches are offered the same computational power. Thus, only one CPU core was
used in our experiments.

Dataset and Measures We consider the hard network instances hard-nuts, hard-adm1, and
hard-gadm1 from [Nikolaou and Koubarakis, 2014] that compriseNP8 relations [Renz and Nebel,
2001] to utilize the whole reasoning engine of a reasoner. As noted earlier, the constraint graphs
of these networks have the same characteristics as those presented in Tables 5.6 and 5.7. We use
the CPU time as our measure.

Results The results are shown in Table 5.8 and make clear that our simple decomposition
scheme aids the performance of each reasoner substantially, with the more apparent case being
that of hard-gadm1, which is unsatisfiable. Networks hard-nuts and hard-adm1 are satisfiable.
In particular, GQR decides gadm1 in ∼ 4 hours, while GQR+ in 1.2 seconds, and similar results
are obtained for the other reasoners too. When an inconsistency is detected in a QCN n that
corresponds to some biconnected component of the constraint graph of an input QCN N , each
reasoner backtracks only within the search space defined by n, and considers a very small search-
tree to either verify or dispute that inconsistency with respect to the search-tree that would have
been obtained by the input QCN N . Obviously, the time obtained for reasoner Solver+ is the
time that it took it to serially reason with every QCN n, until it reached an unsatisfiable QCN
(thus, assuring that the input QCN N is also unsatisfiable by Corollary 32 at page 153).

It is worth commenting on the performance of the reasoners with respect to network hard-adm1.
Reasoners Sarissa+ and Phalanx5+ present a performance that is slightly better than that of
reasoners Sarissa and Phalanx5 respectively. On the other hand, reasoners GQR+ and Phalanx+
present a performance that is slightly worse than that of reasoners GQR and Phalanx respectively.
This is due to the fact that the maximum order among the biconnected components of the con-
straint graph of adm1 is very close to the order of the entire graph itself (see Table 5.7). Thus,
in such cases, the use of Algorithm 25 may not lead to drastically improved performance, while
sometimes due to the randomness of the heuristics in a reasoner, even slightly worse performance
may be observed, as in this particular case.

Finally, we note that the results presented in Table 5.8 do not take into account the time
needed for decomposing the networks with Algorithm 29, but only the time needed for performing
satisfiability checks on the networks. However, the time needed for decomposing hard-nuts,
hard-adm1, and hard-gadm1 was negligible, and does not change the results qualitatively. In
particular, a simple Python script that makes use of the networkx31 library was able to decompose

31https://networkx.github.io/

158

https://networkx.github.io/

5.8. Conclusion and Future Work

hard-nuts, hard-adm1, and hard-gadm1 in 0.2, 1.4, and 7.6 seconds respectively.

5.8 Conclusion and Future Work

In this chapter, we presented our contributions with respect to qualitative constraint-based spa-
tial and temporal reasoning, which involved novel and efficient algorithms that go beyond the
state of the art algorithms for reasoning with qualitative constraint networks (QCNs). In par-
ticular, we defined new local consistency conditions and new algorithms for enforcing those
conditions, which we compared both theoretically and experimentally to the local consistency
conditions and their respective algorithms that were presented in Section 3.5.

Notably, our contributions ranged over the entire spectrum of fundamental reasoning prob-
lems in qualitative constraint-based spatial and temporal reasoning. Specifically, we contributed
novel and effiecient techniques towards solving the satisfiability problem, the minimal labeling
problem, and the redundancy problem of a given QCN. Furthermore, we addressed an issue in
the literature regarding a non-sound approach that utilizes parallelism to check the satisfiabil-
ity of RCC-8 networks. To this end, we provided the appropriate fixes for that approach, but
also presented our own approach of a simple decomposition scheme that exploits the sparse and
loosely connected structure of the constraint graphs of very large real-world QCNs and paves the
way for efficient utilization of parallelism to solve all the aforementioned fundamental reasoning
tasks.

Regarding future work, our contributions leave many options to be considered. Of particular
interest is the method of directional algebraic closure and the related notion of directional �-
consistency presented in Section 5.3. Currently, with respect to that method and its related
notion, we have already considered the satisfiability problem of QCNs restricted to a particular
subclass of relations (viz., a distributive subclass of relations) in this thesis, and we have also
made a first step towards using directional �-consistency to establish �-consistency in such QCNs
in [Long et al., 2016]. We would like to explore whether directional �-consistency can be efficiently
used as the backbone of a backtracking algorithm for checking the satisfiability of arbitrary
qualitative constraint networks, i.e., networks defined over any of the relations of a qualitative
constraint language. Our experimentation that took place in Section 5.4.4 suggests that we
should be able to have better performance in some cases, as any such backtracking algorithm
defined in the literature largely utilizes its core local consistency enforcing algorithm; on the other
hand, the pruning capacity of directional �-consistency is significantly limited when compared
with the pruning capacity of partial �-consistency or �-consistency.

We would also like to explore the implication of directional �-consistency in the novel algo-
rithms that we presented here for the minimal labeling problem and the redundancy problem, as
these problems exhibit functions that build on the local consistency enforcing algorithms used
for checking the satisfiability of a given qualitative constraint network.

Another option to be considered is the implemention of online algorithms that can we used
for qualitative spatial and temporal stream reasoning [Heintz and de Leng, 2014; de Leng and
Heintz, 2016], i.e., evaluating spatial and temporal formulas over incrementally available streams
of temporal states. To this end, the vertex-incremental partial �-consistency algorithm that we
presented in Section 5.2.2, viz., the iPWC algorithm, can come particularly handy alongside our
hash table based adjacency list representation of a QCN presented in Section 5.4.3, as it can lead
to efficient online partial �-consistency algorithm implementations. It would be nice to have this
functionality for arbitrary QCNs as well.

Other future work consists of further exploring and optimizing on the hierarchical structure

159

Chapter 5. Efficient Algorithms for tackling Qualitative Constraint Networks

that real datasets present, as argued in [Koubarakis et al., 2011]. In particular, it would be
interesting to explore which relations are used more than others in real datasets and whether
this could be of some use or not.

Finally, we would like to consider possible applications of our results in fields outside the
field of qualitative constraint-based spatial and temporal reasoning, such as the field of quan-
titative constraint-based spatial and temporal reasoning. As a matter of fact, we have already
done so with respect to the redundancy problem for instances of the Simple Temporal Prob-
lem (STP), which is a well-known and studied problem in the field of quantitative temporal
reasoning [Dechter et al., 1991]. In particular, with respect to the STP, and inspired from our
contributions in this chapter, we have made a step towards dealing with redundant information in
instances of the STP by simplifying their structure to a unique and minimal representation [Lee
et al., 2016]. As explained in [Lee et al., 2016], the concise representation of STP instances can
allow for more efficient scheduling, whilst retaining storage requirements to a minimum.

160

Chapter 6

Enriching Qualitative Spatio-Temporal
Reasoning

6.1 Introduction

In this chapter, we present our contributions with respect to formalisms that combine spatial
and temporal reasoning in an interrelated manner, which enrich the field of qualitative spatio-
temporal reasoning in general.

In particular, we study the qualitative spatio-temporal logic that results by combining the
propositional temporal logic (PTL) with a qualitative spatial constraint language, namely, the L1
logic that was presented in Section 4.2, and investigate the implication of the constraint properties
of compactness and patchwork in qualitative spatio-temporal reasoning (cf. Section 3.6). We use
these properties to strengthen results regarding the complexity of the satisfiability problem in
L1, by replacing the stricter global consistency property used in literature and, consequently,
generalizing to more qualitative spatial constraint languages.

Further, we identify fragments of the L1 logic that capture significant aspects of spatio-
temporal change. In particular, we address the issue of periodical, and smoothness and continuity
constraints between spatial configurations, and obtain results on their computational properties.
Regarding periodicity, we use the properties of compactness and patchwork to strengthen related
results that exist in the literature and were presented in Section 4.5, by re-establishing conditions
that allow for tractability and, again, generalizing to a larger class of qualitative spatial constraint
languages.

Moreover, we present a first semantic tableau method that given a L1 formula φ systematically
searches for a model for φ. Our approach builds on Wolper’s tableau method for PTL, while
the ideas provided can be carried to other tableau methods for PTL as well. We prove the
correctness of our tableau method for L1 using the aforementioned strengthened results regarding
the satisfiability problem in L1.

Additionally, and with respect to the discussion in Sections 4.3 and 4.4, we investigate the task
of ordering a temporal sequence of qualitative spatial configurations to meet certain transition
constraints. This ordering is constrained by the use of conceptual neighbourhood graphs defined
on qualitative spatial constraint languages. Specifically, we show that the problem of ordering a
sequence of qualitative spatial configurations to meet such transition constraints is NP-complete
for the the well-known languages of RCC-8, Interval Algebra, and Block Algebra. Based on this
result, we also propose a framework where the temporal aspect of a sequence of qualitative spatial
configurations is constrained by a Point Algebra network, and again show that the enhanced

161

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

problem is in NP when considering the aforementioned languages. These results lie within the
area of Graph Traversal [Rosenkrantz et al., 1977] and allow for many practical and diverse
applications, such as identifying optimal routes in mobile robot navigation, modelling changes of
topology in biological processes, and computing sequences of segmentation steps used in image
processing algorithms.

The contributions to be presented in this chapter draw from the published works in [Sioutis
et al., 2015b; Sioutis et al., 2015e; Sioutis et al., 2014; Sioutis et al., 2015c; Sioutis et al., 2015a;
Sioutis et al., 2015d].

Finally, in Section 6.6 we conclude the chapter and give some directions for future work.
In particular, we discuss the implication of using determined entities (constants) for a given
qualitative spatial constraint language (cf. [Li et al., 2013; Liu et al., 2011]) and whether qualita-
tive spatio-temporal reasoning can benefit from a recent advancement regarding the modal logic
S5 [Salhi and Sioutis, 2015].

6.2 Revisiting the Satisfiability Problem in L1

In this section, we revisit a result regarding the satisfiability of L1 formulas in a ST-structure,
using patchwork and compactness. These properties strengthen previous results, in that we do
not longer need to restrict atomic QCNs to being globally consistent as in [Balbiani and Condotta,
2002; Demri and D’Souza, 2007], but we can consider atomic QCNs that have compactness and
patchwork. As explained in Section 3.6, compactness and patchwork combined are less strict
than global consistency alone.

Given a L1 formula φ, Balbiani and Condotta in [Balbiani and Condotta, 2002] show that the
satisfiability of formula φ can be checked by characterizing a particular infinite sequence of finite
satisfiable atomic QCNs representing an infinite consistent valuation of φ. Each of the QCNs of
such a sequence represents a set of spatial constraints in a fixed-width window of time. The set
of spatial constraints at point of time i, is given by the i-th QCN in the infinite sequence, and
shares spatial constraints with the next QCN. Moreover, in such a sequence, there exists a point
of time after which the corresponding QCNs replicate the same set of spatial constraints. The
global consistency property is then used for the following two tasks:

(i) to prove that by considering all the QCNs of the aforementioned sequence we obtain a
consistent set of constraints;

(ii) to prove that in such an infinite sequence, a sub-sequence which begins and ends with two
QCNs representing the same set of spatial constraints can be reduced to just considering
the first QCN.

In the sequel, we formally show that tasks (i) and (ii) can be performed using the properties
of patchwork and compactness instead. As a consequence, we can generalize a result regarding
the satisfiability of a L1 formula φ to a larger class of calculi than the previously considered in
the literature.

We now introduce the two aforementioned tasks in the form of two propositions. Each
proposition will be accompanied by a visual representation in the form of a figure to make the
related discussion easier.

Proposition 51 Let V = {v0, . . . , vn} be a set of entities, w ≥ 0 an integer, and S = (N0 =
(V0, C0), N1 = (V1, C1), . . .) a countably infinite sequence of satisfiable atomic QCNs, such that:

162

6.2. Revisiting the Satisfiability Problem in L1

N0 N1 N2 N3 Ni+1
· · ·

t

· · ·
Ni

Figure 6.1: A countably infinite sequence of satisfiable atomic QCNs that agree on their common
part

• for each i ≥ 0, Vi is defined by the set of variables {v0
0,. . .,v

0
n,. . .,vw0 ,. . .,v

w
n },

• for each i ≥ 0, for all m,m′ ∈ {0, . . . , n}, and for all k, k′ ∈ {1, . . . , w}, Ci(vkm, vk
′
m′) =

Ci+1(vk−1
m , vk

′−1
m′).

We have that if the constraint language considered has compactness and patchwork for satisfiable
atomic QCNs, then S defines a consistent set of qualitative constraints.

Proof. Given Ni, we rewrite its set of variables to {vi0,. . .,vin,. . .,vw+i
0 ,. . .,vw+i

n }. Then, by
patchwork we can assert that for each integer k ≥ 0,

⋃
k≥i≥0Ni is a consistent set of qualitative

constraints. Suppose though, that
⋃
i≥0Ni is an inconsistent set. By compactness we know that

there exists an integer k′ ≥ 0 for which
⋃
k′≥i≥0Ni is inconsistent. This is a contradiction. Thus,

S defines a consistent set of qualitative constraints. a
A visual representation of Proposition 51 is presented in Figure 6.1. The second proposition

follows.

Proposition 52 Let V = {v0, . . . , vn} be a set of entities, w ≥ 0, t > t′ ≥ 0 three integers, and
S = (N0 = (V0, C0), N1 = (V1, C1), . . .) a countably infinite sequence of satisfiable atomic QCNs,
such that:

• for each i ≥ 0, Vi is defined by the set of variables {v0
0,. . .,v

0
n,. . .,vw0 ,. . .,v

w
n },

• for each i ≥ 0, for all m,m′ ∈ {0, . . . , n}, and for all k, k′ ∈ {1, . . . , w}, Ci(vkm, vk
′
m′) =

Ci+1(vk−1
m , vk

′−1
m′),

• for all m,m′ ∈ {0, . . . , n} and all k, k′ ∈ {0, . . . , w}, Ct′(vkm, vk
′
m′) = Ct(v

k
m, v

k′
m′).

Let S ′ = (N0
′ = (V0

′, C0
′),N1

′ = (V1
′, C1

′), . . .) be the infinite sequence defined by:

• for all i ∈ {0, . . . , t′}, Ni′ = Ni,

• for all i > t′, Vi′ = Vi, and for all m,m′ ∈ {0, . . . , n} and all k, k′ ∈ {0, . . . , w},
Ci
′(vkm, v

k′
m′) = Ci+(t−t′)(v

k
m, v

k′
m′).

We have that if the constraint language considered has compactness and patchwork for satisfiable
atomic QCNs, then S ′ defines a consistent set of qualitative constraints.

Proof. We have Ni which is a satisfiable QCN for all i ≥ 0. From this, we can deduce that Ni′
is a satisfiable QCN for all i ≥ 0, since Ni′ = Ni for all i ∈ {0, . . . , t′}, Vi′ = Vi for all i > t′,
and Ci

′(vkm, v
k′
m′) = Ci+(t−t′)(v

k
m, v

k′
m′) for all m,m′ ∈ {0, . . . , n} and all k, k′ ∈ {0, . . . , w}. By

163

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

Nt′
Nt

t

· · ·
Nt+1 · · ·=

Nt′

Nt−1· · ·

Nt′

t

· · ·
Nt+1 · · ·

(a)

(b)

Figure 6.2: A countably infinite sequence of satisfiable atomic QCNs that contains a sub-sequence
which begins and ends with two QCNs representing the same set of spatial constraints (i.e., a
sub-sequence which defines a loop between two QCNs) (a); we can reduce the sub-sequence to
just considering the first QCN and patch it with the QCN following the sub-sequence (b)

Proposition 51 we can deduce that S ′ defines a consistent set of qualitative constraints, as it
satisfies the conditions listed in that proposition. a

A visual representation of Proposition 52 is presented in Figure 6.2. We now can obtain the
following result:

Theorem 33 Checking the satisfiability of a L1 formula φ in a ST-structure is PSPACE-complete
if the qualitative spatial constraint language considered has compactness and patchwork for sat-
isfiable atomic QCNs.

Proof. (Sketch) Consider the approach in [Balbiani and Condotta, 2002] where a proof
of PSPACE-completeness is given for a logic that considers qualitative constraint languages for
which satisfiable atomic QCNs are globally consistent (see Theorem 1 in [Balbiani and Condotta,
2002]). To be able to replace the use of global consistency with the use of patchwork and
compactness, we need to use Propositions 51 and 52 in the proofs of Lemmas 3 and 4 in [Balbiani
and Condotta, 2002]. The interested reader can verify that the aforementioned proofs make use
of global consistency to perform exactly the tasks described by Propositions 51 and 52. Since
these propositions build on compactness and patchwork, we can prove PSPACE-completeness
using these properties instead. a

Theorem 33 allows us to consider more calculi than the ones considered in literature for which

164

6.2. Revisiting the Satisfiability Problem in L1

the combination with PTL yields PSPACE-completeness. Due to the lack of global consistency
for RCC-8 [Renz and Ligozat, 2005], in [Gabelaia et al., 2003] the authors restrict themselves
to a very particular domain interpretation of RCC-8 to prove that the ST −1 logic is PSPACE-
complete; the ST −1 logic is the L1 logic when the considered qualitative constraint language is
RCC-8. L1 does not rely on the semantics of the qualitative constraint language used, but rather
on the constraint properties of compactness and patchwork [Lutz and Milicic, 2007]. Therefore,
L1 is by default able to consider all calculi that have these properties, such as RCC-8 [Randell
et al., 1992], Cardinal Direction Calculus (CDC) [Frank, 1991; Ligozat, 1998], Block Algebra
(BA) [Balbiani et al., 2002], and even Interval Algebra (IA) [Allen, 1983] when viewed as a
spatial calculus. The most notable languages that have patchwork and compactness are listed in
[Huang, 2012].

In particular, due to Theorem 33 and Propositions 16 (at page 54), 3 (at page 34), and 17
(at page 54) we obtain the following result:

Corollary 35 Checking the satisfiability of a L1 formula in a ST-structure is PSPACE-complete
for the qualitative constraint languages of Point Algebra, Interval Algebra, Cardinal Direction
Calculus, Block Algebra, and RCC-8.

It is interesting to note that Theorem 33 can also be proved by following the approach of
Demri and D’Souza in [Demri and D’Souza, 2007; Demri and D’Souza, 2002]. In particular,
in [Demri and D’Souza, 2007] it is shown that one can check the satisfiability of L1 formulas by a
simple, almost modular, combination of the satisfiability checking algorithm for PTL [Sistla and
Clarke, 1985] and any satisfiability checking algorithm for the qualitative constraint language
at hand. It is modular in that an automaton can be constructed as the intersection of two
separate automata, one for the underlying temporal logic language PTL, and the other one for the
qualitative constraint language under consideration. Then, if the qualitative constraint language
under consideration has the global consistency property for atomic networks, the satisfiability
problem for L1 remains PSPACE-complete [Demri and D’Souza, 2007].

Let us delve into more detail about the approach of Demri and D’Souza in [Demri and
D’Souza, 2007], and let the automaton for the underlying temporal logic language PTL be denoted
by Atφ and the automaton for the qualitative constraint language under consideration be denoted
by Asφ. Then, Atφ is a Vardi-Wolper automaton [Vardi and Wolper, 1986] and Asφ a Büchi
automaton (Q, q0,→, F), where Q is the set of maximally consistent sets of atomic constraints
over variables in φ,32 q0 a separate start state,→ a transition relation that starting initially from
q0 moves to a next state by patching together the set of atomic constraints provided by each state
into a unique atomic consistent network, and F = Q. To prove PSPACE-completeness for L1,
Demri and D’Souza show that it suffices to be able to compute the transitions of Asφ in PSPACE.
They are able to do so by using the global consistency property as follows. Given the initial
atomic constraint network corresponding to state q0, they consider a valuation (i.e., a solution)
of its set of variables. Whenever they move to a next state and augment the atomic constraint
network with a new set of atomic constraints while retaining consistency locally, they know that
the augmented atomic constraint network will be satisfiable as the valuation of the previous
state can be extended to a valuation of the new state due to the property of global consistency.
However, we proved earlier that consistency of such sequences of constraint networks can be
retained through the properties of patchwork and compactness instead (cf. Proposition 51).
Hence, the main decidability result of Theorem 4 in [Demri and D’Souza, 2007, Chapter 4] can
be revised accordingly.

32In a sense, we have all possible satisfiable atomic QCNs over a given set of variables.

165

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

t1 t2 t3 t4 t5 · · · t

φ

motif(φ)

motif(φ)

motif(φ) · · ·

Figure 6.3: A LUPQCN formula φ over timeline t

6.3 Capturing Spatio-Temporal Behaviour in L1

In this section, we use particular fragments of the L1 logic to capture properties that deal with
spatial behaviour in a temporal universe, such as periodicity, and continuity and smoothness.
Note that the temporal window size (or simply size) of a L1 formula φ, denoted by |φ|, is defined
inductively as follows: P (#lv,#mv′) = max{l,m}; |¬φ| = |φ|; |φ∨ψ| = |φU ψ| = max{|φ|, |ψ|}.
The size of a set of L1 formulas χ = {φ, ψ, . . .}, will be the maximum size among its formulas,
i.e., |χ| = max{|φ|, |ψ|, . . .}. We first define a sublanguage of L1 that will be of use in studying
our fragments. In particular, let LQCN be the sublanguage defined by statements of the form
φ =

∧
(R(#nxi, #mxj)), where R ∈ 2B. It is easy to see that a LQCN formula φ can be expressed

by a QCN N = (V,C) as follows. If formula φ comprises the set of variables {x0, . . . , xk}, V will
be the set {v0

0, . . ., v0
k, . . ., v

|φ|
0 , . . ., v|φ|k }. Then, C(vni , v

m
j) = R if R(#nxi,#mxj) is a subformula

of φ, and C(vni , v
m
j) = (B if vni 6= vmj else {Id}) otherwise. Expressing a QCN as a LQCN formula is

also straight-forward. If N = (V,C) is a QCN, the LQCN formula φ corresponding to N is defined
as φ =

∧
(C(u, v)), where u, v ∈ V . As such, checking the satisfiability of a LQCN formula in a

ST-structure has the same complexity as the satisfiability problem for the corresponding QCN
in the considered qualitative constraint language. In particular, checking the satisfiability of a
LQCN formula in a ST-structure is NP-complete for RCC-8, Cardinal Direction Calculus, Block
Algebra, and Interval Algebra, and can be performed in polynomial time for Point Algebra.

