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intellect.
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Résumé

Le problème du cercle de Gauss consiste à compter le nombre de points entiers
de longueur bornée dans le plan. Autrement dit, compter le nombre de géodésiques
fermées de longueur bornée sur un tore plat bidimensionnel. De très nombreux
problèmes de comptage en systèmes dynamiques se sont inspirés de ce problème.
Depuis 30 ans, on cherche à comprendre l’asymptotique de géodésiques fermées
dans les surfaces de translation. H. Masur a montré que ce nombre a une croissance
quadratique. Calculer l’asymptotique quadratique (constante de Siegel–Veech) est
un sujet de recherches très actif aujourd’hui. L’objet d’étude de cette thèse est le
modèle de windtree, un modèle de billard non compact. Dans le cas classique, on
place des obstacles rectangulaires identiques dans le plan en chaque point entier. On
joue au billard sur le complémentaire. Nous montrons que le nombre de trajectoires
périodiques a une croissance asymptotique quadratique et calculons la constante de
Siegel–Veech pour le windtree classique ainsi que pour la généralisation de Delecroix–
Zorich. Nous prouvons que, pour le windtree classique, cette constante ne dépend
pas des tailles des obstacles (phénomène “non varying” analogue aux résultats de
Chen–Möller). Enfin, lorsque la surface de translation compacte sous-jacente est
une surface de Veech, nous donnons une version quantitative du comptage.

Mots-clés : Systèmes dynamiques, Géométrie, Modèle de windtree, Billards,
Surfaces de translation, Problème de comptage.
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Abstract

The Gauss circle problem consists in counting the number of integer points of
bounded length in the plane. In other words, counting the number of closed geodesics
of bounded length on a flat two dimensional torus. Many counting problems in dy-
namical systems have been inspired by this problem. For 30 years, the experts try
to understand the asymptotic behavior of closed geodesics in translation surfaces.
H. Masur proved that this number has quadratic growth rate. Compute the qua-
dratic asymptotic (Siegel–Veech constant) is a very active research domain these
days. The object of study in this thesis is the wind-tree model, a non-compact
billiard model. In the classical setting, we place identical rectangular obstacles in
the plane at each integer point. We play billiard on the complement. We show that
the number of periodic trajectories has quadratic asymptotic growth rate and we
compute the Siegel–Veech constant for the classical wind-tree model as well as for
the Delecroix–Zorich variant. We prove that, for the classical wind-tree model, this
constant does not depend on the dimensions of the obstacles (non-varying phenom-
enon, analogous to results of Chen–Möller). Finally, when the underlying compact
translation surface is a Veech surface, we give a quantitative version of the counting.

Keywords: Dynamical systems, Geometry, Wind-tree model, Billiards, Trans-
lation surfaces, Counting problem.
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Introduction

This thesis is about asymptotic formulas for the number of (isotopy classes of)
periodic billiard trajectories on wind-tree models, billiards in the plane endowed
with Z2-periodic obstacles. This question has been widely studied in the context of
finite rational billiards and compact flat surfaces, and it is related to many other
questions such as the calculation of the volume of normalized strata [EMZ] or the
sum of Lyapunov exponents of the geodesic Teichmüller flow [EKZ] on strata of flat
surfaces (Abelian or quadratic differentials).

The body of this work is composed of three self-contained chapters, which cor-
responds to three papers of the author on the counting problem on wind-tree mod-
els [Pa1, Pa2, Pa3]. In the following, we present a brief summary of the motiva-
tions, main objects and related results. We end this introduction stating the main
results contained in the body of this work, as well as a brief explanation of the key
ideas and main difficulties.

Polygonal billiards. Consider a point particle bouncing around in a polygon.
Away from the edges, the point moves inside a polygon at unit speed along a straight
line until it reaches the boundary. At the edges, the point bounces changing direc-
tion instantaneously according to the usual law of geometrical optics: the angle of
incidence equals the angle of reflection, and continues along the new line. If the
point reaches a vertex, it stops moving: the orbit is not defined further. A path
described in this way is called a billiard trajectory; see Figure 1.

•

Figure 1. A billiard trajectory in a polygonal billiard.

The study of billiard trajectories is a basic problem in dynamical systems and
arises naturally in physics. Consider, for example, two points of different masses
moving on a segment. The points may elastically collide and reflect from the end
points of the segment. This system can be modeled as billiard trajectories in a right
angled triangle (see, for example, [MT, §1.2]).

For an introduction and general references to this subject, we refer the reader to
the book of Tabachnikov [Ta].

1



2 INTRODUCTION

1. Counting problem

In this work we are interested in the length spectrum of polygonal billiards, that
is, on periodic billiard trajectories and their length. More precisely, for a polygonal
billiard B, we would like to know as much as possible about the number N(B,L) of
(isotopy classes of) periodic billiard trajectories of length at most L in B.

•

Figure 2. A family of isotopic periodic billiard trajectories.

A first natural question when tackling this problem is whether there is at least
one periodic billiard orbit in every polygon, that is, whether for every polygonal
billiard B, the number N(B,L) is positive for L large enough. This question is
open even for non acute triangles.

1.1. Triangular billiards. In the case of an acute triangle, the simplest (and
shortest) periodic trajectory in it is given by the orthic triangle: the triangle whose
vertices are the bases of the altitudes in the original triangle form a periodic billiard
trajectory in it (see Figure 3). The proof goes back to 1775 and is due to Fag-
nano [Fa]. For right triangles, the existence of periodic trajectories was proved in-
dependently by Holt [Ho] and Galperin–Stepin–Vorobets [GSV91]. Schwartz [Sch]
proved the existence of periodic billiard orbits in every obtuse triangle with angle
less than 100 degrees. However, it is unknown whether periodic trajectories exist in
every obtuse triangle.

Figure 3. Orthic triangle: the shortest periodic billiard trajectory
in any acute triangle.

A rational triangle, that is, a triangle whose angles are all rational multiples of
π, has a dense set of periodic billiard trajectories [BGKT] (see also [Ma86]).

1.2. Square billiard and the Gauss circle problem. It is clear that in the
square billiard B there are periodic trajectories. Moreover, in this case, the exact
value of N(B,L) is equivalent to the (primitive) circle problem.
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The Gauss circle problem is the problem of determining the number of integer
lattice points inside the boundary of a circle of a given radius centered at the origin
(see Figure 4a). This number is approximated by the area of the circle, so the real
problem is to accurately bound the error term describing how the number of points
differs from the area. The first progress on a solution to this problem was made
by Gauss, hence its name. It is conjectured (see [Gy]) that the correct bound is
O(L1/2+ε), the current known bound being O(L131/208) (note that 131/208 ≈ 0.6298),
proved by Huxley [Hu03].

(a) Gauss circle problem. (b) Primitive circle problem.

Figure 4. The counting problem on the square billiard is equivalent
to the (primitive) circle problem.

To be precise, coming back to the square billiard, we do not want to count
trajectories which go around a single periodic trajectory several times. Thus, our
problem is equivalent not to the circle problem, but to the primitive circle problem,
which is the problem of determining the number N(L) of primitive integer lattice
points in the circle of radius L, centered at the origin (see Figure 4b). By primitive
integer lattice point we mean, as usual, coprime integer couples.

Using the same ideas as the usual Gauss circle problem and the fact that the
probability that two integers are coprime is 1/ζ(2), it is relatively straightforward
to show that

N(L) =
1

ζ(2)
πL2 +O(L1+ε).

No bound on the error term of the form O(L1−δ) for any δ ≥ 0 is currently known
without assuming the Riemann Hypothesis (see [Wu] for the best known error term
assuming the Riemann Hypothesis).

The square billiard is a particular case of rational billiard, which are much more
tractable than general polygons, without the rationality assumption.

1.3. Rational billiards. A rational billiard is a billiard in a rational polygon,
that is, a polygon whose angles are all rational multiples of π. Thanks to the
rationality assumption much more can be said.
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Masur [Ma86, Ma88, Ma90] proved that for every rational billiard B, there is
a dense set of directions such that there are periodic trajectories in those directions
and that there are positive constants c(B) and C(B) such that

c(X)L2 ≤ N(B,L) ≤ C(X)L2

for large enough L. Boshernitzan–Galperin–Krüger–Troubetzkoy [BGKT] strength-
ened the density result to the whole tangent space.

Veech [Ve89] proved that there are in fact exact quadratic asymptotics for a spe-
cial class of rational billiards now called Veech billiards, which includes for example
all regular polygons (see [Ve92]).

It is still an open problem whether all rational billiards have exact quadratic
asymptotics. Eskin–Mirzakhani–Mohammadi [EMM] showed that for every ratio-
nal billiard we have weak quadratic asymptotic formulas,

lim
L→∞

1

L

∫ L

0

N(B, et)

πe2t
dt = c(B),

for some c(B) > 0, and we write N(B,L) “∼” c(B) · πL2.
The rationality assumption leads to deep connections to algebraic geometry,

Teichmüller theory, ergodic theory on homogenous spaces, and other areas of math-
ematics (see, for example, [Ve89] and references in [MT]). All these results relies
on these connections.

1.4. Unfolding rational billiards. When a trajectory in a polygonal billiard
B is reflected in one of the edges of the polygon, it undergoes a transformation
by the element of O(2) corresponding to (the derivative of) the reflection in that
edge. The subgroup Γ(B) of O(2) generated by all reflections in the edges of B is
either finite or dense (as any subgroup of O(2) containing reflections). A necessary
condition for Γ(B) to be finite is that the polygon is rational. It is also sufficient if
the boundary is connected, that is, if the polygon is simply connected.

Thus, a given billiard trajectory in a rational billiard have only finitely many
different directions. In particular, if instead of bouncing the trajectory we reflect
(unfold) the billiard table, we obtain finitely many copies of the original polygon (up
to translations). This unfolding construction is due to Fox–Kershner [FK] and it is
often attributed to Katok–Zemlyakov [KaZe]. We illustrate the unfolding procedure
in the case of a rectangular billiard in Figure 5.

• Reflect the table−−−−−−−−−−−−→
Instead of bouncing

•

Figure 5. Unfolding a rectangular billiard table.
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These polygons can be translated so that they are all disjoint in the plane and
we identify the edges according to the reflections. This unfolding procedure gives
raise to a closed surface with a natural flat metric (the one obtained from R2) with
conical singularities (with angles multiples of 2π). Thus, for example, in the case of
a rectangular billiard we obtain a flat torus. In general, the result of the unfolding
of a rational billiard is what is called a translation surface.

More details about billiards in polygons, specially rational polygons and their
connection to translation surfaces, can be found in the surveys of Gutkin [Gt],
Hubert–Schmidt [HS], Masur–Tabachnikov [MT] and Smillie [Sm].

2. Translation surfaces

For an introduction and general references to this subject, we refer the reader to
the surveys of Zorich [Zo06], Forni–Matheus [FM], Wright [Wr].

Roughly, a translation surface is a surface which can be obtained by edge-to-
edge gluing of polygons in R2 using translations only. More formally, a compact
connected oriented surface X is called a translation surface if it is equipped with
a translation structure, that is, a complex atlas such that the transition functions
are translations (the chart domains cover all the surface but finitely many singular
points). The translation structure induces the structure of a smooth manifold, a flat
Riemannian metric, and a Borel measure on the surface X punctured at the singular
points. We also require that the metric has a cone type singularity at each singular
point or, equivalently, that the area of the surface is finite. The cone angles are
integer multiples of 2π. A conical singularity of angle 2π is removable: it is rather
a marked point than a true singularity of the metric.

2.1. Abelian differentials. There is a one to one correspondence between
translation surfaces and (non-zero) Abelian differentials, holomorphic 1-forms on
(compact) Riemann surfaces. The holomorphic 1-form dz on C defines a holomor-
phic 1-form ω on X which in local coordinates has the form ω = dz. Since the
changes of local coordinates are defined by translations only, say z′ = z + c, we see
that dz = dz′. It is not difficult to verify that the complex structure extends to
the conical singularities. On the other hand, given an Abelian differential ω, the
atlas consisting of all local coordinates z with the property that ω = dz defines a
translation structure. The 1-form vanishes exactly at the (non-removable) conical
singularities; conical singularities of angle 2π(n+1) corresponding to zeros of degree
n of the Abelian differential.

2.2. Moduli space and strata. The moduli space Hg of translation surfaces
of genus g is a vector bundle over the moduli space of Riemann surfaces of genus
g. Moreover, this space is stratified according to the number and multiplicity of
the zeros of the Abelian differentials. Let g ≥ 1, n = {n1, ..., nk} be a partition of
2g−2. Then, H(n) denotes the stratum of Abelian differentials, that is, holomorphic
1-forms on Riemann surfaces of genus g, with zeros of degrees n1, . . . , nk.

Each stratum is a complex orbifold of dimension d = 2g + k − 1 which has a
complex atlas with transition functions in GL(d,Z) (away from orbifold points or
on an appropriate cover without orbifold points). Thus, a stratum looks locally like
a complex affine space.
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We also consider normalized strata; we denote byH1(n), the (real) codimension 1
subspace of area 1 translation surfaces in H(n). Strata (normalized or not) are
never compact and are not always connected. Their connected components have
been classified by Kontsevich–Zorich [KZ03] and there are at most three connected
components in each stratum.

2.3. SL(2,R)-action and Teichmüller flow. There is a natural action of
SL(2,R) on (connected components of) strata of translation surfaces, coming from
the linear action of SL(2,R) on R2, which generalizes the action of SL(2,R) on the
space GL(2,R)

/
SL(2,Z) of flat tori. Roughly, if g ∈ SL(2,R) and X is a translation

surface given as a collection of polygons, then gS is the translation surface given by
the collection of polygons obtained by acting linearly by g on the polygons defining
X, as in Figure 6.

(
e−t 0
0 et

)

−−−−−−−−−→ =

Figure 6. SL(2,R)-action and cut & paste ([Zo06, Fig. 15]). The
first modification of the polygon changes the translation structure
while the second one just changes the way in which we unwrap the
translation surface.

Let

gt =

(
et 0
0 e−t

)
and rθ =

(
cos θ sin θ
− sin θ cos θ

)
.

The element rθ ∈ SL(2,R) acts by ω 7→ eiθω and has the effect of rotating the
translation surface by the angle θ ∈ [0, 2π). The action of (gt)t∈R is called the
Teichmüller geodesic flow.

A deep result due to Eskin–Mirzakhani–Mohammadi [EMM] (see also [EMi])
says that the SL(2,R)-orbit closure of any translation surface in H1(n) is the space
of unit area translation surfaces in some affine invariant submanifold, that is, a
submanifold which locally looks like an affine subspace. Moreover, each such space
is the support of an affine invariant measure, that is, an ergodic SL(2,R)-invariant
probability measure which locally is (up to normalization) the restriction of Lebesgue
measure (see [EMi] for the precise definitions).

The most important case is a connected component of a normalized stratum
H1(n). The associated affine measure is known as the Masur–Veech measure: Ma-
sur [Ma82] and Veech [Ve82] independently proved that in this case, the total mass
of this measure is finite and ergodic with respect to the Teichmüller geodesic flow.
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2.4. Veech surfaces. Veech surfaces and billiards form an important subclass
on the history of rational billiards and translation surfaces. They correspond to
translation surfaces whose SL(2,R)-orbit is closed and they have a large group of
symmetries. For an introduction and general references to Veech surfaces, we refer
the reader to the survey of Hubert–Schmidt [HS].

We denote the stabilizer of a translation surface X under the action of SL(2,R)
by SL(X). The group SL(X) is also the group of derivatives of affine orientation-
preserving diffeomorphisms of X. Recall that SL(2,R) does not act faithfully on
the upper half-plane H; it is the projective group PSL(2,R) that does so. We define
the Veech Group of X to be the image of SL(X) in PSL(2,R) and we denote it by
PSL(X).

A translation surface X is called Veech surface if its Veech group PSL(X) is a
lattice, that is, if H

/
PSL(X) has finite volume. Veech surfaces correspond to closed

SL(2,R)-orbits. Such a closed orbits is called a Teichmüller curve.
The simplest examples of Veech surfaces are translation coverings of the torus,

called square-tiled surfaces. They are those translation surfaces whose Veech group is
arithmetic (commensurable with PSL(2,Z)), after a theorem by Gutkin–Judge [GJ96].
Square-tiled surfaces were introduced by Thurston [Th]. See Figure 7 for an example
of square-tiled surface. Square-tiled surfaces have been used for explicit computa-
tions of volumes of (normalized) strata by Zorich [Zo02] and Eskin–Okounkov [EO]:
square-tiled surfaces correspond to integer points of strata of Abelian differentials;
the volume of a stratum is computed from the asymptotic number of integer points
in a large ball.

〉 〉〉

/

〉〉

//

〉

//
/

〉 〉〉

/

〉〉

//

〉

//
/

Figure 7. A square-tiled surface. It belongs to H(2).

2.5. Counting problem on translation surfaces. The unfolding construc-
tion provides a (one way) dictionary between rational billiards and translation sur-
faces. In the case of polygonal billiards, the counting problem we are concerned with
is that of periodic billiards trajectories. This dictionary identifies billiards trajec-
tories with geodesics (for the flat metric) on the corresponding translation surface.
Thus, we are interested in the counting of closed geodesics on translation surfaces.
This question has been widely studied and it is related to many other questions such
as the calculation of the volume of normalized strata [EMZ] or the sum of Lyapunov
exponents of the geodesic Teichmüller flow [EKZ] on strata of translation surfaces.

Together with every closed regular geodesic in a translation surface we have a
bunch of parallel closed regular geodesics. A cylinder on a translation surface is a
maximal open annulus filled by isotopic simple closed regular geodesics. A cylinder
C is isometric to the product of an open interval and a circle. Note that we do not
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count trajectories which go around a single closed trajectory several times, and we
are counting unoriented trajectories.

The results on the counting problem on rational billiards above come in fact from
analogous results in the more general case of translation surfaces. In this context,
we have that: Masur [Ma88, Ma90] proved that for every translation surface X,
there exist positive constants c(X) and C(X) such that the number N(X,L) of
(maximal) cylinders of closed geodesics of length at most L satisfy

c(X)L2 ≤ N(X,L) ≤ C(X)L2

for large enough L. Veech [Ve89] proved that for Veech surfaces there are in fact
exact quadratic asymptotics; Gutkin–Judge [GJ00] gave a different proof. An-
other proof for the upper quadratic bounds was given by Vorobets [Vo97]. Eskin–
Masur [EMa] gave yet another one and proved that for each ergodic probability
measure µ on strata of normalized (area 1) translation surfaces, there is a constant
c(µ) such that for almost every surface, N(X,L) ∼ c(µ) · πL2, that is,

lim
L→∞

N(X,L)

πL2
= c(µ).

The constant c(µ) is called the Siegel–Veech constant ([EMa]) of the counting prob-
lem; it is the constant in the Siegel–Veech formula ([EMa]), a Siegel-type formula
introduced by W. Veech [Ve98], which can be translated into

c(µ) =
1

πR2

∫

H1(n)

N(X,R)dµ(X).

It is still an open problem whether all translation surfaces have exact quadratic
asymptotics. In particular, this result does not provides further information on
the counting problem on rational billiards. In fact, the set of surfaces which are
constructed from polygons has zero measure for every SL(2,R)-invariant measure,
but for those which are supported on SL(2,R)-orbits of Veech surfaces and for which
we already know the answer.

On the other hand, Eskin–Mirzakhani–Mohammadi [EMM] showed that for
every (area 1) translation surfaces (in particular, for every rational billiard) we
have weak quadratic asymptotic formulas,

lim
L→∞

1

L

∫ L

0

N(X, et)

πe2t
dt = c(X),

which we write N(X,L) “∼” c(X) · πL2. The constant c(X) being the Siegel–Veech
constant associated to the affine invariant measure supported on the SL(2,R)-orbit
closure of the surface X, given by general invariant measure classification theorem
of Eskin–Mirzakhani [EMi].

The particular constants for several Veech surfaces have been computed explicitly
by Veech [Ve89, Ve92], Vorobets [Vo97], Gutkin–Judge [GJ00] and Schmoll [Sc].
Constants for some families of non-Veech surfaces were also given by Eskin–Masur–
Schmoll [EMS] and Eskin–Marklof–Witte Morris [EMW].

Eskin–Masur–Zorich [EMZ] computed the Siegel–Veech constants for connected
components of all strata of Abelian differentials, and also described all possible
configurations of cylinders of closed geodesics which might be found on a generic
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translation surface. In general, the particular constants for Veech surfaces do not
coincide with the Siegel–Veech constants of the strata where they live.

3. Wind-tree model

The classical wind-tree model corresponds to a billiard in the plane endowed with
Z2-periodic obstacles of rectangular shape; the sides of the rectangles are aligned
along the lattice, see Figure 8.

Figure 8. Original wind-tree model.

The wind-tree model (in a slightly different version) was introduced by Ehrenfest–
Ehrenfest [EE] in 1912. Hardy–Weber [HaWeb] studied the periodic version. All
these studies had physical motivations.

Several advances on the dynamical properties of the billiard flow in the wind-tree
model were obtained recently using geometric and dynamical properties on moduli
space of (compact) flat surfaces; billiard trajectories can be described by the linear
flow on a flat surface.

Avila–Hubert [AH] showed that for all parameters of the obstacle and for al-
most all directions, the trajectories are recurrent. There are examples of diver-
gent trajectories constructed by Delecroix [De]. The non-ergodicity was proved by
Fra̧cek–Ulcigrai [FU]. It was proved by Delecroix–Hubert–Lelièvre [DHL] that the
diffusion rate is independent either on the concrete values of the parameters of the
obstacle or on almost any direction and almost any starting point. It is equal to 2/3.
A generalization of this last result was shown by Delecroix–Zorich [DZ] for more
complicated obstacles. In this work we study this last variant, corresponding to a
billiard in the plane endowed with Z2-periodic obstacles of right-angled polygonal
shape; the obstacles being horizontally and vertically symmetric and the sides of the
rectangles are aligned along the lattice, see Figure 9 for an example.

Figure 9. Delecroix–Zorich variant.
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Recall that in the classical case of a billiard in a rectangle we can glue a flat
torus out of four copies of the billiard table and unfold billiard trajectories to flat
geodesics of the same length on the resulting flat torus. In the case of the wind-tree
model we also start from gluing a translation surface out of four copies of the infinite
billiard table Π. The resulting surface X∞ = X∞(Π) is Z2-periodic with respect to
translations by vectors of the original lattice. Passing to the Z2-quotient we get
a compact translation surface X = X(Π). For the case of the original wind-tree
billiard, with rectangular obstacles, the resulting translation surface is represented
at Figure 10. It has genus 5 and belongs to the stratum H(24) (see [DHL, § 3] for
more details).

Figure 10. The translation surface X obtained as quotient over Z2

of an unfolded wind-tree billiard table ([DZ, Figure 5]).

Similarly, when the obstacle has 4m corners with the angle π/2 —and 4(m− 1)
with angle 3π/2—, the same construction gives a translation surface of genus 4m+1
in H(24m), consisting in four flat tori with holes (four copies of a Z2 fundamental
domain of Π, the holes corresponding to the obstacles) with corresponding identifi-
cations, as in the classical setting (m = 1, see Figure 10).

4. Counting problem on wind-tree billiards

In this section we state and give a brief explanation of the main results on the
body of this work. Each subsection is devoted to one chapter of this thesis. Note
that each chapter has its own introduction were more details are given.

4.1. Asymptotic formulas on generic wind-tree models. In Chapter I,
we prove asymptotic formulas for generic wind-tree models with respect to a nat-
ural Lebesgue-type measure (see [AEZ, DZ]) on the parameters of the wind-tree
billiards, that is, the side lengths of the obstacles. Denote by WT (m) the family of
wind-tree billiards such that the obstacle has 4m corners with the angle π/2. Say,
all billiards from the original wind-tree family as in Figure 8 live in WT (1); the
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billiard in Figure 9 belongs to WT (17). We denote by Area (Π/Z2) the area of a
fundamental domain of the Z2-periodic billiard table Π ∈ WT (m).

Theorem. For almost every wind-tree billiard Π ∈ WT (m) the number N(Π, L)
of (isotopy classes of) periodic billiard trajectories of length at most L in Π has
quadratic asymptotic growth rate

N(Π, L) ∼ c(m) · πL2

Area (Π/Z2)
,

where

c(m) =

(
20m2 − 95m− 78 + 78 · 4m (m!)2

(2m)!

)
1

6π2
.

The constant c(m) is not a standard Siegel–Veech constant, but corresponds to
Siegel–Veech constants of some particular configurations of cylinders on compact
translation surfaces associated to generic wind-tree billiards.

Strategy of the proof. As described above, the unfolding construction on
rational billiards can be exploited in this case as well. This allows us to reformulate
the counting problem on a wind-tree billiard Π in terms of a counting problem
on a infinite Z2-periodic translation surface X∞ = X∞(Π): families of periodic
trajectories in Π are in one to one correspondence with families of (compact) closed
geodesics in X∞.

It is clear that every closed geodesic in X∞ descends to its Z2-quotient X = X(Π)
(see Figure 10, for the resulting surface in the classical setting, m = 1). However,
some closed geodesics in X lifts to X∞ as a strip, isometric to the product of an
open interval and a straight line (see Figure 11). Thus

N(Π, L) = N(X∞, L) < N(X,L)

for L large enough. In particular, we obtain quadratic upper bounds. Recall that
in Π and X∞ we count periodic trajectories up to Z2-translations as every such
trajectory can be translated to get a non-isotopic one of the same length.

Figure 11. Some closed geodesics in X lift to strips in X∞. They
correspond to “unbounded periodic trajectories” in the wind-tree
model.
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Thus, the classical approach on (finite area) rational billiards and (compact)
translation surfaces cannot be applied, at least not in the obvious way. Furthermore,
one of the key tools in the classical approach is the SL(2,R)-action on moduli space
of translation surfaces and the collection C of cylinders in X that lift to closed
geodesics in X∞ has not the suitable dynamical properties.

In order to handle this lack of suitable dynamical properties we split the col-
lection C into families of good and bad cylinders. The notion of good cylinders
was first introduced by Avila–Hubert [AH] in order to give a geometric criterion
for recurrence of Zd-periodic translation surfaces. The symmetries of the surface
X allows to split its homology group into SL(2,R)-equivariant subspaces. One
of these SL(2,R)-equivariant subspace, say E, guarantees that every closed curve
whose homology class belongs to E lifts to a closed curve in X∞. Good cylinders
are exactly those cylinders in X whose core curve belongs to these subspace E (for
more details, see Chapter I). This allows us to tackle the counting of good cylinders
using the classical approach. In particular, the counting function for good cylinders
has quadratic lower bounds. In the case of bad cylinders, the classical approach is
no longer possible. However, using technology for asymptotic formulas developed
by Eskin–Masur [EMa], we prove the following result whose proof do not rely on
ergodic theory.

Theorem. Let Π ∈ WT (m) be a wind-tree billiard, X = X(Π) the associated
compact translation surface. Then, the number Nbad(X,L) of bad cylinders in X of
length at most L, has subquadratic asymptotic growth rate, Nbad(X,L) = o(L2) or,
which is the same,

lim
L→∞

Nbad(X,L)

πL2
= 0.

As a consequence, the counting problem on the wind-tree billiard Π is reduced to
the counting problem of good cylinders in the compact translation surface X. The
main difficulties on the counting of good cylinders are: (a) the classical approach
only allows to conclude asymptotic formulas for almost every translation surface
and the surfaces obtained from wind-tree billiards are of zero measure; and (b) the
computation of Siegel–Veech constants is in general a difficult task.

Following ideas of Athreya–Eskin–Zorich [AEZ] and Delecroix–Zorich [DZ], and
proving certain combinatorial identities for resulting hypergeometric sums, we are
able to handle these difficulties and obtain the desired result.

Side results. As a by-product of our methods, we obtain several results:
Area Siegel-Veech constant. Following the same strategy, we are able to compute

the area Siegel–Veech constant, associated to the counting of the area of maximal
families of isotopy classes of periodic trajectories. More precisely, we have the fol-
lowing.

Theorem. For almost every Π ∈ WT (m) the weighted number Narea(Π, L) of
maximal families of isotopic periodic billiard trajectories of length at most L in Π,
where the weight is the area covered by the family, has quadratic asymptotic growth
rate

Narea(Π, L) ∼ carea(m) · πL2

Area (Π/Z2)
,
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where

carea(m) =

(
8m− 33 + 39 · 4m (m!)2

(2m+ 1)!

)
4

3π2
.

Polynomial diffusion. Let d(·, ·) be the Euclidean distance on R2 and consider
the wind-tree billiard table Π ∈ WT (m) as a subset of R2. Let (φθt )t∈R be the
billiard flow starting in direction θ ∈ [0, 2π) on Π, that is, φθt (x) is the position of a
particle after time t starting from position x ∈ Π in direction θ.

Combining ideas of Delecroix–Hubert–Lelièvre [DHL], Delecroix–Zorich [DZ]
and Forni [Fo], we obtain the following result on polynomial diffusion rates on
wind-tree models.

Theorem. For every wind-tree billiard Π ∈ WT (m) there exists δ(Π) > 0 such
that for almost every direction θ ∈ [0, 2π) and every starting point (with infinite
forward orbit)

lim sup
t→∞

log d(x, φθt (x))

log t
= δ(Π).

Here, δ(Π) is the polynomial diffusion rate. Note that this result is already
known for m = 1 and the diffusion rate is 2/3 independently of the billiard table
(see [DHL, Theorem 1]), and for almost every Π ∈ WT (m), for m > 1, with
diffusion rate δ(m) = 4m(m!)2/(2m+ 1)!, also independent of the billiard (see [DZ,
Theorem 1]). Moreover, the value of δ(Π) depends only on SL(2,R)-orbit closures
(of the compact translation surface associated to the wind-tree billiard). Anyway,
the interest of this result relies in the fact that the diffusion rate δ(Π) is positive for
every Π ∈ WT (m).

Recurrence. Avila–Hubert [AH] gave a geometric criterion for the recurrence
of a Zd-periodic translations surfaces in terms of good cylinders and proved the
recurrence for the original wind-tree model. Using this criterion, our approach
allows us to prove the recurrence for the Delecroix–Zorich variant. More precisely,
we have the following.

Theorem. For every wind-tree billiard Π ∈ WT (m) the billiard flow in Π is
recurrent for almost every direction θ ∈ [0, 2π).

This result is already known for m = 1 ([AH, Theorem 1]). Moreover, as ex-
plained to us by V. Delecroix, a criterion of recurrence due to Chevallier–Conze [CC,
Corollary 1.2] allows to conclude that the billiard flow φθt is recurrent in Π for al-
most every direction θ ∈ [0, 2π) when the polynomial diffusion rate (see above)
δ(Π) < 1/2. However, we only know that the polynomial diffusion rate is less than
1/2 for almost every Π ∈ WT (m) and only for m > 2 ([DZ, Theorem 1]).

4.2. Effective counting on Veech wind-tree models. Veech, in his seminal
work [Ve89], proved that for Veech surfaces (and billiards) there are exact quadratic
asymptotics:

N(X,L) = c(X)L2 + o(L2).

Moreover, the methods used by Veech [Ve89] allows to conclude an effective
version of the asymptotic formula above (see [Ve92, Remark 1.12]). Namely,

N(X,L) = c(X)L2 +O(L2δ(X)) +O(L4/3)
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as L→∞, for some δ(X) ∈ [1/2, 1). Furthermore, the number δ(X) has a specific
interpretation in terms of spectral properties of the Veech group.

We say that Π ∈ WT (m) is a Veech wind-tree billiard if the underlying surface
X(Π) is a Veech surface. In Chapter II, we present an effective version of the count-
ing problem, that is, the analogue of Veech’s result, for Veech wind-tree billiards.
More precisely, we prove the following.

Theorem. Let Π be a Veech wind-tree billiard. Then, there exists c(Π) > 0 and
δ(Π) ∈ (1/2, 1) such that

N(Π, L) = c(Π)L2 +O(L2δ(Π)) +O(L4/3)

as L→∞.

This result relies, on one hand, in the adaptation of Veech methods to our
context, which allows to keep track trajectories corresponding to good cylinders.
On the other hand, using tools from hyperbolic geometry we are able to handle
trajectories corresponding to bad cylinders.

Furthermore, in the simplest case, when Π is the wind-tree billiard with square
obstacles of side length 1/2, the Veech group of Π can be easily described and most
of the involved objects can be explicitly computed, such as the contribution on
the error term of the well behaved part of the periodic trajectories corresponding
to good cylinders. Using results of Roblin–Tapie [RT], we explicitly estimate the
contribution of the badly behaved family of periodic trajectories corresponding to
bad cylinders. More precisely, we prove the following.

Theorem 4.1. Let Π be the Veech wind-tree billiard with square obstacles of side
length 1/2, and let δ = δ(Π) ∈ (1/2, 1) be as in the conclusion on previous theorem.
Then,

δ < 0.9992.

Strategy of the proof. Veech [Ve89] proved that for Veech surfaces, there are
exact quadratic asymptotics and provided an effective version by means of spectral
properties of the Veech group (see [Ve92, Remark 1.12]). Applying Veech’s method
to the counting problem on Veech wind-tree models, we are able to prove the anal-
ogous result in the case of good cylinders. We give the order of the error term by
means of spectral properties of the Veech group of the underlying surface.

In the case of bad cylinders, this approach does not work anymore. However,
bad cylinders can be described in terms of an intricate but well described subgroup
Γbad of the Veech group. Using tools from hyperbolic geometry, thanks to ideas of
Dal’Bo [Da], we prove that the leading term on the counting of bad cylinders is
related to the critical exponent of the group Γbad, and using results of Brooks [Br],
we prove that this critical exponent is strictly less than 1.

The number δ(Π), giving the order of the error term, is completely defined by
spectral properties of the involved groups.

In the case of the wind-tree billiard with square obstacles of side length 1/2,
the underlying surface is a square-tiled surface whose Veech group is a congruence
subgroup of level 2. Thanks to a result of Huxley [Hu85], we know that low level
congruence groups satisfy the Selberg’s 1/4 conjecture. This gives the contribution
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of good cylinders to the error term. The critical exponent of Γbad requires much
more attention and we are not able to give its exact value. Using results of Roblin–
Tapie [RT], we estimate the critical exponent of Γbad. These estimates are far away
from being optimal, but up to our knowledge, this is the only existing tool.

