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Abstract

Laboratoire de Chimie Bactérienne

Ecole doctorale de sciences de la vie et de la santé
Doctor of Philosophy

Mathematical models for reactive oxygen species dynamic in Escherichia coli

by Lionel UHL

The Reactive Oxygen Species (ROS) are molecules (superoxide O3, hydrogen per-
oxide H,03 and hydroxyl radical HO®) that are continuously generated in living cells
as a consequence of aerobic life. They are partially eliminated by scavenging systems.
Nevertheless, ROS can unfortunately react with cellular proteins, lipids or DNA lead-
ing to cell damage. The mechanisms of such lesions is still being studied: we are talking
about « oxidative stress ». Using Escherichia coli as a model organism this thesis is con-
cerned with the numerical simulation of ROS dynamics. In the first part of this work,
simulations were performed in a deterministic way to predict the behaviour of a set
of cells. By studying killing of E. coli by exposure to H,O>, we show that intracellu-
lar available iron and cell density, two factors potentially involved in ROS dynamics,
play a major role in the prediction of experimental results in particular in bimodal cell
killing. We then evaluate the relative roles of major defences against HoO». Although
the key actors in cell defence are enzymes and membrane, a detailed analysis shows
that their involvement depends on the HoO, concentration level. In the second part and
thanks to the first deterministic approach, we study more closely the fate of the single
cell with a stochastic point of view in physiological conditions. We show that elemen-
tary chemical stochasticity allows bacteria to segregate specialized cells in prevision of
possible stress challenge. Actually, whereas ROS distribution does not activate defence
regulation without exogenous stress, we demonstrate that this distribution may acti-
vate DNA repair mechanisms because DNA nicks are the result of a succession of rare
events which involve a small number of molecules.
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Chapter 1

Introduction

This chapter stands out from much of the rest of this thesis in that it mostly deals with
academic knowledge in isolation from any results. On the one hand, it evokes basic
knowledge Reactive Oxygen Species (ROS) and chemical kinetics; it is important to
bring this to the attention of the mathematics community. On the other hand, it is
useful to introduce the mathematical models needed to understand the resolution of
kinetic equations.

Finally this thesis only considers Escherichia coli as an example of bacteria and as
a system for studying. Indeed this bacterium has been intensively investigated for
over 60 years and literature covers a large set of data. Whereas E. coli can switch to
fermentation (anaerobic respiration) in the absence of oxygen, our experiments only

deal with aerobic respiration when oxygen is present.

1.1 Reactive oxygen species and oxidative stress

Life emerged nearly 4 billion years ago in an anaerobic world, therefore primitive bio-
logical mechanisms and enzymes had to change and adapt as molecular oxygen slowly
accumulated on Earth. In order to thrive in an oxygenated medium, The ancestors of
E. coli had to evolve, yet the current oxygen level can still injure bacteria or cells. The
mechanism of such injuries is still being studied, we are talking about « oxidative stress
». ROS are a family of molecules that are continuously generated, transformed and
consumed in all living cells or organisms as a consequence of aerobic life. In order to

control ROS levels, cells balance their generation with their elimination by scavenging
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systems. Nevertheless, ROS can unfortunately react with cellular proteins, lipids or
DNA leading to cell damage or involving lesions in cells that contribute for example to

carcinogenesis, Parkinson’s disease or Alzheimer’s disease [1].

1.1.1 From molecular oxygen to reactive oxygen species

Free radicals are molecules or molecular fragments that contain one or more unpaired
electrons in molecular orbitals (MO). The valence bond theory describes molecular oxy-
gen (dioxygen) as a double bond compound with only paired electrons (O = O) but this
description cannot explain oxygen chemical or paramagnetic properties. Nevertheless,
MO theory (which is more complete) predicts that oxygen is a di-radical molecule with
two unpaired electrons (*O — O *) which then account for oxygen properties. This elec-
tronic configuration explains the kinetic stability of dioxygen. Actually the two elec-
trons of the highest occupied molecular orbital (HOMO) have parallel spins whereas
most (bio)chemical compounds contain anti-parallel electrons on their HOMO, there-
fore quantum mechanic criteria for chemical reactivity suggest that the oxidizing abil-
ity for molecular oxygen is reduced. A second reason for the weak oxidative ability of
molecular oxygen is its low affinity for the first electron : —0.33 V (O2 + e~ — O357)
compared to the two electron reduction : +0.94 V (O3 + 2e~ + 2H+ — Hy05). Abstrac-
tion of a single electron from a donor creates superoxide (O3~ ) and then abstraction of a
second electron forms hydrogen peroxide (H20O2). The production of those two reactive
oxygen species (ROS) occurs mostly within a cell during the “electron transport chain
mechanism” responsible for cellular respiration and energy production. During this
mechanism , electrons pass from different donors to different acceptors, but even un-
der normal conditions, some electrons escape the electron transport chain to produce
O3~ and then H20s.