6.3.1 Spatio-Temporal Periodicity

In this section, we capture the notion of an ultimately periodic qualitative constraint network
(UPQCN) [Condotta et al., 2005] that was presented in Section 4.5. As a brief reminder, a
UPQCN is a temporalized QCN that evolves over time with a recurrent pattern. Specifically, a
UPQCN is a QCN that extends over a fixed-width window of time, and contains a smaller QCN
as a recurrent pattern evolving over time. We can define fragment LUPQCN to capture periodicity
as follows.

Definition 43 Given a UPQCN U = (V,C, tmin, tmax), fragment LUPQCN comprises formulas of
the following form:

φ∧#m 2φmotif(U)

where φ is a LQCN formula that corresponds to U , φmotif(U) is a LQCN formula that corresponds to
the periodical part of U , namely, motif(U), and m = tmin defines the beginning of the recurrent
pattern.

Clearly, a UPQCN U is satisfiable if and only if the LUPQCN formula representing it is satisfi-
able. Given a UPQCN U , the relationship between LQCN formulas φ and φmotif(U), as provided

166

6.3. Capturing Spatio-Temporal Behaviour in L1

Nt

t

· · · · · ·=
Nt

Nt+1
=
Nt

Nt+2
=
Nt

Nt+3

Figure 6.4: A countably infinite sequence of not trivially inconsistent and �-consistent QCNs,
where there exists a point of time t after which the QCNs in the sequence represent the same set
of constraints

in the aforementioned definition, is depicted in Figure 6.3. As φ stretches over the timeline, it
forms a pattern, denoted by φmotif(U), which holds at every consecutive period of time after its
first appearance, as clearly observed in the figure.

As an example, let us consider the LUPQCN formula PO(X,Y)∧EC(X,#X)∧#2DC(X,#Y).
Assuming a timeline t, formula φ corresponds to a UPQCN U that extends over three consecutive
points of time t = 0, t = 1, and t = 2. At t = 0 we have the constraint PO(X,Y), between
points of time t = 0 and t = 1 we have the constraint EC(X,#X), and between points of time
t = 1 and t = 2 we have the constraint DC(X,#Y). It is easy to see that due to the 2 operator,
constraint DC(X,#Y) must hold over the period defined by points of time t = 1 and t = 2, but
also over all consecutive periods of time in t. In fact, DC(X,#Y) is the motif of U , captured by
φmotif(U), where m = 1 in our example LUPQCN formula.

The main result of [Condotta et al., 2005] concerns the satisfiability problem for a UPQCN
where the qualitative constraints belong to a class for which all �-consistent and not trivially
inconsistent QCNs are globally consistent. More precisely, it was shown that the satisfiability of
a UPQCN U can be checked by characterizing a particular infinite sequence of finite �-consistent
and not trivially inconsistent QCNs representing an infinite consistent valuation of U . Each of
the QCNs of such a sequence represents a set of spatial constraints in a fixed-width window of
time. The set of spatial constraints at point of time i, is given by the i-th QCN in the infinite
sequence, and shares spatial constraints with the next QCN. Moreover, in such a sequence, there
exists a point of time after which every QCN replicates the same set of spatial constraints with
the previous QCN in the sequence. Global consistency was then used to prove that by considering
all the QCNs of the aforementioned sequence we obtain a consistent set of constraints. We can
generalize the result of [Condotta et al., 2005] with the following proposition:

Proposition 53 Let V = {v0, . . . , vn} be a set of entities, w ≥ 0, t ≥ 0 two integers, and
S = (N0 = (V0, C0), N1 = (V1, C1), . . .) a countably infinite sequence of not trivially inconsistent
and �-consistent QCNs, such that:

• for each i ≥ 0, Vi is defined by the set of variables {v0
0,. . .,v

0
n,. . .,vw0 ,. . .,v

w
n },

• for each i ≥ 0, for all m,m′ ∈ {0, . . . , n}, and for all k, k′ ∈ {1, . . . , w}, Ci(vkm, vk
′
m′) =

Ci+1(vk−1
m , vk

′−1
m′),

• for all m,m′ ∈ {0, . . . , n}, all k, k′ ∈ {0, . . . , w}, and all t′ > t, Ct′(vkm, vk
′
m′) = Ct(v

k
m, v

k′
m′).

We have that if the qualitative spatial constraint language considered has compactness, patchwork
for not trivially inconsistent and �-consistent QCNs, and �-consistency which implies satisfiabil-
ity, then S defines a consistent set of qualitative constraints.

167

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

Proof. Since �-consistency implies satisfiability, for each i ≥ 0 we have that Ni is a satisfi-
able QCN. Given Ni, we rewrite its set of variables to {vi0,. . .,vin,. . .,vw+i

0 ,. . .,vw+i
n }. Then, by

patchwork we can assert that for each integer k ≥ 0,
⋃
k≥i≥0Ni is a consistent set of qualitative

constraints. Suppose though, that
⋃
i≥0Ni is an inconsistent set. By compactness we know that

there exists an integer k′ ≥ 0 for which
⋃
k′≥i≥0Ni is inconsistent. This is a contradiction. Thus,

S defines a consistent set of qualitative constraints. a
A visual representation of Proposition 53 is presented in Figure 6.4. Using Proposition 53

we can prove the following theorem based on the fact that a LUPQCN defines a sequence of QCNs
such as the one shown in Figure 6.4:

Theorem 34 The satisfiability problem for a LUPQCN formula that corresponds to a UPQCN
defined over a subclass of relations of a qualitative constraint language that has compactness
and patchwork for not trivially inconsistent and �-consistent QCNs defined over that subclass of
relations can be decided in polynomial time.

Then, due to Propositions 16 (at page 54) and 17 (at page 54) and Theorem 34 we obtain
the following result:

Corollary 36 The satisfiability problem for a LUPQCN formula that corresponds to a UPQCN of
Point Algebra, Interval Algebra, Cardinal Direction Calculus, Block Algebra, or RCC-8 defined
over one of the classes PPA, PCDC, HIA, HnIA, or Ĥ8, C8, and Q8 respectively can be decided in
polynomial time.

Theorem 34 is a significant strengthening of the main result obtained in [Condotta et al.,
2005], as we no longer need to restrict ourselves to a small class of relations satisfying global
consistency (if such a class exists), but we can use a maximal tractable subclass of relations
for the considered calculi here. For example, for RCC-8 there does not exist a class of relations
containing all singleton relations that satisfies global consistency (as explained in Section 3.6
and stated in [Renz and Ligozat, 2005]), but the class of relations satisfying patchwork and
compactness can be any of its maximal tractable subclasses Ĥ8, C8, and Q8 [Renz, 1999], which
comprise up to ∼ 60% of the whole set of RCC-8 relations.

6.3.2 Spatio-Temporal Smoothness and Continuity

In [Westphal et al., 2013] the authors study the problem of transition constraints in Point Al-
gebra (PA) [van Beek, 1992]. In particular, they take a relational approach to the problem and
define global constraints that capture smoothness and continuity. Here, we will make a similar
contribution for spatio-temporal logics, as we will define statements that can capture smoothness
and continuity within the context of L1.

Smoothness and continuity in a qualitative spatial constraint language can be encoded by
a conceptual neighborhood graph [Freksa, 1991], the formal definition of which is presented in
Section 4.3. In short, conceptual neighbourhood graphs capture conceptually neighbouring rela-
tions in any given qualitative constraint language. (As an example, a conceptual neighbourhood
graph of RCC-8 is depicted in Figure 4.2 in Section 4.3). For instance, in RCC-8 the base re-
lations DC and EC are conceptually proximal with respect to a pair of entities (v, v′), since a
movement of the spatial entity v towards spatial entity v′ may cause a direct transition from
relation DC to relation EC; on the other hand, and again with respect to the pair of enti-
ties (v, v′), the relations DC and PO are not conceptually proximal since a transition between

168

6.3. Capturing Spatio-Temporal Behaviour in L1

those relations must go through relation EC. A subset of conceptual neighbourhood graphs
for various qualitative constraint languages is found in [Freksa, 1991; Santos and Moreira, 2009;
Egenhofer, 2010].

Definition 44 Given a conceptual neighbourhood graph Γ = (B, E), the conceptual neighbor-
hood of a vertex b ∈ B is the set NC(b) = {b′ | {b, b′} ∈ E}.

We can capture transition constraints in the LQCN logic, by defining a particular formula φΓ

comprising certain statements as follows.

Definition 45 Given the set of spatial variables V of a LQCN formula, and a conceptual neigh-
bourhood graph Γ = (B, E), formula φΓ is defined for all (v, v′) ∈ V × V as a conjunction of the
following L1 statements:

∧
b∈B

2(b(v, v′)→ #(
∨

b′∈NC(b)

(b′(v, v′))))

We can obtain the following theorem:

Theorem 35 Given a LQCN formula φ defined on a qualitative spatial constraint language, and
a conceptual neighbourhood graph Γ of that language, checking the satisfiability of formula φ∧φΓ

in a ST-structure is in NP if the satisfiability problem for the corresponding QCN of φ in that
language is in NP.

Proof. Formula φΓ can be seen as a set of integrity constraints over each pair of the same spatial
entities appearing at adjacent points of time. Suppose that you are provided with a model of
formula φ, i.e., a solution of the QCN expressed by φ (see introduction of Section 6.3); the validity
of that model can be verified in polynomial time. The length of the timeline is defined by |φ|,
yielding |φ|+ 1 points of time. Hence, we can have at most |φ| pairs of adjacent time points. For
each such pair we can check in O(|V |2) time if the relations that hold between each pair of the
same spatial entities appearing at the adjacent points of time satisfy the transition constraints
with respect to formula φΓ, where V is the set of variables in φ. Thus, we will need an extra
O(|φ||V |2) time for deciding satisfiability of φ ∧ φΓ. Note that the 2 operator propagates the
transition constraints indefinitely, but, due to compactness and its implication regarding infinite
sequences of finite satisfiable extensions of a network, we only need to propagate the constraints
up to point of time |φ|, and assume to always have the same satisfiable valuation afterwards. a

Then, due to Theorem 35 and the discussion in Section 3.3.1 we can obtain the following
result:

Corollary 37 Given a LQCN formula φ defined on RCC-8, Cardinal Direction Calculus, Interval
Algebra, or Block Algebra, and a conceptual neighbourhood graph Γ of the considered language,
checking the satisfiability of formula φ ∧ φΓ in a ST-structure is NP-complete.

In the particular case of Point Algebra, we can infer from Theorem 35 that checking the
satisfiability of formula φ ∧ φΓ in a ST-structure, where formula φ is defined on Point Algebra
and Γ is some conceptual neighbourhood graph of Point Algebra, is also in NP. This is because,
although checking the satisfiability of a QCN of Point Algebra can be done in polynomial time,
introducing transition constraints can impact that polynomial complexity. In particular, the
complexity depends on the conceptual neighbourhood graph to be used. In the case where the

169

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

conceptual neighbourhood graph of Point Algebra considered is a complete graph for instance, it
is clear that the satisfiability problem of a LQCN formula defined on Point Algebra and augmented
with the corresponding set of transition constraints remains polynomial-time decidable.

We proceed with a small example of a spatio-temporal formula φ for which we will analyze
its different components and the steps taken to decide its satisfiability. Let φ = NTPP (X,Y)∧
#TPP (X,Y) ∧ #2PO(X,Y) ∧ EC(X,#2X) ∧ NTPP (X,#Y) be a spatio-temporal formula.
(Note that it would be equivalent to write φ asNTPP (X,Y)∧TPP (#X,#Y)∧PO(#2X,#2Y)∧
EC(X,#2X) ∧ NTPP (X,#Y).) The size of the formula, i.e., the temporal window size, is
|φ| = 2, thus, it yields 3 distinct points of time t1, t2, t3 totally ordered in the timeline t. At t1,
region X is a non-tangential proper part of region Y , i.e., NTPP (X,Y). At time t2, region X
is a tangential proper part of region Y , i.e., TPP (X,Y). And, at time t3, region X partially
overlaps region Y , i.e., PO(X,Y). We can interpret these constraints as a motion of region
X from the interior to the exterior of region Y . Further, we have that region X at time t1 is
externally connected to region X at time t3, i.e., EC(X,#2X), which indeed implies a motion in
space as time goes by for region X, and we also have that region X at time t1 is a non-tangential
proper part of region Y at time t2, i.e., NTPP (X,#Y), which implies that region Y has not
moved in the first two points of time, at least relatively and with respect to region X. The
atomic qualitative constraint networks specified at each point of time are consistent, they are
essentially base relation constraints over two regions. The constraints specified between regions
at different points of time, viz., EC(X,#2X) and NTPP (X,#Y), are also consistent. Finally,
for all pairs of adjacent points of times, viz., (t1, t2) and (t2, t3), the transition constraints are
also respected.

6.4 Semantic tableau for L1

Proof theory is a syntactic in nature mathematical logic that represents proofs as formal math-
ematical objects and facilitates their analysis through mathematical techniques. In particular,
proofs are typically presented as inductively-defined data structures, such as graphs or trees,
which are constructed according to the axioms and rules of inference of the logical system at
hand. As such, proof theory can be described as the study of the general structure of mathemat-
ical proofs and of demonstrative arguments (i.e., arguments whose conclusions follow necessarily
from the assumptions made) as they are encountered in logic. Such demonstrative arguments lie
in the basis of the work of Aristotle in [Aristotle, 2004]:

“if to understand something is what we have posited it to be, then demonstrative
understanding in particular must proceed from items which are true and primitive
and immediate and more familiar than and prior to and explanatory of the conclu-
sions. (In this way the principles will also be appropriate to what is being proved.)
There can be a deduction even if these conditions are not met, but there cannot be a
demonstration–for it will not bring about understanding.”

Hence, Aristotle defines the deductive science as a science that is organised around a number
of basic concepts that are assumed understood without further explanation, and a number of
basic truths or axioms that can be seen as true immediately. A subdiscipline of proof theory
that studies the specifics of proof calculi, i.e., formal systems that use a common style of formal
inference for their inference rules, is structural proof theory. An important research topic in
structural theory includes the semantic tableau method [Beth, 1955], which applies the central
ideas of structural proof theory to provide decision procedures and semi-decision procedures for

170

6.4. Semantic tableau for L1

a wide range of logics. More specifically, the semantic tableau method is a decision procedure
for sentential and related logics, and a proof procedure for formulas of first-order logic. As we
will also see in this section, the tableau method can also determine the satisfiability of finite sets
of formulas of various logics. Notably, the tableau method is the most popular proof procedure
for modal logics [Girle, 2000].

In this section, we present a semantic tableau method that given a L1 formula φ systematically
searches for a model for φ. The method builds on the tableau method for PTL of Wolper [Wolper,
1985], and makes use of the results of Section 6.2 to ensure soundness and completeness. It is
important to note, that Wolper’s method serves as the basis to illustrate our line of reasoning,
and that the techniques to be presented can be carried to other more efficient tableau methods
for PTL as well, such as the systematic semantic tableaux for PTL presented in [Gaintzarain et
al., 2008].

6.4.1 Rules for Constructing a Semantic Tableau

The decomposition rules of the temporal operators are based on the following identities, which
are called eventualities (where 2 abbreviates ¬3¬):
• 3φ ≡ φ ∨#3φ

• φ U ψ ≡ ψ ∨ (φ ∧#(φ U ψ))

Note that decomposing eventualities can lead to an infinite tableau. However, we will construct
a finite tableau by identifying nodes that are labeled by the same set of formulas, thus, ensuring
that infinite periodicity will not exist. To test a L1 formula φ for satisfiability, we will construct
a directed graph. Each node n of the graph will be labeled by a set of formulas, and initially
the graph will contain a single node, labeled by {φ}. Similarly to Wolper [Wolper, 1985], we
distinguish between elementary and non-elementary formulas:

Definition 46 A L1 formula is elementary if its main connective is # (viz., #-formula), or if
it corresponds to a base relation P ∈ B.

Then, the construction of the graph proceeds by using the following decomposition rules which
map each non-elementary formula φ into a set of sets of formulas:

• ¬P (#nv,#mv′)→ {{P ′(#nv,#mv′)} | P ′ ∈ B \ {P}}

• ¬¬φ→ {{φ}}

• ¬# φ→ {{#¬φ}}

• φ ∧ ψ → {{φ, ψ}}

• ¬(φ ∧ ψ)→ {{¬φ}, {¬ψ}}

• 3φ→ {{φ}, {#3φ}}

• ¬3φ→ {{¬φ,¬# 3φ}}

• φ U ψ → {{ψ}, {φ,#(φ U ψ)}}

• ¬(φ U ψ)→ {¬ψ,¬φ ∨ ¬# (φ U ψ)}

During the construction, we mark formulas to which a decomposition rule has been applied
to avoid decomposing the same formula twice. If ψ is a formula, ψ∗ denotes ψ marked.

171

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

6.4.2 Systematic Construction of a Semantic Tableau

A tableau T can be seen as a directed graph where each of its nodes n is labeled with a set of
formulas T (n). The root node is labeled with the singleton set {φ} for the L1 formula φ whose
satisfiability we wish to check. The children of the nodes are obtained by applying the rules
presented in Section 6.4.1.

Given a set of L1 formulas χ over the set of variables {x0, . . . , xl}, we denote by expandV ars(χ)
the set {#0x0,. . .,#0xl,. . .,#|χ|x0,. . .,#|χ|xl}. We first define a translation of a node of a tableau
to a QCN.

Definition 47 Let n be a node of a tableau T for a L1 formula φ, and {x0, . . . , xl} the set of
variables in φ. Then, N (n) will denote the QCN = (V,C), where V = {v0

0, . . ., v
0
l , . . ., v

|φ|
0 , . . .,

v
|φ|
l }, and C(vkm, v

k′
m′) = {P (#kxm,#k′xm′)} if P (#kxm,#k′xm′) ∈ T (n), and C(vkm, v

k′
m′) = (B

if vkm 6= vk
′
m′ else {Id}) otherwise, ∀m,m′ ∈ {0, . . . , l} and ∀k, k′ ∈ {0, . . . , |φ|}.

Let us also define the notions of a state and a pre-state, which we will be referring to a lot in
what follows.

Definition 48 A node n that contains only elementary and marked formulas and for which we
have that N (n) is atomic is called a state, and a node m that is either the root node or the direct
child node of a state (which leaps to the next point of time) is called a pre-state.

We give a definition of eventuality fulfillment that will be of use later on.

Definition 49 Let T be a tableau, and π a path in T defined from nodes n1, n2, . . ., nj. Any
eventuality 3ε2 or ε1 U ε2 ∈ T (ni), with 1 ≤ i ≤ j, is fulfilled in π if there exists k, with
i ≤ k ≤ j, such that ε2 ∈ T (nk).

We now present Clotho, an algorithm that constructs a semantic tableau T for a given formula
φ, as shown in Algorithm 30. At any given point of time, we construct all the possible atomic
QCNs comprising base relations that extend from the given point of time to a future point of
time. This is achieved by repeatedly applying the decomposition rules to a node comprising
unmarked non-elementary formulas (lines 4 to 9), and sequentially populating a node comprising
only elementary and marked formulas with the universal relation B (lines 10 to 19) so that it
may lead to a state. The universal relation B is only introduced on a pair of variables, if there
does not exist any base relation on that same pair. The universal relation B, as well as any
other relation r ∈ 2B, is essentially the disjunction of base relations, as noted in Section 2. In
particular, B is the disjunction of all the base relations of a given qualitative constraint language.
As such, by decomposing B into base relations using the disjunctive tableau rule, this approach
allows us to obtain one or more nodes harboring atomic QCNs for a given point of time (viz.,
states), that represent a set of atomic spatial constraints in a fixed-width window of time. Once
we have obtained our atomic QCNs for a given point of time, and assuming that the states that
harbor them contain #-formulas, we can leap to the next point of time and create pre-states,
including all the atomic spatial constraints of the aforementioned QCNs that extend from the
new point of time to a future point of time (lines 20 to 24). This can be seen as making a +1
time shift and maintaining all possible knowledge offered by previous states that extends from
the new point of time to a future point of time. It is important to note that when we create
a child node m of a node n (lines 7, 17, and 21), we only create a new node if there does not

172

6.4. Semantic tableau for L1

Algorithm 30: Clotho(φ)
in : A L1 formula φ.
output : A semantic tableau T for φ.

1 begin
2 create root node {φ} and mark it unprocessed;
3 while ∃ unprocessed node n do
4 if T (n) contains an unmarked non-elementary formula ψ then
5 mark node n processed;
6 foreach γ ∈ Γ, where Γ is the result of applying a decomposition rule to ψ do
7 create a child node m;
8 T (m) ← (T (n)− {ψ}) ∪ γ ∪ {ψ∗};
9 mark node m unprocessed;

10 else if T (n) contains only elementary and marked formulas then
11 mark node n processed;
12 filling ← ∅;
13 foreach u, v ∈ expandV ars(φ) do
14 if @ P (u, v) ∈ T (n) then
15 filling ← filling ∪ {B(u, v)};

16 if filling 6= ∅ then
17 create a child node m;
18 T (m) ← T (n) ∪ filling;
19 mark node m unprocessed;

20 else if T (n) contains #-formulas then
21 create a child node m;
22 T (m) ← {ψ | # ψ ∈ T (n)};
23 T (m) ← T (m) ∪ {P (#i−1u,#j−1v) | P (#iu,#jv) ∈ T (n) if i, j ≥ 1};
24 mark node m unprocessed;

Algorithm 31: Atropos(T)
in/out : A semantic tableau T .
output : True or False.

1 begin
2 do
3 flag ← False;
4 if there is a node n such that N (n) is an unsatisfiable QCN then
5 eliminate node n; flag ← True;

6 if all the children of a node n have been eliminated then
7 eliminate node n; flag ← True;

8 if a node n is a pre-state and not Lachesis(T , n) then
9 eliminate node n; flag ← True;

10 while flag ;
11 if 6 ∃ node n ∈ T then return False else return True;

already exist a node in the graph labeled by T (m). Otherwise, we just create an arc from node
n to the existing node.

A tableau T for a L1 formula φ that has resulted after the application of algorithm Clotho is

173

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

Algorithm 32: Lachesis(T , n)
in : A semantic tableau T , and a node n.
output : True or False.