4.3. Non-varying phenomenon. The result about the polynomial diffusion
rate on the classical wind-tree model due to Delecroix–Hubert–Lelièvre [DHL]
evince a first non-varying phenomenon. Namely, the diffusion rate equals 2/3 in-
dependently of the size of the obstacles. In Chapter III we exhibit a non-varying
phenomenon related to the counting problem we are interested in. More precisely,
we prove the following.

Theorem. Let Π(a, b) be a classical wind-tree model with rectangular obstacles
of side lenghts a, b ∈ ]0, 1[. Denote by Narea(Π(a, b), L) be the number of maximal
families of isotopic periodic trajectories (up to Z2-translations) of length at most L
in Π(a, b), weighted by the area covered by the family.

(1) For Lebesgue-almost every (a, b) ∈ ]0, 1[2 and, in particular, if a, b are rational

or can be written as 1/(1 − a) = x + z
√
D and 1/(1 − b) = y + z

√
D with

x, y, z ∈ Q and x+ y = 1 and D a positive square-free integer, then,

Narea(Π(a, b), L) ∼ 4

3π2
· πL2

1− ab.

(2) In any other case, we have the weak asymptotic formula

Narea(Π(a, b), L) “∼”
4

3π2
· πL2

1− ab.

Evincing thus a new non-varying phenomenon: in terms of Siegel–Veech con-
stants, this result means that the Siegel–Veech constant associated to this counting
on wind-tree models equals 4/3π2 independently of the size of the obstacles.

These non-varying phenomena are expected to some extent to occur and arise
from deep results on translation surfaces.

A connected component of a stratum of translation surfaces (or, more generally,
an affine invariant submanifold) is said to be non-varying if for every Teichmüller
curve in that component (resp. submanifold) the sum of positive Lyapunov ex-
ponents is the same. Such a non-varying phenomenon was observed numerically
by Kontsevich–Zorich along with the initial observations on Lyapunov exponents
for the Teichmüller geodesic flow [Ko, KZ97]. Nowadays, there are two types of
non-varying results. One for low genus, due to Chen–Möller [CM], which uses a
translation of the problem into algebraic geometry. The other one, for hyperelliptic
loci, due to Eskin–Kontsevich–Zorich [EKZ], which is a consequence of their main
result relating sum of Lyapunov exponents to Siegel–Veech constants and is thus re-
lated to the counting problems we are interested in. In particular, the non-varying
phenomenon for the sum of Lyapunov exponents is equivalent to the non-varying of
Siegel–Veech constants.

Motivated by the application to the wind-tree model, we study in Chapter III
a related counting problem: that of cylinders whose core curve passes through two
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marked regular Weierstrass points on hyperelliptic surfaces in a hyperelliptic com-
ponent (for the definition of the involved objects, see Chapter III); and we prove
the following non-varying phenomenon analogous to the one described above.

Theorem. Let µ be the affine invariant measure supported on the SL(2,R)-orbit
closure of an hyperelliptic surface X in a hyperelliptic component Hhyp(2g − 2) or
Hhyp(g − 1, g − 1), g > 1. Then, the (area) Siegel–Veech constant associated to the
counting problem of cylinders whose core curve passes through two marked regular
Weierstrass points equals





1

π2
· 1

2g − 1
, if X ∈ Hhyp(2g − 2),

1

π2
· 1

2g
, if X ∈ Hhyp(g − 1, g − 1).

It is a natural question whether this non-varying phenomenon takes place in
every hyperelliptic loci as well, as is the case for the counting problem of every
cylinder (and not only those that pass through prescribed Weierstrass points). We
prove that this is not true in general.

Strategy of the proof. From a hyperelliptic surface X in a hyperelliptic com-
ponent Hhyp(2g − 2) or Hhyp(g − 1, g − 1), g > 1, and given two fixed regular
Weierstrass points, we build three different translation surfaces which are coverings
of the original surface X. These coverings turn out to be hyperelliptic surfaces
as well. We introduce some collections of cylinders associated to the monodromy
of these coverings and describe the counting of cylinders whose core curve passes
through the two Weierstrass points in terms of one of these collections. By ele-
mentary considerations on the Siegel–Veech formula, we can relate the Siegel–Veech
constants of such collections of cylinders in X to their liftings on the coverings.

Decomposing the Siegel–Veech constants of the involved surfaces in terms of
these collections, we obtain a system of equations which allows us to describe the
Siegel–Veech constants of each collection in terms of those of the surfaces. Since
the surfaces are hyperelliptic, thanks to Eskin–Kontsevich–Zorich [EKZ], the result
is non-varying. Describing the hyperelliptic loci where the surfaces lie and putting
the values of the corresponding Siegel–Veech constants in the expression allows us
to compute explicitly the value of the Siegel–Veech constant associated to the con-
figurations and therefore, the one associated to the counting of cylinders whose core
curve passes through the two Weierstrass points.

We present a family of counterexamples for hyperelliptic loci which are not hy-
perelliptic components. Using similar ideas, we exhibit hyperelliptic surfaces where
the Siegel–Veech constant associated to the counting of cylinders whose core curve
passes through two marked Weierstrass points does not coincide with the corre-
sponding Siegel–Veech constant on the hyperelliptic loci where they lie.

Comming back to the wind-tree model, a simple description of good cylinders
shows that, in the classical model, they coincide with the cylinders whose core curve
passes through two specific regular Weierstrass points in a quotient of the surface
X = X(Π), which lies in the hyperelliptic component Hhyp(2) = H(2). Thus, the



BIBLIOGRAPHY 17

previous result and some elementary considerations on the Siegel–Veech formula
allows us then to conclude the result for wind-tree models.
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CHAPTER I

Counting problem on wind-tree models

Abstract. We study periodic wind-tree models, billiards in the plane endowed
with Z2-periodically located identical connected symmetric right-angled obsta-
cles. We show asymptotic formulas for the number of (isotopy classes of) closed
billiard trajectories (up to Z2-translations) on the wind-tree billiard. We also
compute explicitly the associated Siegel-Veech constant for generic wind-tree
billiards depending on the number of corners on the obstacle.

1. Introduction

The classical wind-tree model corresponds to a billiard in the plane endowed with
Z2-periodic obstacles of rectangular shape; the sides of the rectangles are aligned
along the lattice, see Figure 1.

Figure 1. Original wind-tree model.

The wind-tree model (in a slightly different version) was introduced by P. Ehren-
fest and T. Ehrenfest [EE] in 1912. J. Hardy and J. Weber [HaWeb] studied the
periodic version. All these studies had physical motivations.

Several advances on the dynamical properties of the billiard flow in the wind-tree
model were obtained recently using geometric and dynamical properties on moduli
space of (compact) flat surfaces; billiard trajectories can be described by the linear
flow on a flat surface.

A. Avila and P. Hubert [AH] showed that for all parameters of the obstacle
and for almost all directions, the trajectories are recurrent. There are examples
of divergent trajectories constructed by V. Delecroix [De]. The non-ergodicity was
proved by K. Fra̧cek and C. Ulcigrai [FU]. It was proved by V. Delecroix, P. Hubert
and S. Lelièvre [DHL] that the diffusion rate is independent either on the concrete
values of parameters of the obstacle or on almost any direction and almost any
starting point and is equals to 2/3. A generalization of this last result was shown
by V. Delecroix and A. Zorich [DZ] for more complicated obstacles. In this work
we study this last variant, corresponding to a billiard in the plane endowed with Z2-
periodic obstacles of right-angled polygonal shape; the obstacles being horizontally
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and vertically symmetric and the sides of the rectangles are aligned along the lattice,
see Figure 2 for an example.

Figure 2. Delecroix–Zorich variant.

This work concerns asymptotic formulas for the number of (isotopy classes of)
closed billiard trajectories (up to Z2-translations) on the wind-tree model. Note
that we do not count trajectories which go around a single closed trajectory several
times, and we are counting unoriented trajectories. This question has been widely
studied in the context of (finite) rational billiards and compact flat surfaces, and it is
related to many other questions such as the calculation of the volume of normalized
strata [EMZ] or the sum of Lyapunov exponents of the geodesic Teichmüller flow
[EKZ] on strata of flat surfaces (Abelian or quadratic differentials).

H. Masur [Ma88, Ma90] proved that for every flat surfaceX, there exist positive
constants c(X) and C(X) such that the number N(X,L) of (maximal) cylinders of
closed geodesics of length at most L satisfy

c(X)L2 ≤ N(X,L) ≤ C(X)L2

for large enough L. W. Veech [Ve89] proved that for Veech surfaces there are in fact
exact quadratic asymptotics; E. Gutkin and C. Judge [GJ00] gave a different proof.
Another proof for the upper quadratic bounds was given by Y. Vorobets [Vo97].
A. Eskin and H. Masur [EMa] gave yet another one and proved that for each
ergodic probability measure µ on strata of normalized (area 1) flat surfaces, there
is a constant c(µ) such that for almost every surface, N(X,L) ∼ c(µ) · πL2, that is,

lim
L→∞

N(X,L)

πL2
= c(µ).

The constant c(µ) is called the Siegel–Veech constant ([EMa]) of the counting prob-
lem; it is the constant in the Siegel–Veech formula ([EMa]), a Siegel-type formula
introduced by W. Veech [Ve98].

It is still an open problem whether all flat surfaces have exact quadratic asymp-
totics. The particular constants for several Veech surfaces have been computed ex-
plicitly by W. Veech [Ve89, Ve92], Y. Vorobets [Vo97], E. Gutkin and C. Judge [GJ00]
and M. Schmoll [Sc]. Constants for some families of non-Veech surfaces were also
given by A. Eskin, H. Masur and M. Schmoll [EMS] and A. Eskin, J. Marklof and
D. Witte Morris [EMW]. A. Eskin, H. Masur and A. Zorich [EMZ] computed the
Siegel–Veech constants for connected components of all strata of Abelian differen-
tials, and also described all possible configurations of cylinders of closed geodesics
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which might be found on a generic flat surface. In general, the particular constants
for Veech surfaces do not coincide with the Siegel–Veech constants of the strata
where they live.

The case of quadratic differentials presents extra difficulties. However, J. Athreya,
A. Eskin and A. Zorich [AEZ] gave explicit values for the Siegel–Veech constants
on strata of quadratic differentials of genus zero surfaces. E. Goujard [Gj] general-
ized this approach to higher genera and obtained some exact values of Siegel–Veech
constants for strata of quadratic differentials away from genus zero.

We prove asymptotic formulas for generic wind-tree models with respect to a
natural Lebesgue-type measure (see [AEZ, DZ]) on the parameters of the wind-
tree billiards, that is, the side lengths of the obstacles. Denote byWT (m) the family
of wind-tree billiards such that the obstacle has 4m corners with the angle π/2. Say,
all billiards from the original wind-tree family as in Figure 1 live in WT (1); the
billiard in Figure 2 belongs to WT (17). We denote by Area (Π/Z2) the area of a
fundamental domain of the Z2-periodic billiard table Π ∈ WT (m).

Theorem 1.1. For almost every wind-tree billiard Π ∈ WT (m) the number
N(Π, L) of closed billiard trajectories of length at most L in Π (up to isotopy and
Z2-translations) has quadratic asymptotic growth rate

N(Π, L) ∼ c(m) · πL2

Area (Π/Z2)
,

where

c(m) =

(
20m2 − 95m− 78 + 78 · 4m (m!)2

(2m)!

)
1

6π2
.

The constant c(m) is not the Siegel–Veech constant of one particular surface, but
corresponds to Siegel–Veech constants of some particular configurations of cylinders
on compact flat surfaces associated to generic wind-tree billiards.

On the other hand, A. Eskin, M. Mirzakhani and A. Mohammadi [EMM] showed
that for all (area 1) flat surfaces we have weak quadratic asymptotic formulas,

lim
L→∞

1

L

∫ L

0

N(X, et)

πe2t
dt = c(X),

which we write N(X,L) “∼” c(X) · πL2. The constant c(X) being the Siegel–Veech
constant associated to the affine invariant measure supported on the SL(2,R)-orbit
closure of the surface X given by general invariant measure classification theorem
of A. Eskin and M. Mirzakhani [EMi].

Using this technology, one can prove weak asymptotic formulas for individual
wind-tree billiards. In particular, the following holds.

Theorem 1.2. Let Π ∈ WT (m) be a wind tree billiard.

(1) Suppose that one of the following conditions holds
(a) All the parameters of Π are rational, or
(b) m = 1 and there exists a square-free integer D > 0 such that the two

parameters of Π, say a, b ∈ (0, 1), can be written as 1/(1 − a) = x + z
√
D

and 1/(1− b) = y + z
√
D with x, y, z ∈ Q and x+ y = 1.
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Then,

N(Π, L) ∼ c(Π) · πL2

Area (Π/Z2)
.

(2) In any other case, we have the weak asymptotic formula

N(Π, L) “∼” c(Π) · πL2

Area (Π/Z2)
.

The case (1) corresponds to (particular cases of) Veech surfaces and formulas for
the Siegel–Veech constants can be obtained following an approach similar to the one
of E. Gutkin and C. Judge [GJ00, § 6]. In the case (a), when the parameters are
rational, it corresponds to square-tiled surfaces and it is possible to obtain formulas
similar to the obtained by A. Eskin, M. Kontsevich and A. Zorich [EKZ, Theorem 4].
In the other cases we do not know the Siegel–Veech constants for every wind-tree
billiard. However, it depends only on SL(2,R)-orbit closures (of a compact flat
surface associated to the wind-tree billiard) and, in particular, it coincides with
c(m) for generic billiards.

1.1. Strategy of the proof. We reformulate the counting problem on wind-
tree billiards in terms of a counting problem on a Z2-periodic flat surface. This is
quite elementary and straightforward. For details on the reduction of the study of
the billiard flow into the study of a Z2-cocycle over the linear flow of a finite flat
surface, see [DHL, § 3].

In general, we can consider an infinite flat surface X∞ which is a ramified Zd-
cover over a compact flat surface X, d ≥ 1 (d = 2 in our case). Let Σ be the finite
set of singularity points of X. Since the intersection form 〈·, ·〉 is non-degenerate
between H1(X \ Σ,Z) and H1(X,Σ,Z), every such Zd-cover is defined by a d-
tuple of independent elements f = (f1, . . . , fd) in the group of relative cohomology
H1(S,Σ,Z), but we restrict ourselves to the case when f ∈ H1(X,Zd) —this is the
case of the infinite Z2-periodic flat surface associated to a wind-tree model.

We are interested in counting (maximal) cylinders of closed geodesics in X∞ (up
to Zd-translations, of course). Cylinders of closed geodesics in the cover X∞ clearly
descends to cylinders in X, but not the other way around. In fact, by definition of
the covering, cylinders in the cover X∞ are exactly the lift of those cylinders C in
X such that γC , (the Poincaré dual of the homology class of) its core curve, verifies
〈γC , fi〉 = 0, for each i = 1, . . . , d.

One of the main tools used in this kind of problems (and many others) is the
SL(2,R)-action on strata of flat surfaces (see, e.g., [EMa, EMZ]) and the asso-
ciated cocycle over the Hodge bundle, the Kontsevich–Zorich cocycle. Let M be
the SL(2,R)-orbit closure of X, F be a subbundle of the Hodge bundle over M,
invariant with respect to the Kontsevish–Zorich cocycle, and let f ∈ FX .

Note that cylinders C in X such that 〈γC , f〉 = 0 split naturally into two families:
(a) the family of cylinders such that 〈γC , h〉 = 0 for all h ∈ FX , which we call F -
good cylinders, and (b) the family of cylinders that are not F -good, but 〈γC , f〉 = 0.
These later are called (F, f)-bad cylinders. This notion of F -good cylinders was first
introduced by A. Avila and P. Hubert [AH] in order to give a geometric criterion
for recurrence of Zd-periodic flat surfaces.
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Thus, counting cylinders in a Zd-periodic flat surface can be reduced to count
separately cylinders which are (⊕jF (j))-good cylinders and (F (ji), fi)-bad cylinders
in the compact surface, for some appropriate subbundles (F (j))j.

In the case of the classical wind-tree model, that is, for m = 1, V. Delecroix,
P. Hubert and S. Lelièvre [DHL] gave a complete description of the cocycles defining
the surfaces and the corresponding decomposition of the Hodge bundle, which allows
us to successfully apply this approach. This is extended naturally to the Delecroix–
Zorich variant (m > 1). In fact, for every Π ∈ WT (m), there are two cocycles
h and v in a compact flat surface X = X(Π) defining the Z2-periodic flat surface
X∞ = X∞(Π) associated to Π and two 2-dimensional equivariant subbundles, which
we denote by F+− and F−+, such that h ∈ F+− and v ∈ F−+.

Using the main result of A. Eskin and H. Masur in [EMa], it is a straightforward
remark that we have asymptotic formulas for the number of F -good cylinders with
an associated Siegel–Veech constant, for generic surfaces, for any SL(2,R)-ergodic
finite measure on any normalized strata. In the case of (F, f)-bad cylinders, this is
no longer true. However, in the case of the wind-tree model, we prove the following.

Theorem 1.3. Let Π ∈ WT (m) be a wind-tree billiard, X = X(Π) the associated
compact flat surface and let F be one of the associated subbundles F+− or F−+.
Then, for any f ∈ FX the number NF (f, L), of (F, f)-bad cylinders in X of length
at most L, has subquadratic asymptotic growth rate, that is, NF (f, L) = o(L2) or,
which is the same,

lim
L→∞

NF (f, L)

πL2
= 0.

We use technology for asymptotic formulas developed by A. Eskin and H. Ma-
sur [EMa] in order to prove (a slightly more general version of) Theorem 1.3. For
this, we need in addition the condition of non-zero Lyapunov exponents for to the
relevant subbundles F+− and F−+. This is true for almost every wind-tree billiards
thanks to one of the main results of V. Delecroix and A. Zorich in [DZ]. For the
statement to be true for every wind-tree billiard, we use (a slightly more general
version of) the so called Forni’s criterion due to G. Forni [Fo], a geometric criterion
for the positivity of Lyapunov exponents, applied to integer equivariant subbundles.

As a consequence of Theorem 1.3, the proof of Theorem 1.1 is reduced to compute
the Siegel–Veech constant associated to configurations of F+−⊕F−+-good cylinders.
Furthermore, Theorem 1.2 becomes a compilation of several different results and we
omit its proof here; it is almost identical to the proof of Theorem 1.7 in [AEZ], after
the reduction given by Theorem 1.3, to the problem of counting only F+− ⊕ F−+-
good cylinders.

For the computation of the Siegel–Veech constant associated to configurations
of F+−⊕F−+-good cylinders, we make use of extra symmetries in the surface X(Π)
to describe it as a cover of lower genus surfaces. In particular, configurations of
F+−⊕F−+-good cylinders are related to configurations of cylinders on some strata
of genus zero surfaces, such that they lift to homologically trivial cylinders on some
strata of genus one surfaces.

C. Boissy [Bo] described all possible configurations on generic surfaces in genus
zero. Using this, we describe all possible configurations of cylinders satisfying the
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homological conditions ensuring they correspond to F+− ⊕ F−+-good cylinders.
Then, we relate Siegel–Veech constants of configurations in the genus zero surface
with the constant for the higher genus surface and do the combinatorics. Finally,
plugging in the resulting expression the explicit values of the Siegel–Veech constants
for configurations on generic surfaces of genus zero obtained by J. Athreya, A. Eskin
and A. Zorich [AEZ] and, proving certain combinatorial identities for resulting
hypergeometric sums, we obtain the desired explicit value of c(m).

1.2. Side results. As a by-product of our methods, we obtain several results
as detailed below.

Area Siegel-Veech constant. Following the same strategy, we are able to
compute the area Siegel–Veech constant, associated to the counting of the area
of maximal families of isotopic compact trajectories. More precisely, we have the
analogous of Theorem 1.1:

Theorem 1.4. For almost every Π ∈ WT (m) the weighted number Narea(Π, L)
of maximal families C of isotopic closed billiard trajectories of length at most L in
Π (up to Z2-translations), where the weight is the ratio Area (C) /Area (Π/Z2), has
quadratic asymptotic growth rate

Narea(Π, L) ∼ carea(m) · πL2

Area (Π/Z2)
,

where

carea(m) =

(
8m− 33 + 39 · 4m (m!)2

(2m+ 1)!

)
4

3π2
.

Polynomial diffusion. Let d(·, ·) be the Euclidean distance on R2 and consider
the wind-tree billiard table Π ∈ WT (m) as a subset of R2. Let (φθt )t∈R be the billiard
flow in direction θ ∈ [0, 2π) on Π, that is, φθt (x) is the position of a particle after
time t starting from position x ∈ Π in direction θ.

The application of the Forni’s criterion to the relevant subbundles F+− and
F−+ allows us to show that they have non-zero Lyapunov exponents. Applying the
result [DZ, Corollary 1] of V. Delecroix and A. Zorich, which is a generalization
of the analogous result for the classical model due to V. Delecroix, P. Hubert and
S. Lelièvre [DHL], we obtain the following.

Theorem 1.5. For every wind-tree billiard Π ∈ WT (m) there exists δ(Π) > 0
such that for almost every direction θ ∈ [0, 2π) and every starting point (with infinite
forward orbit)

lim sup
t→∞

log d(x, φθt (x))

log t
= δ(Π).

Here, δ(Π) is the polynomial diffusion rate and coincides with the Lyapunov
exponent mentioned above. Note that this result is already known for m = 1 and
the diffusion rate δ is 2/3 independently of the billiard table (see [DHL, Theorem 1]),
and for almost all Π ∈ WT (m), for m > 1, with δ(m) = 4m(m!)2/(2m + 1)!, also
independent of the billiard (see [DZ, Theorem 1]). Moreover, the value of δ(Π)
depends only on SL(2,R)-orbit closures (of the compact flat surface associated to
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the wind-tree billiard). Anyway, the interest of this result relies in the fact that the
diffusion rate δ(Π) is positive for every Π ∈ WT (m).

Recurrence. A. Avila and P. Hubert [AH] gave a geometric criterion for the
recurrence of a Zd-periodic flat surfaces in terms of good cylinders and proved the
recurrence for the original wind-tree model. Using this criterion, our approach allows
us to prove the recurrence for the Delecroix–Zorich variant. More precisely, we have
the following.

Theorem 1.6. For every wind-tree billiard Π ∈ WT (m) the billiard flow in Π
is recurrent for almost every direction θ ∈ [0, 2π).

This result is already known for m = 1 (see [AH, Theorem 1]). Moreover, as
explained to us by V. Delecroix, a criterion of recurrence due to N. Chevallier and
J.-P. Conze [CC, Corollary 1.2] allows us to conclude that the billiard flow φθt is
recurrent in Π for almost every direction θ ∈ [0, 2π) if the polynomial diffusion rate
(see above) δ(Π) < 1/2. However, we only know that the polynomial diffusion rate
is less than 1/2 for almost every Π ∈ WT (m) and only for m > 2.

1.3. Structure of the paper. In § 2 we briefly recall all the background nec-
essary to formulate and prove the results. In § 3 we do the reduction of the count-
ing problem on general Zd-periodic flat surfaces to the counting of (⊕jF (j))-good
cylinders and (F (ji), fi)-bad cylinders in the compact surface, for some appropriate
subbundles (F (j))j of the Hodge bundle. In § 4 we prove Theorem 4.1, a slightly
more general version of Theorem 1.3, but with the extra condition that some par-
ticular Lyapunov exponent is positive. In § 5 we show that the relevant Lyapunov
exponent is positive applying the Forni’s criterion to integer equivariant subbundles,
which ends the proof of Theorem 1.3 and allows us to reduce the problem to the
counting of F+− ⊕ F−+-good cylinders. In § 6 we study configurations of cylinders
on generic genus zero surfaces in order to describe F+− ⊕ F−+-good cylinders. In
§ 6.1 we show which configurations of cylinders on generic genus zero surfaces lift
to F+− ⊕ F−+-good cylinders in the higher genus surface by means of topological
considerations. Then, in § 6.2, we describe how these cylinders lift to the higher
genus surface, that is, the number of cylinders we obtain and their length. With
this, we are able to relate in § 6.3 the Siegel–Veech constants of the genus zero and
the higher genus surfaces.

Finally, in § 7 we compute the Siegel–Veech constant of F+−⊕ F−+-good cylin-
ders: we count the possible configurations taking part in the computations and plug
in the explicit values of the Siegel–Veech constants obtained by J. Athreya, A. Eskin
and A. Zorich [AEZ]. This allows us to conclude the computations by means of
a combinatorial identity for certain hypergeometric sums proved separately in an
appendix.

Side results mentioned above are proved in § 8.
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2. Background

2.1. Flat surfaces. For an introduction and general references to this sub-
ject, we refer the reader to the surveys of Zorich [Zo06], Forni–Matheus [FM],
Wright [Wr].

Flat surfaces and strata. Let g > 1, α = {n1, . . . , nk} ⊂ N be a partition of
2g − 2 and H(α) be a stratum of Abelian differentials, that is, the space of pairs
X = (S, ω) where ω is a holomorphic 1-form on a Riemann surface S of genus g,
with zeros of degrees n1, . . . , nk ∈ N. Let Σ = Σ(ω) be the set of singularities of
X, the zeros of ω. The form ω defines a canonical flat metric on S with conical
singularities of angle 2π(n+ 1) at zeros of degree n of ω.

We also consider strataQ(d1, . . . , dk) of meromorphic quadratic differentials with
at most simple poles, the spaces of pairs (S, q) where q is a meromorphic quadratic
differential on a Riemann surface S of genus g with zeros of order d1, . . . , dk, di ∈
{−1} ∪ N for i = 1, . . . , k (in a slight abuse of vocabulary, we are considering poles

as zeros of order −1) and
∑k

i=1 di = 4g− 4. The quadratic differential q also defines
a canonical flat metric with conical singularities of angle π(d+2) at zeros of order d.

In this paper, a quadratic differential is not the square of an Abelian differential
and a flat surface is the Riemann surface with the flat metric corresponding to an
Abelian or quadratic differential.

The area of a flat surface is the one obtained from the flat metric. Let H1(α)
denote the codimension 1 subspace of area 1 on H(α) denote the codimension 1
subspace of (flat) area 1.

SL(2,R)-action and the Teichmüller geodesic flow. There is a natural ac-
tion of SL(2,R) on strata of Abelian differentials, which generalizes the action of
SL(2,R) on the space GL(2,R)

/
SL(2,Z) of flat tori. Let

gt =

(
et 0
0 e−t

)
and rθ =

(
cos θ sin θ
− sin θ cos θ

)
.

The element rθ ∈ SL(2,R) acts by (S, ω) 7→ (S, eiθω). This has the effect of ro-
tating the flat surface by the angle θ ∈ [0, 2π). The action of (gt)t∈R is called the
Teichmüller geodesic flow.

Affine invariant measures and manifolds. Each stratum carries a natural
Lebesgue measure, invariant under the action of SL(2,R), which is given by the
pullback of the Lebesgue measure on H1(S,Σ,C) ∼= C2g+k−1.

An affine invariant manifold is an SL(2,R)-invariant closed subset of H1(α),
which looks like an affine subspace in period coordinates (see, e.g., [Zo06, § 3]).
Each affine invariant manifold M is the support of an ergodic SL(2,R)-invariant
probability measure νM. Locally, in period coordinates, this measure is (up to
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normalization) the restriction of Lebesgue measure to the subspace M (see [EMi]
for the precise definitions). Eskin–Mirzakhani–Mohammadi [EMM] proved that
any SL(2,R)-orbit closure is an affine invariant manifold. The most important
case of an affine invariant manifold is a connected component of a stratum H1(α).
Masur [Ma82] and Veech [Ve82] independently proved that in this case, the total
mass of this measure is finite and ergodic with respect to the Teichmüller geodesic
flow. The associated affine measure is known as the Masur–Veech measure.

Hodge bundle and the Kontsevich–Zorich cocycle. The (real) Hodge bun-
dle H1 is the real vector bundle of dimension 2g over an affine invariant manifoldM,
where the fiber over X = (S, ω) is the real cohomology H1

X = H1(S,R). Each fiber
H1
X has a natural lattice H1

X(Z) = H1(S,Z) which allows identification of nearby
fibers and definition of the Gauss–Manin (flat) connection. The monodromy of
the Gauss–Manin connection restricted to SL(2,R)-orbits provides a cocycle called
the Kontsevich–Zorich cocycle, which we denote by A(g,X), for g ∈ SL(2,R) and
X ∈M. The Kontsevich–Zorich cocycle is a symplectic cocycle because it preserves
the intersection form 〈f1, f2〉 =

∫
S
f1 ∧ f2 on H1(S,R), which is a symplectic form

on the 2g-dimensional real vector space H1(S,R). Let ‖ · ‖ω be the Hodge norm (for
precise definition see, e.g., [FM, § 3.4]). The Hodge norm depends continuously on
(S, ω), but is not preserved by the Kontsevich–Zorich cocycle in general.

Lyapunov exponents. Given any affine invariant manifoldM, we know from
Oseledets theorem that there are real numbers λ1(M) ≥ · · · ≥ λ2g(M), the Lya-
punov exponents, and a measurable gt-equivariant filtration of the Hodge bundle
H1(S,R) = V1(X) ⊃ · · · ⊃ V2g(X) = {0} at νM-almost every X = (S, ω) ∈M and

lim
t→∞

1

t
log ‖A(gt, X)f‖gtω = λi

for every f ∈ Vi \ Vi+1.

Theorem 2.1 (Chaika-Eskin [CE]). Let X be a flat surface and M be the
SL(2,R)-orbit closure of X. Then, for almost every θ ∈ [0, 2π) we have the gt-
equivariant filtration H1(S,R) = V1(rθX) ⊃ · · · ⊃ V2g(rθX) = {0} and, for every
f ∈ Vi \ Vi+1,

lim
t→∞

1

t
log ‖A(gt, rθX)f‖gtrθω = λi(M).

The set Λ(M) of Lyapunov exponents is called Lyapunov spectrum (of the
Kontsevich–Zorich cocycle over the Teichmüller flow on M). The fact that the
Kontsevich–Zorich cocycle is symplectic means that the Lyapunov spectrum is al-
ways symmetric, Λ(M) = −Λ(M).

Equivariant subbundles of the Hodge bundle. LetM be an affine invariant
submanifold and F a subbundle of the Hodge bundle over M. We say that F is
equivariant if it is invariant under the Kontsevich–Zorich cocycle, and we say that
F is irreducible if it has no proper equivariant subbundles. Since M is SL(2,R)-
invariant, by the definition of the Kontsevich–Zorich cocycle, a flat (locally constant)
subbundle is always equivariant.
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Previous discussion about Lyapunov exponents applies in this context as well and
we have that, as before, for every X = (S, ω) ∈ M such that M is the SL(2,R)-
orbit closure of X and almost every θ ∈ [0, 2π), there is a gt-equivariant filtration
FrθX = U1(rθX) ⊃ · · · ⊃ Ur(rθX) = {0}, where r = rankF = dimFX and, for every
f ∈ Ui \ Ui+1,

lim
t→∞

1

t
log ‖A(gt, rθX)f‖gtrθω = λi(M, F ).

The Lyapunov spectrum restricted to F is Λ(M, F ) = {λi(M, F )}ri=1 ⊂ Λ(M).

Remark 2.2. If F is irreducible and admits a non-zero Lyapunov exponent in
its Lyapunov spectrum, then F is symplectic with respect to the intersection form,
that is, the symplectic intersection form is non-degenerate on F (this is a nontrivial
fact that can be deduced from [EMi, Theorem A.9], which in turn is deduced from
[FMZ]). In particular, F is an even-dimensional subbundle and, as before, the
associated Lyapunov spectrum is symmetric, Λ(M, F ) = −Λ(M, F ).

We denote by F † the symplectic complement of F and, when F is symplectic,
define F pr

X (Z) = prFXH
1
X(Z), where prFX : H1

X → FX is the symplectic projection,

that is, the first component of the decomposition H1
X = FX ⊕ F †X .

We denote by FX(Z) = FX∩H1
X(Z) the set of integer cocycles in FX . We say that

F is defined over Z if it is generated by integer cocycles, that is, if FX = 〈FX(Z)〉R.
When F is defined over Z, FX(Z) is a lattice in FX . If, in addition, F is symplectic,
we have that F pr

X (Z) is also a lattice and FX(Z) ⊂ F pr
X (Z).

2.2. Counting problem. We are interested in the counting of closed geodesics
of bounded length on flat surfaces.

Cylinders of closed geodesics and saddle connections. Together with ev-
ery closed regular geodesic in a flat surface X = (S, ω) (resp. (S, q)) we have a
bunch of parallel closed regular geodesics. A cylinder on a flat surface is a maximal
open annulus filled by isotopic simple closed regular geodesics. A cylinder C is iso-
metric to the product of an open interval and a circle, and its core curve γC is the
geodesic projecting to the middle of the interval. A saddle connection is a geodesic
joining two different singularities or a singularity to itself, with no singularities in
its interior. Cylinders are always bounded by parallel saddle connections.

Holonomy. Integrating ω (resp. a locally defined square-root of q) along the
core curve of a cylinder, a saddle connection or, more generally, any homology
class γ ∈ H1(S,Σ,Z), we get a complex number. Considered as a planar vector, this
complex number represents the affine holonomy along γ and we denote this holonomy
vector by holω(γ). In particular, in the case of a cylinder or saddle connection, its
euclidean length corresponds to the modulus of its holonomy vector.

Systole. Let sys(X) be the systole of the flat surface X, that is, the length of
its shortest saddle connection, and let Kε = {X : sys(X) ≥ ε}. Kε form a compact
exhaustion on any affine invariant manifold (which are never compact).
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Counting problem and Siegel–Veech constants. Consider the set of all
cylinders on a flat surface X and consider its image V (X) ∈ R2 ∼= C under the
holonomy map, V (X) = {holγC : C is a cylinder in X}. This is a discret set of
R2. We are concerned with the asymptotic behavior of the number N(X,L) =
#V (X) ∩B(L) of cylinders in X of length at most L, when L→∞.

Theorem 2.3 (Eskin–Masur [EMa]). Let M be an affine invariant manifold.
Then, there is a constant c(M) such that for νM-almost all X ∈M

(1) lim
L→∞

N(X,L)

πL2
= c(M),

where c(M) is the Siegel–Veech constant given by the Siegel–Veech formula

(2) c(M) =
1

πρ2

∫

M
N(Y, ρ)dνM(Y ).