The iron catalysed breakdown of H>O, generates the third ROS HO® called hy-

droxyl radical according to the Fenton reaction [2, 3]:

Fe*t + HyOy —s Fe3T + HO® + HO™
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TABLE 1.1: Standard reduction potentials for dioxygen and ROS. The
values of E° are given for aqueous solutions with O, partial pressure at
1 atm, molecular concentrations at 1 M and pH = 7.

E° (V)
One electron reduction
Oy +e =05 -0.33
O;i +HY+e = H-0 +0.94

HyOs + HY + ¢ = HO®* + H,O  +0.38

HO®* +HT + e = HyO +2.33
Two electron reduction

Os + 2Ht +2¢~ = H>09 +0.33
HyO5 + +2HT +2¢ = H>0O +1.35

Four electron reduction

Oy +4H™" +4e™ = 2H50 +0.82

HO?" is a highly reactive radical with a half-life lower than 1 ns, therefore it reacts close
to its site of formation. For example, it can cause addition to DNA bases involving
generation of a variety of oxidative products [4] or it can attack membrane lipid leading
to severe damage [5].

The redox states of molecular oxygen include O5~, H2O3, HO® and water with the
reduction potentials shown in figure 1.1 and table 1.1. The standard state sets concen-

tration to 1 M and pH to 7.

e o— e 2H" e —OH . e H"
0,—<50; s H,0, —<=%_,gor < 0
superoxide hydrogen peroxide hydroxyl radical
anion radical

Oxidative
DNA damage

FIGURE 1.1: The redox states of molecular oxygen.
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1.1.2 Defences against ROS

Oxidative stress results from an imbalance between exposure to ROS and defences
against ROS that can potentially cause damage to all macromolecules [6]. Cells ex-
posed to molecular oxygen and the resulting ROS develop important antioxidant de-
fences. Superoxide dismutases (SOD) are a class of enzymes which catalyse the dismu-
tation of O3~ into dioxygen and H20s, it is the major way used to eliminate O3~ . The

corresponding reaction is :

ke 1 1
Og_ +HT 2 —Hs09 + =09
SOD 2 2
SOD then work in conjunction with H,O; scavenging enzymes such as catalase (Cat)

or Alkylhydroperoxidase (Ahp):

Hy0y % HyO + %OQ
E. coli mutants that lack either SOD or catalases show a variety of growth defects
[7]. Nevertheless HO® is a powerful radical oxidant which can react with all organic
biomolecules at nearly diffusion-limited rates. Therefore it reacts very close to the site
of its production. An organism does not a develop mechanism in order to scavenge
this highly reactive radical. Solutions found by cells try to minimize the frequency of

its production or try to repair its damage.

1.2 Introduction to kinetic laws

1.2.1 Chemical kinetic definitions

Chemical kinetic simply deals with the rates of chemical processes. Any chemical pro-
cesses may be split into a sequence of one or more single-step processes known as
elementary processes. Elementary processes usually involve either a single reactive
collision between two molecules, or dissociation of a single reactant molecule. A major

point to recognize is that many reactions that are written as a single reaction equation
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in fact consist of a series of elementary processes. For instance, the chemical reaction
catalysed by SOD is simply written O3~ + H — %HQOQ + %02 but it hides a mul-
titude of complex stages. In kinetics, a « complex reaction » simply means a reaction
whose mechanism comprises more than one elementary step.

As a general rule, elementary processes involve a transition state between two
atomic or molecular states separated by a potential barrier which constitutes the ac-
tivation energy (£ 4) of the reaction. This energy determines the rate constant of the

reaction according to the Arrhenius equation [8]:

E
k= Aexp (—R—;>

Figure 1.2 illustrates the way used by reactants (for instance AB + C' to be transformed

into products A + BC.

®

Diffusion
AB+C——> A+ BC

Reaction

E A 4 n.
P Ey A-B--C
Transition state

Reaction coordinates

FIGURE 1.2: Scheme of an elementary process AB + C' — A 4 BC. Po-
tential energy versus the reaction coordinate.
When the barrier is low (i.e. E4 < RT), the thermal and kinetic energy of the reac-
tants will generally be high enough to surmount the barrier and move over to products,

and the reaction will be fast (i.e. k > 1). However, when the activation energy is high,
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only a few reactants will have sufficient energy, and the reaction will be much slower.
The Arrhenius equation indicates the temperature dependence of reaction rates. A dif-

ferential notation gives :
dk  EadT

k  RT?