1 begin
2 foreach eventuality ε ∈ T (n) do
3 if ε is not fulfilled in any path π = 〈n, . . .〉 then return False;

4 return True;

finite; if φ is over a set of l variables, then T has at most O(|B|l2(|φ|+1)32length(φ)) nodes.
To decide the satisfiability of a L1 formula φ using the tableau that is generated by Clotho,

we have to eliminate unsatisfiable nodes inductively, until a fixed point is reached. We present
Atropos, an algorithm that achieves this goal, shown in Algorithm 31. Note that function Lachesis
(see Algorithm 32) essentially searches for a path from a given pre-state to a node that fulfills
an eventuality of the pre-state, as defined in Definition 49.

Definition 50 Let T be a tableau for a L1 formula φ that has resulted after the application of
algorithms Clotho and Atropos. If T has no root node, we call T closed, and open otherwise.

Let us consider formula φ = {EQ(x ,y), PO(#x, #y), TPP (x, #x), TPP (y, #y), TPP (x,
#y), 3DC(x, y)}. (For simplicity we assume that the decomposition rule for ∧ has already
been applied and resulted in the current set form for formula φ.) The tableau obtained by the
application of algorithms Clotho and Atropos for this formula is shown in Figure 6.5. Horizontal
dotted lines distinguish between different points in time, thus, our tableau extends over three
points of time. The root node is 1, the states are 5 to 12, 14, 15, 17, and 18, and the pre-states
are 1, 13, and 16. By decomposing the initial formula using the tableau rules and populating it
with universal relations where appropriate, we reach states 5 to 12, each one of which harbors a
set of base relations that correspond to an atomic QCN. (Inverse relations are not shown to save
space.) These atomic QCNs represent a set of atomic spatial constraints in a fixed-width window
of time. After leaping to the next point of time and, consequently, obtaining pre-state 13, we
include all the atomic spatial constraints of the aforementioned QCNs that extend from the new
point of time to a future point of time. In this particular case, the atomic spatial constraints of
interest narrow down to the single atomic constraint PO(#x,#y), common for all states 5 to 12.
Of course, since we are now at the next point of time, the constraint is rewritten to PO(x, y).
Again, we apply the rules and reach states 14 and 15, each one of which harbors an atomic QCN.
We continue repeating the process until all our child nodes are labeled by sets of formulas already
met in nodes of the tableau. In this case, the unique child node of state 18 would be labeled by
the set of formulas of node 16, thus, we create an arc from 18 to 16. After having constructed
our tableau, we delete unsatisfiable nodes 2, 5 to 11, and 14 using the �-consistency operation
on QCNs N (2), N (5) to N (11), and N (14) respectively. Inconsistencies stemming from nodes 2
and 14 are apparent, as there exist different base relations on a same pair of variables, whereas
inconsistencies in nodes 5 to 11 stem from the fact that relation TPP (y,#x) is inferred by �-
consistency, which contradicts with the base relation that is defined on variables y and #x in
states 5 to 11. Formula φ is satisfiable, as the tableau is open, and a model can be constructed
out of the sequence of states 12,15,17 which contains a loop on 17 as relation DC(x, y) repeats
itself. These states harbor satisfiable atomic QCNs that completely agree on their common part
due to our construction. In particular, we have the sequence N (12)→N (15)→N (17) 	 that
satisfies the prerequisites of Proposition 52, hence, satisfiability is met.

174

6.4. Semantic tableau for L1

EQ(x, y), PO(◦x, ◦y), TPP (x, ◦x),
TPP (y, ◦y), TPP (x, ◦y), �DC(x, y)

φ

�DC(x, y)∗
EQ(x, y), PO(◦x, ◦y), TPP (x, ◦x),
TPP (y, ◦y), TPP (x, ◦y),B(y, ◦x)

◦ �DC(x, y)

�DC(x, y)∗,B(y, ◦x)∗
. . . ,DC(y, ◦x), . . .

· · ·

�DC(x, y)∗,B(y, ◦x)∗
EQ(x, y), PO(◦x, ◦y), TPP (x, ◦x),
TPP (y, ◦y), TPP (x, ◦y),TPP(y, ◦x)

◦ �DC(x, y)

�DC(x, y)∗
EQ(x, y), PO(◦x, ◦y), TPP (x, ◦x),

TPP (y, ◦y), TPP (x, ◦y), ◦ �DC(x,y)

�DC(x, y)∗
EQ(x, y), . . . ,DC(x,y)

{
PO(x,y), �DC(x, y)

}

�DC(x, y)∗
PO(x, y),DC(x,y)

�DC(x, y)∗
PO(x, y), ◦ �DC(x,y)

{
�DC(x, y)

}

�DC(x, y)∗
DC(x,y)

�DC(x, y)∗
◦ �DC(x,y)

1

12

4

5

2
3

13

14 15

16

17 18

··
·

Figure 6.5: A L1 formula and its simplified tableau

6.4.3 Soundness and Completeness of our Semantic Tableau Method

In this section, we prove that the tableau method as defined by algorithms Clotho and Atropos
is sound and complete for checking the satisfiability of a L1 formula φ.

Theorem 36 (soundness) If φ has a closed tableau, then φ is unsatisfiable.

175

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

Proof. Let T be a closed tableau for φ, that has resulted after the application of algorithms
Clotho and Atropos. We prove by induction that if a node n is eliminated, then T (n) is an
unsatisfiable set of formulas. We distinguish three cases:

(i) a node n is eliminated because N (n) is an unsatisfiable QCN (lines 4 to 5 in Atropos),
thus, T (n) is an unsatisfiable set of formulas; unsatisfiability of N (n) can de detected by
use of �-consistency, which also disallows the conjunction of two or more base relations to
be defined on a same pair of variables (base relations are jointly exhaustive and pairwise
disjoint as noted in Section 2).

(ii) a node n is eliminated because all of its child nodes are unsatisfiable and have been elimi-
nated (lines 6 to 7 in Atropos). Child nodes can be created in the following three cases:

(a) the decomposition rule ψ → Γ, where ψ ∈ T (n), is applied and a child node is created
for each γ ∈ Γ (lines 4 to 9 in Clotho); we have that ψ is satisfiable iff ∃γ ∈ Γ that is
satisfiable.

(b) implicit knowledge in the parent node n is made explicit in the child node m through
the introduction of the universal relation B (lines 10 to 19 in Clotho); by Definition 47
we have that N (n) = N (m), thus, N (n) is satisfiable iff N (m) is satisfiable, and the
same holds for the set of formulas T (n) and T (m).

(c) node n is a state and generates pre-state m with T (m) = {ψ | # ψ ∈ T (n)} ∪
{P (#i−1u,#j−1v) | P (#iu,#jv) ∈ T (n) if i, j ≥ 1} (lines 20 to 24 in Clotho); clearly,
T (n) is a satisfiable set of formulas iff {ψ | #ψ ∈ T (n)} is a satisfiable set of formulas
and iff N (m) is satisfiable.

(iii) a node n is eliminated if it contains an eventuality that cannot be fulfilled in any path
in the tableau (lines 8 to 9 in Atropos); since any model will correspond to a path in the
tableau, we have that T (n) is an unsatisfiable set of formulas.

As we have considered all possible cases, at this point we conclude our proof. a
Let us obtain a proposition that denotes that two successive states in a path of an open

tableau harbor QCNs that completely agree on their common part.

Proposition 54 Let π be a path going through an open tableau T for a L1 formula φ that
has resulted after the application of algorithms Clotho and Atropos, st and st+1 two states of π
belonging to points of time t and t+1 respectively, and {x0, . . . , xl} the set of variables in φ. Then
we have that N (st)[v

k
m, v

k′
m′] = N (st+1)[vk−1

m , vk
′−1
m′] ∀m,m′ ∈ {0, . . . , l} and ∀k, k′ ∈ {1, . . . , |φ|}.

Proof. State st at point of time t is followed by a pre-state p at point of time t + 1 in
path π, whose set of base relations is {P (#i−1u,#j−1v) | P (#iu,#jv) ∈ T (st) if i, j ≥ 1} ∪
{P (#iu,#jv) | #P (#iu,#jv) ∈ T (st)} by construction of our tableau (lines 20 to 24 in Clotho).
The set of base relations of T (p) is carried over, possibly enriched, to state st+1 at point of time
t+ 1. As such, let us assume that there exists an additional base relation b(#i−1u,#j−1v) in the
set of base relations of st+1, with i, j ∈ {1, . . . , |φ|}, such that b(#iu,#jv) 6∈ T (st). In this case,
N (st+1) is a QCN with two base relations defined on a same pair of variables. This QCN would
have been deleted by the application of Atropos as specified also in the proof of Theorem 36.
Thus, state st+1 could not have been in path π, resulting in a contradiction. Therefore, we have
that N (st)[v

k
m, v

k′
m′] = N (st+1)[vk−1

m , vk
′−1
m′] ∀m,m′ ∈ {0, . . . , l} and ∀k, k′ ∈ {1, . . . , |φ|}, and, as

such, N (st) and N (st+1) completely agree on their common part. a

176

6.4. Semantic tableau for L1

Theorem 37 (completeness) If φ has an open tableau, then φ is satisfiable.

Proof. Let T be an open tableau for φ, that has resulted after the application of algorithms
Clotho and Atropos. We need to show that there exists a path of nodes π which defines a model
for φ. We distinguish two cases:

(i) if no eventualities need to be fulfilled, path π can be simply a path starting from the root
node and going through the tableau, defining a sequence of states s0,s1,. . .,st, with t ∈ N,
and, consequently, yielding a sequence of QCNs as follows.

N (s0)→ N (s1) . . .→ N (st)

The sequence of QCNs is such that for all states si and si+1, with i ∈ {0, . . . , t− 1}, along
with a set of variables {x0, . . . , xl} in φ, we have that N (si)[v

k
m, v

k′
m′] = N (si+1)[vk−1

m , vk
′−1
m′]

∀m,m′ ∈ {0, . . . , l} and ∀k, k′ ∈ {1, . . . , |φ|} by Proposition 54. Thus, the sequence of QCNs
corresponds to the sequence shown in Figure 6.1 (at page 163), satisfies the prerequisites
of Proposition 51 (at page 162), and is therefore satisfiable.

(ii) if eventualities need to be fulfilled, we show how we can construct a path π that fulfills all
eventualities as follows. For each pre-state p ∈ T containing an eventuality, we must find a
path πp = 〈p, . . .〉 starting from p, such that all the eventualities contained in p are fulfilled
in πp. We fulfill all the eventualities of p, one by one, as follows. For a selected eventuality
ε ∈ T (p), it is possible to find a path πp = 〈p, . . . , p′〉 in which ε is fulfilled and whose last
node is a pre-state p′, as otherwise the node would have been deleted by the application of
Atropos. By construction of our tableau, p′ will also contain the rest of the eventualities
that need to be fulfilled (they are carried over from p to p′), and it follows that we can
extend path πp to fulfill a second one, and so on, until all the eventualities of p are fulfilled.
By linking together all paths πp ∀ pre-states p ∈ T , we can obtain a path π starting from
the initial node and going through the tableau, defining a sequence of states s0,s1,. . .,st−1,
with t ∈ N, with a final loop between state st−1 and a state st′ , with 0 ≤ t′ ≤ t − 1. The
loop exists due to the fact that at point of time t − 1 there exists a node n, whose child
node m is such that T (m) = T (o), where o is a node at point of time t′. In particular, we
can view the sequence of states as a sequence of QCNs as follows.

N (s0)→ N (s1) . . .→ N (st′) . . .→ N (st−1)

The sequence of QCNs is such that for all states si and si+1, with i ∈ {0, . . . , t− 2}, along
with a set of variables {x0, . . . , xl} in φ, we have that N (si)[v

k
m, v

k′
m′] = N (si+1)[vk−1

m , vk
′−1
m′]

∀m,m′ ∈ {0, . . . , l} and ∀k, k′ ∈ {1, . . . , |φ|} by Proposition 54. Further, if we were to
extend path π, we would obtain a state st with N (st)[v

k
m, v

k′
m′] = N (st′)[v

k
m, v

k′
m′] ∀m,m′ ∈

{0, . . . , l} and ∀k, k′ ∈ {0, . . . , |φ|} (i.e., st replicates the same set of spatial constraints
with st′ , hence, the loop). Thus, the sequence of QCNs corresponds to the sequence shown
in Figure 6.2 (at page 164), satisfies the prerequisites of Proposition 52 (at page 163), and
is therefore satisfiable.

As we have considered all possible cases, at this point we conclude our proof. a

177

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

6.5 Ordering Spatio-Temporal Sequences to meet Transition Con-
straints

In this section, we focus on a particular spatio-temporal reasoning problem that lies within the
area of Graph Traversal [Rosenkrantz et al., 1977], which is one of the oldest areas of inquiry
in Graph Theory. Graph Traversal commonly deals with visiting all the nodes in a graph in a
particular manner, updating and/or checking their values along the way. We are interested in a
problem related to the Hamiltonian path problem for a given graph, which is the graph traversal
problem of finding a path in the graph that visits each vertex exactly once. Hamiltonian path
related problems naturally extend into use cases where routes need to be ordered or optimised,
minimising the traversal of paths and vertices already visited.

In the context of spatio-temporal reasoning, and spatio-temporal sequences in particular in
the manner they have been presented in Section 4.3, our problem of interest in a Hamiltonian
path related problem where we want to order a sequence of qualitative spatial configurations
to meet certain transition constraints. This ordering is constrained by the use of conceptual
neighbourhood graphs defined on qualitative spatial constraint languages. For this problem,
we consider several well-known qualitative spatial and temporal constraint languages, such as
RCC-8 [Randell et al., 1992], Interval Algebra [Allen, 1983], Block Algebra [Balbiani et al., 2002],
Rectangle Algebra [Guesgen, 1989]33, and Point Algebra [Vilain et al., 1990; van Beek and Cohen,
1990; van Beek, 1992]. Two closely related contributions that deal with sequences of qualitative
spatial or temporal configurations consist of the works of Westphal et al. in [Westphal et al.,
2013] and Cui et al. in [Cui et al., 1992], both of which were presented in our state of the art
part of the thesis in Section 4.3. In both of these works, qualitative configurations extracted
follow a predefined ordering, where all the pairs of consecutive qualitative configurations in the
sequence produced meet certain transition constraints with respect to an assumed conceptual
neighbourhood graph. In our case, our knowledge base already comprises a set of qualitative
configurations, and the problem is that of finding an ordering of those qualitative configurations
when positioned in a sequence, such that all the pairs of consecutive qualitative configurations
in the ordered sequence meet the aforementioned transition constraints. Thus, we define a novel
problem in the context of qualitative spatio-temporal reasoning, whose computational properties
we are the first to study.

In particular, we will make the following contributions in what follows:

(i) we consider a sequence of qualitative spatial configurations of RCC-8, Interval Algebra,
Block Algebra, or Rectangle Algebra, and show that it is NP-complete to order the configu-
rations in a way such that the transition constraints are met with respect to the conceptual
neighbourhood graph of the considered language;

(ii) we study a particular optimization problem that results from the qualitative constraint
language of RCC-8 when restricting the size of its regions, and obtain some interesting
computational propeties;

(iii) and we introduce a framework where the temporal aspect of a sequence of qualitative
spatial configurations of RCC-8, Interval Algebra, Block Algebra, or Rectangle Algebra is
replaced with a Point Algebra network, which further restricts the desired ordering of the
configurations, but which, nevertheless, allows the problem of finding such an ordering to
be in NP.

33A qualitative constraint language that is isomorphic [Ladkin and Maddux, 1994] to a sublanguage of Interval
Algebra (see also [Guesgen, 1989, Section 2]).

178

6.5. Ordering Spatio-Temporal Sequences to meet Transition Constraints

ta tb tc td te tf
t

Na Nb Nc Nd Ne Nf

x x x x x x

y
y y

y
y y

z z

z z z

z

(a) Example of a spatio-temporal sequence based on RCC-8

Na Nb

Nc

NdNe

Nf

(b) Transition graph of the above
spatio-temporal sequence

Figure 6.6: The example spatio-temporal sequence and its corresponding transition graph of
Section 4.3

6.5.1 Spatio-Temporal Sequence Ordering Problems

Let us recall the definition of a Hamiltonian path before we proceed with an example that
introduces and explains our main problem.

Definition 51 Given a graph G = (V,E), a Hamiltonian path in G is a path between two
vertices of G that visits each vertex in V exactly once, where a path is an ordered sequence v0,
v1, . . ., vk of graph vertices vi ∈ V such that for 1 ≤ i ≤ k, {vi−1, vi} ∈ E.

Now, let us revisit the example spatio-temporal sequence and its corresponding transition
graph presented in Section 4.3. In particular, the atomic spatio-temporal sequence based on
RCC-8 is given in Figure 6.6a. Figure 6.6a depicts the sequence (Na = (V,Ca), Nb = (V,Cb),
Nc = (V,Cc), Nd = (V,Cd), Ne = (V,Ce), Nf = (V,Cf)), where V = {x, y, z} and Na,
Nb, Nc, Nd, Ne, and Nf are RCC-8 configurations over V . Specifically, Na defines the set
of constraints {DC(x, y), DC(y, z), DC(x, z)}, Nb defines the set of constraints {EC(x, y),
DC(y, z), DC(x, z)}, Nc defines the set of constraints {EC(x, y), DC(y, z), EC(x, z)}, Nd
defines the set of constraints {PO(x, y), DC(y, z), EC(x, z)}, Ne defines the set of constraints
{TPPi(x, y), DC(y, z), EC(x, z)}, and finally Nf defines the set of constraints {NTPPi(x, y),
DC(y, z), DC(x, z)}. Each spatial QCN in the sequence corresponds to a unique point of time
in the timeline t. For example, spatial configuration Nc corresponds to the point of time tc in the
timeline t. Thus, the ordering of the spatial QCNs in a given sequence yields a spatio-temporal
configuration that describes how a spatial configuration evolves over time. The transition graph
of the spatio-temporal sequence depicted in Figure 6.6a, defined with respect to the standard

179

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

conceptual neighbourhood graph of RCC-8 (Figure 4.2 at page 71), is shown in Figure 6.6b.
Indeed, we can have continuous transitions between the spatial QCNs in the pairs (Na,Nb),
(Nb,Nc), (Nc,Nd), (Nd,Ne), (Ne,Nf) of consecutive QCNs in the sequence (Na, Nb, Nc, Nd,
Ne, Nf), but also continuous transitions between spatial configurations Na and Nc (i.e., the pair
(Na,Nc)), and Nb and Nd (i.e., the pair (Nb,Nd)). It is easy to see that the pairs of consecutive
QCNs in the aforementioned sequence correspond to a Hamiltonian path illustrated with dashed
arrows in Figure 6.6b. Another possible sequence that would respect the transition constraints
and yield a Hamiltonian path could be, for example, the sequence (Nc, Na, Nb, Nd, Ne, Nf).

Based on the previous observation, we will now formally introduce the main problem that we
are interested in studying here and sketch its relation with the problem of finding a Hamiltonian
path in a given graph, which is known to be NP-complete [Garey and Johnson, 1979; Garey
and Johnson, 1979]. In fact, we will make a polynomial-time reduction of the Hamiltonian path
problem to our problem. We call our problem the sequence ordering problem (SOP) and define
it as follows.

Definition 52 Given a qualitative constraint language, a conceptual neighbourhood graph Γ of
that language, and a satisfiable atomic qualitative spatio-temporal sequence (QSS) S = (N1, N2,
. . ., Nk), the SOP for S is the problem of obtaining an ordered sequence of the QCNs of S such
that the spatial QCNs Ni and Nj in every pair of consecutive QCNs (Ni, Nj) in the ordered
sequence are conceptual neighbours with respect to Γ.

The relation between the Hamiltonian path problem and the SOP is as follows.

Lemma 5 Given a qualitative constraint language, a conceptual neighbourhood graph Γ of that
language, a satisfiable atomic QSS S, and the transition graph M of S defined with respect to Γ,
an ordered sequence of the QCNs of S is a solution of the SOP for S iff it defines a Hamiltonian
path in M .

Proof. As stated in Definition 51, given a graph G, a path in G is completely specified by an
ordered sequence of vertices of G. Let S = (N1, N2, . . ., Nk) be a satisfiable atomic QSS, Γ some
conceptual neighbourhood graph of the qualitative constraint language at hand, and M = ({N1,
N2, . . ., Nk}, E) the transition graph of S defined with respect to Γ. Let the ordered sequence
of vertices N1, N2, . . ., Nk of M be a Hamiltonian path in M . We will prove by contradiction
that this path is also a solution of the SOP for S. Hence, let us assume that that path is not a
solution of the SOP for S. Then, there exists a pair of consecutive QCNs (Ni−1, Ni) in the path,
with 1 < i ≤ k, for which the QCNs Ni−1 and Ni are not conceptual neighbours with respect to
Γ. By definition of a transition graph, this means that {Ni−1,Ni} 6∈ E, which is a contradiction
as {Ni−1,Ni} defines an edge in the considered Hamiltonian path in M . In a simpler manner,
we can prove that if the ordered sequence of vertices N1, N2, . . ., Nk is a solution of the SOP
for S, then it also defines a Hamiltonian path in M . We have that for all 1 < i ≤ k the pairs
of consecutive QCNs (Ni−1, Ni) are conceptual neighbours with respect to Γ and, thus, form
an edge in the transition graph M , i.e., {Ni−1,Ni} ∈ E. In addition, the ordered sequence of
vertices N1, N2, . . ., Nk visits each vertex of M exactly once. As such, the ordered sequence
defines a Hamiltonian path in M . a

Indeed, as Lemma 5 suggests, a Hamiltonian path in the transition graph of a given qualitative
spatio-temporal sequence, will provide us with an ordered sequence of its QCNs such that the
QCNs in every pair of consecutive QCNs in the ordered sequence are conceptual neighbours with
respect to some conceptual neighbourhood graph, and vice versa, as explained earlier in light of
our example concerning Figure 6.6.