We use some of the tools developed by Eskin–Masur when proving this theorem.
In particular, the following are of special utility to us.

Theorem 2.4 ([EMa, Theorem 5.1(b)]). For any X ∈ H(α) and all δ, ρ > 0,

N(X, ρ) ≤ c(ρ, δ)

sys(X)1+δ
.

Theorem 2.5 ([EMa, Theorem 5.2]). For any X ∈ H(α), any β < 2 and all
t > 0, ∫ 2π

0

dθ

sys(gtrθX)β
≤ c(X, β).

We remark that these two results are true for every flat surface, in contrast to
Theorem 2.3, which holds for almost every flat surface.

Configurations of cylinders. A collection C = {C1, . . . , Cn} of cylinders de-
termines the data on combinatorial geometry of the decomposition of S \ C. It
determines the number of components, their boundary structure, the singularity
data for each component and how the components are glued to each other. These
data are referred to as configuration of cylinders (see [EMZ]). The multiplicity of
a configuration is the number of cylinders it defines. Remark that we reserve the
notion of configuration for geometric types of possible collections of cylinders, and
not for the collections themselves.

In this work, we are only concerned with multiplicity one configurations, that
is, those defining a single cylinder. We are also concerned with some homological
conditions —and not only the geometric combinatorics— when considering configu-
rations (see § 3). However, this information is also carried by configurations because
of topological considerations.

Remark 2.6. Let C be a configuration of cylinders and consider now NC(X,L),
the number of cylinders in X of length at most L forming a configuration of type C.
Then, the analogous of Theorem 2.3 is also true in this context (see [EMa, EMZ]),
with the Siegel-Veech constant associated to this counting problem depending also
on the configuration, cC(M) = c(C,M).
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2.3. Configuration of cylinders in genus zero and associated Siegel–
Veech constants. Boissy [Bo] described all generic configurations of cylinders for
flat surfaces in genus zero and Athreya–Eskin–Zorich [AEZ] provided the values
of the corresponding Siegel–Veech constants. In this section we recall briefly this
results (cf. [DZ, Section 4.2]).

According to [Bo] and [MZ], for almost any flat surface in any stratum of mero-
morphic quadratic differentials with at most simple poles on the sphere , different
from Q(−14), every single regular closed geodesic corresponds to one of the two
configurations described below.

Pocket configurations. These configurations are defined by single cylinders
bounded by a saddle connection joining a fixed pair of poles Pj1 , Pj2 and by a saddle
connection joining a fixed zero Pi of order di ≥ 1 to itself (see Figure 3). By
convention, the holonomy associated to these configurations corresponds to closed
geodesics and not to the saddle connection joining the two poles, which is twice as
short as the closed geodesic.

Pi

Pj1

Pj2

Figure 3. A pocket configuration formed by cylinders bounded by a
saddle connection joining two fixed poles on one side and by a saddle
connection joining a fixed zero to itself on the other.

The Siegel–Veech constant cpocket
j1,j2;i corresponding to these configurations has the

form ([AEZ, Theorem 4.5])

cpocket
j1,j2;i =

di + 1

k − 4

1

2π2
.

If we consider the union of several pocket configurations, fixing the poles Pj1 , Pj2
and considering any zero Pi on the boundary of the cylinder, then the result-
ing Siegel–Veech constant cpocket

j1,j2
corresponding to this configuration has the form

([AEZ, Corollary 4.7])

(3) cpocket
j1,j2

=
1

2π2
.

Dumbbell configurations. In this case, we still have a single cylinder, which
is now bounded by saddle connections joining a fixed zero to itself on each side.
Say, a saddle connection joining the fixed zero Pi1 of order di1 ≥ 1 to itself and
the other, joining the fixed zero Pi2 of order di2 ≥ 1 to itself (see Figure 4). Such
a cylinder separates the original surface W in two flat spheres. Let Pi11 , . . . , Pi1k1

be the singularities (zeros and poles) on one part and Pi21 , . . . , Pi2k2
, the rest. In

particular, we have i1 ∈ {i11, . . . , i1k1} and i2 ∈ {i21, . . . , i2k2}. All this information
is carried by the configuration.



2. BACKGROUND 33

Pi1

Pi2

Figure 4. A dumbbell configuration, consisting of two flat spheres
joined by a cylinder whose boundary components are saddle connec-
tions joining a zero to itself.

Denoting by di the order of the singularity Pi, we can represent the sets (with
multiplicities) of orders of all zeros and poles α := {d1, . . . , dk} as a disjoint union
of the two subsets

α = {di11 , . . . , di1k1
} t {di21 , . . . , di2k2

} =: α1 t α2.

The corresponding Siegel–Veech constant cdumbbell
i1,i2;α1,α2

is given by ([AEZ, Theo-
rem 4.8],

(4) cdumbbell
i1,i2;α1,α2

= (di1 + 1)(di2 + 1)
(k1 − 3)!(k2 − 3)!

(k − 4)!

1

2π2

2.4. From billiards to flat surfaces. Recall that in the classical case of a
billiard in a rectangle we can glue a flat torus out of four copies of the billiard table
and unfold billiard trajectories to flat geodesics of the same length on the resulting
flat torus.

Wind-tree model. The wind-tree model corresponds to a billiard Π in the
plane endowed with Z2-periodic horizontally and vertically symmetric right-angled
obstacles, where the sides of the obstacles are aligned along the lattice as in Figure 1
and Figure 2.

In the case of the wind-tree model we also start from gluing a flat surface out
of four copies of the infinite billiard table Π. The resulting surface X∞ = X∞(Π) is
Z2-periodic with respect to translations by vectors of the original lattice. Passing
to the Z2-quotient we get a compact flat surface X = X(Π). For the case of the
original wind-tree billiard, with rectangular obstacles, the resulting flat surface is
represented at Figure 5. It has genus 5 and belongs to the stratumH(24) (see [DHL,
§ 3] for details).

Similarly, when the obstacle has 4m corners with the angle π/2 —and 4(m− 1)
with angle 3π/2—, the same construction gives a flat surface of genus 4m + 1 in
H(24m), consisting in four flat tori with holes (four copies of a Z2 fundamental
domain of Π, the holes corresponding to the obstacles) with corresponding identifi-
cations, as in the classical setting (m = 1, see Figure 5). LetWT (m) denote the set
of wind-tree billiards Π whose obstacles have 4m corners with angle π/2. The space
WT (m) has a natural Lebesgue measure coming from the consideration of lengths
and position of the sides of the obstacle. The construction Π 7→ X(Π) defines a map
WT (m)→ H(24m) and we define B(m) to be the image of this map, that is, the set
of all compact surfaces X(Π) such that Π ∈ WT (m), and we consider in B(m) the
pushforward of the measure on WT (m).
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h01 h11

v00

v01

v10

v11

h00 h10

Figure 5. The flat surface X obtained as quotient over Z2 of an
unfolded wind-tree billiard table ([DZ, Figure 5]).

Note that any resulting flat surface X ∈ B(m) has (at least) the group (Z2)3 as
a group of isometries. We have the isometry τh, interchanging the pairs of flat tori
with holes in the same rows by parallel translations, the isometry τv, interchanging
columns, and ι, the isometry acting on each of the four tori with holes as the central
symmetry with the center in the center of the hole (rotation by π).

Consider the quotient Wh of the flat surface X over the subgroup (Z2)2 of isome-
tries spanned by τh and ι ◦ τv. The resulting surface Wh (see Figure 6a) belongs to
the stratum Q(12m,−12m). In particular, it has genus 1, Wh = (Eh, qh). Similarly,
Wv = X

/
〈τv, ι ◦ τh〉 = (Ev, qv) ∈ Q(12m,−12m). The surface W obtained as the

quotient of the original flat surface X over the entire group (Z2)3 (see Figure 6b) be-
longs to the stratum Q(1m,−1m+4). In particular, it has genus zero, W = (CP1, q).
Clearly, Wh and Wv are ramified double covers over W with ramification points at
four (out of m+4) simple poles of the flat surface W (see [DZ, § 3.1, 3.2] for details).
Moreover, Wh and Wv share three out of their four ramified simple poles.

Furthermore, the isometries τh and τv decompose the Hodge bundle overM. In
fact, we have that

H1
X = E++ ⊕ E+− ⊕ E−+ ⊕ E−−,

where E++ is the vector space invariant by τh and τv, E
+− the vector space invariant

by τh and anti-invariant by τv, etc. This decomposition is flat, defined over Z and
symplectic; each subbundle is symplectic and the sum is orthogonal with respect to
the intersection form.

Consider now the cohomology classes h, v ∈ H1(X,Z) Poincaré-dual to the cycles
h00−h01 +h10−h11 and v00− v10 + v01− v11 respectively (see Figure 5) as elements
of the fiber over the point X of the (real) Hodge bundle H1 over the SL(2,R)-orbit
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(a) Wh = (Eh, qh) ∈ Q(12m,−12m). (b) W = (CP1, q) ∈ Q(1m,−1m+4).

Figure 6. The flat surface Wh is a double cover over the underlying
surface W branched at the four simple poles represented by bold dots
([DZ, Figure 7]).

closure of X ∈ B(m). The pair (h, v) ∈ H1(X,Z2) defines the Z2-covering X∞ of
X and the coordinates of this Z2-cocycle defining X∞ belong to E+− ⊕ E−+, more
precisely, we have that h ∈ E+− and v ∈ E−+.

We further consider F+− ⊂ E+−, the vector space invariant by τh and ι ◦ τv,
which is naturally isomorphic to the Hodge bundle over the genus one flat surface
Wh = (Eh, qh). Then, F+− is a two dimensional, defined over Z, flat —it is lo-
cally defined by two cocycles in H1(X,Z) and the Gauss–Manin connection— and
symplectic subbundle of the Hodge bundle. In particular, it is continuous and equi-
variant (invariant with respect to the Kontsevich–Zorich cocycle). Analogously, we
consider F−+ ⊂ E−+, the vector space invariant by τv and ι◦ τh, with the analogous
properties. We have that h ∈ F+− and v ∈ F−+ (see [DZ, Lemma 3.1]).

Theorem 2.7 (Delecroix–Zorich [DZ]). For almost every billiard Π ∈ WT (m),
the GL(2,R)-orbit closure of W(Π) coincides with the whole stratum Q(1m,−1m+4)
and the Lyapunov exponents on the SL(2,R)-orbit closure of X(Π) over the subbun-
dles F+− and F−+ are ±δ(m), where

δ(m) =
(2m)!!

(2m+ 1)!!
= 4m

(m!)2

(2m+ 1)!
> 0.

Here, the double factorial means the product of all even (correspondingly odd)
natural numbers from 2 to 2m (correspondingly from 1 to 2m+ 1). For the original
wind-tree model, that is, when m = 1, this was first shown by Delecroix–Hubert–
Lelièvre [DHL]. In this case we have, in particular, that F+− = E+−, F−+ = E−+

and δ(1) = 2/3.
Since the subbundles F+− and F−+ have non-zero Lyapunov exponents and are

2-dimensional, they are irreducible and then, symplectic (see Remark 2.2).
In this work, we are concerned with counting closed trajectories in the wind-tree

billiard. Obviously, any closed trajectory can be translated by an element in Z2

to obtain a new closed trajectory. Then, we shall count (isotopy classes of) closed
trajectories of bounded length in the wind-tree billiard up to Z2-translations. There
is a one to one correspondence between billiard trajectories in Π and geodesics in
X∞. But X∞ is the Z2-covering of X given by h, v ∈ H1(X,Z), which means that
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closed curves γ in X lift to closed curves in X∞ if and only if 〈γ, h〉 = 〈γ, v〉 = 0.
This is a general fact about Zd-periodic flat surfaces.

3. Counting problem in Zd-periodic flat surfaces

We consider an infinite Zd-periodic flat surface X∞ which is a ramified cover
over a compact flat surface X = (S, ω), the covering group being Zd, d ≥ 1. Let Σ
be the finite set of singularity points of X. Since the intersection form 〈·, ·〉 is non-
degenerate between H1(S\Σ,Z) and H1(S,Σ,Z), every such Zd-cover is defined by a
d-tuple of independent elements f = (f1, . . . , fd) in the group of relative cohomology
H1(S,Σ,Z).

We are interested in counting cylinders in X∞ modulo Zd-translations. Cylinders
in the cover X∞ clearly descends to cylinders in X, but not the other way around. In
fact, by definition of the covering, the monodromy of a closed curve γ is translation
by (〈γ, fi〉)di=1 ∈ Zd. It follows that cylinders in the cover X∞ are exactly the lift
of those cylinders C in X such that its core curve γC verifies 〈γC , fi〉 = 0, for each
i = 1, . . . , d. Note that, in this case, the monodromy is always trivial and cylinders
in X∞ are always isometric to their projection on X. When a cylinder C does not
satisfy this condition, it lifts to X∞ as a strip, isometric to the product of an open
interval and a straight line.

We restrict ourselves to the case when f is an absolute covector, that is, it is a
d-tuple of independent elements in the group of absolute cohomology H1(S,Z). Let
M be the SL(2,R)-orbit closure of X, F be an equivariant subbundle of the Hodge
bundle over M and f ∈ FX .

Note that cylinders C in X such that 〈γC , f〉 = 0, split naturally into two
families: (a) the family of cylinders such that 〈γC , h〉 = 0 for all h ∈ FX , which
we call F -good cylinders, and (b) the family of cylinders that are not F -good, but
〈γC , f〉 = 0. These later are called (F, f)-bad cylinders. The notion of F -good
cylinders was first introduced by Avila–Hubert [AH] in order to give a geometric
criterion for recurrence of Zd-periodic flat surfaces.

Thus, counting cylinders in the Zd-periodic flat surface can be reduced to count-
ing separately cylinders which are (⊕jF (j))-good cylinders and (F (ji), fi)-bad cylin-
ders in the compact surface, for some appropriate subbundles (F (j))j.

Remark 3.1. When F is symplectic, in particular, if Λ(F ) 6= {0} (see Re-
mark 2.2), F -good cylinders are exactly those that prFXγC = 0. If, in addition, F is
2-dimensional (in particular, irreducible if Λ(F ) 6= {0}), C is an (F, f)-bad cylinder
if and only if prFXγC 6= 0 is colinear to f .

Since the Kontsevich–Zorich cocycle preserves the intersection form and F is
equivariant, it is clear that the set of F -good cylinders is SL(2,R)-equivariant. Then,
classical results can be applied. In particular, applying the main result of [EMa], if
there is at least one F -good cylinder in X, then we can deduce that F -good cylinders
have quadratic asymptotic growth rate (with positive Siegel–Veech constant) for νM-
almost every flat surface inM, the SL(2,R)-orbit closure of X. However, this is no
longer true in the case of (F, f)-bad cylinders.
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For f ∈ FX define the set VF (f) of holonomy vectors of (F, f)-bad cylinders in X.
We have that VF (A(g,X)f) = gVF (f), since F is equivariant and the Kontsevich-
Zorich cocycle respects the intersection form. Finally, let

NF (f, L) = #VF (f) ∩B(L)

be the number of (F, f)-bad cylinders in X of length bounded by L.

4. Bad cylinders have subquadratic asymptotic growth rate

In this section, we prove the following general result about bad cylinders which
applies to some Zd-periodic flat surfaces and, in particular, to the family of wind-tree
models we are interested in.

Theorem 4.1. Let X be a flat surface and F a 2-dimensional equivariant con-
tinuous subbundle of the Hodge bundle on M, the SL(2,R)-orbit closure of X. Sup-
pose that F is defined over Z and has non-zero Lyapunov exponents. Then, for all
f ∈ FX the number NF (f, L), of (F, f)-bad cylinders in X of length at most L,
has subquadratic asymptotic growth rate, that is, NF (f, L) = o(L2) or, which is the
same,

lim
L→∞

NF (f, L)

πL2
= 0.

Remark 4.2. When F is 2-dimensional, symplectic (in particular, when it has
non-zero Lyapunov exponents) and defined over Z, if f ∈ FX is not colinear to an
integer cocycle, then, there are no (F, f)-bad cylinders, since prFXγC is always a
rational multiple of an integer cocycle. Since the notion of bad cylinder is clearly
projective, the proof of Theorem 4.1 is then reduced to prove the conclusion only
for f ∈ FX(Z), instead that for all f ∈ FX .

To prove Theorem 4.1 we use technology for asymptotic formulas for counting
closed geodesics developed by Eskin–Masur [EMa]. In particular, the following
proposition, which is a restatement of Proposition 3.5 and Lemma 8.1 in [EMa], is
a key step in the proof.

Proposition 4.3 (Eskin–Masur). Let V ⊂ R2 \ {0}, define N (V , T ) := #V ∩
B(T ) and suppose that N (V , T ) <∞ for all T > 0. Then, for all ρ, t > 0

N (V , 2ρet)−N (V , ρet) ≤ c(ρ)e2t

∫ 2π

0

N (gtrθV , 4ρ)dθ.

Hence, the proof of Theorem 4.1 is reduced to show the following.

Theorem 4.4. Under the hypothesis of Theorem 4.1, for every f ∈ FX(Z) and
all ρ > 0,

lim
t→∞

∫ 2π

0

NF (A(gtrθ, X)f, ρ)dθ = 0.

Proof of Theorem 4.1. It is clear that VF (·) ⊂ R2\{0} is SL(2,R)-equivariant
and NF (f, L) is finite, since it is bounded by N(X,L), the number of all cylinders of
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length bounded by L and N(X,L) ≤ c(X)L2 ([Ma90]). Then, by Proposition 4.3,
we have that, for all f ∈ FX(Z), all ρ > 0 and all t > 0,

NF (f, 2ρet)−NF (f, ρet) ≤ c(ρ)e2t

∫ 2π

0

NF (A(gtrθ, X)f, 4ρ)dθ.

But then, by Theorem 4.4,

lim sup
t→∞

NF (f, 2ρet)−NF (f, ρet)

ρ2e2t
≤ c(ρ)

ρ2
lim
t→∞

∫ 2π

0

NF (A(gtrθ, X)f, 4ρ)dθ = 0.

That is

lim sup
T→∞

NF (f, 2T )−NF (f, T )

T 2
= 0.

It follows that

c̄F (f) := lim sup
L→∞

NF (f, L)

πL2
= lim sup

T→∞

1

4π

NF (f, 2T )

T 2

=
1

4π
lim sup
T→∞

(
NF (f, 2T )−NF (f, T )

T 2
+
NF (f, T )

T 2

)

≤ 1

4π

(
lim sup
T→∞

NF (f, 2T )−NF (f, T )

T 2
+ lim sup

T→∞

NF (f, T )

T 2

)

=
1

4π
(0 + c̄F (f)) =

1

4π
c̄F (f)

and then, c̄F (f) = 0. We conclude that

lim
L→∞

NF (f, L)

πL2
= 0.

�

4.1. Proof of Theorem 4.4. In order to show that

lim
t→∞

∫ 2π

0

NF (A(gtrθ, X)f, ρ)dθ = 0,

we split the integral in whether gtrθX ∈ Kε = {sys ≥ ε} or not, and show that both
parts tend to zero as t tends to infinity and ε, to zero.

When gtrθX ∈ Kε, the corresponding part of the integral tends to zero as a
consequence of the following proposition, whose proof is postponed to § 4.2.

Proposition 4.5. Under the hypothesis of Theorem 4.4, for all f ∈ FX(Z), all
ρ, ε > 0 and almost every θ

NF (A(gtrθ, X)f, ρ) · 1Kε(gtrθX) = 0

for sufficiently large t, t ≥ t0(x, ρ, ε, θ).

Remark 4.6. The intuition behind this apparently technical proposition is the
following. By hypothesis, the Lyapunov exponent of f ∈ FX(Z) is positive and
then, for almost every θ, A(gtrθ, X)f becomes very long for large t. Without loss of
generality, we can suppose that f is primitive. Therefore, no short cycle (of length
bounded by ρ) can have projection on FX colinear to A(gtrθ, X)f , because this latter
is primitive and longer. We formalize this idea in § 4.2.



4. BAD CYLINDERS HAVE SUBQUADRATIC ASYMPTOTIC GROWTH RATE 39

Recall that NF (f, L) ≤ N(X,L). Furthermore, N(·, ρ) is bounded in Kε. Indeed,
by Theorem 2.4, for δ = 1,

1KεN(·, ρ) ≤ 1Kε
c(ρ, 1)

sys2
≤ c(ρ, 1)

ε2
= c(ρ, ε).

Then, for fixed ρ, ε > 0,

∫ 2π

0

NF (A(gtrθ, X)f, ρ) · 1Kε(gtrθX)dθ

≤ c(ρ, ε) · |{θ ∈ [0, 2π) : NF (A(gtrθ, X)f, ρ) · 1Kε(gtrθX) 6= 0}|,

where | · | is the Lebesgue measure on [0, 2π). Finally, by Proposition 4.5, the right
side of the inequality tends to zero as t tends to infinity. That is,

(5) lim
t→∞

∫ 2π

0

NF (A(gtrθ, X)f, ρ) · 1Kε(gtrθX)dθ = 0.

For the rest of the integral we use the following.

Lemma 4.7. For any flat surface X, any β < 2 and all ε > 0,

|{θ ∈ [0, 2π) : sys(gtrθX) < ε}| < c(X, β)εβ

for all t > 0.

Proof.

|{θ ∈ [0, 2π) : sys(gtrθX) < ε}| =
∫ 2π

0

1sys<ε(gtrθX)dθ

≤
∫ 2π

0

1sys<ε(gtrθX) · εβ

sys(gtrθX)β
dθ

≤ εβ
∫ 2π

0

dθ

sys(gtrθX)β

Then, by Theorem 2.5, we conclude that

| {θ ∈ [0, 2π) : sys(gtrθX) < ε}| ≤ c(X, β)εβ.

�

Moreover, since NF (f, ρ) ≤ N(X, ρ) and, by Theorem 2.4, for any δ > 0

N(X, ρ) ≤ c(δ, ρ)

sys(X)1+δ
,

it follows that
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∫ 2π

0
NF (A(gtrθ, X)f, ρ) · 1sys<ε(gtrθX)dθ

≤
∞∑

n=0

∫ 2π

0
N(gtrθX, ρ) · 1

sys∈
[

ε
2n+1 ,

ε
2n

)(gtrθX)dθ

≤ c(δ, ρ)
∞∑

n=0

∫ 2π

0

1

sys(gtrθX)1+δ
· 1

sys∈
[

ε
2n+1 ,

ε
2n

)(gtrθX)dθ

≤ c(δ, ρ)

∞∑

n=0

∫ 2π

0

1
(

ε
2n+1

)1+δ
· 1

sys∈
[

ε
2n+1 ,

ε
2n

)(gtrθX)dθ

≤ c(δ, ρ)
∞∑

n=0

2(n+1)(1+δ)

ε1+δ

∫ 2π

0
1sys< ε

2n
(gtrθX)dθ

≤ c(δ, ρ)

∞∑

n=0

2(n+1)(1+δ)

ε1+δ
|{θ ∈ [0, 2π) : sys(gtrθX) <

ε

2n
}|.

Then, by Lemma 4.7, for 1 + δ < β < 2,

lim
t→∞

∫ 2π

0

NF (A(gtrθ, X)f, ρ) · 1sys<ε(gtrθX)dθ ≤ c(δ, ρ)
∞∑

n=0

2(n+1)(1+δ)

ε1+δ
c(X, β)

εβ

2nβ

≤ c(δ, ρ,X, β)εβ−(1+δ).(6)

Joining both parts of the integral, (5) and (6), we obtain that, for every ε, δ, ρ > 0,
f ∈ FX(Z) and 1 + δ < β < 2,

lim
t→∞

∫ 2π

0

NF (A(gtrθ, X)f, ρ)dθ ≤ 0 + c(δ, ρ,X, β)εβ−(1+δ).

Then, fixing ρ > 0, 0 < δ < 1 and 1 + δ < β < 2, and letting ε → 0, we conclude
that

lim
t→∞

∫ 2π

0

NF (A(gtrθ, X)f, ρ)dθ = 0.

�

4.2. Proof of Proposition 4.5. The first step is to show that, for a cylinder,
being bounded in length implies having bounded projection in FX .

Lemma 4.8. Let ρ > 0 and K ⊂M be a compact subset. Then, for all X ′ ∈ K
and all cylinder C on X ′ such that |holω′γC | ≤ ρ we have that

‖prFX′ [γC ]‖ω′ ≤ c(ρ,K, F ).

Proof. Let C(ρ,X ′) be the finite set of cylinders on X ′ of length at most ρ.
Then, c0(ρ,X ′, F ) = max{‖prFX′ [γ]‖ω′ : C ∈ C(ρ,X ′)} is finite.

Define Γ(ρ,X ′) = {γC : C ∈ C(ρ,X ′)}. Then, since F is continuous, prF(·)
(·) is

continuous and since the Hodge norm ‖ · ‖(·) is continuous, there is a neighborhood
U(X ′) of X ′ in M such that, for all X̄ = (S̄, ω̄) ∈ U(X ′),

• Γ(ρ, X̄) ⊂ Γ(2ρ,X ′) (after local identification), and
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• ‖prFX̄ · ‖ω̄ ≤ 2‖prFX′ · ‖ω′ .
Therefore, if C̄ is a cylinder in X̄ ∈ U(X ′) with |holω̄γC̄ | ≤ ρ, then

‖prFX̄ [γC̄ ]‖ω̄ ≤ 2‖prFX′ [γC̄ ]‖ω′ ≤ 2c0(2ρ,X ′, F ) =: c(ρ,X ′, F ).

Since U(X ′) is open and K is compact, there is a finite set A ⊂ K such that
K ⊂ ∪X′∈AU(X ′). We conclude, taking maxX′∈A c(ρ,X

′, F ) to be c(ρ,K, F ). �

Since F is 2-dimensional and has non-zero Lyapunov exponents, it is symplectic
and its Lyapunov spectrum is symmetric (see Remark 2.2), say Λ(M, F ) = {±λ},
λ > 0. Moreover, since f ∈ FX(Z) is an integer covector, its associated Lyapunov
exponent has to be positive. Then, for almost every θ, we have that

lim
t→∞

log ‖A(gtrθ, X)f‖gtrθω
t

= λ > 0,

in particular, for almost every θ and sufficiently large t, t ≥ t0(rθX, f),

(7) ‖A(gtrθ, X)f‖gtrθω ≥ e
λ
2
t.

Recall that, since F is defined over Z, F pr
X (Z) = prFXH

1
X(Z) is a lattice and

FX(Z) ⊂ F pr
X (Z). Let m = m(f) be a positive integer such that 1

m
f is a primitive

element in the lattice F pr
X (Z), and let c(ρ, ε, F ) be the constant given by Lemma 4.8

for K = Kε. Then, for large t, t ≥ t0(ε, ρ, f),

(8) e
λ
2
t > m(f)c(ρ, ε, F ).

Therefore, putting (7) and (8) together, for almost every θ and all t sufficiently large,
t ≥ t0(ε, ρ, θ,X, f), we have that

‖A(gtrθ, X)f‖gtrθω ≥ e
λ
2
t > m(f)c(ρ, ε, F ).

Fix θ and t as before, consider Xt = gtrθX, ωt = gtrθω and ft = A(gtrθ, X)f ,
and suppose that Xt ∈ Kε. Now, if γ is the core curve of a cylinder in Xt such that
|holωtγ| ≤ ρ, then

‖prFXt [γ]‖ωt ≤ c(ρ, ε, F ) <
1

m
‖ft‖ωt ,

where the first inequality is given by Lemma 4.8, for X ′ = Xt and K = Kε.
Recall that under our hypothesis, an (F, ft)-bad cylinder C in Xt has to verify

that prFXt [γC ] 6= 0 is colinear to ft (see Remark 3.1). But no element in F pr
Xt

(Z)

colinear to ft can be shorter than 1
m
ft, since this last is primitive in the lattice

F pr
Xt

(Z), by definition of m and, evidently, prFXt [γ] belongs to F pr
Xt

(Z)

Then γ, as before, cannot be the core curve of an (F, ft)-bad cylinder in Xt.
And thus, NF (A(gtrθ, X)f, ρ) = NF (ft, ρ) = 0, for θ and t as before. That is, for all
f ∈ FX(Z), all ρ, ε > 0 and almost every θ

NF (A(gtrθ, X)f, ρ) · 1Kε(Xt) = 0

for sufficiently large t, t ≥ t0(x, ρ, ε, θ). �



42 I. COUNTING PROBLEM ON WIND-TREE MODELS

5. Application to wind-tree models

In this section we apply previous discussion to wind-tree models. As we have
seen, there is an identification between cylinders (up to Z2-translations) in the infi-
nite billiard Π ∈ WT (m) and the union of (F+− ⊕ F−+)-good cylinders, (F+−, h)-
bad cylinders and (F−+, v)-bad cylinders in X = X(Π) ∈ B(m). Moreover, the
subbundles F+− and F−+ are always 2 dimensional flat subbundles defined over Z
and, by Theorem 2.7, we know that for almost every X ∈ B(m), Λ(M, F+−) =
Λ(M, F−+) = {±δ(m)}, where M is the SL(2,R)-orbit closure of X and δ(m) > 0.
In particular, for almost every X ∈ B(m), F+− and F−+ satisfy the hypothesis of
Theorem 4.1.

This suffices for the almost everywhere statement of Theorem 1.1, but it does
not for the everywhere statement of Theorem 1.2. However, an adaptation of Forni’s
criterion [Fo] allows us to prove that the top Lyapunov exponents of F+− and F−+

are in fact positive.

Theorem 5.1 (Forni’s criterion for integer equivariant subbundles). Let M be
an affine invariant manifold and F be an equivariant subbundle of the Hodge bundle
on M defined over Z. Suppose that there exists a flat surface X ∈M and a family
of parallel closed geodesics in X such that the space generated by the (Poincaré dual
of the) homology classes of these closed geodesics is a subspace of FX of dimension
d ≥ 1. Then, the top d Lyapunov exponents on F are strictly positive, that is,

λ1(M, F ) ≥ · · · ≥ λd(M, F ) > 0.

Proof. The proof follows as the original proof of [Fo, Theorem 1.6]. In fact, as
communicated to as by C. Matheus, the main steps of the proof are:

(1) [Fo, § 3]: The unstable bundle of the Kontsevich–Zorich cocycle is νM-almost
everywhere transverse to all integral isotropic subspaces (see [Fo, Lemma 3.1]).
In our case, we can restrict the unstable bundle to the equivariant subbundle F
and this statement remains true since the subbundle F is defined over Z.

(2) [Fo, § 4]: d×d-block of the second fundamental form converges to −Id along an
isotropic subspace transverse to the (Poincaré dual of the) d-dimensional sub-
space generated by the closed geodesics (see [Fo, Lemma 4.4]). This remains true
when restricting to the subbudle F ; the proof relies only on classical formulas for
the period matrix near the boundary of the Deligne–Mumford compactification
of the moduli space of abelian differentials (see [Fo, Lemma 4.1]).

(3) [Fo, § 5]: Finally, the proof of [Fo, Theorem 1.6] remains valid since the ar-
gument combines the two previous points with a hypothesis of local product
structure, which is always true after Eskin–Mirzakhani [EMi].

�

Corollary 5.2. For every X ∈ B(m), the subbundles F+− and F−+ defined on
the SL(2,R)-orbit closure of X, satisfy the hypothesis of Theorem 4.1.

Proof. We already know that the subbundles F+− and F−+ are 2 dimensional
flat subbundles defined over Z. Then, it remains to prove that they have non-zero
Lyapunov exponents.
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Let FX be the (Poincaré dual of the) symplectic subspace generated by cycles
h00, h10, h01, h11, v00, v10, v01, v11 (see Figure 5). This defines a flat (that is, a locally
constant) subbundle of the Hodge bundle, which is clearly defined over Z. Moreover,
F has rank 8 and is symplectic. In particular, its Lyapunov spectrum is symmet-
ric. Taking the closed geodesics given by h00, h10, h01, h11, which are horizontal and
homologically independent, and applying Theorem 5.1, we conclude that F has 4
positive Lyapunov exponents and therefore all eight Lyapunov exponents are non-
zero. Finally, we note that F+− and F−+ are subbundles of F and, in particular,
their Lyapunov spectra are contained in the one of F . Thus, they have non-zero
Lyapunov exponents. �

Thus, by Theorem 4.1, (F+−, h)-bad cylinders and (F−+, v)-bad cylinders in X
have subquadratic asymptotic growth rate, proving Theorem 1.3. Thus, asymptotic
formulas for the wind-tree model correspond to those of (F+−⊕F−+)-good cylinders.
In particular, this justifies why we can conclude Theorem 1.2, so we have weak
asymptotic formulas for every wind-tree model.

For simplicity, henceforth, we will call simply good cylinders the (F+− ⊕ F−+)-
good cylinders, and by bad cylinders we will refer to (F+−, h) and (F−+, v)-bad
cylinders.

As a direct consequence of Theorem 1.3 and an adapted version of Theorem 2.3
(see Remark 2.6), we have the following.

Corollary 5.3. For almost every wind-tree billiard Π ∈ WT (m), the number
N(Π, L) of closed billiard trajectories of length bounded by L in Π (up to isotopy
and Z2-translations) has quadratic asymptotic growth rate,

N(Π, L) ∼ 1

4
cgood(M)

πL2

Area (Π/Z2)
,

where cgood(M) is the Siegel-Veech constant associated to the counting problem of
good cylinders in M, the SL(2,R)-orbit closure of X(Π).

The factor 1/4 coming from the fact that Area (X(Π)) = 4 · Area (Π/Z2).
In addition, a cylinder in X is a good cylinder if (and only if) the homology

class of its core curve projects trivially to F+− and to F−+ (see Remark 3.1). We
have also the following useful characterization of good cylinders (see Figure 7 for
notation).

Lemma 5.4. Let C be a cylinder in X. Then C is a good cylinder in X if and
only if the core curve of C projects to homologically trivial curves in Wh and Wv.