Activation energy is typically spaced between 10 and 200 kJ.mol~!. Chemical tables
generally give the rate constant at 25 °C' (298 K) whereas biological reactions generally
occur at 37 °C' (310 K). This relative temperature difference involves a relative differ-
ence on rate constant spaced between 0.2 and 3.2 meaning that we do not change the
order of magnitude of the rate constant.

The rate law is an expression relating the rate of a reaction to the concentrations
of the chemical species present. It includes reactants and catalysts. Complex reactions
often give complex expression but, the Law of Mass Action in chemical kinetics states
that the rate at which an elementary step is produced is proportional to the product of
the reactant concentration, therefore the reaction AB+C — A+ BC leads to the kinetic
rate v = k[AB][C]. We can notice that the kinetic rate is all the greater as the reactants
are concentrated, indeed the probability of a collision is higher at high concentrations.
We can also notice that the kinetic rate depends on the rate constant which increases
when the temperature increases.

The half life, ¢, /, of a chemical species is defined as the time it takes for its concen-
tration to fall to half of its initial value. Considering a first order reaction A — products

with rate constant k, we can write:

After integration we have:

In[A] = In[A]o — kt
Then we can show that the half life is given by:

In2
e
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In this case, the half life does not depend on the initial concentration.
For example, considering the elementary reaction of recombination of hydroxyl

radical HO®* + HO® — H50s, the reaction rate is:

_ _d[HO] _ .
v=———0= =k[HO’

where £ is the rate constant. The kinetic order of this elementary reaction is 2 which

corresponds to the power and to the molecularity of the reactant. An integration leads

to:
1 1
= + kt
[HO®*|  [HO*],
but here the half life is:
L1
V2T k[HO®,

and depends on the initial concentration.

1.2.2 Enzyme reactions, the Michaelis-Menten mechanism

An enzyme accelerates a chemical reaction by lowering the activation energy. Enzymes
generally operate by having an active site that is carefully designed to bind a particular
reactant molecule called substrate. In an enzyme-catalysed reaction, a substrate S is
converted to products P in a reaction which is catalysed by an enzyme E. Michaelis
and Menten proposed the following mechanism (Figure 1.3) involving formation of a

bound enzyme-substrate complex ES ([Y]) :

kl kcat
EFE+S—=FES—P+EFE

k_1

C+ 0 = Q=

Enzyme £ Substrate S ES : enzyme- Product P
substrate complex

FIGURE 1.3: Scheme of Michaelis-Menten mechanism.
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Applying the steady state approximation to £/S we have, thanks to the Law of Mass

Action:
d[ES]
dt

=0=Fk1 [ES][S] — k-1 [ES] — keat [ES]

and writing the total enzyme conservation,

[Ely = [E] + [ES]

[E], is the total enzyme concentration and [E] is the amount of free enzyme. Substitut-

ing [E] it comes,
k1 [E]y [S]
k—l + kcat + kl [S]

(ES] =
The overall rate of reaction is then found from the rate of formation of product P.

kcatk1 [E]O [S]

= — = E =
v Feat [E5] %1 + keat + K1 [9]

This expression is often written :

v — Umazx [S]
Ky +[S]
where K, = kc‘”kitk‘l is called the Michaelis constant and vy, = kcat [F] is the maxi-

mum rate reached when the substrate is present in large excess when [S] > K, under
these conditions the enzyme is saturated with substrate. k.4 is known as the turnover
number, it represents the maximum number of molecules that an enzyme can convert
into products per second. When [S] < K, the reaction rate becomes v = ’;g—]‘t; [E]o[S],
and the rate is first order in both the initial concentration of enzyme [E]; and the sub-
strate concentration [S]. The rate constant ’;(C—j:; traduces the enzyme efficiency.

Therefore the rate of enzyme-catalysed reaction (enzymolysis) depends on the sub-
strate concentration according to figure 1.4. We can also notice that K, represents the
concentration needed to reached half of the maximal rate.

Many enzyme-catalysed reactions are found experimentally to follow the Michaelis-

Menten equation. For instance the enzymes Ahp and catalase have been reported to
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v :vm_ax S _% SWE
pvov=elsl= sl

\ . saturation

Vinax ."/ Viax = kcm’ [ES] = kcat [E]O
vmax ’ .'
2
g
KM

FIGURE 1.4: Evolution of enzymolysis with the substrate concentration
(Michaelis-Menten hyperbole).

obey such a kinetic [10, 11].