180

6.5. Ordering Spatio-Temporal Sequences to meet Transition Constraints

b1(x, y) b2(x, y) b3(x, y)

Figure 6.7: A conceptual neighbourhood graph

At this point, we should also highlight the relation between the sequence ordering problem
(SOP) presented here and the sequence solving problem (SSP) presented in Section 4.3. With
respect to the SSP, we are provided with a qualitative spatio-temporal sequence of QCNs defined
on a qualitative constraint language and a conceptual neighbourhood graph of that language, and
we must solve the QCNs and extract scenarios of them in a way such that the scenarios in every
pair of consecutive scenarios in the obtained sequence of scenarios are conceptual neighbours
with respect to the conceptual neighbourhood graph. In a sense, this translates to solving the
spatio-temporal sequence in a manner such that the sequence itself in its default ordering yields
a path in the corresponding transition graph (which will be by default a Hamiltonian path).
With respect to the SOP, we are provided with a satisfiable atomic qualitative spatio-temporal
sequence of QCNs defined on a qualitative constraint language and a conceptual neighbourhood
graph of that language, and we must order the QCNs in a way such that the QCNs in every pair
of consecutive scenarios in the obtained ordered sequence of QCNs are conceptual neighbours
with respect to the conceptual neighbourhood graph. In a sense, this translates to ordering
the spatio-temporal sequence in a manner such that the ordered sequence yields a path in the
corresponding transition graph (which again will be by default a Hamiltonian path). Hence, the
SOP is an incremental variation of the SSP, where we have some transition graph (produced by
some scenario of a spatio-temporal sequence) and we want to check if we can obtain a Hamiltonian
path in that graph. As such, even though the SSP might be unsolvable for a particular instance
because any possible scenario of a sequence of QCNs does not produce a Hamiltonian path in
the corresponding transition graph with respect to the default ordering of the sequence, the SOP
might still be solvable as we are allowed to change the position of some or all of the QCNs in
a given sequence and, therefore, obtain a path in the corresponding transition graph; in other
words, we try to find a Hamiltonian path if it is not provided by default due to the initial ordering
of a given spatio-temporal sequence.

We provide a definition on graph isomorphism that will be of use in what follows.

Definition 53 A graph G1 = (V1, E1) is isomorphic to a graph G2 = (V2, E2) iff there is a
bijection f : V1 → V2 such that {u, v} ∈ E1 iff {f(u), f(v)} ∈ E2.

It might be tempting at this point to suggest that the SOP for a given QSS S is NP-complete,
as is the case with the Hamiltonian path problem. However, we first need to show that any
arbitrary graph G can be translated to an isomorphic to G transition graph M in polynomial
time. This is a necessary requirement in our line of reasoning for proving NP-completeness for the
SOP, as it could be the case that for a given qualitative constraint language and its conceptual
neighbourhood graph, the family of transition graphs that can be constructed allow for obtaining
a Hamiltonian path in polynomial time. A trivial case, for example, would be knowing for a fact
that any transition graph is a complete graph. Further, to be able to prove NP-completeness
for the SOP, we require that a qualitative constraint language has the P3 property, defined as
follows.

Property 2 (Property P3) A qualitative constraint language will be said to have the P3 prop-
erty if it satisfies the following conditions:

181

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

• its set of base relations B consists of at least three base relations b1, b2, and b3;

• the conceptual neighbourhood graph defined by base relations b1, b2, and b3 is the graph Γ =
({b1(u, v), b2(u, v), b3(u, v)}, {(b1(u, v), b2(u, v)), (b2(u, v), b3(u, v))}), with u and v being
two entities, as shown in Figure 6.7 (omitting loops);

• base relation b1 belongs to all the possible weak compositions among base relations b1, b2,
and b3, viz., b1 ∈ bi � bj ∀i, j ∈ {1, 2, 3};

• It is a relation algebra and every �-consistent atomic QCN is satisfiable.

By considering the base relations DC (disconnected), EC (externally connected), and PO
(partially overlaps) for RCC-8, the base relations < (before), m (meets), and o (overlaps) for
Interval Algebra, and the base relations < (left of), ≤ (attached to), and ⇐ (overlapping) for
Rectangle Algebra, and due to Propositions 1 (at page 21) and 3 (at page 34), we can obtain
the following proposition:

Proposition 55 The qualitative constraint languages RCC-8, Interval Algebra, Block Algebra,
and Rectangle Algebra have the P3 property.

Let us go back to being able to construct a transition graph out of any given arbitrary graph
in polynomial time. We prove the following proposition:

Proposition 56 Given a graph G, and a qualitative constraint language L that has the P3

property, we have that we can construct a satisfiable atomic QSS S of L that yields an isomorphic
to G transition graph M in polynomial time.

Proof. Given an arbitrary graph G = (V,E), and a qualitative constraint language L that has
the P3 property, we can construct a set of satisfiable atomic QCNs of L that yield a transition
graph which is isomorphic to G using algoritm Arachni, depicted in Algorithm 33. We prove the
correctness of Arachni as follows.

Step 1. If the order of graph G is k, i.e., if k = |V |, we create a set {N1, N2, . . ., Nk} of k
QCNs of L. In fact, we have a bijection between sets V and {N1, N2, . . ., Nk}, as we consider
to have a one-to-one correspondance between an element of V and a QCN in the set of k QCNs
of L. This bijection is defined by a dictionary map that given a node v ∈ V returns the index
i of a QCN Ni in the set of k QCNs of L, i.e., i = map[u], with i ∈ {1, 2, . . . , k}. For every
i ∈ {1, 2, . . . , k}, we have that every QCN Ni shares the set of variables {v1, v2, . . . , vk+1}, viz.,
all k QCNs of L are defined on the same set of variables {v1, v2, . . . , vk+1}. We assume first
that G is an edgeless graph, therefore, the k QCNs of L are initially constructed in a manner
such that there exists no pair of QCNs where the QCNs in the pair are conceptual neighbours
of one another. This is achieved by initializing relation Ni[vi, vi+1] for every QCN Ni with the
singleton relation {b3} while initializing all other relations Ni[vj , vo] with i 6= j and j < o with
the singleton relation {b1}. Then, for any pair of QCNs (Ni,Nj) from our set of k QCNs of L, we
have that Ni and Nj are not conceptual neighbours, since the base relations b3 and b1 defined
by relations Ni[vi, vi+1] and Nj [vi, vi+1] respectively (and equivalently, the base relations b1 and
b3 defined by relations Ni[vj , vj+1] and Nj [vj , vj+1] respectively) are not conceptual neighbours.
Up to this point it should be clear that we have constructed a set of atomic QCNs that yield a
transition graph which is isomorphic to an edgeless graph of order k. Since every QCN in our
set of k QCNs of L is defined on k + 1 entities, and assuming that we use a matrix to represent
a given QCN, the construction of our QCNs is achieved in O(k3) time.

182

6.5. Ordering Spatio-Temporal Sequences to meet Transition Constraints

Algorithm 33: Arachni(G,L)
in : A graph G = (V,E), and a qualitative constraint language L that has the P3 property.
output : A set of satisfiable atomic QCNs of L that yield a transition graph which is isomorphic

to graph G.
1 begin
2 i← 1;
3 χ← ∅;
4 map← dict();
5 while V do
6 map[V.pop()]← i;
7 Vi ← {v1, v2, . . . , v|V (G)|+1};
8 foreach vk, vl ∈ Vi do
9 if k = l then

10 Ci(vk, vl)← {Id};
11 else if k < l then
12 if k = i and l = k + 1 then
13 Ci(vk, vl)← {b3}; Ci(vl, vk)← {b3−1};
14 else
15 Ci(vk, vl)← {b1}; Ci(vl, vk)← {b1−1};

16 Ni ← (Vi, Ci);
17 χ← χ ∪ {Ni};
18 i← i+ 1;

19 while E do
20 (u, u′)← E.pop();
21 (i, j)← (map[u],map[u′]);
22 Ni[vj , vj+1]← {b2}; Ni[vj+1, vj]← {b2−1};
23 Nj [vi, vi+1]← {b2}; Nj [vi+1, vi]← {b2−1};
24 return χ;

Step 2. Now, we need to iterate the set of edges of graph G and change the QCNs in the
corresponding pairs of QCNs into being conceptual neighbours of one another. Using dictionary
map, we obtain a pair of QCNs (Ni,Nj) for every edge (u, u′) ∈ E, where i = map[u] and
j = map[u′]. As noted earlier, Ni and Nj are not conceptual neighbours, since the base relations
b3 and b1 defined by relations Ni[vi, vi+1] and Nj [vi, vi+1] respectively (and equivalently, the
base relations b1 and b3 defined by relations Ni[vj , vj+1] and Nj [vj , vj+1] respectively) are not
conceptual neighbours. Therefore, we need to change the aforementioned base relations b1 into
being base relation b2, so that we can achieve conceptual proximity with base relation b3. In
particular, we set relations Nj [vi, vi+1] and Ni[vj , vj+1] to {b2} from {b1}. Note that QCNs Ni
and Nj become conceptual neighbours only of one another, as any other QCN No with i 6= o 6= j
is not a conceptual neighbour of either Ni or Nj , since relation No[vo, vo+1] is defined by b3,
and relations Ni[vo, vo+1] and Nj [vo, vo+1] are still defined by b1 (and equivalently, relations
No[vi, vi+1] and No[vj , vj+1] are defined by b1, and relations Ni[vi, vi+1] and Nj [vj , vj+1] are
defined by b3). After iterating the whole set of edges of graph G, we will have that any two
nodes u and u′ of G are adjacent in G if and only if Nmap[u] and Nmap[u′] are adjacent in the
transition graph that is defined by the set {N1, N2, . . ., Nk} of k QCNs of L. Formally, if
M is the transition graph defined by the set {N1, N2, . . ., Nk} of k QCNs of L, we have that

183

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

Na

Nb

Nc

(a) An arbitrary graph G

Na

x

y

z

w

Nb

x

y
z

w

Nc

x

y

w
z

(b) A set of QCNs that yield a transition graph which is isomorphic to the
empty graph of the order of G

Na

x

y

z

w

Nb

x

y
z w

Nc

x

y

w
z

(c) A set of QCNs that yield a transition graph which is isomorphic to graph
G

Figure 6.8: Example of the construction of a transition graph through algorithm Arachni

{u, u′} ∈ E(G) iff {Nmap[u],Nmap[u′]} ∈ E(M). Thus, graph M is isomorphic to graph G. To fix
the pairs of QCNs that are conceptual neighbours and consequently introduce the edges in our
transition graph, we require O(k2) time, as there can only be O(k2) edges in a k order graph
(and given that our QCNs are represented by matrices, we can alter their relations in O(1) time).
In conclusion, algorithm Arachni requires O(k3) running time in total to process its input and
produce an output.

Step 3. Finally, we also need to show that every QCN in the set of k atomic QCNs of L that
we have constructed is satisfiable. Due to our construction, for every QCN Ni = (Vi, Ci), with
i ∈ {1, 2, . . . , k}, we have that every triple of variables vo, v′o and v′′o in Vi, with o < o′ < o′′, defines
a set of relations Ni[vo, vo′], Ni[vo′ , vo′′], and Ni[vo, vo′′], such that Ni[vo, vo′′] is always defined
by the base relation b1, and Ni[vo, vo′] and Ni[vo′ , vo′′] are defined by either of the three base
relations b1, b2, and b3. Due to the fact that b1 ∈ bi � bj ∀i, j ∈ {1, 2, 3}, we have that Ni[vo, vo′′]
⊆ Ni[vo, vo′] � Ni[vo′ , vo′′]. Further, as L is a relation algebra and therefore satisfies the axioms
of �-associativity, −1-involution, −1-involutive distributivity, and Peircean law (sometimes called
cycle law [Dylla et al., 2013]), we can deduce that every path of length 2 in Ni is closed under
the weak composition operation defined by operator �, thus, Ni is �-consistent. As �-consistency
decides the satisfiability of atomic QCNs of L, we have that Ni is a satisfiable QCN of L for every
i ∈ {1, 2, . . . , k}. a

We present a simple example of the construction of a transition graph through algorithm
Arachni in Figure 6.8. In particular, let us consider the arbitrary graph shown in Figure 6.8a

184

6.5. Ordering Spatio-Temporal Sequences to meet Transition Constraints

and RCC-8 as our qualitative constraint language of choice. First, we construct a set of QCNs
that yield a transition graph which is isomorphic to the empty graph of the order of G, as shown
in Figure 6.8b. No transition are allows up to this point. Then, we alter the QCNs in a way
such that they yield edges in the transition graph that correspond to edges in G, as shown in
Figure 6.8c. Clearly, Na cannot transition to Nc as relations PO(x, y) and DC(x, y) are not
conceptual neighbours, but all other transitions are valid.

We proceed with obtaining a complexity result for the SOP, for the case where a considered
satisfiable atomic QSS is defined on a qualitative constraint language that satisfies property P3.

Theorem 38 The SOP for any satisfiable atomic QSS S of a qualitative constraint language
satisfying property P3, is NP-complete.

Proof. NP-hardness follows from the fact that the Hamiltonian path problem is NP-complete,
and we can translate any input of the Hamiltonian path problem, which is an arbitrary graph
G, to an isomorphic to G transition graph M of some QSS S in polynomial time, due to Propo-
sition 56. Further, due to the notion of isomorphism, it is clear that we can have a Hamiltonian
path in M iff we can have a Hamiltonian path in G. By Lemma 5, we have that obtaining a
Hamiltonian path in M is equivalent to solving the SOP for S, thus, we ultimately have ob-
tained a polynomial-time reduction from the Hamiltonian path problem to the SOP. We can
also explicitly define membership in NP due to the fact that provided with a candidate ordered
satisfiable atomic QSS S, we can check if the QCNs in every pair of consecutive QCNs in S are
conceptual neighbours in polynomial time. In particular, if S comprises k QCNs, we can only
have k−1 pairs of consecutive QCNs in the sequence, and we can check if the QCNs in a pair are
conceptual neighbours in O(n2) time, given the fact than the QCNs are defined over n entities.
Thus, the SOP for any satisfiable atomic QSS S of a qualitative constraint language satisfying
property P3, is NP-complete. a

Due to Theorem 38 and Proposition 55, we can immediately obtain the following result:

Corollary 38 The SOP for any satisfiable atomic QSS S of RCC-8, Interval Algebra, Block
Algebra, or Rectangle Algebra is NP-complete.

We can obtain a variation of the SOP for a satisfiable atomic QSS S, where we allow one to
consider a number of up to m QCNs in addition to the number of QCNs of S and solve the SOP
for the new augmented QSS S ′. This is particularly useful if given a QSS S we are unable to
solve the SOP for S, because S, for example, yields a disconnected transition graph and, thus,
does not allow obtaining a Hamiltonian path in its transition graph. We provide a very simple,
but, nevertheless, sufficient example to better explain this problem.

Let RCC-8 be our qualitative constraint language of choice with its usual conceptual neigh-
bourhood graph as depicted in Figure 4.2, and (Na,Nb,) a QSS S of RCC-8, where Na defines
the set of constraints {DC(x, y)} and Nb defines the set of constraints {PO(x, y)}. Clearly, the
transition graph of S is disconnected as Na and Nb are not conceptual neighbours and, thus,
there can be no transition from Na to Nb, and vice versa. In particular, the transition graph
of S is the graph M = ({Na,Nb}, ∅). As such, the SOP for S is unsolvable, since there can
be no Hamiltonian path in M . However, we can augment S with the QCN Nc that defines
the set of constraints {EC(x, y)}, and obtain the QSS S ′ = (Na,Nb,Nc). Then, the transition
graph of S ′ will be the graphM ′ = ({Na,Nb,Nc}, {{Na,Nb}, {Nb,Nc}}). The Hamiltonian path
(Na,Nc,Nb) in M ′ is exactly a solution of the SOP for S ′, where we considered one extra QCN
with respect to the number of QCNs of S.

185

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

We call this new problem the relaxed sequence ordering problem (rSOP) and define it as
follows.

Definition 54 Given an integerm, a qualitative constraint language, a conceptual neighbourhood
graph Γ of that language, and a satisfiable atomic QSS S = (N1, N2, . . ., Nk) defined on a set of
variables V , the rSOP for S is the SOP for QSS S ′, where S ′ is the sequence S augmented with
a set {N ′1, N ′2, . . ., N ′n} of n QCNs defined on V , with n ≤ m.

We proceed with obtaining a complexity result for the rSOP, for the case where a considered
satisfiable atomic QSS is defined on a qualitative constraint language that satisfies property P3.

Theorem 39 The rSOP for any satisfiable atomic QSS S of a qualitative constraint language
satisfying property P3 and some integer m, is NP-complete.

Proof. NP-hardness follows from the fact that the SOP, which is NP-complete due to Theo-
rem 38, can be reduced to the rSOP in polynomial time, by just considering an integer value of
m = 0 for the rSOP. With the aforementioned requirement for integer m, it is clear that any
input for the SOP serves as an input for the rSOP, and a solution of the rSOP is also a solution of
the SOP and vice versa. Membership in NP follows from the fact that provided with a candidate
ordered satisfiable atomic QSS S ′ that corresponds to an input satisfiable atomic QSS S aug-
mented with ≤ m QCNs, we can check if S ′ is a solution of the SOP for S ′ in polynomial time,
as the SOP is in NP. Also, we can check if S ′ contains ≤ m more QCNs than S in linear time
in the number of QCNs of S ′. Thus, the rSOP for any satisfiable atomic QSS S of a qualitative
constraint language satisfying property P3 and some integer m, is NP-complete. a

Due to Theorem 39 and Proposition 55, we can immediately obtain the following result:

Corollary 39 The rSOP for any satisfiable atomic QSS S of RCC-8, Interval Algebra, Block
Algebra, or Rectangle Algebra and some integer m is NP-complete.

The rSOP, as is the case with the SOP, is a decision problem where we try to decide if
an adequate ordered sequence exists, and if so, present that sequence as a solution of some
input instance. However, we can also view the rSOP as an optimization problem [Krentel, 1988;
Creignou et al., 2001] where we try to minimize the integer value of m. We will formally define
and study this optimization problem of the rSOP in a later separate section.

Let us introduce yet another problem that will be also useful for a contribution in a later
section in this thesis. We can view the transition graph of a satisfiable atomic QSS as a digraph
(also called a directed graph), where the edges, i.e., the pairs of QCNs, have a direction associated
with them that specifies which QCN in the pair can transition to the other one. We call the
corresponding problem the directed sequence ordering problem (dSOP) and define it as follows.

Definition 55 Given a qualitative constraint language, a conceptual neighbourhood graph Γ of
that language, a satisfiable atomic QSS S = (N1, N2, . . ., Nk), and a transition digraph Md =
({N1, N2, . . ., Nk}, A), with A = {(Ni, Nj) and/or (Nj, Ni) | {Ni, Nj} ∈ E}, where M =
({N1, N2, . . ., Nk}, E) is the transition graph of S defined with respect to Γ, the dSOP for S
is the problem of obtaining an ordered sequence of the QCNs of S such that the spatial QCNs
Ni and Nj in every pair of consecutive QCNs (Ni, Nj) in the ordered sequence are conceptual
neighbours with respect to Γ and (Ni, Nj) ∈ A.

We proceed with obtaining a complexity result for the dSOP, for the case where a considered
satisfiable atomic QSS is defined on a qualitative constraint language that satisfies property P3.

186

6.5. Ordering Spatio-Temporal Sequences to meet Transition Constraints

Theorem 40 The dSOP for any satisfiable atomic QSS S of a qualitative constraint language
satisfying property P3, is NP-complete.

Proof. NP-hardness follows from the fact that the SOP, which is NP-complete due to Theo-
rem 38, can be reduced to the dSOP in polynomial time, by just considering a transition digraph
Md = (V,A) of S, with A = {(Ni, Nj) and (Nj , Ni) | {Ni, Nj} ∈ E}, where M = (V,E) is
the transition graph of S defined with respect to Γ. Namely, for every edge in M we introduce
both directions of this edge, i.e., both arcs, in Md. With the aforementioned requirement for the
transition digraph Md, it is clear that any input for the SOP serves as an input for the dSOP,
and a solution of the dSOP is also a solution of the SOP and vice versa. Membership in NP
follows from the fact that provided with a candidate ordered satisfiable atomic QSS S, we need
to check if S is a solution of the SOP for S and also check if the QCNs in every pair of k − 1
pairs of consecutive QCNs in S form an arc that belongs to the transition digraph Md. We can
perform the former check in polynomial time as the SOP is in NP. For the latter check, if we
assume that we use a matrix to store the transition digraph Md, we can check if a pair of QCNs
forms an arc that belongs to the transition digraph Md in O(1) time, thus, we need O(k − 1)
time in total for all k − 1 pairs of QCNs. As such, the dSOP for any satisfiable atomic QSS S of
a qualitative constraint language satisfying property P3, is NP-complete. a

Due to Theorem 40 and Proposition 55, we can immediately obtain the following result:

Corollary 40 The dSOP for any satisfiable atomic QSS S of RCC-8, Interval Algebra, Block
Algebra, or Rectangle Algebra is NP-complete.

Optimizing the Relaxed Sequence Ordering Problem

We study the optimization problem of the rSOP, which results from viewing the number of
additional QCNs to be considered for a given spatio-temporal sequence as the objective function
to be minimized. In particular, we will prove that for the case of RCC-8 where we require that
regions do not change size (i.e., the corresponing conceptual neighbourhood graph of RCC-8 is
the graph as depicted in Figure 4.2 at page 71, but without the dashed edges), the optimization
problem of the rSOP corresponds to a special kind of a NP-optimization problem [Kann, 1995].
First, we recall the following definition of a NP-optimization problem:

Definition 56 A NP-optimization problem (NPO) Π is a quadruple (I, σ, g, goal) such that:

• I is the set of all input instances of Π and is recognizable in polynomial time.

• Given an input instance x ∈ I, σ(x) denotes the set of solutions of x. For every solution
y ∈ σ(x), there exists a polynomial p such that |y| ≤ p(|x|), where |y| and |x| denote the
sizes of y and x respectively. Futher, it is decidable in polynomial time if for any input
instance x ∈ I and any candidate solution y of x with |y| ≤ p(|x|), we have that y ∈ σ(x).

• Given an input instance x ∈ I and a solution y ∈ σ(x), g(x, y) denotes the positive integer
measure of y. Function g is called the objective function and is computable in polynomial
time.

• goal ∈ {min,max}.