Proof. Let γ be the core curve of C. Then C is an F+−-good cylinder in X
if and only if prF+− [γ] = 0. But F+− is naturally isomorphic to H1(Wh) by the
pushforward of the covering map ph. Then prF+− [γ] = 0 if and only if ph∗[γ] =
[phγ] = 0. Analogously, the same holds for F−+ and Wv. And good cylinders are
exactly those which are F+− and F−+-good cylinders. �

Then, good cylinders in X are exactly those which project to homologically
trivial cylinders in the flat surfaces Wh and Wv. Cylinders in X also project to
the flat surface W, of genus zero. The SL(2,R)-orbit closure M of X projects to
the SL(2,R)-orbit closure L of W, and for almost every X ∈ B(m), RL coincides
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X = (S, ω)

Xh = X
/
〈τh〉 = (Sh, ωh) Xv = X

/
〈τv〉 = (Sv, ωv)

Y = X
/
〈τh, τv〉 = (S̃, ω̃)

Wh = X
/
〈τh, ι ◦ τv〉 = (Eh, qh) Wv = X

/
〈τv, ι ◦ τh〉 = (Ev, qv)

W = X
/
〈τh, τv, ι〉 = (CP1, q)

Ph

p̃h

ph

Pv

p̃v

pv

P

pP

Figure 7. Surfaces and covering maps notation

with the whole stratum Q(1m,−1m+4) ([DZ, Proposition 2]). Moreover, we have
seen in § 2.3 that generic flat surfaces in Q(1m,−1m+4) have only two types of
configurations of cylinders, the so called pocket and dumbbell configurations. But
generic flat surfaces are not pertinent to our study. In fact, the set of flat surfaces
W ∈ Q(1m,−1m+4) coming from wind-tree billiards is negligible. However, we have
the following.

Proposition 5.5. For almost any wind-tree billiard Π ∈ WT (m) the following
property holds. Consider a cylinder in W(Π) = X(Π)

/
〈ι, τh, τv〉 and suppose it is not

horizontal nor vertical. Then, the cylinder make part of one of the configurations
described in § 2.3, that is, a pocket or a dumbbell configuration.

Proof. See [AEZ, Proposition 2.2] (the proof of which mimics the proof of
[EMZ, Theorem 7.4]). �

Corollary 5.6. For almost every wind-tree billiard Π ∈ WT (m),

cgood(M) = cpocketgood (M) + cdumbbell
good (M),

where cpocketgood (M) (resp. cdumbbell
good (M)) corresponds to the Siegel–Veech constant asso-

ciated to the counting problem of configurations of good cylinders inM, the SL(2,R)-
orbit closure of X(Π), such that those configurations project to pocket (resp. dumb-
bell) configurations in Q(1m,−1m+4).

It follows that the study of configurations of cylinders on generic flat surfaces in
Q(1m,−1m+4) suffices for our purposes.

6. Configurations of good cylinders

Here we show which conditions a cylinder in W = (CP1, q) ∈ L = Q(1m,−1m+4)
has to satisfy so that it lifts to a good cylinder in X = (S, ω) ∈ M, and then we
interpret this in terms of configurations of generic surfaces of genus zero, that is,
pocket and dumbbell configurations (see § 2.3).

Recall that, by Lemma 5.4, a cylinder in X is good if it projects to a homologi-
cally trivial cylinder in the surfaces Wh and Wv, of genus 1. Then, our classification
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will consist in finding the configurations on W which lift to homologically trivial
closed geodesics in Wh and Wv.

Since there are clear analogies between objects with subindex h and subindex v
(see Figure 7), in this section we will use the label o for both labels h and v. Thus,
any result in terms of labels o will give the corresponding result for h and v.

6.1. Cylinders in W who lift to good cylinders in X. Let C be a cylinder
in the genus zero surface W. Then, since all curves are homologically trivial on W,
the core curve of C, say γ, cuts the surface in two components, say W1 and W2.

For our purposes here, the only relevant information about C we need, is the
number ql of cone singularities of angle 3π and the number rl of ramified poles in
Wl for the double cover po : Wo→W, l = 1, 2. The number pl, of unramified poles
for po in Wl is also relevant, but since Wl is a genus zero surface with only simple
zeros and poles, and a single boundary component, then

4g(Wl)− 4 = −4 = ql − pl − rl − 2,

and pl can be written in terms of ql and rl as pl = ql − rl + 2, l = 1, 2. Also,
q2 = m− q1 and r2 = 4− r1, so we will only consider r = r1 and q = q1.

Remark that the number r depends on the configuration as well as on the double
cover po (of which there are two, ph and pv), while q does not depend on the double
cover. Call then, the former number ro = r(C,po). Furthermore, since W1 and
W2 were arbitrarily chosen, we can fix them such that ro = r1 ≤ r2. Note that
|rh−rv| ≤ 1, since three out of four ramified poles are shared by both covering maps.
In particular, we can always choose W1 and W2 coherently such that ro = ro1 ≤ ro2,
for both coverings. Furthermore, there is only one way to do this unless rh = rv = 2.
Note that with this setting, rh, rv ∈ {0, 1, 2}. Call W′ = W2 and W′

o = p−1
o W′, and

recall that po∗ : π1(Wo)→ π1(W) is the pushforward of the projection po : Wo→W,
which sends closed curves in Wo to closed curves in W. In particular, bo = #po

−1
∗ (γ)

is the number of curves (connected components) in p−1
o (γ), and bo ∈ {1, 2}, since

po is a double cover.

Remark 6.1. In particular, the number bo corresponds to the number of bound-
ary components of the surface W′

o. This number also defines the monodromy of
the core curve of C, γ, for po. In fact, bo = 2 means that γ has two po∗-preimages
and, since po is a double cover, this gives trivial monodromy. While non trivial
monodromy, and equals to Z2, arises when bo = 1.

Lemma 6.2. Let C be a cylinder in W, γ its core curve and consider bo =
#po

−1
∗ (γ). Then, bo = 4− ro − 2g(W′

o). In particular, bo ≡ ro mod 2.

Proof. Clearly, W′ has one boundary component, which is equal γ. Note that
bo is the number of boundary components of W′

o, bo = #po
−1
∗ (γ) ∈ {1, 2}.

In W′, there are 4 − ro ramified and m − (q − ro + 2) unramified poles for po,
and m− q simple zeros. Thus, we have 2(m− q+ 2− rh) poles and 2(m− q) simple
zeros in W′

o. But then,

4g(W′
o)− 4 = 2(m− q)− 2(m− q + 2− ro)− 2bo,

That is, bo = 4− ro − 2g(W′
o) and, in particular, bo ≡ ro mod 2. �
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Proposition 6.3. Let C be a cylinder in W. Then C lifts to good cylinders in
X if and only if rh, rv ∈ {0, 1}.

Proof. Let γ be the core curve of C. Then, we want to show that if γo ∈
po
−1
∗ (γ), [γo] = 0 if and only if ro 6= 2. Note that, since g(Wo) = 1, a homologically

trivial curve always cut the surface into a genus zero surface and a genus one surface.
As before, let W′ = W2 and W′

o = po
−1W′. By the previous lemma, we know

that #po
−1
∗ (γ) = bo = 4− ro − 2g(W′

o), bo ≡ ro mod 2. Then,

• If ro = 0, then bo = 2 and g(W′
o) = 1. That is, γ has two po∗-preimages (bo =

2) bounding a genus one surface (g(W′
o) = 1) in Wo. But g(Wo) = 1, and

therefore both po∗-preimages of γ are homologically trivial (see, e.g., Figure 8a
and Figure 9a).
• When ro = 1, we have bo = 1 and g(W′

o) = 1. It follows that γ has one po∗-
preimage which is homologically trivial (see, e.g., Figure 8b and Figure 9b).
• Finally, if ro = 2, then bo = 2 and g(W′

o) = 0. Therefore, γ has two po∗-preimages
and both together bounds each of two genus zero surfaces which form the whole
surface Wh of genus one (see, e.g., Figure 8c and Figure 9c). Then, both preimages
of γ are not homologically trivial.

�

Thus, we know which cylinders in W lift to good cylinders in X. It remains to
see how these cylinders lift, that is, the number of cylinders in X we obtain and
their length.

P 0
i

P 0
j1

P 0
j2

P 1
i

P 1
j1

P 1
j2

(a) ro = 0. A torus with two
“pockets”.

P 0
i

P 1
i

P 0
j1

P×j2

P 1
j1

(b) ro = 1. A torus with a
“pocket” twice longer.

P×j1

P×j2
P 0
i

P 1
i

(c) ro = 2. A torus with
a non homologically trivial
cylinder.

Figure 8. Possible liftings for po of a pocket configuration.

6.2. How cylinders in W lift to good cylinders in X. Here we show how
lift to X those cylinders in W who lift to good cylinders in X. More precisely, we
determine the number of cylinders in X we obtain and their length. To do this, we
will lift one by one the covering maps po : Wo→W, then p̃o : Xo→Wo and finally
Po : X→ Xo (see Figure 7). Recall we are using the label o instead of h and v.

The following is a direct consequence of Remark 6.1 and Lemma 6.2.

Lemma 6.4. Let C be a cylinder in W. Then, the core curve γ of C has trivial
monodromy for po if ro 6= 1, and equals to Z2, if ro = 1.

Proof. From Remark 6.1, we know that the number bo defines the monodromy
of γ, being trivial for bo = 2 and equals to Z2 when bo = 1. But, by Lemma 6.2, we
also know that bo ≡ ro mod 2, and ro ∈ {0, 1, 2}. �
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P 0
i1

P 0
i2

P 1
i1

P 1
i2

(a) ro = 0. A torus joined
to two flat spheres by homo-
logically trivial cylinders.

P 0
i1

P 1
i1
P 0
i2

P 1
i2

(b) ro = 1. A torus joined
to a flat spheres by a ho-
mologically trivial cylinder
twice longer.

P 0
i1

P 1
i1

P 0
i2

P 1
i2

(c) ro = 2. Two flat spheres
joined by two non homolo-
gically trivial cylinders.

Figure 9. Possible liftings for po of a dumbbell configuration.

The meaning of previous lemma can be noticed in Figure 8 and Figure 9.

Lemma 6.5. Let Co be a cylinder in Wo such that ro(po(Co)) 6= 2. Then, the
core curve of Co has trivial monodromy for p̃o : Xo→Wo.

Proof. Let γo be the core curve of Co. Since ro(po(Co)) 6= 2, by Proposition 6.3
and Lemma 5.4, γo is homologically trivial. Then, it cuts the surface Wo in two
components. Let W8

o be one of these two components and consider X8o = p̃−1
o W8

o.
Let q8 be the number of double zeros and b8, the number of boundary components,

on X8o. Then, 4g(X8o)− 4 = 4q8 − 2b8, and b8 ≡ 0 mod 2. That is, b8 = 2 and γo has
two p̃o∗-preimages. Since p̃o is a double cover, then γo has trivial monodromy. �

Thus, the possible p̃o-liftings in the surface Xo of a cylinder Co in the surface
Wo (with ro(po(Co)) 6= 2) looks like as in Figure 10 or Figure 11.

(a) ro = 0. (b) ro = 1.

Figure 10. Possible p̃o-liftings in Xo of cylinders in Wo coming from
a pocket configuration in W.

Finally, we can describe how cylinders in W lift to good cylinders in X. Recall
that P : X→W is a covering of degree 8.

Lemma 6.6. Let C be a cylinder in W and γ be its core curve. Suppose that
rh, rv ∈ {0, 1}. Then,

(1) If rh = rv = 0, then γ has trivial monodromy for P. In particular, γ has
eight P∗-preimages of the same length than γ.
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(a) ro = 0. (b) ro = 1.

Figure 11. Possible p̃o-liftings in Xo of cylinders in Wo coming from
a dumbbell configuration in W.

(2) In any other case, γ has monodromy Z2 for P. In particular, γ has four
P∗-preimages twice longer than γ.

Proof. Recall first that P : X→W is a covering of degree 8, P = po ◦ p̃o ◦Po

and also P = p ◦P, where P : X→ Y and p : Y →W (see the diagram in Figure 7
for a recall in notation).

(1) Suppose rh = rv = 0. By Lemma 6.4, we know that γ has trivial monodromy for
both ph and pv. Then, by Lemma 6.5, we deduce that γ has trivial monodromy
for ph ◦ p̃h and for pv ◦ p̃v. Then, the monodromy of γ for P = po ◦ p̃o ◦Po can
be at most Z2, since Po : X→ Xo is a double cover.

Suppose it is Z2. Then, the monodromy for Po of the corresponding curves
γ̄oi, i = 1, . . . , 4, in Xo is Z2. This means, in particular, that τh and τv fix the
corresponding curves γ̄i, i = 1, . . . , 4, in X. Consider D = P∗({γ̄i}4

i=1) and note
that D = p−1

∗ (γ). Then, since τh and τv fix each γ̄i, i = 1, . . . , 4, we have that
#D = 4, but p is a double cover, so this is impossible. Thus, assuming that the
monodromy for P of γ is Z2, we get a contradiction. Therefore, the monodromy
is trivial (see Figure 12a and Figure 13a).

(2) For the other cases, we will prove that γ has monodromy Z2. Remember we are
assuming that rh, rv 6= 2.
(a) Suppose rh = rv = 1. From Lemma 6.4 we know that γ has monodromy Z2

for both ph and pv. Then, by Lemma 6.5, we deduce that γ has monodromy
Z2 for ph◦p̃h and for pv◦p̃v. Then, the monodromy of γ for P = po◦p̃o◦Po

can be Z2 or Z4, since Po is a double cover.
Suppose it is Z4. Then, the monodromy for Po of the corresponding curves
γ̄oi, i = 1, 2, in Xo is Z2, and τh and τv fix each γ̄i, i = 1, 2 in X. To
continue with the argument, we need to remark first that τh and τv are
orientation preserving isometric involutions. Then, when they fix a cylinder,
the only way to do this is, either being the identity or a rotation by half
the length of the cylinder, when restricted to the cylinder. In particular,
γ̌i := P(γ̄i) = γ̄i

/
〈τh, τv〉 has at least half the length of γ̄i, i = 1, 2, that

is, at least twice the length of γ. But γ̌i ∈ p−1
∗ (γ), i = 1, 2, and p is a

double cover, so it is impossible to have two p-preimages of at least twice
the length. Thus, assuming that the monodromy of γ for P is Z4, we
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get a contradiction. Therefore, the monodromy is Z2 (see Figure 12b and
Figure 13b).

(b) Suppose that rh = 0 and rv = 1. Then, as before, we find that γ has trivial
monodromy for ph ◦ p̃h, and monodromy Z2 for pv ◦ p̃v. Then, since Ph and
Pv are double covers, γ has trivial or Z2 monodromy for ph ◦ p̃h ◦ Ph and
monodromy Z2 or Z4 for pv ◦ p̃v ◦Pv. But ph ◦ p̃h ◦Ph = pv ◦ p̃v ◦Pv = P,
and therefore, the only alternative is to have monodromy equals to Z2 (see
Figure 12a and Figure 13a). Analogously, we have monodromy Z2 for rh = 1
and rv = 0.

�

(a) rh = rv = 0. (b) Other cases (rh, rv 6= 2).

Figure 12. Lifting of a pocket configuration in W to X.

(a) rh = rv = 0. (b) Other cases (rh, rv 6= 2).

Figure 13. Lifting of a dumbbell configuration in W to X.

6.3. Relation between Siegel-Veech constants in Q(1m,−1m+4) and its
lifting to M. We conclude the study of which and how cylinders in W lift to good
cylinders in X by relating the Siegel-Veech constants of configurations in W and its
liftings to X.

Let L be an invariant affine submanifold in Q(1m,−1m+4) and let µ be the
associated affine invariant measure on L. Consider the locus M of all possible P-
covers surfaces from L. Note that, by construction, this gives an SL(2,R)-equivariant
one-to-one correspondence between L andM. In particular,M is an affine invariant
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submanifold on H(24m). Let ν be the affine invariant measure on M. Note that
that µ is the direct image of ν with respect to the projection M→ L.

Let c = cC(L) be the Siegel-Veech constant associated to the counting of a
multiplicity one configuration C of cylinders in L (see § 2.2 for the definitions).
Then, the configuration C induces a cylinder configuration C̄ on the covering space
M, defined by the covering maps P. Let c̄ = cC̄(M) be the associated Siegel-Veech
constant. The lemma below relates c and c̄. It is the analogous of Lemma 1.1 in
[EKZ] and Lemma 4.1 in [DZ], adapted for our purposes.

We say that C is a pocket-like configuration, if the singularities in one of the
boundary components of the cylinder are only poles. Note that, in particular, there
are exactly two poles in that boundary component. Denote by rh(C) and rv(C) the
values of rh and rv in the cylinders defined by configuration C. These values are well
defined, since a configuration defines all that data. Call the pair (rh, rv) the profile
of the configuration C. We say that C is a good configuration if it is a multiplicity
one configuration of cylinders in L such that rh(C), rv(C) ∈ {0, 1}.

Lemma 6.7. Let C be a good configuration.

(1) If C is pocket-like, then
(a) If C has profile (0, 0), then c̄ = 32c.
(b) In any other case, c̄ = 4c.

(2) If C is not pocket-like, then
(a) If C has profile (0, 0), then c̄ = 64c.
(b) In any other case, c̄ = 8c.

Proof. First of all, suppose we know the exact number and the relative length
of cylinders in X we obtain by lifting a cylinder from configuration C in W. Say, a
cylinder from C in W is lifted to n cylinders in X and their lengths are s times the
length of γ. Then,

NC̄ (X, L) = nNC
(
W, s−1L

)

and therefore,

c̄ =
n

s2

Area(X)

Area(W)
c = 8

n

s2
c,

where we used the fact that Area(X) = 8Area(W), since X is a metric 8-fold covering
of W. But we know, by Lemma 6.6, the exact number of P∗-preimages of the core
curve of C, γ, and the relative length of these, depending on rh and rv.

If C is not a pocket-like configuration, then, there is at least one singularity in
each boundary of the cylinder in W which is not a pole. Then, for each P∗-preimage,
γ̄, of its core curve γ, there is a cylinder in X with core curve γ̄ (see Figure 13).
Thus, the values of n and s are given by Lemma 6.6. That is, n = 8 and s = 1 for
profile (0, 0), and n = 4, s = 2, for all other profiles of good configurations.

In the case of pocket-like configurations, the poles defining the pocket-like con-
figuration become regular points in the interior of the corresponding cylinders in X
(see Figure 12) and, therefore, each cylinder in X has two P∗-preimages of γ in its
interior, instead of one, as in the case of non pocket-like configurations. Hence, the
number n, of cylinders in X obtained by lifting a cylinder in W is half the number of
P∗-preimages of γ, which is given by Lemma 6.6. That is, in the case of pocket-like
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configurations, we have that n = 4 and s = 1 for profile (0, 0), and n = 2, s = 2, for
all other profiles of good configurations. �

Remark 6.8. If we were working with the area Siegel-Veech constant, instead
of the classical Siegel-Veech constant, there would be no difference for pocket-like or
not pocket-like configurations in the previous result, since area Siegel-Veech constant
depends only on monodromy.

7. Siegel-Veech constants of good configurations for generic surfaces

In this section we use the results of the previous section to compute the exact
value of the Siegel-Veech constant of good configurations for generic surfaces in
Q(1m,−1m+4) with respect to the Masur–Veech measure.

Recall that for almost every surface in L = Q(1m,−1m+4), the only possible con-
figurations are pocket and dumbbell configurations. Note that both configurations
are multiplicity one configurations, that is, they define a single cylinder.

By Proposition 6.3, a multiplicity one configuration is a good configuration if
and only if rh, rv ∈ {0, 1}, where rh and rv are the number of ramified poles for ph
and pv, respectively, in a component of the surface W after cutting along the core
curve of the cylinder defined by the configuration. Lastly, recall that ph and pv have
four ramified poles each, from which they share three. In particular, there are five
“special” poles, the three shared ramified poles and one more for each one of ph and
pv.

Good pocket configurations. Recall that in a pocket configuration, we have
a single cylinder bounded by a saddle connection joining a fixed pair of poles Pj1 , Pj2
on one side and by a separatrix loop emitted from a fixed zero Pi of order di ≥ 1, on
the other side (see Figure 3). Then, rh and rv, as defined in the previous section, is
the number of ramified poles among the poles Pj1 and Pj2 of the configuration for
the double cover ph and pv, respectively. By Proposition 6.3, the configuration is
good if and only if rh, rv ∈ {0, 1}. Recall that the profile of the configuration is the
pair (rh, rv).

Profile (0, 0) means that none of the ramified poles, for ph and pv, is one of the
poles defining the pocket configuration, Pj1 or Pj2 . Then, since there are m − 1 =
(m+ 4)− 5 poles which are unramified poles for both ph and pv, there are exactly(
m−1

2

)
= (m− 1)(m− 2)/2 pocket configurations of profile (0, 0).

In order to have profile (1, 1), we should have one ramified and one unramified
pole for both ph and pv, or one which is ramified for ph but unramified for pv and
vice versa. This latter case occurs once, because ph and pv share three out of four
of their ramified poles. The former case happens exactly

(
3
1

)(
m−1

1

)
= 3m− 3 times.

Therefore, we have 3m− 2 pocket configurations of profile (1, 1).
Profile (1, 0) occurs when one of the poles is ramified for ph but unramified for

pv and the other is unramified for both ph and pv. Then, there are
(

1
1

)(
m−1

1

)
= m−1

pocket configurations of profile (1, 0). Similarly, we have m−1 pocket configurations
of profile (0, 1).

Summarizing good profiles and applying Lemma 6.7, we get that good pocket
configurations contribute to the Siegel-Veech constant of good cylinders in M by
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cpocket
good (M), which is 16(m−1)(m−2)+4((3m−2)+2(m−1)) times the Siegel-Veech

constant for pocket configurations in L. Thus, by formula (3),

cpocket
good (M) =

(
4m2 − 7m+ 4

) 2

π2
.

Good dumbbell configurations. Recall that in this configuration, we have
a single cylinder, bounded by a saddle connection joining a zero to itself on each
side (see Figure 4). Such a cylinder separates the original surface W in two parts.
This yields a partition of α = {1m,−1m+4} (where superindices stand for the mul-
tiplicities) into two subsets α = α1 t α2, which is also considered to be part of the
configuration, and we consider α1 to contain the rh ramified poles for ph and the rv
ramified poles for pv. We stress in the fact that, even if there are several singulari-
ties with the same degree, we differentiate them, so they are named and, by a slight
abuse of notation, we consider this information is also carried by the partition.

Let kl = #αl, counting multiplicities, l = 1, 2, and note that k = k1+k2 = 2m+4.
Let q be the number of simple zeros in α1. Then, there are k1 − q poles in α1, but
also, by topological considerations, we have that this number is equal to q+ 2, since
we are restricted to a genus zero surface with one boundary component. Therefore,
we will always have that α1 = {1q,−1q+2} and α2 = {1m−q,−1m−q+2} (up to the
names of the singularities). In particular, k1 = 2q + 2 and k2 = 2m− 2q + 2. Thus,
in this context, formula (4) becomes

(9) cdumbbell
i1,i2;α1,α2

=
(2q − 1)!(2m− 2q − 1)!

(2m)!

2

π2
.

Since this value depends only on q, it is natural to try to group configurations sharing
this number q and study the corresponding combinatorics. But, by Lemma 6.7,
different profiles give different weights when lifted toM. Hence, we have to consider
different profiles separately.

For dumbbell configurations, profile (0, 0) means that there are only unramified
poles in α1, that is, all the five ramified poles for ph and pv, are in α2. Then, the
combinatorics are given by the remaining m− 1 poles and the m simple zeros.

Hence, to compute the number of these configurations, that is, dumbbell config-
urations of profile (0, 0) with q simple zeros in α1, we remark that we have to choose
q of the m (named) simple zeros and q + 2 of the remaining m − 1 (named) poles,
to have in total q+ 2 poles in α1, as required by the topology. Finally, note that we
have to choose one of q zeros to be located at the boundary of the cylinder on one
side and one of m − q zeros to be located at the boundary of the cylinder on the
other side. For any given q, where 1 ≤ q ≤ m− 1, the count gives

(
m

q

)(
m− 1

q + 2

)
q(m− q)

dumbbell configurations of profile (0, 0).
In order to have profile (1, 1), there are two possibilities. The first one is to have

one simple pole in α1 which is ramified for ph but unramified for pv and vice versa.
In this case, there is only one choice for this two ramified poles, because ph and pv
share three out of four of their ramified poles. The three ramified poles shared by
ph and pv are then in α2. As before, we have to choose q of the m simple zeros to



7. SIEGEL-VEECH CONSTANTS OF GOOD CONFIGURATIONS 53

be in α1, one of them to be in a boundary component of the cylinder and one of the
remaining m − q simple zeros to be in the other boundary component. For poles,
since we have already taken two poles to be in α1, we have to choose q poles among
the m−1 unramified poles, to have q+ 2 poles in total, as required by the topology.
Then, this case of profile (1, 1) occurs

(
m
q

)(
m−1
q

)
q(m− q) times.

The other case which gives profile (1, 1) is when there is only one ramified pole
for both ph and pv in α1 and all the remaining ramified poles (for ph or pv) are in α2.
Thus, there are 3 possibilities in choosing the common ramified pole and therefore,
by an analogous computation, this case happens

(
m
q

)(
3
1

)(
m−1
q+1

)
q(m− q) times. Then,

for fixed q, 1 ≤ q ≤ m− 1, we have

(
m

q

)[
3

(
m− 1

q + 1

)
+

(
m− 1

q

)]
q(m− q)

dumbbell configurations of profile (1, 1).
Profile (1, 0) occurs when only one of the poles in α1 is ramified for ph but

unramified for pv and all others are unramified for both ph and pv. Then, by an
analogous computation, there are

(
m
q

)(
1
1

)(
m−1
q+1

)
q(m − q) dumbbell configurations of

profile (1, 0). Similarly, we have

(
m

q

)(
m− 1

q + 1

)
q(m− q)

dumbbell configurations of profile (0, 1).
In summary, by Lemma 6.7, good dumbbell configurations contribute to the

Siegel-Veech constant of good cylinders in M by

(
m
q

) [
64
(
m−1
q+2

)
+ 8

(
3
(
m−1
q+1

)
+
(
m−1
q

)
+ 2
(
m−1
q+1

))]
q(m− q)

times the Siegel-Veech constant for a dumbbell configurations in L with q simple
zeros in α1, that is,

cdumbbell
q,good (M) = 8

(
m

q

)[
8

(
m− 1

q + 2

)
+ 5

(
m− 1

q + 1

)
+

(
m− 1

q

)]
q(m− q)cdumbbell

q ,

where cdumbbell
q is given by formula (9). Finally, summing up all the contribution of

good dumbbell configurations and plugging in formula (9), we obtain that

cdumbbell
good (M) = 8

m−1∑

q=1

(
m
q

) [
8
(
m−1
q+2

)
+ 5
(
m−1
q+1

)
+
(
m−1
q

)]
q(m− q) (2q−1)!(2m−2q−1)!

(2m)!
2
π2

= 8
m−1∑

q=1

(
m
q

) [
8
(
m−1
q+2

)
+ 5
(
m−1
q+1

)
+
(
m−1
q

)]
1
4

(2q)!(2m−2q)!
(2m)!

2
π2

=
4

π2

m−1∑

q=1

(
m
q

)
(

2m
2q

)
[
8
(
m−1
q+2

)
+ 5
(
m−1
q+1

)
+
(
m−1
q

)]
.(10)
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But, by Proposition A.1, formula (10) can be written as

cdumbbell
good (M) =

4

π2

m−1∑

q=1

(
m
q

)
(

2m
2q

)
[
8
(
m−1
q+2

)
+ 5
(
m−1
q+1

)
+
(
m−1
q

)]

=
4

π2

[
8
(

1
6
m2 − 13

6
m− 3 + 5

2
4m (m!)2

(2m)!

)

+ 5
(
m+ 2− 3

2
4m (m!)2

(2m)!

)
+
(
−1 + 1

2
4m (m!)2

(2m)!

)]

=
2

3π2

[
8
(
m2 − 13m− 18 + 15 · 4m (m!)2

(2m)!

)

+ 5
(

6m+ 12− 9 · 4m (m!)2

(2m)!

)
+
(
−6 + 3 · 4m (m!)2

(2m)!

)]

=
2

3π2

(
8m2 − 74m− 90 + 78 · 4m (m!)2

(2m)!

)
.

We conclude the computation of the Siegel-Veech constant for good cylinders in
M, for generic surfaces, summing up the contribution of pocket and dumbbell good
configurations

cgood(M) = cpocket
good (M) + cdumbbell

good (M)

=
(
4m2 − 7m+ 4

) 2

π2
+

(
8m2 − 74m− 90 + 78 · 4m (m!)2

(2m)!

)
2

3π2

=

(
20m2 − 95m− 78 + 78 · 4m (m!)2

(2m)!

)
2

3π2
.(11)

8. Side results

8.1. Area Siegel-Veech constant. Following the same treatment, we can de-
duce that for almost every wind-tree billiard Π ∈ WT (m), the number Narea(Π, L)
has quadratic asymptotic growth rate and

Narea(Π, L) ∼ ca,good(M)
πL2

Area (Π/Z2)
,

where ca,good(M) is the area Siegel-Veech constant associated to the counting prob-
lem of the area of good cylinders in M, the SL(2,R)-orbit closure of X(Π).

Note that, unlike the case of the classical (non-weighted) counting, in this case
we do not have the factor 1/4 (see Corollary 5.3). This is because, in the weighted
counting, the area is already taken into consideration.

Moreover, for almost every wind-tree billiard Π ∈ WT (m),

ca,good(M) = cpocket
a,good(M) + cdumbbell

a,good (M),

where cpocket
a,good(M) (resp. cdumbbell

a,good (M)) corresponds to the area Siegel–Veech constant
associated to configurations of good cylinders in M which project to pocket (resp.
dumbbell) configurations in Q(1m,−1m+4).
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Furthermore, there exist a relation between classical Siegel–Veech constants and
area Siegel-Veech constants for configurations C of cylinders in L = Q(1m,−1m+4):

ca,C(L) =
1

2m+ 1
cC(L).

This is a consequence of a generalization of Vorobets formula [Vo05, Theorem 1.6(b)],
proved by Athreya–Eskin–Zorich [AEZ, Proposition 4.9] for any configuration of
cylinders on any strata Q(d1, . . . , dk) of quadratic differentials on CP1.

Then, we can relate the Siegel–Veech constant on M with that of L, using the
analogous of Lemma 6.7 (keeping in mind Remark 6.8).

Finally, we have

ca,good(M) = cpocket
a,good(M) + cdumbbell

a,good (M)

=
1

2m+ 1

(
4m2 − 7m+ 4

) 4

π2

+
1

2m+ 1

(
8m2 − 74m− 90 + 78 · 4m (m!)2

(2m)!

)
2

3π2

=
1

2m+ 1

(
16m2 − 58m− 33 + 39 · 4m (m!)2

(2m)!

)
4

3π2

=

(
8m− 33 + 39 · 4m (m!)2

(2m+ 1)!

)
4

3π2

8.2. Polynomial diffusion rate. The main result of Delecroix–Hubert–Lelièvre
in [DHL] relates the polynomial diffusion rate on the classical model to the Lya-
punov exponents of the subbundles F+− and F−+. In this case, the polynomial
diffusion rate is 2/3 for every wind-tree billiard in WT (1). This result was general-
ized by Delecroix–Zorich [DZ] for m ≥ 2. However, in the general case, the value of
the diffusion rate is also explicitly known but only for almost every wind-tree billiard
in WT (m) and numerically for some explicit examples (see [DZ, Remark 2]).

The explicit values of the polynomial diffusion rate for all wind-tree billiards
in WT (m), m ≥ 2, is still an open problem. However, an application of Forni’s
criterion for integer equivariant subbundles (Theorem 5.1) allows us to show that
the relevant Lyapunov exponents is always positive, for every wind-tree billiard in
WT (m), for all m ≥ 1 (Corollary 5.2).

Thus, we can conclude that we have always positive polynomial diffusion rate.

8.3. Recurrence. A geometric criterion for the recurrence of the directional
linear flow on Zd-periodic flat surfaces in terms of good cylinders by Avila–Hubert [AH]
says that if the positive gt-orbit of the compact surface accumulates on a flat sur-
faces with a vertical good cylinder, then the vertical linear flow on the Zd-periodic
flat surface is recurrent ([AH, Proposition 2]).

A result of Chaika–Eskin [CE] allows us to extend this criterion. In fact, we
have the following.

Theorem 8.1. Let X be a flat surface, M its SL(2,R)-orbit closure and F
a continuous equivariant subbundle. Let f be a d-tuple of elements in FX(Z) and
consider X∞, the Zd-periodic flat surface defined by X and f . Suppose that there
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exists Y ∈ M with an F -good cylinder. Then, for almost every θ ∈ [0, 2π), the
linear flow in direction θ is recurrent on X∞.

Proof. By [CE, Theorem 1.1], for almost every θ ∈ [0, 2π), r−θX is Birkhoff
generic for the gt-flow with respect to νM. Since Y ∈ M has a F -good cylinder,
then Y ′ = rφY has a vertical cylinder for some φ ∈ [0, 2π). Obviously Y ′ ∈M and,
since r−θX is Birkhoff generic, its positive gt-orbit accumulates on Y ′. Then, by
[AH, Proposition 2], the linear flow in direction θ is recurrent in X∞. �

Thus, to prove the recurrence of every wind-tree billiard Π ∈ WT (m), we shall
show that we can find good cylinders in the compact surface X(Π).

For m = 1 this was first proved by Avila–Hubert [AH, Lemma 4]. Consider
m ≥ 2 and recall that the obstacles of a wind-tree billiard Π ∈ WT (m) are horizontal
and vertically symmetric right-angled polygons with 4m corners with the angle π/2
and 4(m− 1), with the angle 3π/2.

(a) Horizontal good cylinder of profile (1, 0). (b) Vertical good cylinder of profile (0, 1).

(c) Horizontal good cylinder of profile (0, 0). (d) Vertical good cylinder of profile (0, 0).

Figure 14. Good cylinders for obstacles with two consecutive cor-
ners with angle 3π/2.

If the obstacle has two consecutive angles 3π/2, then we have (horizontal or
vertical) good cylinders of profile (1, 0), (0, 1) or (0, 0). In fact, if the two consecutive
angles are symmetric with respect to the vertical reflection, then we obtain horizontal
good cylinders of profile (1, 0) as in Figure 14a. Similarly, if the angles are symmetric
with respect to the horizontal reflection, then we have vertical good cylinders of
profile (0, 1) as in Figure 14b. In other case, we obtain horizontal or vertical good
cylinders of profile (0, 0) as in Figure 14c and Figure 14d.