1.3 Analytical resolution

A rate law leads to a differential equation that describes the rate of change of reactant
concentrations with time. The integration of the rate law gives an expression for the
concentrations as function of time. In simple cases, the rate law may be integrated
analytically. Otherwise, numerical (computer based) techniques may be used.

For instance, O3~ invivo production is a zeroth order reaction () £> O3~ of rate
constant k; and its dismutation catalysed by superoxide dismutase SOD is a first order

reaction O3~ 5725 H>0». These equations lead to the differential equation :

d[05"]

2= = k1 — ka[SOD] [057]

Its resolution easily gives:

k1

[057] (1) = T[SOD] (1 — exp(—k2[SODIt))
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This analytical expression of the concentration helps us to understand its evolution.
Here O35~ concentration rapidly (exponentially) increases near a steady state concen-
tration ﬁ. The characteristic time of the O3~ evolution is m.

In order to simplify the rate law, we can sometimes apply the isolation method
when one reactant is in large excess. Let us consider a hypothetical elementary process
A + B — products, in which B is present at a concentration 100 times greater than A.
When all of compound A has been used up, the concentration of B has only decreased
by 1/100, and so 99 % of the original B is still present in solution. We therefore consider
a good approximation to treat its concentration as constant throughout the reaction.

The rate law can be simplified :
v = k[A][B] = k[A][Blo = kapp[A] with kqpp = k[B]o

Unfortunately, complex reactions generally lead to non linear systems of differential
equations which can not be solved analytically even with some approximations, which

is why we need to introduce numerical and computational methods.

1.4 Numerical resolutions

There are many numerical procedures for solving ordinary differential equations (ODE)
with a given initial value. The different methods find numerical approximations to the
ODE. Their use is also known as « numerical integration ». Let us consider the first-

order differential equation:

Yy = 1)

with the initial value y(tg) = yo where t € [to,T]. It is a Cauchy problem [12]. The
most basic explicit method for numerical integration of ordinary differential equations
is the Euler method. It chooses a step size h and constructs the sequence t; = ¢ - h
for i € [0, N] where N = [(T — to)/h]. N represents the number of points where

the numerical method will propose its approximation. The Euler method replaces the
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derivative ' by the finite difference approximation :

. tn + h) _ y(tn) y(tn + h) - y(tn)
y{tn) = Jimy h h

This equation leads to the numerical scheme :

Ynt+l = Yn + hf(tna yn)

where y,, is the numerical approximation of y(¢,) This is an explicit method because
the new value y,, 4 is determined in terms of previous y,, already calculated.

The huge variety of chemical species, types of reaction, and the corresponding con-
stants rate involved means that the time scale over which chemical reactions occur
covers many orders of magnitude, from very slow reactions, such as diffusion through
the membrane, to extremely fast reactions, such as the electron transfer processes in-
volved in many biological systems (e.g. catalase action). This large time scale leads to
stiff equations and by consequence the Euler method is often not accurate enough and
often suffers from problems of instability. Stiffness is often caused by the presence of
different time scales in the underlying problem. By evaluating more points in the in-
terval [t,, t,+1], the numerical scheme becomes more accurate and this can lead to the
family of the Rung-Kutta methods. One other idea is to evaluate y,,41 not only with
yn, but with p previously computed value y;, with k € [n — p,n]. This yields multistep
methods. These methods have been used in this thesis and are therefore developed in

appendix A.

1.5 Stochastic approach

Intrinsic noise results form the probabilistic character of the (bio)chemical reactions. It
is all the more important as the number of reacting molecules is low. Noise is inherent
to the dynamics of (bio)chemical systems. Extrinsic noise is due to the random fluctu-
ations in environmental parameters (temperature, pH,...). Both intrinsic and extrinsic

noise lead to fluctuations in a single cell and results in cell-to-cell variability. This work
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uses the Gillespie algorithm ([13] and [14]). At each time interval, the reaction that
occurs is chosen randomly according to the probabilities for the reaction to take place.
The probabilities depend on both the number of molecules and the rate constants. The
following paragraphs present this algorithm whereas a practical and original example

is developed in appendix B.

1.5.1 Presentation
Chemical reactions and probabilities

Global point of view

The chemical reaction A — products (for instance degradation, isomerization, or ra-
dioactive disintegration) can be regarded as a random event; indeed since we can’t
predict the next event, there is no memory effect. Nevertheless, the reaction proba-
bility per unit of time is a constant k called the rate constant of the reaction. Let us
consider N4 (t) the number of molecules A at the time ¢. During the interval of time dt¢
the number of reacting molecules equals the reaction probability dP = kdt multiplied
by the number of reacting molecules A, kdt x Ny4. It involves a decrease of —dN4 in

the number of molecules A. Then it gives the following ODE:

dNy

at 4
d[A]
= —k[A
or — (4]
where concentration [A] = \J/Zfl ’

Vsol corresponds to the volume of the solution.