187

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

The goal of a NPO problem (I, σ, g, goal) with respect to an input instance x ∈ I is to find
an optimum solution, i.e., a solution y ∈ σ(x) such that:

g(x, y) = goal{g(x, y′) | y′ ∈ σ(x)}

The observant reader will note that the first three items in Definition 56 imply that the corre-
sponding decision problem of a NPO problem is in NP. Moreover, a NPO problem (I, σ, g, goal)
will be said to be polynomially bounded if there exists a polynomial q such that for any input
instance x ∈ I and for any solution y ∈ σ(x), we have that g(x, y) ≤ q(|x|), i.e., the objective
function is polynomially bounded in the size of the input instance [Kann, 1995]. Polynomi-
ally bounded NPO problems constitute an important class of optimization problems, as they
have many desirable computational properties with respect to approximability [Kann, 1995;
Krentel, 1988].

We recall the following lemma from [Gerevini and Nebel, 2002], which was proven using a
large computer-generated case analysis:

Lemma 6 ([Gerevini and Nebel, 2002]) Let Na and Nb be two satisfiable atomic QCNs of
RCC-8 defined on a set of variables V with |V | = n, and Γ the conceptual neighbourhood graph
of RCC-8 under the requirement that regions do not change size. Then, we can introduce ≤ 12n2

pairwise distinct satisfiable atomic QCNs of RCC-8 defined on V , such that the QSS S ′ = (Na,
N1, N2, . . ., NO(12n2), Nb) is a solution of the SOP for S ′, and equivalently a solution of the
rSOP for QSS S = (Na, Nb) with m ≤ 12n2.

We can now prove the following theorem with respect to RCC-8:

Theorem 41 The optimization problem of the rSOP for any satisfiable atomic QSS S of RCC-8
under the requirement that regions do not change size and some integer m, is a polynomially
bounded NPO problem (I, σ, g, goal) where:

• I is the set of all satisfiable atomic QSSs of RCC-8 comprising k QCNs over a set of n
spatial variables, for some integers k and n.

• The non-empty set of solutions σ(x) for an input instance x ∈ I is a set of QSSs, such
that ∀y ∈ σ(x) we have that |y| ≤ (k − 1)12n4 + kn2, where |y| denotes the size of y. Also,
it is decidable in O((k − 1)12n4 + kn2 − n2) time if for any input instance x ∈ I and any
candidate solution y of x with |y| ≤ (k − 1)12n4 + kn2, we have that y ∈ σ(x).

• The objective function g yields the measure of integer m for the rSOP and is computable in
O((k − 1)12n2) time.

• goal = min.

Proof. We will prove that given a satisfiable atomic QSS S = (N1, N2, . . ., Nk) of RCC-8
under the requirement that regions do not change size, comprising k QCNs over a set of n
spatial variables V , the rSOP for S, along with some integer m, meets the claimed bounds of
Theorem 41. We consider the worst-case scenario for defining the bounds, which will apply to all
other scenarios as well. The worst-case scenario for the rSOP, is when we have that the transition
graph M of S is the edgeless graph of order k. Therefore, we have k − 1 pairs of consecutive
QCNs in any ordered sequence of the k QCNs of S, such that the QCNs in every pair are not
conceptual neighbours of one another. Due to Lemma 6, we can introduce ≤ 12n2 pairwise

188

6.5. Ordering Spatio-Temporal Sequences to meet Transition Constraints

distinct satisfiable atomic QCNs of RCC-8 over V for every pair of k− 1 pairs of QCNs to obtain
a QSS S ′ = (N1, N 1

1 , N 1
2 , . . ., N 1

O(12n2), N2, N 2
1 , N 2

2 , . . ., N 2
O(12n2), N3, N 3

1 , N 3
2 , . . ., N 3

O(12n2),
. . ., Nk−1, N k−1

1 , N k−1
2 , . . ., N k−1

O(12n2)
, Nk), such that the rSOP for S with m = (k − 1)12n2 is

solvable, with S ′ being the solution. The size of solution S ′ is ≤ (k − 1)12n4 + kn2, as we have
augmented the input QSS S of k QCNs with ≤ (k − 1)12n2 QCNs and we assume that we use a
matrix to represent a given QCN which has a O(n2) size requirement. Also, since S ′ comprises at
most (k − 1)12n2 + k QCNs, we can only have (k − 1)12n2 + k− 1 pairs of consecutive QCNs in
the sequence, and we can check if the QCNs in a pair are conceptual neighbours in O(n2) time,
thus, we can verify the feasibility of S ′ in O((k − 1)12n4 + kn2 − n2) time. Finally, any solution
of the rSOP is guaranteed to be obtainable if m is upper bounded by O((k − 1)12n2), as such,
we have that the optimization problem of the rSOP for any satisfiable atomic QSS S of RCC-8
under the requirement that regions do not change size and some integer m, is a polynomially
bounded NPO problem. a

6.5.2 Constraining Spatio-Temporal Sequences with Point Algebra

In Section 6.5.1 we studied the problem of ordering a qualitative spatio-temporal sequence (QSS)
of QCNs to meet certain transition constraints, i.e., we studied the problem of ordering the
sequence in a manner such that the QCNs in every pair of consecutive QCNs in the sequence are
conceptual neighbours. A QSS comprises strictly spatial QCNs, but the ordering of the sequence
itself constitutes a timeline upon which the spatial QCNs are defined. Therefore, a QSS has
an implicit temporal aspect as it describes an evolving spatio-temporal configuration in some
timeline. In this section we make this temporal aspect explicit by defining a framework where
the timeline is constrained by Point Algebra [Vilain et al., 1990; van Beek and Cohen, 1990;
van Beek, 1992] relations. We remind the reader, that PA comprises the set of base relations
{<,=, >}, with = being the identity relation, where the relation symbols display the natural
interpretation over time points in Q. This makes the problem even more interesting as we have
both constraints propagating from the spatial aspect to the temporal aspect and the other way
around, and it also makes it more expressive as we will see in a later example.

We obtain a spatio-temporal framework by defining the concept of a qualitative spatio-
temporal constraint network (QSCN) that builds on Point Algebra and allows plugging in any
qualitative spatial constraint language, such as RCC-8, Interval Algebra, Block Algebra, or Rect-
angle Algebra. Intuitively, a QSCN is a QCN of Point Algebra where the set of variables corre-
sponds to a set of spatial QCNs. We formally define a QSCN as follows.

Definition 57 A QSCN N is a QCN (W,R) of Point Algebra, where W is a set of variables
{N1 = (V,C1), N2 = (V,C2), . . ., Nk = (V,Ck)} of k satisfiable atomic QCNs of a qualitative
spatial constraint language over a set of spatial entities V , and R the usual constraint mapping
in a QCN as defined in Definition 4 (at page 26).

Note that we always regard a QSCN as a complete network. In what follows, given a QSCN
N = (W,R) and v, v′ ∈ W , N [v, v′] will denote the relation R(v, v′). An atomic QSCN N is a
QSCN whose underlying QCN of Point Algebra is atomic, and a scenario N (σ) of N is a scenario
of its underlying QCN of Point Algebra, where σ is a solution of that QCN.

Definition 58 Let (N1, N2, . . ., Nk) be the QSS defined by an atomic QSCN N = ({N1, N2,
. . ., Nk}, R), denoted by S(N), Γ a conceptual neighbourhood graph of the considered qualitative
constraint language, and M = ({N1, N2, . . ., Nk}, E) the transition graph of S(N) defined with

189

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

respect to Γ. Then, S(N) yields a transition digraph ({N1, N2, . . ., Nk}, A), denoted by Md(N),
where ∀Ni, Nj ∈ {N1, N2, . . ., Nk} with i ≤ j:

• (Ni, Nj) ∈ A and (Nj, Ni) ∈ A, if {Ni, Nj} ∈ E and N [Ni,Nj] = {=};

• (Ni, Nj) ∈ A, if {Ni, Nj} ∈ E and N [Ni,Nj] = {<};

• (Nj, Ni) ∈ A, if {Ni, Nj} ∈ E and N [Ni,Nj] = {>}.

Given a QSCN N defined on some qualitative constraint language along with a conceptual
neighbourhood graph Γ of that language, a solution of N is a solution of the dSOP for S(N (σ))
with respect to Md(N (σ)), where σ is a solution of the underlying QCN of Point Algebra of N
and N (σ) its corresponding scenario.

Definition 59 A QSCN N is satisfiable if and only if it admits a solution.

Given a QSCN N , obtaining a solution σ of its underlying QCN of Point Algebra and conse-
quently a scenario N (σ) of that QCN, will provide us with an input for the dSOP. In particular,
a scenario of the QCN of Point Algebra (i.e., an atomic satisfiable sub-QCN of the QCN of Point
Algebra) constrains the timeline upon which the spatial QCNs of sequence S(N (σ)) are defined,
by encoding a particular transition digraph Md(N (σ)) of S(N (σ)), as defined in Definition 58.
(Of course, the transitions defined by the obtained transition digraph Md(N (σ)) can be even
further restricted upon user preference, by considering an other transition digraph with some
of the arcs of Md(N) removed.) In a sense, a QSCN allows us to describe numerous different
transition digraphs, but also transitions that cannot be described by a single transition digraph
alone, as we will see in the following simple example.

Let us consider the QSCN N = (W,R) of RCC-8, where W = {Na = ({x, y}, {DC(x, y)}),
Nb = ({x, y}, {EC(x, y)})} and R(Na, Nb) = {>,<}. Clearly, N has two scenarios defined by
R(Na, Nb) = {>} and R(Na, Nb) = {<} respectively. Thus, N encodes two transition digraphs
containing arcs (Na, Nb) and (Nb, Na) respectively, ultimately representing the knowledge that
either Na will transition to Nb, or Nb will transition to Na. This dichotomic behavior cannot
be represented by a single transition digraph alone, as any such digraph would either allow both
transitions between a pair of QCNs, or a single transition of one QCN to the other one in the
pair.

Let us consider all the aforementioned notions around a QSCN in conjuction with a qualitative
spatio-temporal sequence of Rectangle Algebra [Guesgen, 1989], as follows.

In Figure 6.9 we can view a QSCN N = (W,R) of Rectangle Algebra, where W = {Nx, Ny,
Nz} and R is defined by the set of constraints R(Nx, Ny) = {>,<}, R(Ny, Nz) = {>,<}, and
R(Nx, Nz) = ?, where ? is the common notation in the literature for the universal relation of
Point Algebra, viz., {<,=, >}. Every variable of the underlying QCN of Point Algebra of N
corresponds to a spatial QCN. As noted, for the sake of our example, we can view these spatial
configurations as QCNs of Rectangle Algebra. All QCNs of Rectangle Algebra share the same set
of spatial variables V as imposed by Definition 57, which in our case comprises the disks34 of the
Moon and the Sun. In fact, our example describes the phenomenon of an eclipse. The QCN Nx
of Rectangle Algebra comprises the set of constraints {⇒ (Moon,Sun)} (the disk of the Moon
overlaps the disk of the Sun from right to left). The QCN Ny of Rectangle Algebra comprises the
set of constraints {< (Moon, Sun)} (the disk of the Moon contains the disk of the Sun). Finally,

34We consider these disks to be enclosed in minimum bounding boxes.

190

6.5. Ordering Spatio-Temporal Sequences to meet Transition Constraints

Nx Ny Nz> ∨ < > ∨ <

?

Figure 6.9: Example of a QSCN of Rectangle Algebra

the QCN Nz of Rectangle Algebra comprises the set of constraints {⇐ (Moon, Sun)} (the disk
of the Moon overlaps the disk of the Sun from left to right). Assuming that two observers in
different hemispheres can actually see the same eclipse event, we may want to be able to capture
the phenomenon both as seen from the perspective of an observer in the Northern hemisphere
(the Moon moves from right to left), but also as seen in the Southern hemisphere (the Moon
moves from left to right). The reader can verify that both scenarios are encoded by the following
possible solutions of N : (Nx, Ny, Nz) and (Nz, Ny, Nx). In particular, solution (Nx, Ny, Nz)
corresponds to a scenario N (σ) of N defined by the set of constraints R(Nx, Ny) = {<}, R(Ny,
Nz) = {<}, and R(Nx, Nz) = {<}, where σ corresponds to a solution of the underlying QCN of
Point Algebra such as σ(Nx) = 0, σ(Ny) = 1, and σ(Nz) = 2. Thus, solution (Nx, Ny, Nz) of
N is a solution of the dSOP for S(N (σ)) = (Nx, Ny, Nz) (where in this case we note that the
input sequence is already ordered with respect to Md(N (σ))). Regarding the transition digraph
Md(N (σ)) of S(N (σ)), it contains the arcs (Nx, Ny) and (Ny, Nz), as defined in Definition 58.
The same line of reasoning holds for solution (Nz, Ny, Nx).

We proceed with obtaining a complexity result for the satisfiability problem of a QSCN N , as
defined in Definition 59, for the case where a considered qualitative constraint language satisfies
property P3.

Theorem 42 The satisfiability problem of a QSCN N , where the qualitative constraint language
used for the spatial QCNs satisfies property P3, is NP-complete.

Proof. NP-hardness follows from the fact that the SOP, which is NP-complete due to Theorem 38
(at page 185), can be reduced to the satisfiability problem for a QSCN in polynomial time. In
particular, let (N1, N2, . . ., Nk) be some QSS S, then we can construct a QSCN N = (W,R) as
follows. The set of variablesW will be the set {N1, N2, . . ., Nk}, and R will be the mapping that
associates the singleton relation R(v, v′) = {=} to each pair (v, v′) ofW ×W , i.e., the underlying
QCN of Point Algebra of N will be the atomic QCN of |W | variables that is completely defined
by singleton relation {=}. Assuming that we use a matrix to represent a given QCN, this
construction can be made in O(|W |2) time, where |W | = k. The aforementioned underlying
QCN of Point Algebra is obviously satisfiable, with a trivial solution being the mapping σ, where
σ(v) = 0 ∀v ∈W . Therefore, N (σ) is exactly the underlying atomic QCN of Point Algebra, and
is also a scenario of N . As such, N (σ) will yield a QSS S(N (σ)) = (N1, N2, . . ., Nk), and a
transition digraph Md(N (σ)) = (W,A) of S(N (σ)), with A = {(Ni, Nj) and (Nj , Ni) | {Ni,
Nj} ∈ E}, where M = (W,E) is the transition graph of S, as defined in Definition 58. Namely,
for every edge in M we introduce both directions of this edge, i.e., both arcs, in Md(N (σ)).

191

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

Since S = S(N (σ)), and for every edge {u, v} ∈ E of M we have both arcs (u, v), (v, u) ∈ A of
Md(N (σ)), it is clear that any input for the SOP serves as an input for the dSOP, and a solution
of the dSOP is also a solution of the SOP and vice versa. Finally, as a solution of a QSCN
N is a solution of the dSOP for S(N (σ)) with respect to Md(N (σ)), where σ is a solution of
the underlying QCN of Point Algebra of N and N (σ) its corresponding scenario, we ultimately
have obtained a polynomial-time reduction from the SOP to the satisfiability problem of a QSCN.
Membership in NP follows from the fact that provided with a candidate ordered satisfiable atomic
QSS S, we need to check if S is a solution of the dSOP for S and also check if the QCN of Point
Algebra that results by removing the forbidden relation > from all relations R(Ni,Nj) of the
underlying QCN of Point Algebra of N , where Ni and Nj constitute a pair of consecutive QCNs
(Ni, Nj) in S, is satisfiable. (If R(Ni,Nj) = {>} in a scenario N (σ) of N , we will obtain the arc
(Nj , Ni) in the corresponding transition digraph Md(N (σ)), which invalidates S as a solution.)
We can perform both checks in polynomial time as the dSOP is in NP due to Theorem 40, and
�-consistency decides the satisfiability of any QCN of Point Algebra (i.e., a scenario N (σ) of N
along with solution σ can be extracted in polynomial time). Thus, the satisfiability problem of a
QSCN N , where the qualitative constraint language used for the spatial QCNs satisfies property
P3, is NP-complete. a

Due to Theorem 42 and Proposition 55 (at page 182), we can immediately obtain the following
result:

Corollary 41 The satisfiability problem for a QSCN N where the qualitative constraint language
used for the spatial QCNs is RCC-8, Interval Algebra, Block Algebra, or Rectangle Algebra is NP-
complete.

6.6 Conclusion and Future Work

In this chapter, we presented our contributions with respect to formalisms that combine spatial
and temporal reasoning in an interrelated manner, and demonstrated how they advance and
enrich the field of qualitative spatio-temporal reasoning.

In particular, we studied the qualitative spatio-temporal logic that results by combining the
propositional temporal logic (PTL) with a qualitative spatial constraint language, namely, the L1
logic that was presented in Section 4.2, and investigated the implication of the constraint proper-
ties of compactness and patchwork in qualitative spatio-temporal reasoning (cf. Section 3.6). We
used these properties to strengthen results regarding the complexity of the satisfiability problem
in L1, by replacing the stricter global consistency property used in literature and, consequently,
generalizing to more qualitative spatial constraint languages. We also used these properties to
prove the correctness of a first semantic tableau method that given a L1 formula φ systematically
searches for a model for φ. This tableau method builds on Wolper’s tableau method for PTL,
while its basic principles and ideas can be applied to other tableau methods for PTL as well. Fur-
ther, we identified fragments of the L1 logic that capture significant aspects of spatio-temporal
change. In particular, we addressed the issue of periodical, and smoothness and continuity con-
straints between spatial configurations, and obtained results on their computational properties.
Regarding periodicity, we used the properties of compactness and patchwork to strengthen re-
lated results that exist in the literature and were presented in Section 4.5, by re-establishing
conditions that allow for tractability and, again, generalizing to a larger class of qualitative spa-
tial constraint languages. Moreover, and with respect to the discussion in Sections 4.3 and 4.4,
we investigated the task of ordering a temporal sequence of qualitative spatial configurations

192

6.6. Conclusion and Future Work

to meet certain transition constraints; in particular, this ordering is constrained by the use of
conceptual neighbourhood graphs defined on qualitative spatial constraint languages. Specifi-
cally, we showed that the problem of ordering a sequence of qualitative spatial configurations
to meet such transition constraints is NP-complete for the well-known languages of RCC-8, In-
terval Algebra, and Block Algebra. Based on this result, we also proposed a framework where
the temporal aspect of a sequence of qualitative spatial configurations is constrained by a Point
Algebra network, and again showed that the enhanced problem is in NP when considering the
aforementioned languages.

Regarding future work, we would like to consider domain interpretations that involve de-
termined entities (constants) for qualitative constraint languages and study the implication
of these interpretations in the context of qualitative spatio-temporal reasoning. In particu-
lar, in the entirety of this thesis, we have considered qualitative constraint languages where
the domain is abstract and some structure is considered that allows to model any (syntac-
tically) consistent QCN (that structure being referred to as a canonical model in the litera-
ture). It would therefore be interesting to explore how introducing constants in the domain
of a qualitative constraint language could affect its satisfiability problem and, consequently,
how this “extended” qualitative constraint language would behave when combined with a tem-
poral logic or when considered to describe the spatial QCNs in a qualitative spatio-temporal
sequence. With respect to the first part, i.e., the satisfiability problem in qualitative constraint
languages extended with constants, there has already been some work with regard to the qual-
itative constraint languages of Point Algebra, Interval Algebra, and RCC-8 [Li et al., 2013;
Liu et al., 2011]. In particular, it has been shown in [Li et al., 2013; Liu et al., 2011], that check-
ing the satisfiability of a QCN of Point Algebra or Interval Algebra extended with constants, can
be done in the same way as checking the satisfiability of any typical QCN of Point Algebra or
Interval Algebra through a translation of the constraints that involve constants into qualitative
relations. However, this does not hold in the case of RCC-8, as checking the satisfiability of
even an atomic QCN of RCC-8 extended with polygonal landmarks becomes NP-complete. What
is more, introducing constants in a qualitative constraint language breaks the patchwork and
compactness properties that this language can exhibit, as these properties are established upon
the use of some canonical model that considers an abstract domain. With respect to the sec-
ond part, i.e., the behaviour of a qualitative constraint language extended with constants when
combined with a temporal logic or when considered to describe the spatial QCNs in a qualita-
tive spatio-temporal sequence, there has not been any published work so far to the best of our
knowledge. Therefore, we would like to delve into this problem. Further, we would like to use
our results with respect to the tableau method that we presented in Section 6.4 to implement
a fast satisfiability checking tool for the L1 logic. To this end, we think it would be possible to
extend Leviathan [Bertello et al., 2016] with spatio-temporal reasoning capabilities.

Recently, we have defined a resolution method for the modal logic S5 [Salhi and Sioutis,
2015]. Specifically, we have proposed a conjunctive normal form (S5-CNF) that is mainly based
on using labels referring to semantic worlds. In a sense, S5-CNF can be seen as a generalization of
the conjunctive normal form in propositional logic by including the modal connective of necessity
and labels in the clause structure. We have showed that every S5 formula can be transformed
into an S5-CNF formula using a linear encoding, and introduced a simple resolution method for
S5, composed of three deductive rules that can be seen as adaptations of Robinson’s resolution
rule to the possible-worlds semantics. Much like the modal logic S4 (discussed in Section 4.2),
S5 is a model of interior algebra, a proper extension of Boolean algebra originally designed to
capture the properties of the interior and closure operators of topology [Jónsson and Tarski, 1951;
Jónsson and Tarski, 1952]. As such, it would be interesing to explore how S5 could fit in the

193

Chapter 6. Enriching Qualitative Spatio-Temporal Reasoning

context of some topology-based spatio-temporal framework and investigate whether the work
in [Salhi and Sioutis, 2015] could be of any use towards that effort.