If there are no consecutive corners of angles 3π/2, then there are good cylinders
of profile (1, 1) as in Figure 15.



A. COMBINATORIAL IDENTITIES 57

Figure 15. Core curves of good cylinders of profile (1, 1) for obsta-
cles with no consecutive corners with angle 3π/2.

Thus, for every Π ∈ WT (m) we can exhibit good cylinders in X(Π) and then,
by Theorem 8.1, we conclude that the billiard flow in direction θ is recurrent for
almost every θ ∈ [0, 2π).

Appendix A. Combinatorial identities

In this appendix we prove the following identities.

Proposition A.1. For any m ∈ N the following identities hold

m−1∑

q=1

(
m
q

)(
m−1
q+2

)
(

2m
2q

) =
1

6
m2−13

6
m− 3+

5

2
4m

(m!)2

(2m)!
(12)

m−1∑

q=1

(
m
q

)(
m−1
q+1

)
(

2m
2q

) = m+ 2−3

2
4m

(m!)2

(2m)!
(13)

m−1∑

q=1

(
m
q

)(
m−1
q

)
(

2m
2q

) = − 1+
1

2
4m

(m!)2

(2m)!
(14)

Proof. Define

B(m, s) :=
m−1∑

q=1

(
m
q

)(
m−1
q+s

)
(

2m
2q

)

and note that
(
m
q

)(
m−1
q+s

)
(

2m
2q

) =
m!(m− 1)!

(2m)!

(
2q

q

)(
2m− 2q

m− q

)
q!

(q + s)!

(m− q)!
(m− 1− q − s)! .

Consider

A(m, s) =
m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
q!

(q + s)!

(m− q)!
(m− 1− q − s)! .

Then

(15) B(m, s) =
m!(m− 1)!

(2m)!
A(m, s)−

(
m− 1

s

)
.
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Note now than we can write

(m− q)!
(m− 1− q − s)! =

s∏

i=0

(m− q − i) =: P (m,s)(q),

where P (m,s) is a computable polynomial of degree s+ 1, and suppose

P (m,s)(q) =
s+1∑

j=0

p
(m,s)
j qj.

Then, we can write

A(m, s) =
s+1∑

j=0

p
(m,s)
j

m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
q!

(q + s)!
qj

and define

D(m, s, j) =
m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
q!

(q + s)!
qj,

so that

(16) A(m, s) =
s+1∑

j=0

p
(m,s)
j D(m, s, j).

Note that

D(m, s, j) =
m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
q!

(q + s)!
qj

=
m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
q!

(q + s)!
qj
q + s+ 1

q + s+ 1

=

m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
q!

(q + s+ 1)!
qj(q + s+ 1)

= D(m, s+ 1, j + 1) + (s+ 1) D(m, s+ 1, j).

Then, D satisfies the following recurrence relation,

(17) D(m, s, j) = D(m, s− 1, j − 1)− s D(m, s, j − 1)

and, in particular, we can deduce that D(m, s, j) can be written as a linear combi-
nation of D(m, i, 0), i = 1, . . . , s, and D(m, 0, l), 0 ≤ l ≤ j − s. But, since j takes
values in {0, . . . , s+1}, for the D(m, 0, l) terms, we are interested only in D(m, 0, 1)
and D(m, 0, 0). The value of D(m, 0, 0) is given in [Gl, (3.90)],

(18) D(m, 0, 0) =
m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
= 4m.



A. COMBINATORIAL IDENTITIES 59

On the other hand,

D(m, 0, 1) =

m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
q

=
m∑

r=0

(
2m− 2r

m− r

)(
2r

r

)
(m− r)

= m D(m, 0, 0)−D(m, 0, 1).

Then, 2 D(m, 0, 1) = m D(m, 0, 0) and, by the identity (18),

(19) D(m, 0, 1) =
m

2
4m.

Remark A.2. In fact, it is not difficult to show that D(m, 0, l) = (m/2)l 4m,
l ≥ 0.

For the other terms, of the form D(m, i, 0), we use the following identity ([Gl,
(3.95)])

(20) X (m, i) :=
m∑

q=0

(
2q

q

)(
2m− 2q

m− q

)
i

q + i
=

(
2m+2i−1
m+i

)
(

2i−1
i

) .

But, a simple partial fraction decomposition gives

q!

(q + i)!
=

i∏

j=1

1

q + j
=

i∑

j=1

(−1)j−1

(j − 1)!(i− j)!
1

q + j
=

i∑

j=1

(−1)j−1

j!(i− j)!
j

q + j

and thus,

(21) D(m, i, 0) =
i∑

j=1

(−1)j−1

(j)!(i− j)!X (m, j).

Proof of identity (14). Following previous discution, P (m,0)(q) = m − q and
then, by (16), we have that,

A(m, 0) = m D(m, 0, 0)−D(m, 0, 1) =
m

2
4m,

where last equality comes from (18) and (19). Finally, from (15), we have that

B(m, 0) =
m!(m− 1)!

(2m)!
A(m, 0)−

(
m− 1

0

)
=

1

2
4m

(m!)2

(2m)!
− 1,

which is (14).

Proof of identity (13). Note that P (m,1)(q) = m2−m− (2m−1)q+ q2. Then,
by (16), we have that,

A(m, 1) = (m2 −m) D(m, 1, 0)− (2m− 1) D(m, 1, 1) +D(m, 1, 2).

Using the recurrence rule (17), we have that

D(m, 1, 1) = D(m, 0, 0)−D(m, 1, 0), and

D(m, 1, 2) = D(m, 0, 1)−D(m, 1, 1) = D(m, 0, 1)−D(m, 0, 0) +D(m, 1, 0).
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It follows that

A(m, 1) = (m2 −m+ (2m− 1) + 1) D(m, 1, 0)− (2m− 1 + 1) D(m, 0, 0) +D(m, 0, 1)

= (m2 +m) D(m, 1, 0)− 2m D(m, 0, 0) +D(m, 0, 1).

By identity (21) for i = 1, D(m, 1, 0) = X (1), and from (20),

D(m, 1, 0) = X (1) =

(
2m+ 1

m+ 1

)
=

(2m+ 1)!

m!(m+ 1)!
.

Therefore,

A(m, 1) = (m2 +m)
(2m+ 1)!

m!(m+ 1)!
− 2m 4m +

m

2
4m

=
(2m+ 1)!

m!(m− 1)!
− 3m

2
4m,

where we have also used (18) and (19). Thus, from (15),

B(m, 1) =
m!(m− 1)!

(2m)!
A(m, 1)−

(
m− 1

1

)

=
m!(m− 1)!

(2m)!

(
(2m+ 1)!

m!(m− 1)!
− 3m

2
4m
)
− (m− 1)

= 2m+ 1− 3

2
4m

(m!)2

(2m)!
− (m− 1)

= m+ 2− 3

2
4m

(m!)2

(2m)!
,

which is (13).

Proof of identity (12). (For the sake of readability, we will omit m from
notation in this part.) From (16), we have that

A(2) = p
(2)
0 D(2, 0) + p

(2)
1 D(2, 1) + p

(2)
2 D(2, 2) + p

(2)
3 D(2, 3),

where

P (2)(q) =
3∑

j=0

p
(2)
j qj = (m3 − 3m2 + 2m)− (3m2 − 6m+ 2)q + (3m− 3)q2 − q3.

Using the recurrence rule (17), we have that

D(2, 1) = D(1, 0)− 2 D(2, 0),

D(2, 2) = D(1, 1)− 2 D(2, 1)

= D(0, 0)−D(1, 0)− 2 (D(1, 0)− 2 D(2, 0))

= D(0, 0)− 3 D(1, 0) + 4 D(2, 0), and

D(2, 3) = D(1, 2)− 2 D(2, 2)

= D(0, 1)−D(1, 1)− 2 (D(0, 0)− 3 D(1, 0) + 4 D(2, 0))

= D(0, 1)−D(0, 0) +D(1, 0)− 2 D(0, 0) + 6 D(1, 0)− 8 D(2, 0)

= D(0, 1)− 3 D(0, 0) + 7 D(1, 0)− 8 D(2, 0).
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It follows that,

A(2) = p
(2)
0 D(2, 0) + p

(2)
1 D(2, 1) + p

(2)
2 D(2, 2) + p

(2)
3 D(2, 3)

= p
(2)
3 D(0, 1) + (p

(2)
2 − 3 p

(2)
3 )D(0, 0) + (p

(2)
1 − 3 p

(2)
2 + 7 p

(2)
3 )D(1, 0)

+ (p
(2)
0 − 2 p

(2)
1 + 4 p

(2)
2 − 8 p

(2)
3 )D(2, 0)

= −D(0, 1) + 3m D(0, 0) + q
(2)
1 D(1, 0) + q

(2)
2 D(2, 0)

=
5m

2
4m + q

(2)
1 D(1, 0) + q

(2)
2 D(2, 0),

where we have used (18), (19) and the values of p
(2)
3 = −1 and p

(2)
2 = 3m − 3. We

have also defined q
(2)
1 = p

(2)
1 − 3p

(2)
2 + 7p

(2)
3 and q

(2)
2 = p

(2)
0 − 2p

(2)
1 + 4p

(2)
2 − 8p

(2)
3 .

Thus, by identity (21),

A(2) =
5m

2
4m + q

(2)
1 X (1) + q

(2)
2

(
X (1)− 1

2
X (2)

)

=
5m

2
4m + (q

(2)
1 + q

(2)
2 )X (1)− 1

2
q

(2)
2 X (2)

=
5m

2
4m + (p

(2)
0 − p

(2)
1 + p

(2)
2 − p

(2)
3 )X (1)− 1

2
(p

(2)
0 − 2p

(2)
1 + 4p

(2)
2 − 8p

(2)
3 )X (2)

=
5m

2
4m + (m3 −m)X (1)− 1

2
(m3 + 3m2 + 2m)X (2).

Plugging in identity (20), we obtain

A(2) =
5m

2
4m + (m3 −m)

(
2m+ 1

m+ 1

)
− 1

2
(m3 + 3m2 + 2m)

(
2m+3
m+2

)
(

3
2

)

=
5m

2
4m + (m− 1)m(m+ 1)

(2m+ 1)!

m!(m+ 1)!
− 1

6
m(m+ 1)(m+ 2)

(2m+ 3)!

(m+ 1)!(m+ 2)!

=
5m

2
4m +

(
(m− 1)− 1

3
(2m+ 3)

)
(2m+ 1)!

m!(m− 1)!
=

5m

2
4m +

1

3
(m− 6)

(2m+ 1)!

m!(m− 1)!
.

Finally, by (15),

B(2) =
m!(m− 1)!

(2m)!
A(2)−

(
m− 1

2

)

=
m!(m− 1)!

(2m)!

(
5m

2
4m +

1

3
(m− 6)

(2m+ 1)!

m!(m− 1)!

)
− 1

2
(m− 1)(m− 2)

=
5

2
4m

(m!)2

(2m)!
+

1

3
(2m2 − 11m− 6)− 1

2
(m2 − 3m+ 2)

=
5

2
4m

(m!)2

(2m)!
+

1

6
(m2 − 13m− 18),

which is (12).
�

Remark A.3. Note that the proof of Theorem A.1 states a procedure or algo-
rithm in order to compute A(m, s) and B(m, s) for all s ≥ 0. Anyway, an algorithm
is not a formula, and evidently, the complexity increase enormously when s becomes
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larger. However, with this method, it is possible to show that B(m, s) has the form

(2m+ 1) Ps(m) + (−1)s 2s+1
2

4m
(m!)2

(2m)!
−
(
m−1
s

)
,

where Ps is a polynomial of degree s− 1 (in particular, P0 = 0), which can also be
explicitly computed. Moreover, Ps can be deduced from the fact that B(m, s) = 0
for m = 1, . . . , s+ 1. In particular,

Ps(m) = (−1)s+1 2s+1
2

4m
(m!)2

(2m+ 1)!

for m = 1, . . . , s. Anyway, we do not perform the computations here.
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CHAPTER II

Quantitative error term in the counting problem on Veech
wind-tree models

Abstract. We study periodic wind-tree models, billiards in the plane endowed
with Z2-periodically located identical connected symmetric right-angled obsta-
cles. We exhibit effective asymptotic formulas for the number of (isotopy classes
of) periodic billiard trajectories (up to Z2-translations) on Veech wind-tree bil-
liards, that is, wind-tree billiards whose underlying compact translation surfaces
are Veech surfaces. We show that the error term depends on spectral properties
of the Veech group and give explicit estimates in the case when obstacles are
squares of side length 1/2.

1. Introduction

The classical wind-tree model corresponds to a billiard in the plane endowed with
Z2-periodic obstacles of rectangular shape aligned along the lattice, as in Figure 1.

Figure 1. Original wind-tree model.

The wind-tree model (in a slightly different version) was introduced by P. Ehren-
fest and T. Ehrenfest [EE] in 1912. J. Hardy and J. Weber [HaWeb] studied the
periodic version. All these studies had physical motivations.

Several advances on the dynamical properties of the billiard flow in the wind-tree
model were obtained recently using geometric and dynamical properties on moduli
space of (compact) flat surfaces; billiard trajectories can be described by the linear
flow on a flat surface.

A. Avila and P. Hubert [AH] showed that for all parameters of the obstacle
and for almost all directions, the trajectories are recurrent. There are examples
of divergent trajectories constructed by V. Delecroix [De]. The non-ergodicity was
proved by K. Fra̧cek and C. Ulcigrai [FU]. It was proved by V. Delecroix, P. Hubert
and S. Lelièvre [DHL] that the diffusion rate is independent either on the concrete
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values of parameters of the obstacle or on almost any direction and almost any
starting point and is equals to 2/3. A generalization of this last result was shown
by V. Delecroix and A. Zorich [DZ] for more complicated obstacles. In the present
work we study this last variant, corresponding to a billiard in the plane endowed
with Z2-periodic obstacles of right-angled polygonal shape, aligned along the lattice
and horizontally and vertically symmetric. See Figure 2 for an example.

Figure 2. Delecroix–Zorich variant.

We are concerned with asymptotic formulas for the number of (isotopy classes
of) periodic trajectories on the wind-tree model. This question has been widely
studied in the context of (finite area) rational billiards and compact flat surfaces,
and it is related to many other questions such as the calculation of the volume
of normalized strata [EMZ] or the sum of Lyapunov exponents of the geodesic
Teichmüller flow [EKZ] on strata of flat surfaces (Abelian or quadratic differentials).

H. Masur [Ma88, Ma90] proved that for every flat surface (resp. rational
billiard) X, there exist positive constants c(X) and C(X) such that the number
N(X,L) of maximal cylinders of closed geodesics (resp. isotopy classes of periodic
trajectories) of length at most L satisfies

c(X)L2 ≤ N(X,L) ≤ C(X)L2

for L large enough. W. Veech, in his seminal work [Ve89], proved that for Veech
surfaces (resp. billiards) there are in fact exact quadratic asymptotics:

N(X,L) = c(X)L2 + o(L2).

In this work study the error term in this kind of asymptotic formulas. In the
compact case, the methods used by W. Veech [Ve89] give the following result (see
[Ve92, Remark 1.12]).

Theorem (Veech). Let X be a Veech surface. Then, there exists c(X) > 0 and
δ(X) ∈ [1/2, 1) such that

N(X,L) = c(X)L2 +O(L2δ(X)) +O(L4/3)

as L→∞.

Furthermore, the number δ(X) has a specific interpretation in terms of spectral
properties of the Veech group.
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Asymptotic formulas for wind-tree models. In [Pa1], we proved asymp-
totic formulas for generic wind-tree models with respect to a natural Lebesgue-type
measure on the parameters of the wind-tree billiards, that is, the side lengths of
the obstacles (cf. [AEZ, DZ]) and gave the exact value of the quadratic coefficient,
which depends only in the number of corners of the obstacle (see [Pa1] for more
details on the counting problem on wind-tree models). Asymptotic formulas were
also given in the case of Veech wind-tree billiards, that is, wind-tree billiards such
that the underlying compact translation surface is a Veech surface1 (see §2.3 for
precise definitions).

In the present work, we present an effective version of this result, that is, the
analogue of Veech’s Theorem, for Veech wind-tree billiards. More precisely, we prove
the following.

Theorem 1.1. Let Π be a Veech wind-tree billiard. Then, there exists c(Π) > 0
and δ(Π) ∈ (1/2, 1) such that

N(Π, L) = c(Π)L2 +O(L2δ(Π)) +O(L4/3)

as L→∞.

This result relies, on one hand, in the adaptation of Veech methods to our
context, which allows to keep track one well behaved part of periodic trajectories on
wind-tree billiards (good cylinders, see §2.4). On the other hand, there is a family
of badly behaved trajectories (bad cylinders, see §2.4) which we attack using tools
from hyperbolic geometry. Thanks to ideas of F. Dal’Bo [Da], we are able to relate
the error term for this family with the Poincaré critical exponent of an associated
subgroup of the Veech group. We prove then that this critical exponents is strictly
less than 1 using results of R. Brooks [Br] (see also [RT]).

Explicit estimates. In the simplest case, when Π is the wind-tree billiard with
square obstacles of side length 1/2, the Veech group of Π can be easily described and
most of the involved objects can be explicitly computed, such as the contribution
on the error term of the well behaved part of the periodic trajectories. Using results
of T. Roblin and S. Tapie [RT], we explicitly estimate the contribution of the badly
behaved family of periodic trajectories. More precisely, we prove the following.

Theorem 1.2. Let Π be the Veech wind-tree billiard with square obstacles of
side length 1/2, and let δ = δ(Π) ∈ (1/2, 1) be as in the conclusion of Theorem 1.1.
Then,

δ < 0.9992.

Strategy of the proof. W. Veech [Ve89] proved that for Veech surfaces, there
are exact quadratic asymptotics relating the Dirichlet series of their length spec-
trum to Eisenstein series associated to the cusps of their (lattice) Veech group. An
application of Ikehara’s tauberian theorem allows then him to conclude. An effec-
tive version of this last tool allows to quantify the error term in terms of spectral
properties of the Veech group (see [Ve92, Remark 1.12]).

In [Pa1], we showed that the counting problem on wind-tree models can be
reduced to the study of two families of cylinders in the associated translation surface,

1We stress that this definition of “Veech wind-tree billiard” is not standard.



68 II. QUANTITATIVE ERROR TERM ON VEECH WIND-TREE MODELS

these are called good and bad cylinders (see §2.4.1, for the precise definition). The
notion of good cylinders was first introduced by A. Avila and P. Hubert [AH] in
order to give a geometric criterion for recurrence of Zd-periodic translation surfaces.

Applying Veech’s method to the counting problem on Veech wind-tree models,
we are able to prove the analogous result in the case of good cylinders, that is, to give
the order of the error term in terms of ad-hoc spectral properties of the Veech group
of the underlying surface. This is possible because the collection of good cylinders
is SL(2,R)-equivariant and then, there is a simple description of good cylinders in
terms of some particular cusps of the Veech group, which allows to connect the
counting problem to the corresponding Eisenstein series as Veech did.

In the case of bad cylinders, this approach does not work anymore since this
family is not SL(2,R)-equivariant and there is no simple description of bad cylinders
in terms of (cusps of) the Veech group of the underlying surface. However, bad
cylinders can be described in terms of some intricate but well described subgroup
Γbad of the Veech group. Using tools from hyperbolic geometry, thanks to ideas of
F. Dal’Bo [Da], we prove that the leading term on the counting of bad cylinders is
related to the critical exponent of this subgroup Γbad.

Using results of R. Brooks [Br], we prove that this critical exponent is strictly
less than 1. We use the representation of the Veech group given by the restriction
of the Kontsevich–Zorich cocycle to a corresponding equivariant subbundle of the
real Hodge bundle. The kernel of this representation is a subgroup of Γbad. One
first application of Brooks results allows us to show that the critical exponents of
these two groups coincide. A second application shows that the critical exponent of
the kernel of the representation is strictly less than that of the Veech group, which
equals 1.

The number δ(Π) in the statement of Theorem 1.1, giving the order of the er-
ror term, is completely defined by spectral properties of the involved groups. More
precisely, it is the maximum between the critical exponent of the group Γbad, associ-
ated to bad cylinders, and the second largest pole of the meromorphic continuation
of (linear combination of) Eisenstein series, associated to good cylinders. The 4/3
in the conclusion of Theorem 1.1 appears because of technicalities in the effective
version of the tauberian theorem for Eisenstein series ([Ve92, Remark 1.12]).

In the case when Π is the wind-tree billiard with square obstacles of side length
1/2, the Veech group of Π is a congruence subgroup of level 2. Thanks to a result of
M. Huxley [Hu85], we know that low level congruence groups satisfies the Selberg’s
1/4 conjecture. To our purposes, this means that the Eisenstein series has no poles
in (1/2, 1). The critical exponent of Γbad requires much more attention and we are
not able to give the exact value. Using results of T. Roblin and S. Tapie [RT],
we estimate the critical exponent of Γbad. These estimates are far away from being
optimal, but up to our knowledge, this is the only existing tool.

In order to apply this method to estimate the critical exponent of Γbad, we
have first to give energy estimates on a Dirichlet fundamental domain of the Veech
group and to estimate the bottom of the spectrum of the combinatorial Laplace
operator associated to the quotient of the Veech group by Γbad, which turn out to
be isomorphic to PSL(2,Z).
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It is very likely that estimates (or even, the exact value) of the bottom of the
combinatorial spectrum of PSL(2,Z) are known by the experts. However, we could
not find any clue of this and we give our own estimates.

Structure of the paper. In §2 we briefly recall all the background necessary
to formulate and prove the results. In §3 we study the counting problem on Veech
surfaces associated to collections of cylinders described by a subgroup of the Veech
group. We restate Veech’s theorem in the case when the subgroup is a lattice
and we relate the growth rate to the critical exponent for general subgroups of the
Veech group. In §4 we apply this results to the counting problem on Veech wind-
tree billiards. Veech’s theorem is applied to good cylinders, giving the quadratic
asymptotic growth rate with the error term depending in the spectrum of the Veech
group. We show that bad cylinders are described by an infinitely generated Fuchsian
group of the first kind and prove that its critical exponent is strictly less than
one, showing thus the subquadratic asymptotic growth rate of bad cylinders in an
effective way.

Finally, in §5 we study the case of the wind-tree billiard with square obstacles
of side length 1/2. We estimate the critical exponent of the group associated to bad
cylinders. In order to perform this, we give energy estimates in Appendix A and we
estimate the combinatorial specrum of PSL(2,Z) in Appendix B. Both appendices
are self contained and can be read independently of the rest of the paper.
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2. Background

2.1. Rational billiards and translation surfaces. For an introduction and
general references to this subject, we refer the reader to the surveys of Masur–
Tabachnikov [MT], Zorich [Zo06], Forni–Matheus [FM], Wright [Wr].

2.1.1. Rational billiards. Given a polygon whose angles are rational multiples of
π, consider the trajectories of an ideal point mass, that moves at a constant speed
without friction in the interior of the polygon and enjoys elastic collisions with the
boundary (angles of incidence and reflection are equal). Such an object is called a
rational billiard. There is a classical construction of a translation surface from a
rational billiard (see [FK, KZ]).
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2.1.2. Translation surfaces. Let g ≥ 1, n = {n1, . . . , nk} be a partition of 2g− 2
and H(n) denote a stratum of Abelian differentials, that is, holomorphic 1-forms on
Riemann surfaces of genus g, with zeros of degrees n1, . . . , nk ∈ N. There is a one to
one correspondence between Abelian differentials and translation surfaces, surfaces
which can be obtained by edge-to-edge gluing of polygons in R2 using translations
only. Thus, we refer to elements of H(n) as translation surfaces.

A translation surface has a canonical flat metric, the one obtained form R2, with
conical singularities of angle 2π(n+1) at zeros of degree n of the Abelian differential.

2.1.3. SL(2,R)-action. There is a natural action of SL(2,R) on strata of trans-
lation surfaces, coming from the linear action of SL(2,R) on R2, which generalizes
the action of SL(2,R) on the space GL(2,R)

/
SL(2,Z) of flat tori. Let gt =

(
et 0
0 e−t

)
;

the action of (gt)t∈R is called the Teichmüller geodesic flow.
2.1.4. Hodge bundle and the Kontsevich–Zorich cocycle. The (real) Hodge bun-

dle H1 is the real vector bundle of dimension 2g over an affine invariant manifoldM
(see [EMi, EMM] for the precise definition), where the fiber over X is the real co-
homology H1

X = H1(X,R). Each fiber H1
X has a natural lattice H1

X(Z) = H1(X,Z)
which allows identification of nearby fibers and definition of the Gauss–Manin (flat)
connection. The monodromy of the Gauss–Manin connection restricted to SL(2,R)-
orbits provides a cocycle called the Kontsevich–Zorich cocycle, which we denote by
KZ(A,X), for A ∈ SL(2,R) and X ∈ M. The Kontsevich–Zorich cocycle is a sym-
plectic cocycle preserving the symplectic intersection form 〈f1, f2〉 =

∫
S
f1 ∧ f2 on

H1(X,R).
2.1.5. Lyapunov exponents. Given any affine invariant manifold M, we know

from Oseledets theorem that there are real numbers λ1(M) ≥ · · · ≥ λ2g(M), the
Lyapunov exponents of the Kontsevich–Zorich cocycle over the Teichmüller flow
on M and a measurable gt-equivariant filtration of the Hodge bundle H1(X,R) =
V1(X) ⊃ · · · ⊃ V2g(X) = {0} at νM-almost every X ∈M such that

lim
t→∞

1

t
log ‖KZ(gt, X)f‖gtω = λi

for every f ∈ Vi \ Vi+1.
The fact that the Kontsevich–Zorich cocycle is symplectic implies that the Lya-

punov spectrum is symmetric, λj = −λ2g−j, j = 0, . . . , g.
2.1.6. Equivariant subbundles of the Hodge bundle. LetM be an affine invariant

submanifold and F a subbundle of the Hodge bundle over M. We say that F
is equivariant if it is invariant under the Kontsevich–Zorich cocycle. Since M is
SL(2,R)-invariant, by the definition of the Kontsevich–Zorich cocycle, a flat (locally
constant) subbundle is always equivariant.

We say that F admit an almost invariant splitting, if there exists n ≥ 1 and
for νM-almost every X ∈ M there exist proper subspaces W1(X), . . . ,Wn(X) ⊂
FX such that Wi(X) ∩ Wj(X) = {0} for 1 ≤ i < j ≤ n, such that, for every
i ∈ {1, . . . , n} and almost every A ∈ SL(2,R), KZ(A,X)Wi(X) = Wj(AX) for
some j ∈ {1, . . . , n}, and such that the map X 7→ {W1(X), . . . ,Wn(X)} is νM-
measurable. We say that F is strongly irreducible if is does not admit an almost
invariant splitting.
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Previous discussion about Lyapunov exponents applies in this context as well
and we have that, as before, for almost every X ∈ M, there is a measurable gt-
equivariant filtration FX = U1(X) ⊃ · · · ⊃ Ur(X) = {0}, where r = rankF =
dimFX and, for every f ∈ Ui \ Ui+1,

lim
t→∞

1

t
log ‖KZ(gt, X)f‖gtrθω = λi(M, F ).

We denote by FX(Z) = FX∩H1
X(Z) the set of integer cocycles in FX . We say that

F is defined over Z if it is generated by integer cocycles, that is, if FX = 〈FX(Z)〉R.
When F is defined over Z, FX(Z) is a lattice in FX .

2.1.7. Veech group and Veech surfaces. We denote the stabilizer of a translation
surface X under the action of SL(2,R) by SL(X). The group SL(X) is also the
group of derivatives of affine orientation-preserving diffeomorphisms of X.

Recall that SL(2,R) does not act faithfully on the upper half-plane H; it is the
projective group PSL(2,R) that does so. If G is a subgroup of SL(2,R), we denote
by PG its image in PSL(2,R). In a slight abuse of notation we sometimes shall omit
P whenever it is clear from the context that we see G as a subgroup of SL(2,R) or
PSL(2,R). We define the Veech Group of X to be PSL(X), that is, the image of
SL(X) in PSL(2,R).

A translation surface X is called Veech surface if its Veech group PSL(X) is a
lattice, that is, if H

/
PSL(X) has finite volume. Veech surfaces correspond to closed

SL(2,R)-orbits. Such a closed orbits is called a Teichmüller curve. In this work we
are devoted to Veech surfaces. For an introduction and general references to Veech
surfaces, we refer the reader to the survey of Hubert–Shcmidt [HS].

2.1.8. Veech group representation. When A ∈ SL(X), the Kontsevich–Zorich
cocycle defines a symplectic map KZ(A,X) : H1

X → H1
X which preserves H1

X(Z).
This defines thus a representation ρH1 of SL(X) on the symplectic group Sp(H1

X ,Z),

ρH1 : SL(X) → Sp(H1
X ,Z),

A 7→ KZ(A,X).

If F is an equivariant subbundle, then the restriction of the Kontsevich–Zorich
cocycle to F gives another representation which, is not faithful in general and, we
denote by ρF : SL(X) → SL(FX). Note that this representation is not symplectic
nor defined over Z in general. However, if the subbundle is symplectic or defined
over Z, so is the representation.

If −id /∈ SL(X), every representation ρF descends to a representation of PSL(X)
on PSL(FX). Nevertheless, if −id ∈ SL(X), this is not true in general. In fact, for
a symplectic equivariant subbundles F defined over Z, ρF (−id) ∈ Sp(FX ,Z) is a
symplectic permutation matrix which might not be in the center of Sp(FX), so
we cannot descend to the corresponding projective groups. Anyway, if FX is two
dimensional, the only symplectic permutation matrices are ±idFX and therefore, ρF
descends to a representation of PSL(X) on PSL(FX).

2.2. Counting problem. We are interested in the counting of closed geodesics
of bounded length on translation surfaces.
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2.2.1. Cylinders. Together with every closed regular geodesic in a translation
surface X we have a bunch of parallel closed regular geodesics. A cylinder on a
translation surface is a maximal open annulus filled by isotopic simple closed regular
geodesics. A cylinder C is isometric to the product of an open interval and a circle,
and its core curve γC is the geodesic projecting to the middle of the interval.

2.2.2. Holonomy. Integrating the corresponding Abelian differential along the
core curve of a cylinder or, more generally, any homology class γ ∈ H1(X,Z), we get
a complex number. Considered as a planar vector, it represents the affine holonomy
along γ and we denote this holonomy vector by hol(γ). In particular, the euclidean
length of a cylinder corresponds to the modulus of its holonomy vector.

A relevant equivariant subbundle is given by ker hol which in turn is the sym-
plectic complement of the so called tautological (sub)bundle.

2.2.3. Counting problem. Consider the collection of all cylinders on a translation
surface X and consider its image V (X) ⊂ R2 under the holonomy map, V (X) =
{hol γC : C is a cylinder in X}. This is a discrete set of R2. We are concerned with
the asymptotic behavior of the number N(X,L) = #V (X) ∩ B(L) of cylinders in
X of length at most L, when L→∞.

More generally, we can consider any collection of cylinders C ⊂ A, and study the
asymptotic behavior of the number of cylinders in C of length at most L, NC(X,L) =
#VC(X) ∩B(L), as L→∞, where VC(X) = {hol γC : C ∈ C}.

2.3. Wind-tree model. The wind-tree model corresponds to a billiard Π in
the plane endowed with Z2-periodic horizontally and vertically symmetric right-
angled obstacles, where the sides of the obstacles are aligned along the lattice as in
Figure 1 and Figure 2.

Recall that in the classical case of a billiard in a rectangle we can glue a flat
torus out of four copies of the billiard table and unfold billiard trajectories to flat
geodesics of the same length on the resulting flat torus. In the case of the wind-tree
model we also start from gluing a translation surface out of four copies of the infinite
billiard table Π. The resulting surface X∞ = X∞(Π) is Z2-periodic with respect to
translations by vectors of the original lattice. Passing to the Z2-quotient we get
a compact translation surface X = X(Π). For the case of the original wind-tree
billiard, with rectangular obstacles, the resulting translation surface is represented
at Figure 3 (see [DHL, § 3] for more details).

Similarly, when the obstacle has 4m corners with the angle π/2 (and therefore,
4m−4 with angle 3π/2), the same construction gives a translation surface consisting
in four flat tori with holes —four copies of a Z2-fundamental domain of Π, the
holes corresponding to the obstacles— with corresponding identifications, as in the
classical setting (m = 1, see Figure 3).

2.3.1. Description of the Z2-covering and relevant subbundles. There are two
cohomology classes h, v ∈ H1(X,Z) defining the Z2-covering X∞ of X. Let M be
the SL(2,R)-orbit closure of X. Then, thanks to the symmetries of X, there are two
equivariant subbundles F (h) and F (v) of H1 defined overM, such that h ∈ F (h) and
v ∈ F (v) (see [Pa1] for more details). Furthermore, we have the following (see [Pa1,
Corollary 5]).
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Figure 3. The translation surface X obtained as quotient over Z2

of an unfolded wind-tree billiard table ([DZ, Figure 5]).

Theorem 2.1. Let Π be a wind-tree billiard, X = X(Π). Then, the subbundles
F (h) and F (v) defined over the SL(2,R)-orbit closure of X are 2-dimensional flat
subbundles defined over Z and have non-zero Lyapunov exponents.

As consequence, these subbundles are strongly irreducible and symplectic. In-
deed, by [AEM, Theorem 1.4] and [EMi, Theorem A.9], any measurable equivari-
ant subbundle with at least one non-zero Lyapunov exponent is symplectic and, in
particular, even dimensional. Thus, a two-dimensional subbundle is automatically
strongly irreducible provided it has non-zero Lyapunov exponents. Furthermore,
these subbundles are subbundles of ker hol.

2.3.2. The (1/2, 1/2) wind-tree model. We give a little more details in the case
of the wind-tree billiard with square obstacles of side length 1/2, Π = Π(1/2, 1/2).

c0

h00

v00

h01

v01

c1

h10

v10

h11

v11

Figure 4. The surface X = X(Π(1/2, 1/2)) and the cycles hij, vij
and cj, i, j ∈ {0, 1} (cf. [DHL, Figure 4]).

The surface X = X(Π) is a covering of a genus 2 surface L which is a so called
L-shaped surface that belongs to the stratum H(2) (see for example [DHL]). In
particular, SL(X) ⊂ SL(L). In this case, L is a square-tiled surface, tiled by 3
squares, see Figure 5.
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It is elementary to see that SL(L) = 〈r, u2〉, where r = ( 0 1
−1 0 ) and u = ( 1 1

0 1 ) (see
for example [Zo06, §9.5]). Moreover, it is not difficult to verify that SL(X) = SL(L).

