Problèmes inverses pour l’équation de Schrödinger

par Youssef Mejri

Thèse de doctorat en Mathématiques et informatique

Sous la direction de Eric Soccorsi et de Mourad Bellassoued.

Le président du jury était Mohamed Jellouli.

Le jury était composé de Moncef Aouadi.

Les rapporteurs étaient Lucie Baudoin, François Nicoleau.


  • Résumé

    Les travaux de recherche présentés dans cette thèse sont consacrés à l’étude de la stabilité dans divers problèmes inverses associés à l’équation de Schrödinger magnétique. Dans la première partie, on s’intéresse à un problème inverse concernant l’équation de Schrödinger autonome posée dans un domaine cylindrique non borné, avec potentiel magnétique périodique. On démontre à l’aide d’une construction de solutions particulières, dites solutions de type "optique géométrique", que le champ magnétique induit par le potentiel périodique est déterminé de façon stable à partir une infinité d’observations latérales de la solution, contenues dans l’opérateur de Dirichlet-Neumann. La deuxième partie de la thèse porte sur le même type de problèmes inverses mais associés à l’équation de Schrödinger magnétique non autonome. Dans un premier temps, on montre l’existence d’une unique solution régulière de cette équation dans un domaine borné ou non. Ensuite, on s’intéresse au problème inverse de la détermination simultanée des potentiels magnétique et électrique dans un domaine borné, à partir d’un nombre fini d’observations latérales de la solution. Enfin, on prouve que dans un domaine cylindrique infini, le potentiel magnétique peut être reconstruit de façon Lipschitz stable à partir d’un nombre fini d’observations de type Neumann.

  • Titre traduit

    Inverse problem related to the Schrödinger equation


  • Résumé

    This thesis, is devoted to the study of inverse problems related to the Schrödinger equation. The first partof the thesis is devoted to study the boundary inverse problem of determining the alignedmagnetic field appearing in the magnetic Schrödinger equation in a periodic quantum cylindricalwaveguide. From the Dirichlet-to-Neumann map of the magnetic Schrödinger equation,we prove a Hölder stability estimate with respect to the Dirichlet-to-Neumann map, by meansof the geometrical optics solutions of the magnetic Schrödinger equation.The second part of this thesis deals with the inverse problem of determining the magnetic field and the electricpotential appearing in the magnetic Schrödinger equation, from the knowledge of a finitenumber of lateral observations of the solution.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.