194

Chapter 7

Conclusion and Future Work

We dealt with Qualitative Spatial and Temporal Reasoning, a major field of study in Artificial
Intelligence and, particularly, in Knowledge Representation, which deals with the fundamental
cognitive concepts of space and time in an abstract manner. The qualitative manner of dealing
with space and time is in line with the qualitative abstractions of spatial and temporal aspects
of the common-sense background knowledge on which the human perspective of physical reality
is based. Typically, qualitative spatial and temporal reasoning restricts the rich mathematical
theories that deal with spatial and temporal entities to simple qualitative constraint languages.
The conciseness of the constraint languages used in the qualitative approach provides a good
framework that further boosts research and applications in spatial and temporal reasoning, as it
allows for rather inexpensive reasoning about entities located in space and time. For example,
some of these calculi may be implemented for handling spatial Geographic Information Systems
(GIS) queries efficiently and some may be used for navigating and communicating with a mobile
robot [Hazarika, 2012; Bhatt et al., 2011]. Typical applications of temporal calculi involve
planning and scheduling [Allen and Koomen, 1983; Allen, 1991; Pelavin and Allen, 1987; Dorn,
1995], natural language processing [Song and Cohen, 1988], temporal databases [Snodgrass,
1987; Chen and Zaniolo, 1998], multimedia databases [Little and Ghafoor, 1993], molecular
biology [Golumbic and Shamir, 1993] (e.g., arrangement of DNA segments/intervals along a
linear chain involves particular temporal-like problems [Benzer, 1959]), and workflow [Lu et al.,
2006], while typical applications of spatial calculi involve intelligent vehicles [Lattner et al., 2005],
high level vision, natural language processing [Bhatt et al., 2011], and of course GIS and mobile
robot navigation as mentioned earlier.

In this context, we pushed the envelope in the field of qualitative spatial and temporal
reasoning by making contributions with respect to several of its key aspects. In particular, given
a knowledge base of qualitative spatial or temporal information, we defined novel local consistency
conditions and related techniques to efficiently solve the fundamental reasoning problems that
are associated with such knowledge bases. These reasoning problems consist of the satisfiability
problem, which is the problem of deciding whether there exists a quantitative interpretation of
all the entities of a knowledge base such that all of its qualitative relations are satisfied by that
interpretation (such an interpretation being called a solution), the minimal labeling problem,
which is the problem of determining all the atoms for each of the qualitative relations of a
knowledge base that participate in at least one of its solutions, and the redundancy problem,
which is the problem of obtaining all the qualitative relations of a knowledge base that do
not contain at least one atom participating in a solution of the modified knowledge base that
results by removing these qualitative relations. Further, we enriched the field of spatio-temporal

195

Chapter 7. Conclusion and Future Work

formalisms that combine space and time in an interrelated manner by making contributions
with respect to a qualitative spatio-temporal logic that results by combining the propositional
temporal logic (PTL) with a qualitative spatial constraint language, and by investigating the task
of ordering a temporal sequence of qualitative spatial configurations to meet certain transition
constraints. Regarding the spatio-temporal logic, we also presented a first semantic tableau
method that given a formula φ of that logic systematically searches for a model for φ.

Concerning future work, and in relation to the work we presented in this thesis, several
possible directions are described in the corresponding sections of Chapters 5 and 6, namely,
Sections 5.8 and 6.6 respectively. These directions involve contributions in the context of the
fundamental reasoning problems in the field of qualitative constraint-based spatial and temporal
reasoning, but also in the context of formalisms that combine spatial and temporal reasoning in
an interrelated manner. In what follows, we will focus on future directions that extend outside
the scope of this thesis.

Of particular interest is the problem of obtaining a spatial or temporal configuration that
maximizes the number of satisfied constraints in a knowledge base of qualitative spatial or tempo-
ral information. The motivation behind studying this problem lies in the fact that representing
spatial or temporal information may inevitably lead to inconsistencies. As illustration, due
to the ever-increasing enrichment of the Semantic Web with geospatial data [Egenhofer, 2002;
Koubarakis et al., 2012], it is often the case that the geometries of geographical objects are not
captured correctly due to contradictory data of different sources. Thus, we can obtain incon-
sistent topological information when extracting topological relations from such geometries (e.g.,
two overlapping regions may be stated to be identical to a third region, which is impossible
as they would also have to be identical to each other if that was the case). With respect to
temporal information, timetabling is an example of a scheduling problem where inconsistencies
can naturally arise due to the lack of resources for certain tasks [Petrovic and Burke, 2004]. In
particular, timetabling deals with finding suitable temporal intervals for a number of tasks that
require limited resources. In the context of a university, an inconsistency can appear when two
professors choose to teach the same class of students at overlapping temporal intervals. The
inconsistency must then be repaired by taking into account the available temporal intervals and
the preferences of the professors, and minimizing changes in the timetable so as to distort its
structure as little as possible. Solving this problem is clearly at least as difficult as solving the
satisfiability problem. To solve this optimization problem, we have already been actively involved
in proposing in [Condotta et al., 2015] a branch and bound algorithm based on the techniques for
checking the satisfiability of a knowledge base of qualitative spatial or temporal information that
were presented in Chapter 5, viz., the use of a triangulation of the constraint graph of the con-
sidered knowledge base to reduce the number of constraints to be treated, the use of a tractable
subclass of relations to reduce the width of the search tree, and the use of partial �-consistency
to efficiently propagate constraints and prune non-feasible base relations during search. In a
later work, we viewed this problem as a partial maximum satisfiability problem (PMAX-SAT)
and proposed two related families of encodings [Condotta et al., 2016]. That approach can be
seen as similar to that concerning the satisfiability problem for which SAT encodings have been
proposed to solve it [Pham et al., 2008]. Each PMAX-SAT encoding is based on a forbidden
covering with regard to the composition table of the considered qualitative calculus. Intuitively,
a forbidden covering is a compact set of triples that express all the non-feasible configurations
for three spatial or temporal entities. Interestingly, in a way, the support SAT encoding and the
forbidden SAT encoding proposed in [Pham et al., 2008] correspond to two particular coverings of
our proposed forbidden coverings respectively. The two proposed families of PMAX-SAT encod-
ings differ from one another in the use of auxiliary propositional variables that allow factorizing

196

the number of obtained clauses. It should be noted that the encodings also use the triangulation
techniques presented in Chapter 5 to reduce the number of constraints to be translated. Both
of the aforementioned works open up several research directions. In particular, future work con-
sists of using other methods, like methods of local search, and comparing the behavior of our
algorithms with these different methods, while the proposed techniques could be used to create
algorithms for solving merging problems of spatial or temporal knowledge bases such as the one
handled in [Condotta et al., 2010]. With respect to SAT encodings in particular, future work
consists of conducting experiments with several PMAX-SAT solvers to compare their behavior
against the instances obtained through our proposed PMAX-SAT encodings. Another perspec-
tive consists of using forbidden coverings in the context of SAT encodings for the satisfiability
problem of knowledge bases of qualitative spatial or temporal information.

Moving outside the field of qualitative spatial and temporal reasoning, and close to the field of
graph theory, we would like to explore compact graph representations, which can be of a benefit
to any field that deals with graphs, such fields typically ranging from data mining and social
network analysis to constraint programming and machine learning. In [Liakos et al., 2014b] we
have improved the state of the art methods for the compression of web and other similar graphs
by introducing an elegant technique that further exploits the clustering properties observed in
these graphs. That work leaves much to be considered for future contributions. In particular,
as the effectiveness of the implementation presented in the aforementioned work relies heavily
on efficiently compressing the diagonal of the adjacency matrix that represents a given graph,
choosing an appropriate set for representing values of that diagonal may become more effective
by using some specialized heuristic. It is therefore important to explore such heuristics for an
even better compression of a given graph. Further, we would like to investigate other reordering
algorithms that could have a positive impact on the approach, but also understand the impact
that the approach can have on graph related tasks such as querying or traversing the graph.

197

Chapter 7. Conclusion and Future Work

198

Bibliography

[Albert and Barabási, 2002] Réka Albert and Albert-László Barabási. Statistical mechanics of
complex networks. Rev. Mod. Phys., 74:47–97, 2002.

[Allen and Koomen, 1983] James F. Allen and Johannes A. G. M. Koomen. Planning Using a
Temporal World Model. In IJCAI, 1983.

[Allen, 1981] James F. Allen. An Interval-Based Representation of Temporal Knowledge. In
IJCAI, 1981.

[Allen, 1983] James F. Allen. Maintaining Knowledge about Temporal Intervals. Commun.
ACM, 26:832–843, 1983.

[Allen, 1991] James F. Allen. Planning as Temporal Reasoning. In KR, 1991.

[Amaneddine and Condotta, 2012] Nouhad Amaneddine and Jean-François Condotta. From
Path-Consistency to Global Consistency in Temporal Qualitative Constraint Networks. In
AIMSA, pages 152–161, 2012.

[Amaneddine and Condotta, 2013] Nouhad Amaneddine and Jean-François Condotta. On the
Minimal Labeling Problem of Temporal and Spatial Qualitative Constraints. In FLAIRS,
2013.

[Amaneddine et al., 2013] Nouhad Amaneddine, Jean-François Condotta, and Michael Sioutis.
Efficient Approach to Solve the Minimal Labeling Problem of Temporal and Spatial Qualitative
Constraints. In IJCAI, 2013.

[Apt and Brand, 2006] Krzysztof R. Apt and Sebastian Brand. Infinite Qualitative Simulations
by Means of Constraint Programming. In CP, 2006.

[Aristotle, 2004] Aristotle. Posterior Analytics. Kessinger Publishing, 2004.

[Baget and Tognetti, 2001] Jean-François Baget and Yannic S. Tognetti. Backtracking Through
Biconnected Components of a Constraint Graph. In IJCAI, 2001.

[Balbiani and Condotta, 2002] Philippe Balbiani and Jean-François Condotta. Computational
Complexity of Propositional Linear Temporal Logics Based on Qualitative Spatial or Temporal
Reasoning. In FroCoS, 2002.

[Balbiani et al., 1998] Philippe Balbiani, Jean-François Condotta, and Luis Fariñas del Cerro.
A Model for Reasoning about Bidemsional Temporal Relations. In KR, 1998.

199

Bibliography

[Balbiani et al., 1999] Philippe Balbiani, Jean-François Condotta, and Luis Fariñas del Cerro.
A Tractable Subclass of the Block Algebra: Constraint Propagation and Preconvex Relations.
In EPIA, 1999.

[Balbiani et al., 2000] Philippe Balbiani, Jean-François Condotta, and Gérard Ligozat. Reason-
ing about Generalized Intervals: Horn Representability and Tractability. In TIME, 2000.

[Balbiani et al., 2002] Philippe Balbiani, Jean-François Condotta, and Luis Fariñas del Cerro.
Tractability Results in the Block Algebra. J. Log. Comput., 12:885–909, 2002.

[Barabasi and Albert, 1999] A. L. Barabasi and R. Albert. Emergence of scaling in random
networks. Science (New York, N.Y.), 286:509–512, 1999.

[Barabasi and Bonabeau, 2003] Albert-Laszio Barabasi and Eric Bonabeau. Scale-Free Net-
works. Scientific American, pages 50–59, 2003.

[Bennett et al., 2002] Brandon Bennett, Anthony G. Cohn, Frank Wolter, and Michael Za-
kharyaschev. Multi-dimensional modal logic as a framework for spatio-temporal reasoning.
Appl. Intell., 17:239–251, 2002.

[Bennett, 1996] Brandon Bennett. Modal Logics for Qualitative Spatial Reasoning. Logic Journal
of IGPL, 4:23–45, 1996.

[Bennett, 1998] Brandon Bennett. Determining Consistency of Topological Relations. Con-
straints, 3:213–225, 1998.

[Bensalem et al., 2007] Saddek Bensalem, Doron A. Peled, Hongyang Qu, Stavros Tripakis, and
Lenore D. Zuck. Test Case Generation for Ultimately Periodic Paths. In Haifa Verification
Conference, 2007.

[Benzer, 1959] Seymour Benzer. On the Topology of the Genetic Fine Structure. Proceedings of
the National Academy of Sciences of the United States of America, 45:1607–1620, 1959.

[Berry et al., 2002] Anne Berry, Jean R. S. Blair, and Pinar Heggernes. Maximum Cardinality
Search for Computing Minimal Triangulations. In WG, 2002.

[Bertello et al., 2016] Matteo Bertello, Nicola Gigante, Angelo Montanari, and Mark Reynolds.
Leviathan: A New LTL Satisfiability Checking Tool Based on a One-Pass Tree-Shaped
Tableau. In IJCAI, 2016.

[Bessière et al., 1996] Christian Bessière, Amar Isli, and Gerard Ligozat. Global Consistency in
Interval Algebra Networks: Tractable Subclasses. In ECAI, 1996.

[Beth, 1955] E.W. Beth. Semantic Entailment and Formal Derivability. Mededeelingen der
Koninklijke Nederlandsche Akademie van Wetenschappen, Afd. Letterkunde. North-Holland,
1955.

[Bhatt et al., 2011] Mehul Bhatt, Hans Guesgen, Stefan Wölfl, and Shyamanta Hazarika. Quali-
tative Spatial and Temporal Reasoning: Emerging Applications, Trends, and Directions. Spa-
tial Cognition & Computation, 11:1–14, 2011.

[Bichot and Siarry, 2011] Charles-Edmond Bichot and Patrick Siarry. Graph Partitioning. ISTE-
Wiley, 2011.

200

[Birkhoff, 1948] Garrett Birkhoff. Lattice Theory, volume 25 of American Mathematical Society
Colloquium Publications. American Mathematical Society, 1948.

[Bliek and Sam-Haroud, 1999] Christian Bliek and Djamila Sam-Haroud. Path consistency on
triangulated constraint graphs. In IJCAI, 1999.

[Bodirsky and Dalmau, 2006] Manuel Bodirsky and Víctor Dalmau. Datalog and Constraint
Satisfaction with Infinite Templates. In STACS, 2006.

[Bodirsky and Dalmau, 2013] Manuel Bodirsky and Víctor Dalmau. Datalog and constraint
satisfaction with infinite templates. J. Comput. Syst. Sci., 79:79–100, 2013.

[Bodirsky and Wölfl, 2011] Manuel Bodirsky and Stefan Wölfl. RCC8 is polynomial on networks
of bounded treewidth. In IJCAI, 2011.

[Bodlaender and Koster, 2010] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth com-
putations I. Upper bounds. Inf. Comput., 208:259–275, 2010.

[Bollobás, 2003] B. Bollobás. Mathematical results on scale-free random graphs. In Handbook of
Graphs and Networks, pages 1–37. Wiley, 2003.

[Boussemart et al., 2004] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar
Sais. Boosting Systematic Search by Weighting Constraints. In ECAI, 2004.

[Bouzy, 2001] Bruno Bouzy. Les concepts spatiaux dans la programmation du go. Revue
d’Intelligence Artificielle, 15:143–172, 2001.

[Brand, 2004] Sebastian Brand. Relation Variables in Qualitative Spatial Reasoning. In KI,
2004.

[Broxvall, 2002] Mathias Broxvall. Constraint Satisfaction on Infinite Domains: Composing
Domains and Decomposing Constraints. In KR, 2002.

[Burrieza and Ojeda-Aciego, 2005] Alfredo Burrieza and Manuel Ojeda-Aciego. A Multimodal
Logic Approach to Order of Magnitude Qualitative Reasoning with Comparability and Negli-
gibility Relations. Fundam. Inform., 68:21–46, 2005.

[Burrieza et al., 2009] Alfredo Burrieza, Emilio Muñoz-Velasco, and Manuel Ojeda-Aciego.
Closeness and Distance Relations in Order of Magnitude Qualitative Reasoning via PDL.
In CAEPIA, 2009.

[Burrieza et al., 2011] Alfredo Burrieza, Emilio Muñoz-Velasco, and Manuel Ojeda-Aciego. A
PDL Approach for Qualitative Velocity. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 19(1):11–26, 2011.

[Cano and Moral, 1994] Andrés Cano and Serafín Moral. Heuristic Algorithms for the Triangu-
lation of Graphs. In IPMU, 1994.

[Chagrov and Zakharyaschev, 1997] Alexander V. Chagrov and Michael Zakharyaschev. Modal
Logic, volume 35 of Oxford logic guides. Oxford University Press, 1997.

[Challita, 2012] Khalil Challita. A semi-dynamical approach for solving qualitative spatial con-
straint satisfaction problems. Theor. Comput. Sci., 440-441:29–38, 2012.

201

Bibliography

[Chandra and Pujari, 2005] Priti Chandra and Arun K. Pujari. Minimality and Convexity Prop-
erties in Spatial CSPs. In ICTAI, 2005.

[Chen and Zaniolo, 1998] Cindy Xinmin Chen and Carlo Zaniolo. Universal Temporal Data
Languages. In DDLP, 1998.

[Chmeiss and Condotta, 2011] Assef Chmeiss and Jean-Francois Condotta. Consistency of Tri-
angulated Temporal Qualitative Constraint Networks. In ICTAI, 2011.

[Choromański et al., 2013] Krzysztof Choromański, Michal Matuszak, and Jacek Miekisz. Scale-
free graph with preferential attachment and evolving internal vertex structure. J. Stat. Phys.,
151:1175–1183, 2013.

[Clarke, 1981] Bowman L Clarke. A calculus of individuals based on “connection”. NDJFL,
22:204–218, 1981.

[Clementini and Di Felice, 1995] Eliseo Clementini and Paolino Di Felice. A comparison of meth-
ods for representing topological relationships. IJISA, 3:149–178, 1995.

[Clementini et al., 1993] Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. A Small
Set of Formal Topological Relationships Suitable for End-User Interaction. In SSD, 1993.

[Clementini et al., 1994] Eliseo Clementini, Jayant Sharma, and Max J. Egenhofer. Modelling
topological spatial relations: Strategies for query processing. Computers & Graphics, 18:815–
822, 1994.

[Cohn et al., 1997] Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark
Gotts. Qualitative Spatial Representation and Reasoning with the Region Connection Calcu-
lus. GeoInformatica, 1:275–316, 1997.

[Cohn, 1997] Anthony G. Cohn. Qualitative Spatial Representation and Reasoning Techniques.
In KI, 1997.

[Condotta and D’Almeida, 2011] Jean-François Condotta and Dominique D’Almeida. Consis-
tency of Qualitative Constraint Networks from Tree Decompositions. In TIME, 2011.

[Condotta and Lecoutre, 2010] Jean-François Condotta and Christophe Lecoutre. A Class of
df-Consistencies for Qualitative Constraint Networks. In KR, 2010.

[Condotta et al., 2005] Jean-François Condotta, Gérard Ligozat, and Stavros Tripakis. Ulti-
mately Periodic Qualitative Constraint Networks for Spatial and Temporal Reasoning. In
ICTAI, 2005.

[Condotta et al., 2006a] Jean François Condotta, Gérard Ligozat, and Mahmood Saade. An
empirical study of algorithms for qualitative temporal or spatial networks. In ECAI Workshop
on Spatial and Temporal Reasoning, 2006.

[Condotta et al., 2006b] Jean-Francois Condotta, Dominique Dalmeida, Christophe Lecoutre,
and Lahkdar Sais. From Qualitative to Discrete Constraint Networks. In KI Workshop on
Qualitative Constraint Calculi, 2006.

[Condotta et al., 2006c] Jean-François Condotta, Gérard Ligozat, Mahmoud Saade, and Stavros
Tripakis. Ultimately Periodic Simple Temporal Problems (UPSTPs). In TIME, 2006.

202

[Condotta et al., 2007] Jean-François Condotta, Gérard Ligozat, and Mahmoud Saade. Eligible
and Frozen Constraints for Solving Temporal Qualitative Constraint Networks. In CP, 2007.

[Condotta et al., 2008] Jean-François Condotta, Souhila Kaci, and Nicolas Schwind. A Frame-
work for Merging Qualitative Constraints Networks. In FLAIRS, 2008.

[Condotta et al., 2009] Jean-François Condotta, Souhila Kaci, Pierre Marquis, and Nicolas
Schwind. Merging Qualitative Constraint Networks in a Piecewise Fashion. In ICTAI, 2009.

[Condotta et al., 2010] Jean-François Condotta, Souhila Kaci, Pierre Marquis, and Nicolas
Schwind. A syntactical approach to qualitative constraint networks merging. In Proceedings
of LPAR-17, pages 233–247, 2010.

[Condotta et al., 2015] Jean-François Condotta, Ali Mensi, Issam Nouaouri, Michael Sioutis, and
Lamjed Ben Said. A Practical Approach for Maximizing Satisfiability in Qualitative Spatial
and Temporal Constraint Networks. In ICTAI, 2015.

[Condotta et al., 2016] Jean-François Condotta, Issam Nouaouri, and Michael Sioutis. A SAT
Approach for Maximizing Satisfiability in Qualitative Spatial and Temporal Constraint Net-
works. In KR, 2016.

[Condotta, 2004] Jean-François Condotta. A General Qualitative Framework for Temporal and
Spatial Reasoning. Constraints, 9:99–121, 2004.

[Creignou et al., 2001] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems. Monographs on Discrete Mathematics and Appli-
cations. Society for Industrial and Applied Mathematics, 2001.

[Cui et al., 1992] Zhan Cui, Anthony G. Cohn, and David A. Randell. Qualitative Simulation
Based on a Logical Formalism of Space and Time. In AAAI, 1992.

[Danzer et al., 1963] Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly’s Theorem and
Its Relatives, volume 7 of Proceedings of symposia in pure mathematics: Convexity. American
Mathematical Society, 1963.

[de Leng and Heintz, 2016] Daniel de Leng and Fredrik Heintz. Qualitative Spatio-Temporal
Stream Reasoning with Unobservable Intertemporal Spatial Relations Using Landmarks. In
AAAI, 2016.

[Debruyne and Bessière, 1997] Romuald Debruyne and Christian Bessière. Some Practicable
Filtering Techniques for the Constraint Satisfaction Problem. In IJCAI, 1997.

[Dechter and Pearl, 1989] Rina Dechter and Judea Pearl. Tree Clustering for Constraint Net-
works. AIJ, 38:353–366, 1989.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal Constraint Networks.
AIJ, 49:61–95, 1991.

[Dechter, 2003] Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[Del Genio et al., 2011] Charo I. Del Genio, Thilo Gross, and Kevin E. Bassler. All Scale-Free
Networks Are Sparse. Phys. Rev. Lett., 107:178701, 2011.

203

Bibliography

[Demri and D’Souza, 2002] Stéphane Demri and Deepak D’Souza. An Automata-Theoretic Ap-
proach to Constraint LTL. In FSTTCS, 2002.

[Demri and D’Souza, 2007] Stéphane Demri and Deepak D’Souza. An automata-theoretic ap-
proach to constraint LTL. Inf. Comput., 205:380–415, 2007.

[Deville et al., 1999] Yves Deville, Olivier Barette, and Pascal van Hentenryck. Constraint Sat-
isfaction over Connected Row Convex Constraints. AIJ, 109:243–271, 1999.