Figure 5. The surface X = X(Π(1/2, 1/2)) seen as a cover of the
square-tiled L-shaped surface L.

For i, j ∈ {0, 1}, let hij, vij and cj be as in Figure 4. Let E+− be the subspace of
H1(X,R) with symplectic integer basis {h+−, v+−}, where h+− is the Poincaré dual
of the cycle h00+h01−h10−h11 and v+−, of v00+v01−v10−v11. Similarly, define E−+,
with basis {h−+, v−+}, h−+ = (h00−h01+h10−h11)∗ and v−+ = (v00−v01+v10−v11)∗.

We have that F
(h)
X = E+−, h = h+−, F

(v)
X = E−+ and v = v−+.

The action of u2 ∈ SL(X) on the hij, vij, i, j ∈ {0, 1} is shown in Figure 6 and
is described by

ρH1(u2) : h∗ij 7→ h∗ij
v∗ij 7→ v∗ij + h∗ij + c∗j ,

and therefore, for σ ∈ {+−,−+}, we have that

ρEσ(u2) : hσ 7→ hσ

vσ 7→ vσ + hσ.

Thus, with the right choice of basis for F = F (h) or F (v), we get ρF (u2) = u.
Similarly, we can find that ρF (r) = r. In particular, ρF (SL(X)) ∼= SL(2,Z), for
F = F (h), F (v).

u2

Figure 6. The action of u2 on hij, vij, i, j ∈ {0, 1}.
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2.4. Counting problem on wind-tree models. In this work, we are con-
cerned with counting periodic trajectories in the wind-tree billiard. Obviously, any
periodic trajectory can be translated by an element in Z2 to obtain a new (non-
isotopic) periodic trajectory. Then, we shall count (isotopy classes of) periodic
trajectories of bounded length in the wind-tree billiard, up to Z2-translations.

There is a one to one correspondence between billiard trajectories in Π and
geodesics in X∞. But X∞ is the Z2-covering of X given by h, v ∈ H1(X,Z), which
means that closed curves γ in X lift to closed curves in X∞ if and only if h(γC) =
v(γC) = 0. In fact, by definition of the covering, the monodromy of a closed curve
γ in X is the translation by (h(γ), v(γ)) ∈ Z2. The cylinders in the cover X∞ are
exactly the lift of those cylinders C in X whose core curve γC has trivial monodromy.
In particular, cylinders in X∞ are always isometric to their projection on X. When
a cylinder C does not satisfy this condition, it lifts to X∞ as a strip, isometric to
the product of an open interval and a straight line.

2.4.1. Good and bad cylinders. Let f = h or v, and F = F (f). Note that
cylinders C in X such that f(γC) = 0, split naturally into two families: (a) the

family of cylinders such that f̂(γC) = 0 for all f̂ ∈ FX , that is, γC ∈ Ann(FX),
which we call F -good cylinders, and (b) the family of cylinders that are not F -good,
but f(γC) = 0. These later are called (F, f)-bad cylinders. The notion of F -good
cylinders was first introduced by Avila–Hubert [AH] in order to give a geometric
criterion for recurrence of Zd-periodic flat surfaces. Good cylinders are favorable to
our purposes. In fact, since the Kontsevich–Zorich cocycle preserves the intersection
form and F is equivariant, they define an SL(2,R)-equivariant family of cylinders,
which is much more tractable than arbitrary collections of cylinders.

For a wind-tree billiard Π, we denote by N(Π, L), the number of (isotopy classes
of) periodic trajectories (up to Z2-translations) of length at most L, by Ngood(X,L)
the number of F (h) ⊕ F (v)-good cylinders in X = X(Π) of length at most L and
Nf−bad(X,L), of (F, f)-bad cylinders in X of length at most L, for f = h or v and
F = F (f). Note that

Ngood(X,L) ≤ N(Π, L) ≤ Ngood(X,L) +Nh−bad(X,L) +Nv−bad(X,L).

Thus, it is enough to understand the asymptotic behavior ofNgood(X,L), Nh−bad(X,L)
and Nv−bad(X,L) separately.

The author [Pa1] used this to reduce the counting problem on wind-tree models
to the counting of good cylinders. In fact, we have the following.

Theorem 2.2 ([Pa1, Theorem 1.3]). Let Π be a wind-tree billiard, X = X(Π)
the associated compact flat surface, let f = h or v and F = F (f) be one of the
associated subbundles F (h) or F (v). Then, the number Nf−bad(X,L), of (F, f)-bad
cylinders in X of length at most L, has subquadratic asymptotic growth rate, that
is, Nf−bad(X,L) = o(L2).

Thus, the counting problem on wind-tree models may be reduced to count F (h)⊕
F (v)-good cylinders, which has quadratic asymptotic growth rate thanks to a result
of Eskin–Masur [EMa]. However, in this work, we are interested in an effective
version and therefore, bad cylinders have to be taken into account.
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Remark 2.3. An useful characterization of bad cylinders in our case is the
following. A cylinder C is (F, f)-bad if and only if prFXγC = ±f . In fact, since
F is symplectic and two dimensional, C is an (F, f)-bad cylinder if and only if
prFXγC 6= 0 is colinear to f (see [Pa1, Remark 3.1]). Moreover, the action of SL(2,R)
on homology (that is, the Kontsevich–Zorich cocycle) is by integer matrices, then,
this is equivalent to say that prFXγC = ±f .

2.4.2. Veech wind-tree billiards. Let Π be a wind-tree billiard. We define the
Veech group of Π to be PSL(Π) = PSL(X(Π)) and we say that Π is a Veech wind-
tree billiard if PSL(Π) is a lattice. We stress that these definitions are not standard
as it does not correspond to the (projection to PSL(2,R) of the) derivatives of affine
orientation-preserving diffeomorphisms of the unfolded billiard X∞(Π), but to those
of X(Π), the Z2-quotient of the unfolded billiard.

In the classical case, of rectangular obstacles, we denote Π(a, b) the wind-tree
billiard with rectangular obstacles of side lengths a, b ∈ ]0, 1[. Thank to results of
Calta [Ca] and McMullen [McM03, McM05], it is possible to classify completely
Veech wind-tree models in the classical case (see [DHL, Theorem 3]).

Theorem 2.4. The wind-tree model Π(a, b) is a Veech wind-tree billiard if and
only if either a, b ∈ Q or there exist x, y ∈ Q and a square-free integer D > 1 such
that 1/(1− a) = x+ y

√
D and 1/(1− b) = (1− x) + y

√
D.

In this work we are concerned only with Veech wind-tree billiards. Most of
the tools we use to deal with bad cylinders comes from geometric considerations
of the action (on the upper half-plane H) of the lattice Veech group PSL(Π) and,
more precisely, of some particular subgroups of PSL(Π). These groups are Fuchsian
groups. In the following, we present a brief recall of the objects we need and some
of their properties.

2.5. Fuchsian groups. A Fuchsian group is a discrete subgroup of PSL(2,R).
A Fuchsian group Γ acts properly discontinuously on H. In particular, the orbit Γz
of any point z ∈ H under the action of Γ has no accumulation points in H. There
may, however, be limit points on the real axis. Let Λ(Γ) be the limit set of Γ, that
is, the set of limits points for the action of Γ on H, Λ(Γ) ⊂ R. The limit set may
be empty, or may contain one or two points, or may contain an infinite number. A
Fuchsian group is of the first type if its limit set is the closed real line R = R∪{∞}.
This happens in the case of lattices, but there are Fuchsian groups of the first kind
of infinite covolume. These latter are always infinitely generated.

When the limit set is finite, we say that Γ is elementary. In such case, Γ is cyclic.
In this work we shall mainly handle two type of Fuchsian groups. The first are

Veech groups of Veech surfaces, which are lattices by definition and the other are the
subgroups of the Veech group given by Pker ρF , for equivariant subbundles F ⊂ H1.
Recall that ρF : SL(X)→ SL(FX). Thus, ker ρF is a subgroup of SL(X), Pker ρF is
the image of ker ρF in PSL(X).

The following result allows us to better understand these groups when F is a
2-dimensional subbundle of ker hol.
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Theorem 2.5 ([HoWei, Theorem 5.6]). Let X be a Veech surface and F an
integer (defined over Z) 2-dimensional subbundle of ker hol over the SL(2,R)-orbit
of X. Then, Pker ρF is a Fuchsian group of the first kind.

In particular, in the case of Veech wind-tree billiards, the hypothesis are satisfied
by the subbundles F (h) and F (v) and therefore, Pker ρF is a Fuchsian group of the
first kind for F = F (h), F (v).

2.5.1. Critical exponent. Another concept which is of major relevance in this
work is that of the critical exponent of a Fuchsian group. For an introduction to
the subject, we refer the reader to Peigné [Pe].

Let Γ be a Fuchsian group. The orbital function nΓ : R+ → N is defined by
nΓ(R) = #{g ∈ Γ : dH(i, gi) ≤ R}. The exponent

δ(Γ) := lim sup
R→∞

1

R
lnnΓ(R)

is the critical exponent of Γ. It corresponds to the critical exponent (the abscissa of
convergence in R+) of the Poincaré series defined by

PΓ(s) :=
∑

g∈Γ

e−sdH(i,gi).

That is, PΓ(s) diverges for s < δ(Γ) and converges for s > δ(Γ).
Note that in the definition of the critical exponent δ(Γ) it is innocuous if we

change dH(i, gi) for dH(x, gy), for some x, y ∈ H or, in particular, if we change Γ
for some conjugate of Γ, either in the definition of the orbital function nΓ or in the
Poincaré series PΓ.

A result of Roblin [Ro99, Ro02] relates in a sharper way the asymptotic be-
havior of the orbital function and the critical exponent.

Theorem 2.6 (Roblin). Let Γ be a non-elementary Fuchsian group. Then

nΓ(r) = O(eδr),

as L→∞.

Consider now the following sungroups of PSL(2,R):

• K =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ [0, π)

}
,

• A =

{(
et 0
0 e−t

)
: t ∈ R

}
, and

• N =

{(
1 t
0 1

)
: t ∈ R

}
.

Every element g ∈ PSL(2,R) \ {1} is conjugated to some element in K, A or N . In
fact, we have the following:

• | tr(g)| < 2 if and only if g is conjugated to some element of K. In this case
g is called elliptic and it fixes exactly one point in H, which belongs to H;
• | tr(g)| > 2 if and only if g is conjugated to some element of A. In this case
g is called hyperbolic and it fixes exactly two point in H, which belongs to
∂H = R; and
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• | tr(g)| = 2 if and only if g is conjugated to some (and therefore, to every)
element of N . In this case g is called parabolic and it fixes exactly one
point in H, which belongs to ∂H.

If Γ is a non-elementary Fuchsian group, it has positive critical exponent δ(Γ) > 0
and if it contains a parabolic element, then δ(Γ) > 1/2.

One of the main ingredients we use to prove our results is the following result of
Brooks [Br] (see also [RT]).

Theorem 2.7 (Brooks). Let Γ0 be a Fuchsian group and Γ be a non-elementary
normal subgroup of Γ0 such that δ(Γ) > 1/2.

(1) If Γ0

/
Γ is amenable, then δ(Γ) = δ(Γ0).

(2) If Γ0 is a lattice and Γ0

/
Γ is non-amenable, then δ(Γ) < δ(Γ0) = 1.

This last result is based on the fact that the critical exponent δ(Γ) is related to
λ0(Γ), the bottom of the spectrum of the Laplace operator on H

/
Γ. In fact, when

δ(Γ) ≥ 1/2, we have that λ0(Γ) = δ(Γ)(1− δ(Γ)) (see for example [RT]).

3. Counting problems on Veech surfaces

Let X be a Veech surface, that is, X is a translation surface whose Veech group
PSL(X) is a (non-uniform) lattice. In particular, H

/
PSL(X) has a finite number

of cusps. It is well known (since Veech [Ve89]) that, for Veech surfaces, cylinders
correspond to the cusps of the Veech group and, in particular, the family of all
cylinders can be written as the union of a finite number of SL(X)-orbit of cylinders.
That is, there are finitely many cylinders A1, . . . , An in X such that

A := {all cylinders in X} = SL(X) · {Aj}nj=1.

In particular, any collection C ⊂ A of cylinders is contained in a finite union of
cusps, in the sense that it satisfies C ⊂ SL(X) · C, for some finite collection C ⊂ C.

3.1. Finitely saturated collections of cylinders. Let Γ be a subgroup of
SL(X). A collection C of cylinders in X is said to be finitely saturated by Γ (or
Γ-finitely saturated) if it can be expressed as a finite union of Γ-orbits of cylinders
and Γ contains every cusp. More precisely, C is finitely saturated by Γ if C = Γ · C,
for some finite collection C ⊂ C and stabSL(X)(C) ⊂ Γ for every C ∈ C. Equivalently,
we can ask stabSL(X)(C) ⊂ Γ only for C ∈ C.

Thus, as already said in different terms, the collection A of all cylinders in X is
SL(X)-finitely saturated.

Remark 3.1. In the definition of finitely saturated collections of cylinders, the
finite part is fundamental. Consider, for example, the group Γ generated by all
parabolics in SL(X). Then, when the Teichmüller curve defined by X has positive
genus2, A is saturated by Γ, but it is not Γ-finitely saturated.

In general, any SL(2,R)-equivariant collection of cylinders (defined in the SL(2,R)-
orbit of X) is SL(X)-finitely saturated. In particular, configurations of cylinders, in
the sense of Eskin–Masur–Zorich [EMZ], define SL(X)-finitely saturated collections
of cylinders.

2See [HL] for examples of Teichmüller curves with arbitrary large genus in a fixed stratum.
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However, in this work, we have to deal with collections of cylinders which are
finitely saturated by groups which are not lattices as SL(X) is. In fact, we have to
deal with groups which are not even finitely generated.

Remark 3.2. If Γ is a Fuchsian group such that a (non-empty) collection of
cylinders C is finitely saturated by Γ, then, by definition, stabSL(X)(C) ⊂ Γ for every
C ∈ C. But PstabSL(X)(C) is cyclic parabolic. Thus, Γ contains parabolics and
therefore δ(Γ) ≥ 1/2, with equality if and only if Γ is elementary (and C is a finite
collection of parallel cylinders).

3.2. Counting problem. We are interested in counting cylinders in some par-
ticular collections. Let C be a collection of cylinders in X and let NC(X,L) be the
number of cylinders in C of length at most L. We are able to study the asymptotic
behavior in the case of finitely saturated collections.

In the case of A, the collection of all cylinders in X, Veech proved the qua-
dratic asymptotic behavior in [Ve89] and gave then an effective version in [Ve92,
Remark 1.12]. In the case of collections of cylinders saturated by lattice groups,
Veech’s approach can be applied exactly the same. In fact, we have the following.

Theorem 3.3 (Veech). Let X be a Veech surface and let C be a Γ-finitely satu-
rated collection of cylinders on X with Γ being a lattice. Then

NC(X,L) = c(C)L2 +
k∑

j=1

cj(C)L2δj +O(L4/3),

as L→∞, for some c(C), c1(C), . . . , ck(C) > 0, where {δj(1− δj)}kj=1 is the discrete

spectrum of the Laplace operator on H
/

Γ on (0, 1/4). In particular, δj ∈ (1/2, 1),
for j = 1, . . . , k. Possibly k = 0.

Proof. For C = A, the collection of all cylinders in X (which is finitely sat-
urated by Γ = SL(X)), Veech proved in [Ve89] the principal term c(C)L2. The
remainder was observed in [Ve92, Remark 1.12], by an application of [Gd, Theo-
rem 4]. The proof relies only in the fact that A is finitely saturated by a lattice
group, namely SL(X). Thus, in the case of collections finitely saturated by a lattice
group, the proof follows exactly the same. �

In the case of infinite covolume groups this method cannot be adapted properly.
However, following ideas of Dal’Bo [Da], we are able to prove the following.

Theorem 3.4. Let X be a Veech surface and C, a Γ-finitely saturated collection
of cylinders on X with Γ non-elementary. Let δ = δ(Γ) be the critical exponent of
Γ. In particular, δ > 1/2. Then,

NC(X,L) = O(L2δ),

as L→∞.

Proof. Without loss of generality, we can assume that C = Γ · C, for some
cylinder C in X. Let p = ( 1 1

0 1 ), P = 〈p〉 and x = ( 0
1 ). Up to conjugation, we

can suppose that hol(γC) = x and stabSL(X)(C) = P . Note that δ is invariant by
conjugation, so there is no loss of generality. Denote NΓ(L) := NΓ·C(X,L). The
idea is to relate NΓ to nΓ in order to apply Theorem 2.6.
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It is clear that

NΓ(L) = #{gx : |gx| ≤ L, g ∈ Γ}
= #{gP ∈ Γ

/
P : |gx| ≤ L}

= #{Pg ∈ P
∖

Γ : |g−1x| ≤ L}.
A simple computation shows that |g−1x| = Im(gi)−1/2. In addition, for each coset
in P

∖
Γ, there is exactly one representative g ∈ Γ such that Re(gi) ∈ [0, 1). Thus,

NΓ(L) = #{Pg ∈ P
∖

Γ : |g−1x| ≤ L}
= #{g ∈ Γ : Re(gi) ∈ [0, 1) , Im(gi)−1/2 ≤ L}.

Moreover, there exists c(Γ) > 0 such that if g ∈ Γ satisfies Re(gi) ∈ [0, 1), then
dH(i, gi) ≤ − ln Im(gi) + c(Γ). In fact, let g ∈ Γ. Note first that Im(gi) is bounded
above, since P is a subgroup of Γ (we have a cusp at infinity). In addition, we have
that

dH(i, gi) = acosh

(
1 +

Re(gi)2 + (1− Im(gi))2

2 Im(gi)

)

and therefore, if g ∈ Γ and Re(gi) ∈ [0, 1), then

dH(i, gi) ≤ acosh

(
1 +

c̃(Γ)

Im(gi)

)
,

for some c̃(Γ) > 0. Once again, since Im(gi) is bounded above, we get that

dH(i, gi) ≤ ln

(
1

Im(gi)

)
+ c(Γ),

for some c(Γ) > 0.
It follows that

NΓ(L) = #{g ∈ Γ : Re(gi) ∈ [0, 1) , Im(gi)−1/2 ≤ L}
≤ #{g ∈ Γ : dH(i, gi) ≤ 2 lnL+ c(Γ)}
= nΓ(2 lnL+ c(Γ)).

Finally, by Theorem 2.6, nΓ(r) = O(eδ(Γ)r) and thus

NΓ(L) ≤ nΓ(2 lnL+ c(Γ)) = O(eδ(Γ)(2 lnL+c(Γ))) = O(L2δ(Γ)).

�

4. Veech wind-tree billiards

In [Pa1], we proved asymptotic formulas for generic wind-tree models. To prove
such result, we had to split the associated collection of cylinders into two. The
collection of good cylinders and the collection of bad cylinders (see §2.4.1). We
proved then that good cylinders have quadratic asymptotic growth rate (and gave
the associated coefficient in the generic case) and that bad cylinders have sub-
quadratic asymptotic growth rate.

In this work we exhibit a quantitative version of these results in the case of Veech
wind-tree billiards.
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4.1. Good cylinders. Being a good cylinder is a SL(2,R)-invariant condition,
then, in particular, for Veech wind-tree billiards Π, with Veech group PSL(Π) (see
§2.4.2), the collection of good cylinders is SL(Π)-finitely saturated (see §3.1) and
thus, as a corollary of Veech’s theorem (Theorem 3.3), we obtain the following.

Corollary 4.1. Let Π be a Veech wind-tree billiard. Then, there exists c(Π) >
0 and δgood(Π) ∈ [1/2, 1) such that

Ngood(Π, L) = c(Π) · πL2

Area (Π/Z2)
+O(L2δgood(Π)) +O(L4/3)

as L→∞, where δ = δgood(Π) is such that δ(1−δ) is the second smallest eigenvalue
of the Laplace operator on H

/
PSL(Π), δ(1− δ) ∈ (0, 1/4].

4.2. Bad cylinders. In the case of bad cylinders, Veech’s approach is no longer
possible since collection of bad cylinders is not SL(2,R)-equivariant and, in particu-
lar, bad cylinders are not SL(Π)-finitely saturated. However, it is finitely saturated
by a subgroup Γbad of SL(Π), so we can use the approach on Theorem 3.4.

Remark 4.2. We shall see that Γbad is quite intricate. It is a not normal subgroup
of SL(Π) and it is an infinitely generated Fuchsian group of the first kind.

By this means, we prove that bad cylinders have sub-quadratic asymptotic
growth rate in an effective way. More precisely, we prove the following.

Theorem 4.3. Let Π be a Veech wind-tree billiard. Then, there exists δbad(Π) ∈
(1/2, 1) such that

Nbad(Π, L) = O(L2δbad(Π))

as L→∞.

Proof. Let f = h, v and F = F (f). Henceforth, by bad cylinder we mean
(F, f)-bad cylinder. Recall that a cylinder C in X = X(Π) is a bad cylinder if and
only if prFγC = ±f (see Remark 2.3).

Let B be the collection of all bad cylinders in X. Then, since the collection of all
cylinders can be written as a finite union of SL(X)-orbits of cylinders, then there is
a finite collection of bad cylinders B such that B ⊂ SL(X) · B.

Now, given a bad cylinder B in X, define

Γbad(B) := {g ∈ SL(X) : g ·B is a bad cylinder},
so that

B =
⋃

B∈B

Γbad(B) ·B.

Since B is a bad cylinder if and only if prFγC = ±f , then g ∈ Γbad(B) if and
only if prFγg·B = ±f . But prFγg·B = prFρH1(g)γB = ρF (g)prFγB = ρF (g)(±f),
where ρF denotes the representation of SL(X) on Sp(FX ,Z) (see §2.1.8 and §2.3.1).
It follows then that

Γbad(B) = Γbad := {g ∈ SL(X) : ρF (g)f = ±f},
which is a group and does not depend on B ∈ B. Thus, B = Γbad · B. Moreover, if
B ∈ B and p ∈ stabSL(X)(B), then p · B = B, which is a bad cylinder. Therefore,
p ∈ Γbad(B) = Γbad and B is finitely saturated by Γbad (see §3.1).
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We can apply then Theorem 3.4 to obtain δbad(Π) = δ(Γbad). To conclude, we
have to prove that δ(Γbad) < 1.

Proposition 4.4. The critical exponent of Γbad is strictly less than one.

It follows then, by Proposition 4.4 and Theorem 3.4, thatNbad(Π, L) = O(L2δbad(Π))
as L→∞, where δbad(Π) = δ(Γbad) ∈ (1/2, 1). This proves Theorem 4.3. �

To conclude, we have to prove now Proposition 4.4.

Proof of Proposition 4.4. Consider the normal subgroup of SL(X) given
by ker ρF and note that it is also a subgroup of Γbad.

Since the action on homology is via (symplectic) integer matrices, then

ρF (Γbad) ⊂ stab(±f) := {ĝ ∈ Sp(FX ,Z) : ĝf = ±f}.
Since FX is two-dimensional, Sp(FX ,Z) ∼= SL(2,Z) and stab(±f) ∼= stabSL(2,Z)(±( 0

1 )),

which is virtually cyclic parabolic. Thus, the quotient group Γbad
/

ker ρF ∼= ρF (Γbad)
is amenable (as it is isomorphic to a subgroup of an amenable group).

In a slight abuse of notation we will refer in the following to (discrete) subgroups
of SL(2,R) as if they were Fuchsian groups (discrete subgroups of PSL(2,R)).

By Theorem 2.5, ker ρF is of the first kind and, in particular, non-elementary.
Thus, we can apply Theorem 2.7 to obtain that δ(Γbad) = δ(ker ρF ).

Consider now the quotient group SL(X)
/

ker ρF ∼= ρF (SL(X)). The aim is to
prove that ρF (SL(X)) is not amenable. We first note that, since F has positive Lya-
punov exponents (Theorem 2.1), ρF (SL(X)) has at least one hyperbolic element and
then, a maximal cyclic hyperbolic subgroup H. Suppose ρF (SL(X)) is elementary
and, in particular, virtually H. But then, F would admit an almost invariant split-
ting (see §2.1.6). But F is two dimensional and has no zero Lyapunov exponents,
in particular, it is strongly irreducible and do not admit almost invariant splittings.
Thus ρF (SL(X)) is non-elementary and it contains a Schottky group as subgroup.

Since Schottky groups are free and, in particular, non-amenable, it follows that
ρF (SL(X)) is not amenable. That is, SL(X)

/
ker ρF is not amenable, and then, by

Theorem 2.7, we have that δ(ker ρF ) < δ(SL(X)). Thus, we conclude that

δ(Γbad) = δ(ker ρF ) < δ(SL(X)) = 1.

�

Proof of Remark 4.2. We have to show that Γbad is an infinitely generated
group of the first kind. Since ker ρF is of the first kind and ker ρF ⊂ Γbad, so is Γbad.
Moreover, δ(Γbad) < 1, so it cannot be a lattice and therefore, it has to be infinitely
generated, since finitely generated groups of the first kind are always lattices. �

5. Explicit estimates for the (1/2, 1/2) wind-tree model

In the case of the wind-tree billiard with square obstacles of side length 1/2,
Π = Π(1/2, 1/2), the Veech group can be easily computed (see §2.3.2). Indeed,
SL(Π) = 〈r, u2〉, where r = ( 0 1

−1 0 ) and u = ( 1 1
0 1 ). In particular, PSL(Π) is a

congruence subgroup of level 2.
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5.1. Good cylinders. A result of Huxley [Hu85] shows that congruence groups
Γ of low level satisfies the Selberg’s 1/4 conjecture, that is, that the bottom of the
spectrum of the Laplace operator on H

/
Γ equals 1/4. That means (see §2.5.1) that

we have δgood(Π) = 1/2 in Corollary 4.1.

5.2. Bad cylinders. We have now to estimate δbad(Π) from Theorem 4.3. For
this, we use a version of Brook’s theorem (Theorem 2.7) by Roblin–Tapie [RT],
formulated in a much more general context, which we adapt to ours.

Theorem 5.1 (Roblin–Tapie). Let Γ0 be a lattice and Γ be a non-elementary
normal subgroup of Γ0 such that δ(Γ) > 1/2. Let D be a Dirichlet domain for Γ0 and
S0 the associated symmetric system of generators (see §5.2.2). Consider G = Γ0

/
Γ

and S = S0

/
Γ the corresponding systems of generators of G. Then,

λ0(Γ) ≥ η(Γ0)EDµ0(G,S)

η(Γ0) + EDµ0(G,S)
,

where η(Γ0) is the spectral gap associated to Γ0 (see §5.2.1), ED is any lower bound
for the energy on D (see §5.2.3) and µ0(G,S) is the bottom of the combinatorial
spectrum of G associated to S (see §5.2.4), as defined below.

5.2.1. Critical exponent and spectrum of the Laplace operator. Let Γ be a non-
elementary Fuchsian group with critical exponent δ(Γ) > 1/2. Then, the critical
exponent δ(Γ) is related to λ0(Γ), the bottom of the spectrum of the Laplace operator
on H

/
Γ, by λ0(Γ) = δ(Γ)(1− δ(Γ)) ∈ (0, 1/4).

If moreover Γ is finitely generated, then the bottom of the spectrum λ0(Γ) is an
isolated eigenvalue. We consider then the spectral gap of the Laplace operator on
H
/

Γ, η(Γ) := λ1(Γ) − λ0(Γ) > 0, where λ1(Γ) is the second smallest eigenvalue of

the Laplace operator on H
/

Γ.
5.2.2. Dirichlet domains and transition zones. Let Γ be a finitely generated

Fuchsian group and consider a Dirichlet domain D ⊂ H for the action of Γ. Its
boundary ∂D is piecewise geodesic, with finitely many pieces. To D, we can asso-
ciate a finite symmetric system of generators S of Γ. Each such generator s ∈ S is
associated to one geodesic piece of ∂D. Namely, βs = D ∩ sD. And every geodesic
piece of ∂D has an associated generator in this way.

We say that L,R > 0 are admisible (for D) if for each s ∈ S, there exists a
geodesic segment αs ⊂ βs of length L such that αs = sαs−1 and such that αs admits
a tubular neighborhood of radius R which are pairwise disjoint (see Appendix A for
more details). These tubular neighborhoods are transition zones of length L and
radius R (cf. [RT, p. 72]).

5.2.3. Energy on transition zones. Roblin–Tapie [RT] introduced the volume
and capacity of transition zones (in a much more general context). In our context,
for a transition zone of length L and radius R, its area is A(L,R) := L · sinh(R)
and its capacity is C(L,R) := L/ arctan(sinh(R)). We say that ED ∈ R+ is a lower
bound for the energy on D if there are admissible L,R > 0 such that

ED =
1

2 Area(D)
· η(Γ) · A(L,R) · C(L,R)
(√

η(Γ) · A(L,R) +
√

C(L,R)
)2 .
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In Appendix A we estimate ED in the case of the Dirichlet domain of the Veech
group of Π, D = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1}, with associated system of generators
S0 = {r, u2}.

5.2.4. Combinatorial spectrum. Let G be a finitely generated group and S ⊂ G
be a symmetric finite system of generators of G.

Let `2(G) be the space of square-summable sequences on G with the inner prod-
uct

〈h, h′〉 :=
∑

g∈G

hgh
′
g,

for h, h′ ∈ `2(G), and define ∆S : `2(G)→ `2(G), the combinatorial Laplace operator
associated to S on `2(G), by

(∆Sh)g :=
∑

s∈S

(hg − hgs).

Then, we define µ0(G,S), the bottom of the combinatorial spectrum of G associ-
ated to S to be the bottom of the spectrum of ∆S, that is,

µ0(G,S) := inf

{〈∆Sh, h〉
〈h, h〉 , h ∈ `2(G)

}
.

We estimate µ0(G,S) in the case of G = PSL(2,Z) and S = {r, u} in Appen-
dix B.

Estimates for δbad(Π). An application of Theorem 5.1 allows us to estimate
δbad(Π) in the present case. More precisely, we have the following.

Theorem 5.2. Let Π be the Veech wind-tree billiard with square obstacles of side
length 1/2, and let δ = δbad(Π) ∈ (1/2, 1) be as in the conclusion of Theorem 4.3.
Then,

δ < 0.9992.

Proof. Following §4.2, we have that δ = δbad(Π) corresponds to the critical
exponent of the group Γbad

3. Moreover, δ(Γbad) = δ(ker ρF ). Let then δ = δ(ker ρF ).
As we have already seen, δ(1− δ) = λ0(ker ρF ).

The idea is to apply Theorem 5.1 to Γ0 = PSL(Π) and Γ = Pker ρF . Thus, it is
enough to estimate

η(Γ0)EDµ0(G,S)

η(Γ0) + EDµ0(G,S)

from below.
Note that the function x/(1+x) is an increasing function in (0,∞) and therefore,

the problem can be reduced to find lower bounds for η(Γ0), ED and µ0(G,S).

• Γ0 = 〈r, u2〉 is a level two congruence group and, as already seen in §5.1, its
spectral gap is

η(Γ0) = 1/4.

3Here, in a slight abuse of notation, we are referring to (discrete) subgroups of SL(2,R) as if
they were Fuchsian groups (discrete subgroups of PSL(2,R)).
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• We consider the Dirichlet domain D = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1} for
Γ0. We estimate ED in Appendix A. By Theorem A.1, we have that

ED > 0.012.

• Recall that SL(Π) = 〈r, u2〉 and that, with the right choice of basis for FX ,
ρF (r) = r and ρF (u2) = u (see §2.3.2).

Moreover since F is a 2-dimensional symplectic equivariant subbun-
dle defined over Z, ρF descends to a representation ρ̃F of PSL(X) on
PSL(FX ,Z) (see §2.1.8), where X = X(Π). Furthermore, by definition,
the kernel of this latter representation coincides with Pker ρF , the image of
ker ρF in PSL(2,R). Analogously, for the image of the representation we
have ρ̃F (PSL(X)) = PρF (SL(X)). In summary, we have

– Γ0 = PSL(Π) = 〈r, u2〉,
– Γ = Pker ρF = ker ρ̃F ,
– Γ0

/
Γ = PSL(Π)

/
ker ρ̃F ∼= ρ̃F (PSL(X)) = PρF (SL(X)), and

– ρF (SL(X)) = 〈ρF (r), ρF (u2)〉 = 〈r, u〉 = SL(2,Z).
The combinatorial spectrum is invariant under isomorphisms of groups

(with generators). But Γ0

/
Γ is isomorphic to PρF (SL(X)) which in turn is

isomorphic to PSL(2,Z). In addition, the system of generators associated
to the Dirichlet domain D is S0 = {r, u2, u−2}, and the corresponding image
into G = PSL(2,Z) is S = {r, u, u−1}.

We estimate µ0(G,S) in Appendix B. By Theorem B.2, we have that

µ0(G,S) > 0.07.

Putting all together, we get that

λ0(Γ) ≥ η(Γ0)EDµ0(G,S)

η(Γ0) + EDµ0(G,S)
> 0.0008,

and we conclude that

δ(Γ) =
1 +

√
1− 4λ0(Γ)

2
< 0.9992.

�

Appendix A. Energy estimates

In this appendix we give lower bounds for the energy (see §A.2 for precise defi-
nition) on the Dirichlet domain D = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1} of the Fuchsian
group Γ = 〈r, u2〉, where r = ( 0 1

−1 0 ) and u = ( 1 1
0 1 ). More precisely, we prove the

following.

Theorem A.1. Let D = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1} be the Dirichlet domain
of Γ = 〈r, u2〉. Then, there is a lower bound for the energy on D which satisfies

ED > 0.012.

In the following we recall the definition of the involved objects (see [RT] for a
much more general and detailed discussion).
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A.1. Dirichlet domains and transition zones. Let Γ be a finitely generated
Fuchsian group and consider a Dirichlet domain D ⊂ H for the action of Γ. Its
boundary ∂D is piecewise geodesic, with finitely many pieces. ToD, we can associate
a finite symmetric system of generators S of Γ. To each such generator s ∈ S we
can associate one geodesic piece of ∂D. Namely, βs = D∩ sD. And every such piece
has an associated generator in this way. Moreover, it is clear from the definition
that βs = sβs−1 . In Figure A.1, we show the case of the elementary group 〈u〉.