[Diestel, 2012] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012.

[Dorn, 1995] Jürgen Dorn. Dependable Reactive Event-Oriented Planning. Data Knowl. Eng.,
16:27–49, 1995.

[Dorogovtsev et al., 2002] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Pseudofractal
scale-free web. Physical Review E, 65:066122+, 2002.

[Duckham et al., 2014] Matt Duckham, Sanjiang Li, Weiming Liu, and Zhiguo Long. On Re-
dundant Topological Constraints. In KR, 2014.

[Dushnik and Miller, 1941] Ben Dushnik and E. W. Miller. Partially Ordered Sets. American
Journal of Mathematics, 63:pp. 600–610, 1941.

[Dylla et al., 2013] Frank Dylla, Till Mossakowski, Thomas Schneider, and Diedrich Wolter. Al-
gebraic Properties of Qualitative Spatio-temporal Calculi. In COSIT, 2013.

[Egenhofer and Herring, 1991] Max J. Egenhofer and John Herring. Categorizing Binary Topo-
logical Relationships Between Regions, Lines, and Points in Geographic Databases. Department
of Surveying Engineering, University of Maine, 1991.

[Egenhofer and Sharma, 1993] Max J. Egenhofer and Jayant Sharma. Assessing the consistency
of complete and incomplete topological information. Geographical Systems, 1:47–68, 1993.

[Egenhofer et al., 1994] Max J. Egenhofer, Eliseo Clementini, and Paolino Di Felice. Topological
Relations Between Regions with Holes. IJGIS, 8:129–142, 1994.

[Egenhofer, 2002] Max J. Egenhofer. Toward the semantic geospatial web. In ACM-GIS, 2002.

[Egenhofer, 2010] Max J. Egenhofer. The Family of Conceptual Neighborhood Graphs for
Region-Region Relations. In GIScience, 2010.

[Frank, 1991] Andrew U. Frank. Qualitative Spatial Reasoning with Cardinal Directions. In
ÖGAI, 1991.

[Frank, 1992] Andrew U. Frank. Qualitative spatial reasoning about distances and directions in
geographic space. JVLC, 3:343–371, 1992.

[Freksa, 1991] C. Freksa. Conceptual neighborhood and its role in temporal and spatial reason-
ing. Decision Support Systems and Qualitative Reasoning, pages 181–187, 1991.

[Freksa, 1992] Christian Freksa. Using orientation information for qualitative spatial reasoning.
In GIS - From Space to Territory: Theories and Methods of Spatio-Temporal Reasoning, 1992.

204

[Fulkerson and Gross, 1965] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval
graphs. Pacific J. Math., 15:835–855, 1965.

[Gabelaia et al., 2003] David Gabelaia, Roman Kontchakov, Agi Kurucz, Frank Wolter, and
Michael Zakharyaschev. On the Computational Complexity of Spatio-Temporal Logics. In
FLAIRS, 2003.

[Gabelaia et al., 2005] David Gabelaia, Roman Kontchakov, Ágnes Kurucz, Frank Wolter, and
Michael Zakharyaschev. Combining Spatial and Temporal Logics: Expressiveness vs. Com-
plexity. JAIR, pages 167–243, 2005.

[Gaintzarain et al., 2008] Joxe Gaintzarain, Montserrat Hermo, Paqui Lucio, and Marisa
Navarro. Systematic Semantic Tableaux for PLTL. Electr. Notes Theor. Comput. Sci., 206:59–
73, 2008.

[Galton, 1997] Antony Galton. Continuous Change in Spatial Region. In COSIT, 1997.

[Galton, 2000] Antony Galton. Continuous Motion in Discrete Space. In KR, 2000.

[Galton, 2001] Antony Galton. Dominance Diagrams: A Tool for Qualitative Reasoning About
Continuous Systems. Fundam. Inform., 46:55–70, 2001.

[Gantner et al., 2008] Zeno Gantner, Matthias Westphal, and Stefan Wölfl. GQR-A Fast Rea-
soner for Binary Qualitative Constraint Calculi. In AAAI Workshop on Spatial and Temporal
Reasoning, 2008.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[Garey et al., 1976] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some Simplified
NP-Complete Graph Problems. Theor. Comput. Sci., 1:237–267, 1976.

[Gerevini and Nebel, 2002] Alfonso Gerevini and Bernhard Nebel. Qualitative Spatio-Temporal
Reasoning with RCC-8 and Allen’s Interval Calculus: Computational Complexity. In ECAI,
pages 312–316, 2002.

[Gerevini and Renz, 2002] Alfonso Gerevini and Jochen Renz. Combining topological and size
information for spatial reasoning. AIJ, 137:1–42, 2002.

[Gerevini and Saetti, 2007] Alfonso Gerevini and Alessandro Saetti. Efficient Computation of
Minimal Point Algebra Constraints by Metagraph Closure. In CP, 2007.

[Gerevini and Saetti, 2011] Alfonso Gerevini and Alessandro Saetti. Computing the minimal
relations in point-based qualitative temporal reasoning through metagraph closure. AIJ,
175:556–585, 2011.

[Gerevini and Schubert, 1995] Alfonso Gerevini and Lenhart K. Schubert. On Computing the
Minimal Labels in Time Point Algebra Networks. Computational Intelligence, 11:443–448,
1995.

[Gerevini, 2005] Alfonso Gerevini. Incremental qualitative temporal reasoning: Algorithms for
the Point Algebra and the ORD-Horn class. AIJ, 166:37–80, 2005.

205

Bibliography

[Girle, 2000] R. Girle. Modal Logics and Philosophy. McGill-Queen’s University Press, 2000.

[Golinska-Pilarek and Muñoz-Velasco, 2012] Joanna Golinska-Pilarek and Emilio Muñoz-
Velasco. Reasoning with Qualitative Velocity: Towards a Hybrid Approach. In HAIS, 2012.

[Golumbic and Shamir, 1993] Martin Charles Golumbic and Ron Shamir. Complexity and Al-
gorithms for Reasoning about Time: A Graph-Theoretic Approach. J. ACM, 40:1108–1133,
1993.

[Golumbic, 2004] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier
Science, 2nd edition, 2004.

[Gooday and Galton, 1997] John Gooday and Antony Galton. The Transition Calculus: a high-
level formalism for reasoning about action and change. J. Exp. Theor. Artif. Intell., 9:51–66,
1997.

[Goodwin et al., 2008] John Goodwin, Catherine Dolbear, and Glen Hart. Geographical Linked
Data: The Administrative Geography of Great Britain on the Semantic Web. TGIS, 12:19–30,
2008.

[Goranko and Passy, 1992] Valentin Goranko and Solomon Passy. Using the Universal Modality:
Gains and Questions. J. Log. Comput., 2:5–30, 1992.

[Gottlob et al., 2000] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of
structural CSP decomposition methods. AIJ, 124:243–282, 2000.

[Gottlob, 2012] Georg Gottlob. On minimal constraint networks. AIJ, 191-192:42–60, 2012.

[Gotts, 1994] Nicholas Mark Gotts. How Far Can We ‘C’? Defining a ‘Doughnut’ Using Con-
nection Alone. In KR, 1994.

[Gotts, 1996] Nicholas Mark Gotts. Topology From A Single Primitive Relation: Defining Topo-
logical Properties and Relations In Terms Of Connection. Technical report, School of Computer
Studies, University of Leeds, 1996.

[Grigni et al., 1995] Michelangelo Grigni, Dimitris Papadias, and Christos H. Papadimitriou.
Topological Inference. In IJCAI, 1995.

[Guesgen, 1989] Hans Werner Guesgen. Spatial Reasoning Based on Allen’s Temporal Logic.
Technical report, International Computer Science Institute, 1989.

[Halin, 1976] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8:171–186, 1976.

[Harel et al., 2000] David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press,
Cambridge, MA, USA, 2000.

[Hazarika, 2012] S.M. Hazarika. Qualitative Spatio-Temporal Representation and Reasoning:
Trends and Future Directions. Igi Global, 2012.

[Heggernes et al., 2001] P. Heggernes, Stanley C. Eisenstat, Gary Kumfert, and Alex Pothen.
The computational complexity of the minimum degree algorithm. Technical report, ICASE,
NASA Langley Research Center, 2001.

206

[Hein et al., 2006] Oliver Hein, Michael Schwind, and Wolfgang König. Scale-Free Networks -
The Impact of Fat Tailed Degree Distribution on Diffusion and Communication Processes.
Wirtschaftsinformatik, 47:21–28, 2006.

[Heintz and de Leng, 2014] Fredrik Heintz and Daniel de Leng. Spatio-Temporal Stream Rea-
soning with Incomplete Spatial Information. In ECAI, 2014.

[Hernández, 1994] Daniel Hernández. Qualitative Representation of Spatial Knowledge, volume
804 of Lecture Notes in Computer Science. Springer, 1994.

[Hodges, 1997] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[Hogge, 1987] John C. Hogge. TPLAN: a temporal interval-based planner with novel exten-
sions. Technical report, University of Illinois at Urbana-Champaign. Department of Computer
Science UIUCDCS-R-87-1367., 1987.

[Huang et al., 2013] Jinbo Huang, Jason Jingshi Li, and Jochen Renz. Decomposition and
tractability in qualitative spatial and temporal reasoning. AIJ, 195:140–164, 2013.

[Huang, 2012] Jinbo Huang. Compactness and its implications for qualitative spatial and tem-
poral reasoning. In KR, 2012.

[Huth and Ryan, 2004] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and Reasoning About Systems. Cambridge University Press, 2004.

[Isli and Cohn, 2000] Amar Isli and Anthony G. Cohn. A new approach to cyclic ordering of 2D
orientations using ternary relation algebras. AIJ, 122:137–187, 2000.

[Jégou and Terrioux, 2003] Philippe Jégou and Cyril Terrioux. Hybrid backtracking bounded by
tree-decomposition of constraint networks. AIJ, 146:43–75, 2003.

[Jégou and Terrioux, 2014a] Philippe Jégou and Cyril Terrioux. Bag-Connected Tree-Width: A
New Parameter for Graph Decomposition. In ISAIM, 2014.

[Jégou and Terrioux, 2014b] Philippe Jégou and Cyril Terrioux. Tree-Decompositions with Con-
nected Clusters for Solving Constraint Networks. In CP, 2014.

[Jégou et al., 2005] Philippe Jégou, Samba Ndiaye, and Cyril Terrioux. Computing and Exploit-
ing Tree-Decompositions for Solving Constraint Networks. In CP, 2005.

[Jégou et al., 2006] Philippe Jégou, Samba Ndiaye, and Cyril Terrioux. An Extension of Com-
plexity Bounds and Dynamic Heuristics for Tree-Decompositions of CSP. In CP, 2006.

[Jégou et al., 2007] Philippe Jégou, Samba Ndiaye, and Cyril Terrioux. Dynamic Heuristics for
Backtrack Search on Tree-Decomposition of CSPs. In IJCAI, 2007.

[Jónsson and Tarski, 1951] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators.
I. Amer. J. Math., 73:891–939, 1951.

[Jónsson and Tarski, 1952] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators.
II. Amer. J. Math., 74:127–162, 1952.

[Kann, 1995] Viggo Kann. Strong Lower Bounds on the Approximability of some NPO PB-
Complete Maximization Problems. In MFCS, 1995.

207

Bibliography

[Katsirelos and Bacchus, 2005] George Katsirelos and Fahiem Bacchus. Generalized NoGoods
in CSPs. In AAAI, 2005.

[Knuth, 1973] Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms, 2nd Edition. Addison-Wesley, 1973.

[Kondrak and van Beek, 1995] Grzegorz Kondrak and Peter van Beek. A Theoretical Evaluation
of Selected Backtracking Algorithms. In IJCAI, 1995.

[Kondrak and van Beek, 1997] Grzegorz Kondrak and Peter van Beek. A Theoretical Evaluation
of Selected Backtracking Algorithms. AIJ, 89:365–387, 1997.

[Kontchakov et al., 2007] Roman Kontchakov, Agi Kurucz, Frank Wolter, and Michael Za-
kharyaschev. Spatial Logic + Temporal Logic = ? In Handbook of Spatial Logics, pages
497–564. 2007.

[Koubarakis et al., 2011] Manolis Koubarakis, Kostis Kyzirakos, Manos Karpathiotakis, Char-
alampos Nikolaou, Michael Sioutis, Stavros Vassos, Dimitrios Michail, Themistoklis Herekakis,
Charalampos Kontoes, and Ioannis Papoutsis. Challenges for Qualitative Spatial Reasoning
in Linked Geospatial Data. In BASR@IJCAI, 2011.

[Koubarakis et al., 2012] Manolis Koubarakis, Manos Karpathiotakis, Kostis Kyzirakos, Char-
alampos Nikolaou, and Michael Sioutis. Data Models and Query Languages for Linked Geospa-
tial Data. In Reasoning Web, 2012.

[Krentel, 1988] Mark W. Krentel. The Complexity of Optimization Problems. J. Comput. Syst.
Sci., 36:490–509, 1988.

[Krokhin et al., 2001] Andrei A. Krokhin, Peter Jeavons, and Peter Jonsson. A Complete Clas-
sification of Complexity in Allens Algebra in the Presence of a Non-Trivial Basic Relation. In
IJCAI, 2001.

[Krokhin et al., 2003] Andrei A. Krokhin, Peter Jeavons, and Peter Jonsson. Reasoning about
temporal relations: The tractable subalgebras of Allen’s interval algebra. J. ACM, 50, 2003.

[Kuipers, 1985] Benjamin Kuipers. The Limits of Qualitative Simulation. In IJCAI, 1985.

[Kuipers, 1986] Benjamin Kuipers. Qualitative Simulation. AIJ, 29:289–338, 1986.

[Kuipers, 1993] Benjamin Kuipers. Qualitative Simulation: Then and Now. AIJ, 59(1-2), 1993.

[Kuipers, 1994] Benjamin Kuipers. Qualitative reasoning - modeling and simulation with incom-
plete knowledge. MIT Press, 1994.

[Ladkin and Maddux, 1994] Peter B. Ladkin and Roger D. Maddux. On binary constraint prob-
lems. JACM, 41:435–469, 1994.

[Ladkin and Reinefeld, 1992] Peter B. Ladkin and Alexander Reinefeld. Effective Solution of
Qualitative Interval Constraint Problems. AIJ, 57:105–124, 1992.

[Ladkin and Reinefeld, 1997] Peter B. Ladkin and Alexander Reinefeld. Fast Algebraic Methods
for Interval Constraint Problems. AMAI, 19:383–411, 1997.

208

[Ladkin, 1986] Peter B. Ladkin. Time Representation: A Taxonomy of Internal Relations. In
AAAI, 1986.

[Ladner, 1977] Richard E. Ladner. The Computational Complexity of Provability in Systems of
Modal Propositional Logic. SIAM J. Comput., 6:467–480, 1977.

[Lattner et al., 2005] A. D. Lattner, I. J. Timm, M. Lorenz, and O. Herzog. Knowledge-based
risk assessment for intelligent vehicles. In International Conference on Integration of Knowl-
edge Intensive Multi-Agent Systems, 2005.

[Lecoutre et al., 2006] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal.
Last Conflict Based Reasoning. In ECAI, 2006.

[Lecoutre et al., 2007] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal.
Recording and Minimizing Nogoods from Restarts. JSAT, 1:147–167, 2007.

[Lecoutre et al., 2009] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal.
Reasoning from last conflict(s) in constraint programming. AIJ, 173:1592–1614, 2009.

[Lee et al., 2016] Jae Hee Lee, Sanjiang Li, Zhiguo Long, and Michael Sioutis. On Redundancy
in Simple Temporal Networks. In ECAI, 2016.

[Lewis and Langford, 1932] C.I. Lewis and C.H. Langford. Symbolic logic. Century philosophy
series. The Century co., 1932.

[Li and Wang, 2006] Sanjiang Li and Huaiqing Wang. RCC8 binary constraint network can be
consistently extended. AIJ, 170:1–18, 2006.

[Li et al., 2009] Jason Jingshi Li, Jinbo Huang, and Jochen Renz. A divide-and-conquer ap-
proach for solving interval algebra networks. In IJCAI, 2009.

[Li et al., 2013] Sanjiang Li, Weiming Liu, and Sheng-sheng Wang. Qualitative constraint satis-
faction problems: An extended framework with landmarks. Artif. Intell., 201:32–58, 2013.

[Li et al., 2015a] Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan Both. On
redundant topological constraints. AIJ, 225:51–76, 2015. In press.

[Li et al., 2015b] Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan Both. On
redundant topological constraints. AIJ, 225:51–76, 2015.

[Li, 2006] Sanjiang Li. On Topological Consistency and Realization. Constraints, 11:31–51, 2006.

[Liakos et al., 2014a] Panagiotis Liakos, Katia Papakonstantinopoulou, and Michael Sioutis. On
the Effect of Locality in Compressing Social Networks. In ECIR, 2014.

[Liakos et al., 2014b] Panagiotis Liakos, Katia Papakonstantinopoulou, and Michael Sioutis.
Pushing the Envelope in Graph Compression. In CIKM, 2014.

[Ligozat and Renz, 2004] Gérard Ligozat and Jochen Renz. What Is a Qualitative Calculus? A
General Framework. In PRICAI, 2004.

[Ligozat, 1991] Gerard Ligozat. On Generalized Interval Calculi. In AAAI, 1991.

[Ligozat, 1994] Gérard Ligozat. Tractable relations in temporal reasoning: pre-convex relations.
In ECAI Workshop on Spatial and Temporal Reasoning, 1994.

209

Bibliography

[Ligozat, 1996] Gerard Ligozat. A New Proof of Tractability for ORD-Horn Relations. In
AAAI/IAAI, 1996.

[Ligozat, 1998] Gerard Ligozat. Reasoning about cardinal directions. JVLC, 9:23–44, 1998.

[Ligozat, 2011] Gérard Ligozat. Qualitative Spatial and Temporal Reasoning. Iste Series. Wiley,
2011.

[Little and Ghafoor, 1993] Thomas D. C. Little and Arif Ghafoor. Interval-Based Conceptual
Models for Time-Dependent Multimedia Data. IEEE Trans. Knowl. Data Eng., 5:551–563,
1993.

[Liu and Li, 2012] Weiming Liu and Sanjiang Li. Solving Minimal Constraint Networks in Qual-
itative Spatial and Temporal Reasoning. In CP, 2012.

[Liu et al., 2011] Weiming Liu, Sheng-sheng Wang, Sanjiang Li, and Dayou Liu. Solving Quali-
tative Constraints Involving Landmarks. In CP, 2011.

[Long and Li, 2015] Zhiguo Long and Sanjiang Li. On Distributive Subalgebras of Qualitative
Spatial and Temporal Calculi. In COSIT, 2015.

[Long et al., 2016] Zhiguo Long, Michael Sioutis, and Sanjiang Li. Efficient Path Consistency
Algorithm for Large Qualitative Constraint Networks. In IJCAI, 2016.

[Lu et al., 2006] Ruopeng Lu, Shazia Wasim Sadiq, Vineet Padmanabhan, and Guido Governa-
tori. Using a temporal constraint network for business process execution. In ADC, 2006.

[Lutz and Milicic, 2007] C. Lutz and M. Milicic. A Tableau Algorithm for DLs with Concrete
Domains and GCIs. JAR, 38:227–259, 2007.

[Mackworth and Freuder, 1985] Alan K. Mackworth and Eugene C. Freuder. The Complexity
of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems.
AIJ, 25:65–74, 1985.

[Mackworth, 1977] Alan Mackworth. Consistency in Networks of Relations. AIJ, 8:99–118, 1977.

[McKinsey and Tarski, 1948] J. C. C. McKinsey and Alfred Tarski. Some Theorems About the
Sentential Calculi of Lewis and Heyting. J. Symb. Log., 13:1–15, 1948.

[Mitra, 2002] Debasis Mitra. A Class of Star-Algebras for Point-Based Qualitative Reasoning in
Two-Dimensional Space. In FLAIRS, 2002.

[Mitra, 2004] Debasis Mitra. Modeling and Reasoning with Star Calculus. In ISAIM, 2004.

[Montanari, 1974] Ugo Montanari. Networks of constraints: Fundamental properties and appli-
cations to picture processing. Inf. Sci., 7:95–132, 1974.

[Moratz et al., 2005] Reinhard Moratz, Frank Dylla, and Lutz Frommberger. A relative orien-
tation algebra with adjustable granularity. In IJCAI Workshop on Agents in Real-Time and
Dynamic Environments, 2005.

[Moratz, 2006] Reinhard Moratz. Representing Relative Direction as a Binary Relation of Ori-
ented Points. In ECAI, 2006.

210

[Mossakowski and Moratz, 2012] Till Mossakowski and Reinhard Moratz. Qualitative reasoning
about relative direction of oriented points. AIJ, 180-181:34–45, 2012.

[Muller, 1998] Philippe Muller. A Qualitative Theory of Motion Based on Spatio-Temporal
Primitives. In KR, 1998.

[Muller, 2002] Philippe Muller. Topological Spatio-Temporal Reasoning and Representation.
Computational Intelligence, 18:420–450, 2002.

[Munkres, 2000] J.R. Munkres. Topology. Prentice Hall, Incorporated, 2000.

[Muñoz-Velasco et al., 2014] Emilio Muñoz-Velasco, Alfredo Burrieza, and Manuel Ojeda-
Aciego. A logic framework for reasoning with movement based on fuzzy qualitative repre-
sentation. Fuzzy Sets and Systems, 242:114–131, 2014.

[Navarrete et al., 2013] Isabel Navarrete, Antonio Morales, Guido Sciavicco, and M. Anto-
nia Cárdenas Viedma. Spatial reasoning with rectangular cardinal relations - The convex
tractable subalgebra. AMAI, 67:31–70, 2013.

[Nebel and Bürckert, 1995] Bernhard Nebel and Hans-Jürgen Bürckert. Reasoning about Tem-
poral Relations: A Maximal Tractable Subclass of Allen’s Interval Algebra. JACM, 42:43–66,
1995.

[Nebel, 1995] Bernhard Nebel. Computational Properties of Qualitative Spatial Reasoning: First
Results. In KI, 1995.

[Nebel, 1996] Bernhard Nebel. Solving Hard Qualitative Temporal Reasoning Problems: Evalu-
ating the Efficiency of Using the ORD-Horn Class. In ECAI, 1996.