∞

Du−1D uD

−1 0

βu−1

1

βu

2

Figure A.1. Dirichlet domain for the elementary (cyclic parabolic)
group 〈u〉, D = {0 ≤ Re z ≤ 1}. The associated symmetric systems of
generators is S = {u, u−1} and the corresponding geodesic boundaries
βu = {Re z = 1}, βu−1 = {Re z = 0}.

Let z ∈ β̊s, for some s ∈ S, and let ρ > 0 sufficiently small such that there is
a point bs(z, ρ) ∈ D satisfying dH(bs(z, ρ), βs) = dH(bs(z, ρ), z) = ρ. In particular,
such point bs(z, ρ) is unique. See Figure A.2 for an example of bs(z, ρ), in the case
of 〈u〉, for s = u−1.

∞

0

βu−1

1

hi
•

bu−1(hi, ρ)

h

ρ

Figure A.2. The point bs(z, ρ). It corresponds to the point in D
which lie on the geodesic passing through hi perpendicularly to βu−1 ,
in the case of the elementary group 〈u〉, for s = u−1, z = hi

We say that L,R > 0 are admisible (for D) if for each s ∈ S, there exists a
geodesic segment αs ⊂ βs of length L such that αs = sαs−1 , bs(z,R) is well defined
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and the sets
As := {bs(z, ρ) ∈ D : z ∈ αs, 0 ≤ ρ < R}

are pairwise disjoint. (see Figure A.3). We call these sets, transition zones of length
L and radius R (cf. [RT, p. 72]).

∞

0

βu−1

1

βu

αu−1

Au−1

h0i

h1i

αu

Au

1 + h0i

1 + h1i

Figure A.3. Transition zones, in the case of the elementary group 〈u〉.

A.2. Energy on transition zones. Roblin–Tapie [RT] introduced the volume
and capacity of transition zones (in a much more general context). In our context,
for a transition zone of length L and radius R, its area is A(L,R) := L · sinh(R) and
its capacity is C(L,R) := L/ arctan(sinh(R)).

We say that ED ∈ R+ is a lower bound for the energy on D if there are admissible
L,R > 0 such that

ED =
1

2 Area(D)
· η(Γ) · A(L,R) · C(L,R)
(√

η(Γ) · A(L,R) +
√

C(L,R)
)2 ,

where η(Γ) is the spectral gap of the Laplace operator on H
/

Γ, which is well defined
and positive, since Γ is finitely generated.

We can now start the discussion in the case ofD = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1},
the Dirichlet domain of Γ = 〈r, u2〉.

A.3. Proof of Theorem A.1. The following result, whose proof is postponed
to §A.4, provides a sufficient condition for L,R > 0 to be admissible (see §A.1).

Proposition A.2. Let L,R > 0. If 4eL tanh2(R) ≤ 1, then L,R are admissible.

We want now to estimate ED (see §A.2).
We first note that Γ = 〈r, u2〉 is a congruence group of level two and therefore,

by a result of Huxley [Hu85], we have that η(Γ) = 1/2. Moreover, the Dirichlet
domain D is an ideal triangle, with vertices 1, −1 and ∞ (see Figure A.4). In
particular, Area(D) = π.

By Proposition A.2, L,R > 0 are admissible if 4eL tanh2(R) ≤ 1. It suffices
then to find the largest possible lower bound for the energy in this region. That
is, we want to find E∗ = max{ED(L,R) : 4eL tanh2R ≤ 1}. This can be done
numerically: we get L∗ ≈ 2.286, R∗ ≈ 0.1608 and

E∗ = ED(L∗, R∗) ≈ 0.01258 > 0.012.
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∞

D

−1

βu−2

1

βu2

βr

Figure A.4. Dirichlet domain D = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1}
for Γ = 〈r, u2〉. The associated symmetric systems of generators is
S = {r, u, u−1} and the corresponding geodesic boundaries are βu±2 =
{Re z = ±1}, βr = {|z| = 1}.

�

A.4. Proof of Proposition A.2. In this section we prove Proposition A.2,
thus providing a sufficient condition for L,R > 0 to be admissible.

For a, b ∈ R, let γ(a, b) denote the (bi-infinite) geodesic in H which goes from
a to b. And for x, y, z ∈ H, let T (x, y, z) denote the geodesic triangle with vertices
x, y, z. Thus, the Dirichlet domain D = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1} coincides
with T (−1, 1,∞) and ∂D = γ(−1, 1) ∪ γ(1,∞) ∪ γ(∞,−1) (see Figure A.4). Note
that the symmetric system of generators associated to D is S = {r, u2, u−2} and,
following the notation on §A.1, we have

βr = {z ∈ H : |z| = 1} = γ(−1, 1)

βu±2 = {z ∈ H : Re(z) = ±1} = γ(±1,∞).

It follows that, in particular, any geodesic segment αu±2 ⊂ βu±2 (see §A.1) is of the
form {z ∈ H : Re(z) = ±1, h0 < Im(z) < h1}, for some h1 > h0 > 0, with the same
h1 and h0 for both αu2 and αu−2 since αu2 = u2αu−2 . And any geodesic segment
αr ∈ βr is of the form {z ∈ H : |z| = 1, |Re(z)| < c}, for some c > 0, since
αr = rαr.

For simplicity, we shall consider a “symmetric” partition of D as in Figure A.5,
given by a homography g, defined by the matrix ( 1 3

−1 1 ), which is an isometry of

order 3 fixing i
√

3 and such that permutes cyclically −1, 1 and ∞. In particular,

g : γ(−1, 1) 7→ γ(1,∞),

γ(1,∞) 7→ γ(∞,−1),

γ(∞,−1) 7→ γ(−1, 1).

Note that it corresponds to the elliptic element g =
(

1/2 3/2
−1/2 1/2

)
∈ PSL(2,R).

Thus, g divides D in three isometric triangular regions. Namely, T (−1, i
√

3, 1),
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T (1, i
√

3,∞), T (∞, i
√

3,−1). Moreover, it is clear that

g : T (−1, i
√

3, 1) 7→ T (1, i
√

3,∞),

T (1, i
√

3,∞) 7→ T (∞, i
√

3,−1),

T (∞, i
√

3,−1) 7→ T (−1, i
√

3, 1).

∞

−1 1

•−1 + 2i •1 + 2i

•
i

Figure A.5. Symmetric partition of D given by the homography

defined by the elliptic element g =
(

1/2 3/2
−1/2 1/2

)
of order 3.

In particular, if we consider the transition zones to be contained in these trian-
gular regions, it is direct that they are pairwise disjoint. And since these regions are
isometric, we can consider the transition zones to be isometric and interchanged by
the isometry g. That is, we impose

g : αr 7→ αu2 ,

αu2 7→ αu−2 ,

αu−2 7→ αr.

Recall that αr = rαr, so αr is “centered” at i ∈ H. Then, by the imposed
symmetry αu±2 = g±1(αr), we have that αu±2 has to be “centered” at g±1(i) = 1±2i.
That means that h1 = 2eL/2 and h0 = 2e−L/2 in the definition of αu±2 (see above).

We have now to study the points bs(z,R), s ∈ S, z ∈ αs, in order to give con-
ditions to L,R to be admissible (see §A.1). Moreover, by the imposed symmetries,
it is enough to find conditions for b0(h,R) := bu2(1 + 2hi, R) to be contained in
T0 := T (1, i

√
3,∞), for h ∈

[
1, eL/2

)
.

Now, by definition, b0(h,R) is the only point in D such that

dH(b0(h,R), βu2) = dH(b0(h,R), 1 + 2hi) = R,

for R > 0 small enough. By the leftmost equality, such points correspond to points
in D which lie on the geodesic passing through 1 + 2hi perpendicularly to βu2 (see
Figure A.6, cf. Figure A.2). That is, b0(h,R) = 1 + 2heiθ(R)i, for some θ(R) > 0.
Moreover,

dH(1 + 2heiθi, 1 + 2hi) = dH(eiθi, i) = acosh(sec(θ)).

Thus, cos(θ(R)) = sech(R) and therefore, sin(θ(R)) = tanh(R). It follows that

bu2(1 + 2hi, R) = b0(h,R) = 1 + 2heiθ(R)i = 1− 2h tanh(R) + i2h sech(R).
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∞

−1 1

αu−2

Au−2

αu2

1 + 2h−1i

Au2

•
b0(h,R)

1 + 2hi

Ar

αr

Figure A.6. Symmetric transition zones and b0(z,R) ∈ T0.

Then, for h ≥ 1, the condition b0(h,R) ∈ T0 is equivalent to 2h tanh(R) ≤ 1.
Since 2h tanh(R) is increasing, the condition b0(h,R) ∈ T0 for every h ∈

[
1, eL/2

)
is

equivalent to 2eL/2 tanh(R) ≤ 1.
Thus, L,R are admissible if 2eL/2 tanh(R) ≤ 1 or, equivalently, if

4eL tanh2(R) ≤ 1.

�

Appendix B. Estimates for the combinatorial spectrum

In this appendix we estimate from below the bottom of the combinatorial spec-
trum µ0(G,S), for G = PSL(2,Z) associated to the system of generators S = {r, u},
where r = ( 0 1

−1 0 ) and u = ( 1 1
0 1 ). By combinatorial spectrum, we refer to the spec-

trum of the combinatorial Laplace operator on the Cayley graph.

Remark B.1. It is very likely that in the present case, estimates (or even, the
exact value) of µ0(G,S) are known by the experts. However, we could not find any
clue of this and therefore, we give our own estimates.

We estimate µ0(G,S) from below following ideas of Nagnibeda [Na] and prove
the following.

Theorem B.2. Let G = PSL(2,Z) and S = {r, u}. Then, the bottom of the
combinatorial spectrum associated to S satisfies

µ0(G,S) > 0.07.

Remark B.3. It can be proved that the bottom of the combinatorial spectrum
associated to a symmetric finite system of k > 1 generators, is bounded from above
by k − 2

√
k − 1 (which corresponds to the bottom of the combinatorial spectrum

of a regular tree of degree k). In our case, this means that µ0(G,S) < 3− 2
√

2 or,
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numerically, µ0(G,S) < 0.1716. In particular, this shows that our estimate is less
than 2.5 times worse than the actual value.

In the following, we recall some aspects of combinatorial group theory we need
and, in particular, we recall the definition of the bottom of the combinatorial spec-
trum µ0(G,S). The following discussion is completely general.

B.1. Combinatorial group theory. Let G be any group, and let S be a
subset of G. A word in S is any expression of the form

w = sσ1
1 s

σ2
2 · · · sσnn

where s1, . . . , sn ∈ S and σi ∈ {+1,−1}, i = 1, . . . , n. The number l(w) = n is the
length of the word.

Each word in S represents an element of G, namely the product of the expression.
The identity element can be represented by the empty word, which is the unique
word of length zero.

Notation. We use an overline to denote inverses, thus s̄ stands for s−1.
In these terms, a subset S of a group G is a system of generators if and only if

every element of G can be represented by a word in S. Henceforth, let S be a fixed
system of generators of G and a word is assumed to be a word in S. A relator is a
non-empty word that represent the identity element of G.

Any word in which a generator appears next to its own inverse (ss̄ or s̄s) can
be simplified by omitting the redundant pair. We say that a word is reduced if it
contains no such redundant pairs.

Let v, w be two words. We say that v is a subword of w if w = v′vv′′, for some
words v′, v′′. If v′ is the empty word we say that v is a prefix of w. If v′′ is the empty
word we say that v is a suffix of w.

We say that a word is reduced in G if it has no non-empty relators as subword.
In particular, if a word is reduced in G, any of its subwords is also reduced in G.

For an element g ∈ G, we consider the word norm |g| to be the least length of a
word which is equals to g when considered as a product in G, and every such word is
called a path, that is, if its length coincides with its word norm when considered as
a product in G. In particular, a path is always reduced in G. Moreover, a subword
of a path is also a path. We say that two words are equivalent if they represent the
same element in G.

For a relator, we call a subword that is a relator, a subrelator. We say that a
relator is primitive if every proper subword is reduced in G, that is, if it does not
contain proper subrelators. In particular, a word is reduced in G if and only if it
contains no primitive relators as subword. Note that, if P is the set of all primitive
relators, then 〈S | P 〉 is a presentation of G.

The following elementary results (see Figure B.1) will be useful in §B.3.

Lemma B.4. Let v, w be two different equivalent paths. Then, there are paths
v0, v1, w0, w1 and x such that v = v0v1x and w = w0w1x, and v1w̄1 is a primitive
relator (of even length).

Proof. Let x be the largest common suffix of v and w (possibly x is empty).
Write v = v′x and w = w′x. Let w1 and v1 be the smallest non-empty suffixes of w′
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w0

w1

xx

v0

v1

Figure B.1. Decomposition of two equivalent paths

and v′ respectively such that v1 and w1 are equivalent. Such v1 and w1 exist since
v and w are different words. Moreover, they have the same length since they are
equivalent, that is, they are paths that evaluate to the same element in G. Write
v′ = v0v1 and w′ = w0w1 (possibly v0 and w0 are empty). In particular v0 and w0

are equivalent, since the same holds for v′, w′ and v1, w1.
It remains to prove that v1w̄1 is primitive. Suppose z is a subrelator of v1w̄1.

Since v1 and w1 are paths, they are in particular reduced in G and also their sub-
words. Then z = v2w̄2 for some non-empty suffixes v2 and w2 of v1 and w1 respec-
tively. In particular, v2 and w2 are non-empty suffixes of w′ and v′ respectively and
v2, w2 are equivalent. But, by definition, v1 and w1 are the smallest such suffixes and
therefore v2 = v1 and w2 = w1. Thus, v1w̄1 has no proper subrelators and therefore,
v1w̄1 is primitive. �

As a direct consequence of the previous lemma, we have the following.

Corollary B.5. Let v = v′yx and w = w′zx be two equivalent paths such that
yz̄ is reduced in G. Then, yz̄ is a subword of some primitive relator (of even length).

Proof. Consider the decomposition given by the previous lemma. It is clear
that y is a subword of v1 and z, of w1. Then yz̄ is a subword of the primitive relator
v1w̄1. �

B.2. Combinatorial spectrum. Let G be a finitely generated group and S ⊂
G be a finite system of generators of G. Let `2(G) be the space of square-summable
sequences on G with the inner product

〈h, h′〉 :=
∑

g∈G

hgh
′
g,

for h, h′ ∈ `2(G), and define ∆S : `2(G)→ `2(G), the combinatorial Laplace operator
on G associated to S, by

(∆Sh)g :=
∑

s∈S∪S̄

(hg − hgs),
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for h ∈ `2(G). Then, we define µ0(G,S), the bottom of the combinatorial spectrum
of G associated to S to be the bottom of the spectrum of ∆S, that is,

µ0(G,S) := inf

{〈∆Sh, h〉
〈h, h〉 , h ∈ `2(G)

}
.

Remark B.6. The subjacent object in this discussion is the Laplace operator
on the Cayley graph of G associated to S. However we do not explain this here.

B.2.1. Nagnibeda’s ideas. In order to give estimates from below to the combina-
torial spectrum we follow ideas of Nagnibeda [Na], which are based in the following
result, whose proof is elementary (see, for example, [Co, §7.1]).

Proposition B.7 (Gabber–Galil’s lemma). Let G be a finitely generated group
and S a finite symmetric system of generators of G. Suppose there exists a function
L : G× S → R+ such that, for every g ∈ G and s ∈ S,

L(g, s) =
1

L(gs, s−1)
and

∑

s∈S

L(g, s) ≤ k,

for some k > 0. Then,
µ0(G,S) ≥ #S − k.

Let S be a symmetric finite system of generators of G. For g ∈ G, denote by |g|
the word norm with respect to S and define S±(g) := {s ∈ S : |gs| = |g| ± 1}. For
g ∈ G and s ∈ S, we say that gs is a successor of g if s ∈ S+(g) and that gs is a
predecessor of g if s ∈ S−(g). Henceforth we assume S+(g) ∪ S−(g) = S, for every
g ∈ G. Note that this is equivalent to say that every relator has even length.

A function t : G→ N is called a type function on G and its value t(g) at g ∈ G
is called the type of g. We say that a type function t is compatible with S, or simply
that t is a compatible type function, if the following two conditions are equivalent:

(1) t(g) = t(g′);
(2) #{s ∈ S+(g) : t(gs) = k} = #{s′ ∈ S+(g′) : t(g′s′) = k}, for every k ∈ N.

Equivalently, t is a compatible type function if the (multiset of) types of successors
of an element g ∈ G (is/)are completely defined by its type t(g).

For any type function t : G → N and positive valuation c : N → R+, we can
consider a function Lc : G× S → R+ defined by

Lc(g, s) =

{
ck, if s ∈ S+(g), k = t(gs),

1/ck, if s ∈ S−(g), k = t(g).

It is clear then, by the definition, that any Lc : G × S → R+ defined as above
satisfies Lc(g, s) = 1/Lc(gs, s

−1), since s ∈ S+(g) if and only if s−1 ∈ S−(gs), and
S = S+(g) ∪ S−(g), for every g ∈ G.

Moreover, for a compatible type function t, we define for k = t(g) ∈ N, g ∈ G,

fk(c) :=
∑

s∈S

Lc(g, s) =
∑

s∈S+(g)

ct(gs) +
#S−(g)

ck
.

Note that this is well defined since t is compatible with S and therefore the sum
depends only on k, the type of g.
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As a direct consequence of Gabber–Galil’s lemma (Proposition B.7), we get the
following.

Corollary B.8. Let t : G→ {0, . . . , K} be a compatible type function. Then,

µ0(G,S) ≥ #S − max
k=0,...,K

fk(c),

for every c : {0, . . . , K} → R+, where fk is defined as above.

Then, every compatible (finite) type function gives lower bounds for the combi-
natorial spectrum.

B.3. Compatible type functions for G = PSL(2,Z), S = {r, u}. Until now,
the discussion is completely general. We now specialize to the case of G = PSL(2,Z)
with generators r = ( 0 1

−1 0 ) and u = ( 1 1
0 1 ). The aim in the following is to give a

compatible finite type function in this case, in order to give estimates for the bottom
of the combinatorial spectrum with the aid of Corollary B.8. For this, we define a
suffix type function and prove that it is compatible with S = {r, u}.

It is classical that 〈r, u | r2, (ru)3〉 is a presentation of G. Since we have the
relator r2, for the sake of simplicity, we omit henceforth r̄, since as element in G it
coincides with r. The set of primitive relators is then (up to include the variants
with r̄ instead of r) given by

{r2, (ru)3, (rū)3, (ur)3, (ūr)3}.
In particular, every relator has even length and we can apply previous discussion.

Let S(g) be the set of all suffixes of paths for g ∈ G. Then, by the description
of the primitive relators, as a direct consequence of Corollary B.5, we have the
following.

Corollary B.9. The following cases cannot happen:

• u, ū ∈ S(g);
• ur, ūr ∈ S(g);
• ar, ā2 ∈ S(g), for a = u or ū; or
• ar, a ∈ S(g), for a = u or ū.

Proof. Neither u2, urū nor ūru are subwords of a primitive relator. �

Let Sn(g) be the set of all suffixes of length n ∈ N of paths for g ∈ G and define,
by recurrence, S∗1(g) = S1(g) and

S∗n+1(g) =

{
Sn+1(g) if Sn+1(g) 6= ∅,
S∗n(g) if Sn+1(g) = ∅.

Note that any injective function j : S∗n(G) → N defines a (finite) type function
t = j ◦ S∗n : G→ N, which we call suffix type function of level n.

Lemma B.10. Let t : G → N be a suffix type function of level 2. Then, it is
compatible with S.

Proof. Being compatible with S means that the type t(g) of g ∈ G completely
defines the types of its successors. Then, it is enough to show that S∗2(g) defines
completely the multiset {S∗2(gs) : s ∈ S+(g)}.
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By the previous corollary, we have that it cannot happen that u, ū ∈ S1(g), that
#S2(g) ≤ 2 and that S2(g) = 2 if and only if S2(g) = {ra, a2} or {ra, ār}, for a = u
or ū. It follows then, that S∗1(g) ∈ {∅, {r}, {u}, {ū}, {u, r}, {ūr}} and

S∗2(g) ∈ {∅, {r}, {ar}, {a}, {ra}, {a2}, {ra, a2}, {ra, ār}}a=u,ū.

Moreover, it is clear that s ∈ S+(g) if and only if s̄ /∈ S1(g).
Let a = u or ū.

• If S∗2(g) = ∅, g = 1 and evidently S∗2(gs) = {s}, for s ∈ S = S+(g).
• If S∗2(g) = {r}, g = r and S∗2(gb) = {rb}, for b ∈ {u, ū} = S+(r).
• If S∗2(g) = {ar}, S+(g) = {u, ū}, S∗2(ga) = {ra, ār} and S∗2(gā) = {rā}.
• If S∗2(g) = {a}, g = a and S+(g) = {r, a}. Moreover, S∗2(gr) = {ar} and
S∗2(ga) = {a2}.
• If S∗2(g) = {ra}, then S+(g) = {r, a}, S∗2(gr) = {ar, rā} and S∗2(ga) = {a2}.
• If S∗2(g) = {a2}, then S+(g) = {r, a}, S∗2(gr) = {ar} and S∗2(ga) = {a2}.
• If S∗2(g) = {ra, a2}, S+(g) = {r, a}, S∗2(gr) = {ar, rā} and S∗2(ga) = {a2}.
• If S∗2(g) = {ra, ār}, then S+(g) = {a} and S∗2(ga) = {ra, a2}.

Thus, given only the value of S∗2(g) we can tell S∗2(gs), s ∈ S+(g) and therefore,
suffix type functions are compatible with S. �

We summarize the proof of the previous lemma by the following diagram which
shows each possible S∗2(g), g ∈ G with its respective multiset of S∗2(gs), s ∈ S+(g):

S∗2(g)→ S∗2(gs), s ∈ S+(g)

∅ → {r}, {u}, {ū}
{r} → {ru}, {rū}
{ar} → {ra, ār}, {rā}
{a} → {ar}, {a2}
{ra} → {ar, rā}, {a2}
{a2} → {ar}, {a2}

{ra, a2} → {ar, rā}, {a2}
{ra, ār} → {ra, a2},

where a = u or ū.
It is not difficult to see in the previous diagram that there are different suffix

types which share the types of the successors. Namely {a}, {a2} and {ra}, {ra, a2}.
This allows us to reduce the number of types. Furthermore, it is clear that distin-
guishing u and ū in the previous description has no major benefit. This motivates
the definition of the following type function. Let T : G → {0, . . . , 5} be the type



96 II. QUANTITATIVE ERROR TERM ON VEECH WIND-TREE MODELS

function defined as follows:

T (g) =





0 if S∗2(g) = ∅,
1 if S∗2(g) = {r},
2 if S∗2(g) = {ar}, a = u or ū,

3 if S∗2(g) = {a} or {a2}, a = u or ū,

4 if S∗2(g) = {ra} or {ra, a2}, a = u or ū,

5 if S∗2(g) = {ar, rā}, a = u or ū.

From the previous discussion, we deduce the following.

Theorem B.11. The type function T : G → {0, . . . , 5} is compatible with S.
Moreover,

• Type 0 elements have one type 1 and two type 3 successors;
• Type 1 elements have two type 4 successors;
• Type 2 elements have one type 4 and one type 5 successor;
• Type 3 elements have one type 2 and one type 3 successor;
• Type 4 elements have one type 3 and one type 5 successor; and
• Type 5 elements have one type 4 successor;

Thus, we have a compatible type function with a full description of the types of
the successors for each type. We can then finally apply Nagnibeda’s ideas (Corol-
lary B.8) to give estimates for the bottom of the combinatorial spectrum.

B.4. Estimates for the bottom of the combinatorial spectrum. By The-
orem B.11, the fk of Corollary B.8 are given by:

• f0(c) = c1 + 2c3;
• f1(c) = 2c4 + 1/c1;
• f2(c) = c4 + c5 + 1/c2;
• f3(c) = c2 + c3 + 1/c3;
• f4(c) = c3 + c5 + 1/c4; and
• f5(c) = c4 + 2/c5.

It follows that µ0(G,S) ≥ #S −maxk fk(c), for every c = (c1, . . . , c5) ∈ R5
+. Thus,

the problem can be reduced to find the optimal such bound. This can be solved
numerically: we get that c̄ ∈ R5

+ with

c̄1 = 1; c̄2 ≈ 0.8323; c̄3 ≈ 0.7326; c̄4 ≈ 0.7927; c̄5 ≈ 0.9358;

is a (local) minimun for maxk fk(c), and maxk fk(c̄) ≈ 2.9299 < 2.93.
Finally, since #S = 3, it follows that

µ0(G,S) > 0.07.

This concludes the proof of Theorem B.2 �
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[Br] R. Brooks. The bottom of the spectrum of a Riemannian covering, J. Reine. Angew.
Math 357 (1985), pp. 101–114.

[Ca] K. Calta. Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17:4
(2004), pp. 871–908.

[CE] J. Chaika, A. Eskin. Every flat surface is Birkhoff and Oseledets generic in almost every
direction, J. Mod. Dyn. 9:1 (2015), pp. 1–23.

[Co] Y. Colin de Verdière. Spectre de graphes, Cours Spéc. 4, Soc. Math. France (1998),
viii+114 pp.

[CI] K. Corlette, A. Iozzi. Limit sets of isometry groups of exotic hyperbolic spaces, Trans.
Amer. Math. Soc. 351:4 (1999), pp. 1507–1530.

[Da] F. Dal’Bo. Personal communication.
[De] V. Delecroix. Divergent directions in some periodic wind-tree models, J. Mod. Dyn. 7:1

(2013), pp. 1–29.
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(2013), pp. 61–92.

[Ve89] W. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to
triangular billiards, Invent. Math. 97 (1989), pp. 553–583.

[Ve92] W. Veech. The Billiard in a Regular Polygon, Geom. Func. Anal. 2 (1992), pp. 341–379.
[Wr] A. Wright. Translation surfaces and their orbit closures: An introduction for a broad

audience, EMS Surv. Math. Sci. 2:1 (2015), pp. 63–108.
[Zo06] A. Zorich. Flat surfaces, “Frontiers in Number Theory, Physics, and Geometry I”,

Springer, Berlin (2006), pp. 437–583.



CHAPTER III

A non-varying phenomenon with an application to the
wind-tree model

Abstract. We exhibit a non-varying phenomenon for the counting problem of
cylinders, weighted by their area, passing through two marked (regular) Weier-
strass points of a translation surface in a hyperelliptic connected component
Hhyp(2g − 2) or Hhyp(g − 1, g − 1), g > 1. As an application, we obtain the
non-varying phenomenon for the counting problem of (weighted) periodic tra-
jectories on the classical wind-tree model, a billiard in the plane endowed with
Z2-periodically located identical rectangular obstacles.

1. Introduction

A connected component of a stratum of Abelian differentials is said to be non-
varying if for every Teichmüller curve in that component the sum of (positive)
Lyapunov exponents is the same. Such a non-varying phenomenon was observed
numerically by M. Kontsevich and A. Zorich along with the initial observations
on Lyapunov exponents for the Teichmüller geodesic flow [Ko, KZ97]. Today,
there are two types of non-varying results. One for low genus, due to D. Chen
and M. Möller [CM], which uses a translation of the problem into algebraic ge-
ometry. The other one, for hyperelliptic loci, due to A. Eskin, M. Kontsevich and
A. Zorich [EKZ], which is a consequence of their main result relating sum of Lya-
punov exponents to Siegel–Veech constants, which, roughly speaking, measure the
growth rate of the number of cylinders of bounded length on translation surfaces.
In particular, the non-varying phenomenon for the sum of Lyapunov exponents is
equivalent to the non-varying of Siegel–Veech constants.

The related counting problem has been widely studied and it is related to many
other questions such as the calculation of the volume of strata of normalized trans-
lation surfaces [EMZ]. H. Masur [Ma88, Ma90] proved that for every translation
surface X, there exist positive constants c(X) and C(X) such that the number
N(X,L) of (maximal) cylinders of closed geodesics of length at most L satisfy

c(X)L2 ≤ N(X,L) ≤ C(X)L2

for large enough L. W. Veech [Ve89] proved that for Veech surfaces there are in fact
exact quadratic asymptotics. A. Eskin and H. Masur [EMa] proved that for each
ergodic probability measure µ on strata of normalized (area 1) translation surfaces,
there is a constant c(µ) such that for almost every surface X, N(X,L) ∼ c(µ) ·πL2.

This constant c(µ) is the Siegel–Veech constant ([EMa]); it is the constant in the
Siegel–Veech formula ([EMa]), a Siegel-type formula introduced by W. Veech [Ve98],
which can be translated into

c(µ) =
1

πR2

∫
N(X,R)dµ(X).
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The first explicit computations where made by W. Veech [Ve89, Ve92]. A. Es-
kin, H. Masur and A. Zorich [EMZ] computed the Siegel–Veech constants for con-
nected components of all strata of Abelian differentials, and also described all possi-
ble configurations of cylinders of closed geodesics which might be found on a generic
flat surface. In general, the particular constants for Veech surfaces do not coincide
with the Siegel–Veech constants of the strata where they live. Unless, of course,
we face a non-varying phenomenon, as is for example the case of the hyperelliptic
components Hhyp(2g − 2) or Hhyp(g − 1, g − 1), g > 1.

In this work we study a different but related counting problem: that of cylinders
whose core curve passes through two marked regular Weierstrass points on hyperel-
liptic surfaces in a hyperelliptic component; and we prove the following non-varying
phenomenon analogous to the one described above.

Theorem 1. Let µ be the affine invariant measure supported on the SL(2,R)-
orbit closure of an hyperelliptic surface X in a hyperelliptic component Hhyp(2g−2)
or Hhyp(g − 1, g − 1), g > 1. Then, the (area) Siegel–Veech constant associated
to the counting problem of cylinders whose core curve passes through two marked
regular Weierstrass points equals





1

π2
· 1

2g − 1
, if X ∈ Hhyp(2g − 2),

1

π2
· 1

2g
, if X ∈ Hhyp(g − 1, g − 1).

It is a natural question whether this non-varying phenomenon takes place in
every hyperelliptic loci as well, as is the case for the counting problem of every
cylinder (and not only those that pass through prescribed Weierstrass points). We
shall see that this is not true in general.

The main motivation of this result, is an application to the wind-tree model.

Wind-tree model. The wind-tree model corresponds to a billiard in the plane
endowed with Z2-periodic obstacles of rectangular shape aligned along the lattice, as
in Figure 1. Denote by Π(a, b) the wind-tree model whose obstacles have dimensions
(a, b) ∈ ]0, 1[.

Figure 1. The wind-tree model.
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The wind-tree model (in a slightly different version) was introduced by P. Ehren-
fest and T. Ehrenfest [EE] in 1912. J. Hardy and J. Weber [HaWeb] studied the
periodic version. All these studies had physical motivations.

Several advances on the dynamical properties of the billiard flow in the wind-tree
model were obtained using geometric and dynamical properties on moduli space of
(compact) translation surfaces. A. Avila and P. Hubert [AH] showed that for all
parameters of the obstacle and for almost all directions, the trajectories are recur-
rent. There are examples of divergent trajectories constructed by V. Delecroix [De].
The non-ergodicity was proved by K. Fra̧cek and C. Ulcigrai [FU]. It was proved
by V. Delecroix, P. Hubert and S. Lelièvre [DHL] that the diffusion rate is inde-
pendent either on the concrete values of the parameters of the obstacle or on almost
any direction and almost any starting point and is equals to 2/3. A generalization of
this last result was shown by V. Delecroix and A. Zorich [DZ] for more complicated
obstacles.

The result of V. Delecroix, P. Hubert and S. Lelièvre about the diffusion rate
evince a first non-varying phenomenon in the case of the classical wind-tree model,
which corresponds to the ‘sum of Lyapunov exponents’ counterpart. In this work we
describe the ‘Siegel–Veech constant’ counterpart of the non-varying phenomenon.

The author [Pa1] studied the counting problem on wind-tree models proving
that the number of periodic trajectories has quadratic asymptotic growth rate and
computed, in the generic case, the Siegel–Veech constants for the classical wind-tree
model as well as for the Delecroix–Zorich variant. In this work we prove that, for
the classical wind-tree model, this constant does not depend on the dimensions of
the obstacles, exhibiting a non-varying phenomenon analogous to the one described
above. More precisely, as a direct consequence of Theorem 1, we have the following.

Theorem 2. Denote by Narea(Π(a, b), L) be the number of maximal families of
isotopic periodic trajectories (up to Z2-translations) of length at most L in Π(a, b),
weighted by the area covered by the family.

(1) For Lebesgue-almost every (a, b) ∈ ]0, 1[ and, in particular, if a, b are rational or

can be written as 1/(1−a) = x+z
√
D and 1/(1−b) = y+z

√
D with x, y, z ∈ Q

and x+ y = 1 and D a positive square-free integer, then,

Narea(Π(a, b), L) ∼ 4

3π2
· πL2

1− ab.

(2) In any other case, we have the weak asymptotic formula

Narea(Π(a, b), L) “∼”
4

3π2
· πL2

1− ab.

Proof. The statement is a compilation of several different results and is equiv-
alent to say that carea(Π(a, b)) = 4/3π2 (cf. [AEZ, Theorem 1.7] and [Pa1, Theo-
rem 1.2]). By [Pa1, Corollary 5.6], the counting problem on the wind-tree model
coincides with the counting problem of cylinders whose core curve passes through
two marked regular Weierstrass points on a surface L(a, b) ∈ Q̃(1,−15) = H(2).

By elementary considerations on the Siegel–Veech formula (cf. [EKZ, Lemma 1.1])
combined with the lifting properties of cylinders in L(a, b) (see for example [AH,
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Lemma 3]), we have that carea(Π(a, b)) is four times the Siegel–Veech constant as-
sociated to the corresponding counting on L(a, b).

Thus, by Theorem 1, we conclude that carea(Π(a, b)) = 4/3π2. �

Strategy of the proof. From a hyperelliptic surface X in a hyperelliptic com-
ponent Hhyp(2g − 2) or Hhyp(g − 1, g − 1), g > 1, and given two fixed regular
Weierstrass points, we build three different translation surfaces which are covering
of the original surface X. These coverings turn out to be hyperelliptic surfaces as
well. We introduce some configurations of cylinders associated to the monodromy
of these coverings and describe the counting of cylinders whose core curve passes
through the two Weierstrass points in terms of one of these configurations. We re-
late the Siegel–Veech constants of the configurations on X to their liftings on the
coverings. Decomposing the Siegel–Veech constants of the involved surfaces in terms
of these configurations, we obtain a system of equations which allows us to describe
the Siegel–Veech constants of the configurations in terms of those of the surfaces.
Since the surfaces are hyperelliptic, thanks to Eskin–Kontsevich–Zorich [EKZ], the
result is non-varying. Describing the hyperelliptic loci where the surfaces lie and
putting the values of the corresponding Siegel–Veech constants in the expression
allows us to compute explicitly the value of the Siegel–Veech constant associated
to the configurations and therefore, the one associated to the counting of cylinders
whose core curve passes through the two Weierstrass points.

We present a family of counterexamples for hyperelliptic loci which are not hy-
perelliptic components. We exhibit hyperelliptic surfaces where the Siegel–Veech
constant associated to the counting of cylinders whose core curve passes through
two marked Weierstrass points does not coincide with the corresponding Siegel–
Veech constant on the hyperelliptic loci where they lie. For this, we use one of the
covers defined above, which lies in a hyperelliptic locus which is not a hyperellip-
tic component. We relate the configuration of cylinders whose core curve passes
through (any) two Weierstrass points to one of the configurations mentioned above
and we compute the value of the corresponding Siegel–Veech constant analogously.
Using a result of Athreya–Eskin–Zorich [AEZ], we show the corresponding generic
value for the hyperelliptic locus, which does not coincide with the one obtained for
the constructed surface, showing that the relevant Siegel–Veech constant vary along
the hyerelliptic locus.

Structure of the paper. In §2 we briefly recall all the background necessary
to formulate and prove the results. In §3 we prove the result in the case of the
hyperelliptic component Hhyp(2g−2), g > 1. We describe the covering construction
in §3.1 and prove that they are hyperelliptic surfaces, giving also the corresponding
hyperelliptic loci where they lie. In §3.2 we introduce the associated configurations
of cylinders and relate the counting of cylinders whose core curve passes through
the two Weierstrass points in terms of one of these configurations. We describe
the system of equations they satisfy and find the value of the desired Siegel–Veech
constant. In §4 we prove the result in the case of the hyperelliptic component
Hhyp(2g − 2), g > 1, following the same outline.



2. BACKGROUND 103

We present in §5 the family of counterexamples, providing the values of (the sum
of) the pertinent Siegel–Veech constants for the counterexamples as well as for the
generic case.

2. Background

2.1. Flat surfaces. For an introduction and general references to this sub-
ject, we refer the reader to the surveys of Zorich [Zo06], Forni–Matheus [FM],
Wright [Wr].

2.1.1. Flat surfaces and strata. Let g ≥ 1, {n1, . . . , nk} be a partition of 2g − 2
and H(n1, . . . , nk) denote a stratum of Abelian differentials, that is, the space holo-
morphic 1-forms on Riemann surfaces of genus g, with zeros of degree n1, . . . , nk ∈ N.
There is a one to one correspondence between Abelian differentials and translation
surfaces, surfaces which can be obtained by edge-to-edge gluing of polygons in R2

using translations only. Thus, we refer to elements of H(n1, . . . , nk) as translation
surfaces. A translation surface has a canonical flat metric, the one obtained form
R2, with conical singularities of angle 2π(n+ 1) at zeros of degree n of the Abelian
differential.

We also consider strataQ(d1, . . . , dk) of meromorphic quadratic differentials with
at most simple poles on Riemann surfaces with zeros of order d1, . . . , dk, di ∈ {−1}∪
N for i = 1, . . . , k (in a slight abuse of vocabulary, we are considering poles as zeros

of order −1) and
∑k

i=1 di = 4g− 4. A quadratic differential also defines a canonical
flat metric with conical singularities of angle π(d+ 2) at zeros of order d.

In this paper, a quadratic differential is not the square of an Abelian differential.
This condition is automatically satisfied if at least one of parameters dj is odd.

Notation. As usual, we use “exponential” notation to denote multiple zeroes (or
simple poles) of the same degree, for example Q(1,−15) = Q(1,−1,−1,−1,−1,−1).

A flat surface is a Riemann surface with the flat metric corresponding to an
Abelian or quadratic differential.

2.1.2. Canonical orientation double cover. One can canonically associate with
every meromorphic quadratic differential q on a Riemann surface S another con-
nected curve with an Abelian differential on it. It is the unique double covering of
S (possibly ramified at singularities of q) such that the pullback of q is the square
of an Abelian differential.

Notation. We denote by Q̃(d1, . . . , dn) the locus of translation surfaces consisting
on the canonical orientating double cover of surfaces in the strata of half-translation
surfaces Q(d1, . . . , dn).

2.1.3. Hyperelliptic surfaces, loci and components. We say that a translation sur-
face X is a hyperelliptic surface if it corresponds to the canonical orientation double
cover of a quadratic differential on a Riemann surface of genus zero. Equivalently, if
X ∈ Q̃(d1, . . . , dn) with

∑n
j=1 dj = −4 and, in this case, we say that Q̃(d1, . . . , dn)

is an hyperelliptic locus.
There are two series of hyperelliptic loci which play a special role: for g > 1,

Q̃(2g − 3,−12g+1) ⊂ H(2g − 2), and

Q̃(2g − 2,−12g+2) ⊂ H(g − 1, g − 1),
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In these cases, the hyperelliptic loci coincides with a connected component of the
corresponding stratum (see [KZ03, §2.1]), the hyperelliptic compontent, which is
denoted by

Hhyp(2g − 2) = Q̃(2g − 3,−12g+1), and

Hhyp(g − 1, g − 1) = Q̃(2g − 2,−12g+2).

2.1.4. Hyperelliptic involution and Weierstrass points. Every translation surface
obtained as an orientation covering comes with an involution. In the case of hyper-
elliptic surfaces, we call it the hyperelliptic involution. The hyperelliptic involution
of a hyperelliptic surface of genus g has exactly 2g + 2 fixed points. These fixed
points are called Weierstrass points. We say that a Weierstrass point is regular
if it is regular for the flat metric, that is, if it is not a conical singularity. Note
that regular Weierstrass points are exactly those points who projects to poles in the
corresponding quadratic differential on the sphere.

Moreover, a translation surface of genus g is a hyperelliptic surface if and only
if it has an involution which fixes 2g + 2 points.

2.2. Counting problem. We are interested in the counting of closed geodesics
of bounded length on translation surfaces. Together with every closed regular geo-
desic in a translation surface X we have a bunch of parallel closed regular geodesics.
A cylinder on a flat surface is a maximal open annulus filled by isotopic simple closed
regular geodesics. A cylinder C is isometric to the product of an open interval and
a circle, its core curve γC is the geodesic projecting to the middle of the interval and
its length l(C) is the circumference of the circle. A saddle connection is a geodesic
joining two different singularities or a singularity to itself, with no singularities in
its interior. Cylinders are always bounded by parallel saddle connections.

The number of cylinders of bounded length is finite. Thus, for any L > 0 the
following quantity is well-defined:

Narea(X,L) =
1

Area(X)

∑

C⊂X
l(C)≤L

Area(C),

where the sum is over all cylinders C in X of length bounded by L.
The following theorem is a special case of a fundamental result of Veech [Ve98],

considered by Vorobets in [Vo05].

Theorem (Veech). Let ν be an ergodic SL(2,R)-invariant probability measure
on a stratum H1(n1, . . . , nk) of Abelian differentials of area one. Then, the following
ratio is constant (i.e. does not depend on the value of a positive parameter R):

carea(ν) =
1

πR2

∫
Narea(X,R)dν.

This formula is the Siegel–Veech formula, and the corresponding constant carea(ν)
is the Siegel–Veech constant.

A fundamental result of Eskin–Mirzhakani–Mohammadi [EMM] says that every
SL(2,R)-orbit closure M is an affine invariant manifold and, in paricular, it is
the support of an affine invariant measure νM (see [EMM, EMi] for the precise
definitions). For simplicity, we denote carea(M) = carea(νM).
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We call a configuration of cylinders on an affine invariant manifoldM, a contin-
uous SL(2,R)-equivariant application C which associates to X ∈ M (or any finite
cover of M) a collection of cylinders in X (cf. [EMZ]). The previous discussion on
the counting problem and Siegel–Veech constants applies as well in the case of config-
urations of cylinders and we denote by carea(M, C) the corresponding Siegel–Veech
constant.

Notation. For a translation surface X, we denote by carea(X), the Siegel–Veech
constant associated to the affine invariant measure νM supported on its SL(2,R)-

orbit closure M = SL(2,R)X. That is

carea(X) := carea(M) =
1

πR2

∫

M
Narea(Y,R)dνM(Y ).

Similarly, for a configuration of cylinders C defined onM, we denote by carea(X, C),
the corresponding Siegel–Veech constant, carea(X, C) = carea(M, C).

2.3. Non-varying phenomenon. The following result summarize the non-
varying phenomenon for Siegel–Veech constants observed on hyperelliptic loci by
Eskin–Kontsevich–Zorich [EKZ, Theorem 3 and Lemma 1.1].

Theorem 2.1 (Eskin–Kontsevich–Zorich). Let X be a hyperelliptic surface such
that the quotient sphere belongs to Q(d1, . . . , dn). That is, X ∈ Q̃(d1, . . . , dn) with∑n

j=1 dj = −4. Then

carea(X) = − 1

4π2

n∑

j=1

dj
dj + 4

dj + 2
.

3. The case of Hhyp(2g − 2)

In this section we prove the statement of Theorem 1 in the case of the hyperel-
liptic component Hhyp(2g − 2), g > 1.

3.1. Hyperelliptic coverings. Let X ∈ Hhyp(2g−2), w0, w1, w2 ∈ X be three
different regular Weierstrass points1 and z ∈ X be the zero of order 2g − 2 on
X. Consider two saddle connections s1, s2 passing through w1, w2 respectively (and
joining z to itself). In particular, s1 and s2 are h-invariant, where h : X → X is the
hyperelliptic involution.

For (i, j) ∈ {0, 1}2 \ {(0, 0)}, consider the covering Xij over X defined by the
subgroup of π1(X,w0)

(22) Γij = {γ ∈ π1(X,w0) : ι(γ, is1 + js2) ≡2 0}.
Note that, since s1, s2 are closed loops, these coverings are unramified.

Lemma 3.1. Xij is hyperelliptic, for (i, j) ∈ {0, 1}2 \ {(0, 0)}.
Proof. From general covering space theory, we know that points in Xij can be

taken to be equivalence classes of pairs (x, ρ), which we denote by [x, ρ]ij, where ρ
is a path joining w0 to x ∈ X and (x1, ρ1) is equivalent to (x2, ρ2) provided x1 = x2

and ρ1ρ
−1
2 ∈ Γij, where Γij is the subgroup of π1(X,w0) defining the covering Xij,

described by (22) above.

1Every hyperelliptic surface has at least four different regular Weierstrass points.
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We define now hij : Xij → Xij by hij([x, ρ]ij) = [h(x), h ◦ ρ]ij, where h : X → X
is the hyperelliptic involution on X. Note that hij is a well defined involution which
is a lift of h. It is clear from the definition that the only possible fixed points of hij
are the points lying above the Weierstrass points of X. Moreover, in Xij, if one of
the two points above a given Weierstrass point in X is fixed by hij, then both are.

Let w ∈ X be a Weierstrass point and ρ : [0, 1] → X be a path from w0 to
X11. Consider now ρ̂ := h(ρ)ρ−1 ∈ π1(X,w0). Then, by definition of Xij (see (22)
above) [w, ρ]ij ∈ Xij is fixed by hij if and only if ι(ρ̂, is1 + js2) ≡2 0. Moreover, up
to homotopy, we can suppose that ρ|]0,1[ avoids z, w1, w2 ∈ X, and that ρ intersects
transversally s1, s2 and avoids tangencies and self-intersections over s1, s2. It follows
that ι(ρ̂, sk) ≡2 #ρ̂∩ sk, k = 1, 2. Moreover, ρ̂ and sk are h-invariant and therefore,
so is ρ̂∩ sk. Since h is an involution, the parity of #ρ̂∩ sk equals (the parity of) the
number of its fixed points.

Now, since w0 /∈ {z, w1, w2}, we have that, for k = 1, 2,

(1) if w /∈ {z, wk}, then ρ̂ ∩ sk is an h-invariant set with no fixed points and
therefore, ι(ρ̂, sk) ≡2 #ρ̂ ∩ sk ≡2 0;

(2) if w ∈ {z, wk}, then ρ̂∩sk is an h-invariant set with exactly one fixed point,
namely X11, and therefore, ι(ρ̂, sk) ≡2 #ρ̂ ∩ sk ≡2 1.

Thus,

(1) the two points on X10 above X11 are fixed by h10 if and only if w /∈ {z, w1};
(2) the two points on X01 above X11 are fixed by h01 if and only if w /∈ {z, w2};

and
(3) the two points on X11 above X11 are fixed by h11 if and only if w /∈ {w1, w2}.

It follows that, for each (i, j) ∈ {0, 1}2\{(0, 0)}, the number of points in Xij, fixed by
hij is twice the number of Weierstrass points in X but two. Since X is hyperelliptic
of genus g, it has 2g+ 2 Weierstrass points and thus, the number of fixed points for
hij is 2(2g + 2− 2) = 4g.

Moreover, since the coverings are regular double covers, χ(Xij) = 2χ(X). That
is, g(Xij) = (2g−2)+1 = 2g−1 and hij fixes 4g = 2g(Xij)+2 points. We conclude
that Xij is hyperelliptic. �

Since Xij is a regular double cover of X ∈ H(2g − 2), we have that Xij ∈
H(2g−2, 2g−2). Furthermore, we have the following, which shall be needed latter.

Lemma 3.2. The surfaces X10 and X01 belong to the hyperelliptic connected
component Hhyp(2g − 2, 2g − 2) = Q̃(4g − 4,−14g), while the surface X11 belongs to
the hyperelliptic locus Q̃(2g − 3, 2g − 3,−14g−2) ⊂ Hodd(2g − 2, 2g − 2).

Proof. Following the proof of Lemma 3.1, we know that the hyperelliptic in-
volution h10 fixes the points in X10 above the Weierstrass points in X but z and
w1. In particular, the conical singularities of X10 are not fixed by h10 and therefore
X10 ∈ Q̃(4g − 4,−14g) = Hhyp(2g − 2, 2g − 2). The proof for X01 is analogous.

Similarly, the hyperelliptic involution h11 fixes the points in X11 above the Weier-
strass points in X but w1 and w2. Then, the conical singularities of X11 are fixed by
h11 and therefore X11 ∈ Q̃(2g − 3, 2g − 3,−14g−2). The parity of the spin structure
of surfaces in Q̃(2g− 3, 2g− 3,−14g−2) is deduced from [KZ03, Proposition 7]. �
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3.2. Configurations and Siegel–Veech constants. We are concerned with
the counting of cylinders whose core curve passes through two fixed Weierstrass
points w1, w2 ∈ X. For a cylinder C in X, we define the profile of C to be the
couple (ι(γC , sk) mod 2)k=1,2 ∈ {0, 1}2, where γC is the core curve of C. We also
consider Cpq to be the configuration of cylinders in X of profile (p, q) ∈ {0, 1}2.

Lemma 3.3. The configuration C11 coincides with the configuration of cylinders
whose core curve passes through w1 and w2.

Proof. Since X ∈ Hhyp(2g − 2), the core curve of every cylinder C in X is
h-invariant and passes through exactly two different Weierstrass points2. Denote
by W(C) the set of this two Weierstrass points lying on the core curve of C. We
claim that ι(γC , sk) ≡2 1W(C)(wk). In fact, γC can be written as h(ρ)ρ−1, where
ρ is a geodesic path from one Weierstrass point in W(C) to the other. Moreover,
ρ|]0,1[ avoids every Weierstrass point, in particular z and wk. Furthermore, since ρ
and sk are geodesics, ρ intersects transversally sj and avoids tangencies and self-
intersections over sk. Thus, as in the proof of Lemma 3.1, it follows that ι(γ, sk) ≡2

#γC ∩ sk and therefore, ι(γ, sk) ≡2 1 if and only if wk ∈ W(C), proving the claim.
We conclude thus, that the core curve of C pass through w1 and w2, that is,W(C) =
{w1, w2}, if and only if ι(γ, s1) ≡2 ι(γ, s2) ≡2 1, that is, if and only if C has profile
(1, 1). �

Denote by cpq = carea(X, Cpq). Then, it is clear that

carea(X) = c00 + c10 + c01 + c11.

Now, consider the configuration Cijpq of cylinders C in Xij such that they project
to X to cylinders in Cpq. Again, it is clear that carea(Xij) decomposes into the sum
of the Siegel–Veech constants carea(Xij, Cijpq), (p, q) ∈ {0, 1}2.

The following general result relates the Siegel–Veech constants of configurations
of cylinders on a double covering to the constant on the base space (see [DZ,
Lemma 4.1], which is a slight generalization of [EKZ, Lemma 1.1]).

Lemma 3.4. Let X̂ → X be a double covering, C be a configuration of cylinders
on C and Ĉ be the lift of this configuration to X̂. If the core curve of every cylinder
in C has non-trivial monodromy, then carea(X̂, Ĉ) = carea(X, C)/2. If the core curve

of every cylinder in C has trivial monodromy, then carea(X̂, Ĉ) = 2carea(X, C).

Note that, in our case, the monodromy of a cylinder C in X for the covering
Xij is, by definition, given by the intersection number ι(γC , is1 + js2) mod 2. But
then, profiles define the monodromy on each covering and, in particular, the relation
between the Siegel–Veech constants given in Lemma 3.4 above. Thus, we have that
cylinders in Cijpq have monodromy equals to ip+ jq mod 2. Using this, it is easy to

2This claim is true only for Hhyp(2g − 2) and Hhyp(g − 1, g − 1), and this is the main reason
this argument does not work on other hyperelliptic loci.
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verify that, by the previous lemma, we have the following:

carea(X) = c00 + c10 + c01 + c11,

carea(X10) = 2c00 + 2c10 +
1

2
c01 +

1

2
c11,

carea(X01) = 2c00 +
1

2
c10 + 2c01 +

1

2
c11,

carea(X11) = 2c00 +
1

2
c10 +

1

2
c01 + 2c11.

Moreover 


1 1 1 1
2 2 1/2 1/2
2 1/2 2 1/2
2 1/2 1/2 2




−1

=
1

3




−3 1 1 1
2 1 −1 −1
2 −1 1 −1
2 −1 −1 1




and therefore,

(23) c11 =
1

3
[2carea(X)− carea(X10)− carea(X01) + carea(X11)] .

Thus, it is enough to compute the Siegel–Veech constants for each surface and,
since all of them are hyperelliptic, by Theorem 2.1, it is enough to find the strata of
quadratic differentials where the quotient spheres belong. But, by Lemma 3.2, we
already know this and hence,

carea(X) = − 1

4π2

(
(2g − 3)

2g + 1

2g − 1
− 3(2g − 1)

)
=

g

π2
· 2g + 1

2g − 1
,

carea(X10) = carea(X01) = − 1

4π2

(
(4g − 4)

4g

4g − 2
− 3(4g)

)
=

g

π2
· 4g − 1

2g − 1

and

carea(X11) = − 1

4π2

(
(2g − 3)

2g + 1

2g − 1
2− 3(4g − 2)

)
=

1

π2
· 4g2 − 4g + 3

2g − 1
.

Finally, plugging this in formula (23), we obtain

c11 =
1

3π2
· 1

2g − 1

[
2g(2g + 1)− 2g(4g − 1) + (4g2 − 4g + 3)

]
=

1

π2
· 1

2g − 1
.

That is, by Lemma 3.3, the Siegel–Veech constant associated to the counting of
cylinders whose core curve passes through the two regular Weierstrass points w1

and w2 equals
1

π2
· 1

2g − 1

for surfaces in Hhyp(2g − 2). �

4. The case of Hhyp(g − 1, g − 1)

In this section we prove Theorem 1 for the hyperelliptic connected components
Hhyp(g−1, g−1), g > 1. The proof follows almost in the same way than in the case
of Hhyp(2g − 2) but some small details that we present below.
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4.1. Hyperelliptic coverings. The construction of the hyperelliptic coverings
is slightly different, in particular, the saddle connections we use to define them are
no longer closed curves.

Let X ∈ Hhyp(g− 1, g− 1), w0, w1, w2 ∈ X be three different regular Weierstrass
points and z ∈ X be one of the zeros of order g − 1 on X. Consider two saddle
connections s1, s2 passing through w1, w2 respectively. In particular, s1 and s2 are
h-invariant and goes from z to h(z), where h : X → X is the hyperelliptic involution
and h(z) is the other zero of order g − 1 on X.

As above, for (i, j) ∈ {0, 1}2 \ {(0, 0)}, we consider the covering Xij over X
defined by the subgroup of π1(X,w0)

Γij = {γ ∈ π1(X,w0) : ι(γ, is1 + js2) ≡2 0}.

Note that, since s1, s2 are no longer closed loops, these coverings might be branched
coverings. In fact, it is not hard to see that X10 and X01 are ramified over z and
h(z), while X11 is unramified. Anyway, they are still hyperelliptic coverings:

Lemma 4.1. Xij is hyperelliptic, for (i, j) ∈ {0, 1}2 \ {(0, 0)}.

Proof. The proof follows as in the proof of Lemma 3.1. For a Weierstrass point
w ∈ X and ρ : [0, 1] → X a path from w0 to X11, we get that ι(ρ̂, sk) ≡2 #ρ̂ ∩ sk,
k = 1, 2, where ρ̂ = h(ρ)ρ−1 ∈ π1(X,w0). And, for k = 1, 2, we have that,

(1) if w 6= wk, then ρ̂∩sk is an h-invariant set with no fixed points and therefore,
ι(ρ̂, sk) ≡2 #ρ̂ ∩ sk ≡2 0;

(2) if w = wk, then ρ̂ ∩ sk is an h-invariant set with exactly one fixed point,
namely X11, and therefore, ι(ρ̂, sk) ≡2 #ρ̂ ∩ sk ≡2 1.

Thus,

(1) the two points on X10 above X11 are fixed by h10 if and only if w 6= w1;
(2) the two points on X01 above X11 are fixed by h01 if and only if w 6= w2; and
(3) the two points on X11 above X11 are fixed by h11 if and only if w /∈ {w1, w2}.

It follows that there are exactly 2(2g + 2 − 1) = 4g + 2 fixed points for h10 and
h01. Moreover, since the coverings X10 and X01 are branched over two points, by
Riemann–Hurwitz formula, χ(X10) = χ(X01) = 2χ(X) + 2. That is, for ij =
10, 01, g(Xij) = 2g − 2 + 1 + 1 = 2g, so hij fixes 4g + 2 = 2g(Xij) + 2 points and
therefore Xij is hyperelliptic. Similarly, h11 has 2(2g + 2 − 2) = 4g fixed points
and since the coverings X11 is a regular double cover, χ(X11) = 2χ(X). That is,
g(X11) = (2g − 2) + 1 = 2g − 1. Thus h11 fixes 4g = 2g(X11) + 2 points and X11 is
hyperelliptic. �

And we have the following.

Lemma 4.2. The surfaces X10 and X01 belong to the hyperelliptic connected
component Hhyp(2g − 1, 2g − 1) = Q̃(4g − 2,−14g+2), while the surface X11 belongs
to the hyperelliptic locus Q̃(2g−2, 2g−2,−14g) ⊂ H(g−1, g−1, g−1, g−1), which
is connected.

Proof. The proof is analogous to the proof of Lemma 3.2. �
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4.2. Configurations and Siegel–Veech constants. As before, we are con-
cerned with the counting of cylinders whose core curve passes through two fixed
Weierstrass points w1, w2 ∈ X. For a cylinders C in X, we define the profile of C
as before, that is, the couple (ι(γC , sk) mod 2)k=1,2 ∈ {0, 1}2, where γC is the core
curve of C; and we consider Cpq to be the configuration of cylinders in X of profile
(p, q) ∈ {0, 1}2.

Lemma 4.3. The configuration C11 coincides with the configuration of cylinders
whose core curve passes through w1 and w2.

Proof. The proof is the same as for Lemma 3.3. �

Denote by cpq = carea(X, Cpq), so

carea(X) = c00 + c10 + c01 + c11.

We consider the configurations Cijpq as in §3.2 and, applying Lemma 3.4 and the
definition of profile, we obtain the same system as in the previous case. Thus, it
follows that c11 = [2carea(X)− carea(X10)− carea(X01) + carea(X11)] /3.

It suffices now to compute the Siegel–Veech constants for each surface. By
Theorem 2.1 and Lemma 4.2, we have that

carea(X) = − 1

4π2

(
(2g − 2)

2g + 2

2g
− 3(2g + 1)

)
=
g + 1

π2
· 2g + 1

2g
,

carea(X10) = carea(X01) = − 1

4π2

(
(4g − 2)

4g + 2

4g
− 3(4g + 2)

)
=

2g + 1

π2
· 4g + 1

4g

and

carea(X11) = − 1

4π2

(
(2g − 2)

2g + 2

2g
2− 3(4g)

)
=

1

π2
· 2g2 + 1

g
.

Finally, we obtain

c11 =
1

3π2
· 1

4g

[
4(g + 1)(2g + 1)− 2(2g + 1)(4g + 1) + 4(2g2 + 1)

]
=

1

π2
· 1

2g − 1
.

That is, by Lemma 4.3, the Siegel–Veech constant associated to the counting of
cylinders whose core curve passes through the two regular Weierstrass points w1

and w2 equals
1

π2
· 1

2g

for surfaces in Hhyp(g − 1, g − 1). �

5. Counterexamples

In this section we present a family of counterexamples: we exhibit hyperelliptic
surfaces where the Siegel–Veech constant associated to the counting of cylinders
whose core curve passes through two marked Weierstrass points does not coincide
with the corresponding Siegel–Veech constant on the hyperelliptic loci where they
lie.

Let X be a hyperelliptic surface in a hyperelliptic component, that is, X belongs
to Hhyp(2g − 2) or Hhyp(g − 1, g − 1), g ≥ 1. We consider the surface X11 from
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the previous sections. By Lemma 3.2 and 4.2, we know that X11 belongs to the
hyperelliptic locus Q̃(2g− 3, 2g− 3,−14g−2) or Q̃(2g− 2, 2g− 2,−14g), respectively.

Recall that in X11, regular Weierstrass points are exaclty those that project
to regular Weierstrass points in X but w1 and w2 (see proof of Lemma 3.1/4.1,
point (3)). For a cylinder C in X11, denote byW(C) the set of (regular) Weierstrass
points on its core curve. Thus, a cylinder C in X11 whose core curve passes through
two regular Weierstrass points (that is, #W(C) = 2) projects to a cylinder in X
whose core curve passes through two regular Weierstrass points different from w1

and w2.
Let CW be the configuration of cylinders in X11 whose core curve passes through

(any) two regular Weierstrass points3, and recall that C11
00 denotes the configuration

of cylinders in X11 such that their projection in X have profile (0, 0) (see §3.2/4.2).

Lemma 5.1. The configurations CW and C11
00 coincide.

Proof. The proof follows as in Lemma 3.3/4.3. In fact, let C̄W denote the
configuration of cylinders in X who lift to cylinders on CW . By the previous discus-
sion, C̄W coincides with the configuration of cylinders in X whose core curve passes
through two regular Weierstrass points different from w1 and w2.

In the proof of Lemma 3.3, we showed that for any cylinder C in X we have
that ι(γC , sk) ≡2 1W(C)(wk), k = 1, 2. Then, since the profile of a cylinder C in X
is defined as (ι(γC , sk) mod 2)k=1,2, C has profile (0, 0) if and only if 1W(C)(w1) =
1W(C)(w2) = 0. That is, if and only if its core curve passes through two regular
Weierstrass points different from w1 and w2 (recall that the core curve of every
cylinder in X passes through two regular Weierstrass points). Thus, C̄W = C00 and
therefore, CW = C11

00 . �

It follows from the previous lemma and Lemma 3.4 that carea(X11, CW) = 2c00.
But we know, by the equation system it satisfies (see §3.2), that

c00 =
1

3
[−3carea(X) + carea(X10) + carea(X01) + carea(X11)] .

We have already computed the Siegel–Veech constants for each surface. Putting all
together, we obtain that

carea(X11, CW) =





2g − 2

π2
, if X ∈ Hhyp(2g − 2),

2g − 1

π2
, if X ∈ Hhyp(g − 1, g − 1).

Thus, we have computed the sum of the Siegel–Veech constants corresponding to
the counting of cylinders in X11 whose core curve passes through two marked regular
Weierstrass points, for any such marking, for a particular choice of a surfaces in the
hyperelliptic loci Q̃(2g− 3, 2g− 3,−14g−2) and Q̃(2g− 2, 2g− 2,−14g). We shall see
that these do not coincide with the generic case in such hyperelliptic loci. In fact,
we have the following.

3Unlike the case of surfaces in hyperelliptic components, for surfaces in other hyperelliptic loci,
not every core curve of a cylinder passes through Weierstrass points. However, if it passes through
a Weierstrass point, it passes through exactly two of them.
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Lemma 5.2. In the generic case, the value of the Siegel–Veech constants is

carea(M, CW) =





2g − 1

π2
, if M = Q̃(2g − 3, 2g − 3,−14g−2),

2g

π2
, if M = Q̃(2g − 2, 2g − 2,−14g).

Proof. By a result of Athreya–Eskin–Zorich ([AEZ, Corollary 4.7]), the generic
classical Siegel–Veech constant associated to the counting of cylinders in CP1 (with
a meromorphic quadratic differential with at most simple poles) bounded by a saddle
connection joining two marked poles equals 1/2π2 (whichever stratum of quadratic
differentials in genus zero). Note that, these cylinders correspond exactly to the pro-
jection of cylinders in the orientation double cover whose core curve passes through
two marked regular Weierstrass points.

However, we are interested in the area Siegel–Veech constant. For configurations
C of cylinders in strata L = Q(d1, . . . , dk) of quadratic differentials on CP1 (that is,∑k

j=1 dk = −4), there exist a relation between the classical Siegel–Veech constant

c(L, C) and the area Siegel-Veech constant carea(L, C), namely

carea(L, C) =
1

k − 3
c(L, C).

This is a consequence of a generalization of Vorobets formula [Vo05, Theorem 1.6(b)],
proved by Athreya–Eskin–Zorich [AEZ, Proposition 4.9] for any configuration of
cylinders on any strata of quadratic differentials on CP1. Moreover, by [EKZ,
Lemma 1.1] (cf. Lemma 3.4), we have that the corresponding Siegel–Veech constant
in the hyperelliptic locus, say carea(L̃, C̃), is twice this value,

carea(L̃, C̃) = 2carea(C) =
2

k − 3
c(L, C).

Putting all together, in the case of M1 = Q̃(2g − 3, 2g − 3,−14g−2) we get

carea(M1, CW) =
2

4g − 3

(
4g − 2

2

)
1

2π2
=

2g − 1

π2
,

where the binomial coefficient stands for all possible choices of two regular Weier-
strass points, which correspond to the poles of the quadratic differential on CP1.

Similarly, in the case of M2 = Q̃(2g − 2, 2g − 2,−14g), we get

carea(M2, CW) =
2

4g − 1

(
4g

2

)
1

2π2
=

2g

π2
.

�

Thus, the Siegel–Veech constant for the counting of cylinders whose core curve
passes through two marked regular Weierstrass points cannot be non-varying in
Q̃(2g− 3, 2g− 3,−14g−2) or Q̃(2g− 2, 2g− 2,−14g), as the sum of all of them is not.
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Résumé

Le problème du cercle de Gauss consiste à compter le nombre de points entiers
de longueur bornée dans le plan. Autrement dit, compter le nombre de géodésiques
fermées de longueur bornée sur un tore plat bidimensionnel. De très nombreux
problèmes de comptage en systèmes dynamiques se sont inspirés de ce problème.
Depuis 30 ans, on cherche à comprendre l’asymptotique de géodésiques fermées
dans les surfaces de translation. H. Masur a montré que ce nombre a une croissance
quadratique. Calculer l’asymptotique quadratique (constante de Siegel–Veech) est
un sujet de recherches très actif aujourd’hui. L’objet d’étude de cette thèse est le
modèle de windtree, un modèle de billard non compact. Dans le cas classique, on
place des obstacles rectangulaires identiques dans le plan en chaque point entier. On
joue au billard sur le complémentaire. Nous montrons que le nombre de trajectoires
périodiques a une croissance asymptotique quadratique et calculons la constante de
Siegel–Veech pour le windtree classique ainsi que pour la généralisation de Delecroix–
Zorich. Nous prouvons que, pour le windtree classique, cette constante ne dépend
pas des tailles des obstacles (phénomène “non varying” analogue aux résultats de
Chen–Möller). Enfin, lorsque la surface de translation compacte sous-jacente est
une surface de Veech, nous donnons une version quantitative du comptage.

Mots-clés : Systèmes dynamiques, Géométrie, Modèle de windtree, Billards,
Surfaces de translation, Problème de comptage.

Abstract

The Gauss circle problem consists in counting the number of integer points of
bounded length in the plane. In other words, counting the number of closed geodesics
of bounded length on a flat two dimensional torus. Many counting problems in dy-
namical systems have been inspired by this problem. For 30 years, the experts try
to understand the asymptotic behavior of closed geodesics in translation surfaces.
H. Masur proved that this number has quadratic growth rate. Compute the qua-
dratic asymptotic (Siegel–Veech constant) is a very active research domain these
days. The object of study in this thesis is the wind-tree model, a non-compact
billiard model. In the classical setting, we place identical rectangular obstacles in
the plane at each integer point. We play billiard on the complement. We show that
the number of periodic trajectories has quadratic asymptotic growth rate and we
compute the Siegel–Veech constant for the classical wind-tree model as well as for
the Delecroix–Zorich variant. We prove that, for the classical wind-tree model, this
constant does not depend on the dimensions of the obstacles (non-varying phenom-
enon, analogous to results of Chen–Möller). Finally, when the underlying compact
translation surface is a Veech surface, we give a quantitative version of the counting.

Keywords: Dynamical systems, Geometry, Wind-tree model, Billiards, Trans-
lation surfaces, Counting problem.