[Nebel, 1997] Bernhard Nebel. Solving Hard Qualitative Temporal Reasoning Problems: Evalu-
ating the Efficiency of Using the ORD-Horn Class. Constraints, 1:175–190, 1997.

[Nikolaou and Koubarakis, 2013] Charalampos Nikolaou and Manolis Koubarakis. Querying In-
complete Geospatial Information in RDF. In SSTD, 2013.

[Nikolaou and Koubarakis, 2014] Charalampos Nikolaou and Manolis Koubarakis. Fast Consis-
tency Checking of Very Large Real-World RCC-8 Constraint Networks Using Graph Parti-
tioning. In AAAI, 2014.

[Open Geospatial Consortium, 2012] Open Geospatial Consortium. OGC GeoSPARQL - A ge-
ographic query language for RDF data. OGC R© Implementation Standard, 2012.

[Parter, 1961] Seymour Parter. The use of linear graphs in Gauss elimination. SIAM review,
3:119–130, 1961.

[Pelavin and Allen, 1987] Richard N. Pelavin and James F. Allen. A Model for Concurrent
Actions Having Temporal Extent. In AAAI, 1987.

[Petrovic and Burke, 2004] Sanja Petrovic and Edmund K. Burke. University Timetabling. In
Handbook of Scheduling: Algorithms, Models, and Performance Analysis. 2004.

[Pham et al., 2008] Duc Nghia Pham, John Thornton, and Abdul Sattar. Modelling and solving
temporal reasoning as propositional satisfiability. Artif. Intell., 172:1752–1782, 2008.

211

Bibliography

[Planken et al., 2010] Léon Planken, Mathijs de Weerdt, and Neil Yorke-Smith. Incrementally
Solving STNs by Enforcing Partial Path Consistency. In ICAPS, 2010.

[Pnueli, 1977] Amir Pnueli. The Temporal Logic of Programs. In FOCS, 1977.

[Preparata and Shamos, 1985] Franco P. Preparata and Michael Ian Shamos. Computational
Geometry - An Introduction. Springer, 1985.

[Ragni and Wölfl, 2005] Marco Ragni and Stefan Wölfl. Temporalizing Spatial Calculi: On
Generalized Neighborhood Graphs. In KI, 2005.

[Ragni and Wölfl, 2006] Marco Ragni and Stefan Wölfl. Temporalizing Cardinal Directions:
From Constraint Satisfaction to Planning. In KR, 2006.

[Randell et al., 1992] David A. Randell, Zhan Cui, and Anthony Cohn. A Spatial Logic Based
on Regions and Connection. In KR, 1992.

[Randell et al., 2013] David A. Randell, Gabriel Landini, and Antony Galton. Discrete
Mereotopology for Spatial Reasoning in Automated Histological Image Analysis. TPAMI,
35:568–581, 2013.

[Renz and Ligozat, 2005] Jochen Renz and Gérard Ligozat. Weak Composition for Qualitative
Spatial and Temporal Reasoning. In CP, 2005.

[Renz and Mitra, 2004] Jochen Renz and Debasis Mitra. Qualitative Direction Calculi with
Arbitrary Granularity. In PRICAI, 2004.

[Renz and Nebel, 1999] Jochen Renz and Bernhard Nebel. On the Complexity of Qualitative
Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus. AIJ,
108:69–123, 1999.

[Renz and Nebel, 2001] Jochen Renz and Bernhard Nebel. Efficient Methods for Qualitative
Spatial Reasoning. JAIR, 15:289–318, 2001.

[Renz and Nebel, 2007] Jochen Renz and Bernhard Nebel. Qualitative Spatial Reasoning Using
Constraint Calculi. In Handbook of Spatial Logics, pages 161–215. 2007.

[Renz, 1999] Jochen Renz. Maximal Tractable Fragments of the Region Connection Calculus:
A Complete Analysis. In IJCAI, 1999.

[Renz, 2002a] Jochen Renz. A Canonical Model of the Region Connection Calculus. JANCL,
12:469–494, 2002.

[Renz, 2002b] Jochen Renz. Qualitative Spatial Reasoning with Topological Information.
Springer-Verlag, 2002.

[Renz, 2007] Jochen Renz. Qualitative Spatial and Temporal Reasoning: Efficient Algorithms
for Everyone. In IJCAI, 2007.

[Röhrig, 1993] Ralf Röhrig. CYCORD: a theory of qualitative spatial reasoning. Labor für Kün-
stliche Intelligenz Hamburg: LKI-M. 1993.

[Röhrig, 1994] Ralf Röhrig. A theory for qualitative spatial reasoning based on order relations.
In AAAI, 1994.

212

[Rose, 1972] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. InGraph Theory and Computing, pages 183–217. Academic
Press, 1972.

[Rosenkrantz et al., 1977] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis
II. An Analysis of Several Heuristics for the Traveling Salesman Problem. SIAM J. Comput.,
6:563–581, 1977.

[Russell and Norvig, 2010] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach (3. internat. ed.). Pearson Education, 2010.

[Saade, 2008] Mahmoud Saade. Étude du raisonnement temporel basé sur la résolution de con-
traintes. PhD thesis, Université d’Artois, 2008.

[Salhi and Sioutis, 2015] Yakoub Salhi and Michael Sioutis. A Resolution Method for Modal
Logic S5. In GCAI, pages 252–262, 2015.

[Santos and Moreira, 2009] Maribel Yasmina Santos and Adriano Moreira. Conceptual neigh-
borhood graphs for topological spatial relations. In WCE, 2009.

[Schlieder, 1993] Christoph Schlieder. Representing visible locations for qualitative navigation.
In Qualitative Reasoning and Decision Technologies, 1993.

[Schlieder, 1995] Christoph Schlieder. Reasoning About Ordering. In COSIT, 1995.

[Schlieder, 1996] Christoph Schlieder. Qualitative Shape Representation. In GISDATA Specialist
Meeting on Geographical Objects with Undetermined Boundaries, 1996.

[Schrijver, 1986] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, Inc., 1986.

[Sioutis and Condotta, 2014a] Michael Sioutis and Jean-François Condotta. Incrementally
Building Partially Path Consistent Qualitative Constraint Networks. In AIMSA, 2014.

[Sioutis and Condotta, 2014b] Michael Sioutis and Jean-Franćois Condotta. Tackling Large
Qualitative Spatial Networks of Scale-Free-Like Structure. In SETN, 2014.

[Sioutis and Condotta, 2014c] Michael Sioutis and Jean-François Condotta. Vertex Incremental
Path Consistency for Qualitative Constraint Networks. In SETN, 2014.

[Sioutis and Koubarakis, 2012] Michael Sioutis and Manolis Koubarakis. Consistency of Chordal
RCC-8 Networks. In ICTAI, 2012.

[Sioutis et al., 2014] Michael Sioutis, Jean-François Condotta, Yakoub Salhi, and Bertrand
Mazure. A Qualitative Spatio-Temporal Framework Based on Point Algebra. In AIMSA,
2014.

[Sioutis et al., 2015a] Michael Sioutis, Jean-François Condotta, Yakoub Salhi, and Bertrand
Mazure. A Tableau Method for Generalized Qualitative Spatio-Temporal Reasoning. In
STeDy@IJCAI, 2015.

[Sioutis et al., 2015b] Michael Sioutis, Jean-François Condotta, Yakoub Salhi, and Bertrand
Mazure. Generalized Qualitative Spatio-Temporal Reasoning: Complexity and Tableau
Method. In TABLEAUX, 2015.

213

Bibliography

[Sioutis et al., 2015c] Michael Sioutis, Jean-François Condotta, Yakoub Salhi, and Bertrand
Mazure. The Implication of Patchwork and Compactness in Qualitative Spatio-Temporal
Reasoning. In STeDy@IJCAI, 2015.

[Sioutis et al., 2015d] Michael Sioutis, Jean-François Condotta, Yakoub Salhi, Bertrand Mazure,
and David A. Randell. On Ordering Spatio-Temporal Sequences to meet Transition Con-
straints. In STeDy@IJCAI, 2015.

[Sioutis et al., 2015e] Michael Sioutis, Jean-François Condotta, Yakoub Salhi, Bertrand Mazure,
and David A. Randell. Ordering Spatio-Temporal Sequences to Meet Transition Constraints:
Complexity and Framework. In AIAI, 2015.

[Sioutis et al., 2015f] Michael Sioutis, Sanjiang Li, and Jean-François Condotta. Efficiently Char-
acterizing Non-Redundant Constraints in Large Real World Qualitative Spatial Networks. In
IJCAI, 2015.

[Sioutis et al., 2015g] Michael Sioutis, Sanjiang Li, and Jean-François Condotta. On Redun-
dancy in Linked Geospatial Data. In LDQ@ESWC, 2015.

[Sioutis et al., 2015h] Michael Sioutis, Yakoub Salhi, and Jean-François Condotta. A Simple
Decomposition Scheme For Large Real World Qualitative Constraint Networks. In FLAIRS,
2015.

[Sioutis et al., 2015i] Michael Sioutis, Yakoub Salhi, and Jean-François Condotta. On the Use
and Effect of Graph Decomposition in Qualitative Spatial and Temporal Reasoning. In SAC,
2015.

[Sioutis et al., 2016a] Michael Sioutis, Jean-François Condotta, and Manolis Koubarakis. An
Efficient Approach for Tackling Large Real World Qualitative Spatial Networks. IJAIT, 25:1–
33, 2016.

[Sioutis et al., 2016b] Michael Sioutis, Zhiguo Long, and Sanjiang Li. Efficiently Reasoning
about Qualitative Constraints through Variable Elimination. In SETN, 2016.

[Sioutis et al., 2016c] Michael Sioutis, Yakoub Salhi, and Jean-François Condotta. Studying the
Use and Effect of Graph Decomposition in Qualitative Spatial and Temporal Reasoning. In
Knowledge Eng. Review, 2016. In press.

[Sioutis, 2014] Michael Sioutis. Triangulation versus Graph Partitioning for Tackling Large Real
World Qualitative Spatial Networks. In ICTAI, 2014.

[Sistla and Clarke, 1985] A. Prasad Sistla and Edmund M. Clarke. The Complexity of Proposi-
tional Linear Temporal Logics. J. ACM, 32:733–749, 1985.

[Skiadopoulos and Koubarakis, 2005] Spiros Skiadopoulos and Manolis Koubarakis. On the con-
sistency of cardinal direction constraints. AIJ, 163:91–135, 2005.

[Snodgrass, 1987] Richard T. Snodgrass. The Temporal Query Language TQuel. ACM Trans.
Database Syst., 12:247–298, 1987.

[Song and Cohen, 1988] Fei Song and Robin Cohen. The Interpretation of Temporal Relations
in Narrative. In IJCAI, 1988.

214

[Stergiou and Koubarakis, 1998] Kostas Stergiou and Manolis Koubarakis. Backtracking Algo-
rithms for Disjunctions of Temporal Constraints. In AAAI, 1998.

[Stergiou and Koubarakis, 2000] Kostas Stergiou and Manolis Koubarakis. Backtracking algo-
rithms for disjunctions of temporal constraints. AIJ, 120:81–117, 2000.

[Steyvers and Tenenbaum, 2005] Mark Steyvers and Joshua B. Tenenbaum. The Large-Scale
Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth. Cog-
nitive Science, 29:41–78, 2005.

[Story and Worboys, 1995] P. A. Story and Michael F. Worboys. A Design Support Environment
for Spatio-Temporal Database Applications. In COSIT, 1995.

[Tarjan and Yannakakis, 1984] Robert Endre Tarjan and Mihalis Yannakakis. Simple Linear-
Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively
Reduce Acyclic Hypergraphs. SIAM J. Comput., 13:566–579, 1984.

[Tarski, 1941] Alfred Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6:73–
89, 1941.

[Tsao-Chen, 1938] Tang Tsao-Chen. Algebraic postulates and a geometric interpretation for the
Lewis calculus of strict implication. Bull. Amer. Math. Soc., 44:737–744, 1938.

[van Beek and Cohen, 1990] Peter van Beek and Robin Cohen. Exact and approximate reasoning
about temporal relations. Computational Intelligence, 6:132–144, 1990.

[van Beek and Dechter, 1995] Peter van Beek and Rina Dechter. On the Minimality and De-
composability of Row-Convex Constraint Networks. JACM, 42:543–561, 1995.

[van Beek and Manchak, 1996] Peter van Beek and Dennis W. Manchak. The design and exper-
imental analysis of algorithms for temporal reasoning. JAIR, 4:1–18, 1996.

[Van Beek, 1990] Peter Van Beek. Exact and approximate reasoning about qualitative temporal
relations. PhD thesis, University of Waterloo, 1990.

[van Beek, 1992] Peter van Beek. Reasoning About Qualitative Temporal Information. AIJ,
58:297–326, 1992.

[Vardi and Wolper, 1986] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach
to Automatic Program Verification. In LICS, 1986.

[Vilain et al., 1990] Marc Vilain, Henry Kautz, and Peter van Beek. Readings in qualitative
reasoning about physical systems. chapter Constraint Propagation Algorithms for Temporal
Reasoning: A Revised Report, pages 373–381. Morgan Kaufmann Publishers Inc., 1990.

[Vilain, 1982] Marc B. Vilain. A System for Reasoning About Time. In AAAI, 1982.

[Wallgrün, 2012] Jan Oliver Wallgrün. Exploiting qualitative spatial reasoning for topological
adjustment of spatial data. In SIGSPATIAL, 2012.

[Walsh, 2001] Toby Walsh. Search on High Degree Graphs. In IJCAI, 2001.

[Westphal and Hué, 2012] Matthias Westphal and Julien Hué. Nogoods in Qualitative
Constraint-Based Reasoning. In KI, 2012.

215

Bibliography

[Westphal and Wölfl, 2009] Matthias Westphal and Stefan Wölfl. Qualitative CSP, Finite CSP,
and SAT: Comparing Methods for Qualitative Constraint-based Reasoning. In IJCAI, 2009.

[Westphal et al., 2009] Matthias Westphal, Stefan Wölfl, and Zeno Gantner. GQR: A fast solver
for binary qualitative constraint networks. In AAAI Spring Symposium on Benchmarking of
Qualitative Spatial and Temporal Reasoning Systems, 2009.

[Westphal et al., 2010] Matthias Westphal, Stefan Wölfl, and Jason Jingshi Li. Restarts and
Nogood Recording in Qualitative Constraint-based Reasoning. In ECAI, 2010.

[Westphal et al., 2013] Matthias Westphal, Julien Hué, Stefan Wölfl, and Bernhard Nebel. Tran-
sition Constraints: A Study on the Computational Complexity of Qualitative Change. In
IJCAI, 2013.

[Westphal, 2014] Matthias Westphal. Qualitative Constraint-based Reasoning: Methods and Ap-
plications. PhD thesis, Albert-Ludwigs-Universität Freiburg, 2014.

[Wolper, 1985] Pierre Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, 28:119–136, 1985.

[Wolter and Zakharyaschev, 2000a] Frank Wolter and Michael Zakharyaschev. Spatial Reason-
ing in RCC-8 with Boolean Region Terms. In ECAI, pages 244–250, 2000.

[Wolter and Zakharyaschev, 2000b] Frank Wolter and Michael Zakharyaschev. Spatio-temporal
representation and reasoning based on RCC-8. In KR, 2000.

[Wolter and Zakharyaschev, 2003] FrankWolter and Michael Zakharyaschev. Exploring artificial
intelligence in the new millennium. chapter Qualitative Spatiotemporal Representation and
Reasoning: A Computational Perspective. Morgan Kaufmann Publishers Inc., 2003.

[Yannakakis, 1981] M. Yannakakis. Computing the Minimum Fill-In is NP-Complete. SIAM J.
on Algebraic Discrete Methods, 2:77–79, 1981.

[Zhang and Marisetti, 2009] Yuanlin Zhang and Satyanarayana Marisetti. Solving connected
row convex constraints by variable elimination. AIJ, 173:1204–1219, 2009.

[Zhang and Poole, 1994] Nevin Zhang and David Poole. A simple approach to Bayesian network
computations. In AI, 1994.

[Zhang, 2007] Yuanlin Zhang. Fast Algorithm for Connected Row Convex Constraints. In IJCAI,
2007.

216

Abstract

Qualitative Spatial and Temporal Reasoning is a major field of study in Artificial Intelligence
and, particularly, in Knowledge Representation, which deals with the fundamental cognitive
concepts of space and time in an abstract manner.

In our thesis, we focus on qualitative constraint-based spatial and temporal formalisms and
make contributions to several aspects. In particular, given a knowledge base of qualitative spatial
or temporal information, we define novel local consistency conditions and related techniques to
efficiently solve the fundamental reasoning problems that are associated with such knowledge
bases. These reasoning problems consist of the satisfiability problem, which is the problem of
deciding whether there exists a quantitative interpretation of all the entities of a knowledge base
such that all of its qualitative relations are satisfied by that interpretation, the minimal labeling
problem, which is the problem of determining all the atoms for each of the qualitative relations
of a knowledge base that participate in at least one of its solutions, and the redundancy problem,
which is the problem of obtaining all the non-redundant qualitative relations of a knowledge
base. Further, we enrich the field of spatio-temporal formalisms that combine space and time
in an interrelated manner by making contributions with respect to a qualitative spatio-temporal
logic that results by combining the propositional temporal logic (PTL) with a qualitative spatial
constraint language, and by investigating the task of ordering a temporal sequence of qualitative
spatial configurations to meet certain transition constraints.

Keywords: Spatial and temporal reasoning, qualitative constraints, satisfiability problem, min-
imal labeling problem, redundancy problem, spatio-temporal logic

217

Résumé

Le raisonnement spatial et temporel qualitatif est un domaine principal d’études de l’intelligence
artificielle et, en particulier, du domaine de la représentation des connaissances, qui traite des
concepts cognitifs fondamentaux de l’espace et du temps de manière abstraite.

Dans notre thèse, nous nous focalisons sur les formalismes du domaine du raisonnement spa-
tial et temporel qualitatif représentant les informations par des contraintes et apportons des
contributions sur plusieurs aspects. En particulier, étant donnée des bases de connaissances
d’informations qualitatives sur l’espace ou le temps, nous définissons des nouvelles conditions de
consistance locale et des techniques associées afin de résoudre efficacement les problèmes fonda-
mentaux se posant. Nous traitons notamment du problème de la satisfiabilité qui est le problème
de décider s’il existe une interprétation quantitative de toutes les entités satisfaisant l’ensemble
des contraintes qualitatives. Nous considérons également le problème de l’étiquetage minimal qui
consiste à déterminer pour toutes les contraintes qualitatives les relations de base participant
à au moins une solution ainsi que le problème de redondance consistant à déterminer les con-
traintes qualitatives non redondantes. En outre, nous enrichissons le domaine des formalismes
spatio-temporels par des contributions concernant une logique spatio-temporelle combinant la
logique temporelle propositionnelle (PTL) avec un langage de contraintes qualitatives spatiales
et une étude de la problématique consistant à gérer une séquence temporelle de configurations
spatiales qualitatives devant satisfaire des contraintes de transition.

Mots-clés: raisonnement spatial et temporel, contraintes qualitatives, problème de satisfiabilité,
problème de l’étiquetage minimal, problème de redondance, logique spatio-temporelle

218

219

	Introduction
	Partie I State of the Art
	Qualitative Spatial and Temporal Constraint Languages
	Introduction
	Base Relations of Qualitative Constraint Languages
	Cases of Qualitative Spatial and Temporal Constraint Languages
	Point Algebra
	Cardinal Direction Calculus
	Interval Algebra
	Block Algebra
	RCC-8
	9-intersection model (9-IM)
	Orientation Calculi

	Relational Operations
	Classes of Relations
	Distributive Subclasses of Relations

	Conclusion

	Reasoning with Qualitative Constraint Networks
	Introduction
	Qualitative Constraint Networks (QCNs)
	Reasoning Problems Associated with QCNs
	Satisfiability Problem
	Minimal Labeling Problem
	Redundancy Problem

	Tractability of QCNs
	Algorithms for Reasoning with QCNs
	Algebraic Closure and -consistency
	Algorithms for the Satisfiability Problem of QCNs
	Algorithms for the Minimal Labeling Problem of QCNs
	Algorithms for the Redundancy Problem of QCNs

	Constraint Properties of QCNs
	Decomposability of QCNs
	Decomposability in the CSP framework

	Conclusion

	Combining Space & Time into Qualitative Spatio-Temporal Frameworks
	Introduction
	Linear Point-based Time Spatio-Temporal Logics
	Spatio-Temporal Change based on Transition Constraints
	Combining RCC-8 and Interval Algebra
	Spatio-Temporal Periodicity
	Conclusion

	Partie II Contributions
	Efficient Algorithms for tackling Qualitative Constraint Networks
	Introduction
	Partial Algebraic Closure and Partial -consistency
	The PWC Algorithm
	The iPWC Algorithm

	Directional Algebraic Closure and Directional -consistency
	The DWC Algorithm

	Efficient Algorithms for the Satisfiability Problem of QCNs
	The PartialConsistency Algorithm
	The IterativePartialConsistency Algorithm
	Reasoners
	Experimental evaluation

	Efficient Algorithms for the Minimal Labeling Problem of QCNs
	Experimental Evaluation

	Efficient Algorithms for the Redundancy Problem of QCNs
	Experimental Evaluation

	Towards Efficient Utilization of Parallelism
	Partitioning Graphs and Non-Soundness
	A Simple Decomposition Scheme for Sound and Efficient Use of Parallelism
	Experimental Evaluation

	Conclusion and Future Work

	Enriching Qualitative Spatio-Temporal Reasoning
	Introduction
	Revisiting the Satisfiability Problem in L1
	Capturing Spatio-Temporal Behaviour in L1
	Spatio-Temporal Periodicity
	Spatio-Temporal Smoothness and Continuity

	Semantic tableau for L1
	Rules for Constructing a Semantic Tableau
	Systematic Construction of a Semantic Tableau
	Soundness and Completeness of our Semantic Tableau Method

	Ordering Spatio-Temporal Sequences to meet Transition Constraints
	Spatio-Temporal Sequence Ordering Problems
	Constraining Spatio-Temporal Sequences with Point Algebra

	Conclusion and Future Work

	Conclusion and Future Work
	Bibliography