It is a first order kinetic.

Local point of view
Now the system is subdivided into a large number of subvolumes V;. The decrease
in the number of molecules A: —dny4 ; (the index i is associated with the subvolume

where the transformation takes place) caused by a first order reaction A — produits
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taking place in the subvolume n°i during the interval of time dt is r - d¢ - V; /N 4 where
r corresponds to the macroscopic rate of the chemical reaction (N4 is the Avogadro
number).

The kinetic rate law is » = k [A] where [A] = na,;/ (NAV;) (na,; is the number of
molecules A in the subvolume 7). The decrease traduces the reaction propensity in the
subvolume V;, it is k - n 4 ; - dt. This reaction propensity is all the greater as the number
of molecules is important or as the rate constant is high. The microscopic kinetic rate is

. dna . . .
defined by v, ; = — r:ﬁ" = k-n 4. If areaction occurs in the subvolume i, n 4 ; decreases

by one and the number of product increases by one. A chemical reaction only affects
the subvolume ¢ and the neighbours remain unchanged.

In a second order elementary process: A + B — produits, the kinetic rate law is

r==k-[A]-[B] = N2kv2 “na,; - np,; in subvolume ¢. The reaction propensity is then
AT
dna,i k
Urq = dat = Nav, TPAi B

Diffusion and probability

With a local point of view, the diffusion of a molecule A is regarded as a first order
reaction. Indeed, it is a random phenomenon without effect of memory. Let us consider
a hypothetical two-dimensional reaction A4; — A;+1 where A; represents the molecule
A; in the subvolume ¢ and A;1; the molecule in a adjoining subvolume, on the right
(+1) or on the left (-1) in a one-dimensional approach (using axis ). For instance, the
probability of A diffusing from the subvolume i to the adjoining subvolume ¢+1 during
the interval of time dt is dpg;—i+1 = kq - dt, This transformation decreases the number
of A in the subvolume ¢ during dt by kg - na; - dt.

Remarks: In a homogeneous reaction medium £, is constant and is therefore in-
dependent on the subvolume, but in an inhomogeneous medium k; depends on the
subvolume. Consequently, we have to add an index for the rate constant k4; in the
subvolume i.

The global variation of A takes into account its diffusion from the subvolumes ¢ to

the subvolume 7 4= 1 but it also considers the diffusion from the subvolumes i + 1 to 3.
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We have (illustrated in figure 1.5):

dna;= dp-nasy1 —2dp-na; + dp-nai
——— —_——— —_———

coming from i+1  goingto itl  coming from i—1

dpg,i—it+1 = dpis independent of the subvolume

FIGURE 1.5: Scheme of diffusion jump in a one-dimensional system.
We can also write:
dna; =kq(nait1 —2na,; +na—1)dt

If ¢ represents the subvolume width:

dna(e s = e (nA (x+0,t) —2na (x,t) +na(z —Z,t)) »

€2

na (‘T+Z7t)72nA (x7t)+nA (:B*th) — 82”14 (‘Tvt)

furthermore %gr(l) v = %
Then we find the diffusion equation:
ong 9%n 4 D
5 = Dy 92 where kg = 7

In conclusion, diffusion is treated in a similar way to a first order reaction with a
rate constant kg = D/¢%. If a species A diffuses, we have to reduce by one the number
of molecules in the subvolume ¢ and to increase by one an adjoining subvolume ¢ + 1

or ¢ — 1 randomly shot.
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1.5.2 Algorithm

The idea consists in determining the subvolume where the next event will occur: a
reaction or a diffusion. The system is subdivided into N7 subvolumes. For instance, a

bi-dimensional description will provide n x p subvolumes for i € 1...np.

Description

Initialization

* Generate a connectivity matrix (figure 1.6) that describes the geometry of the sys-

tem. It indicates the neighbouring subvolumes.

¢ Distribute the initial numbers of molecules in the N; subvolumes. The distribu-

tion is stored in a configuration list of N7 elements.

reactions
e Calculate the sum vp ; of reaction rates over all subvolumes: vgp; = >,  ViNa- 7.
k

¢ Calculate the sum vp ; of diffusion rates over all molecules Ay, for each subvolume

molcules
vpi=Np- >, kqrng,;(n, represents the number of molecules A;). Np is the
k
number of directions in which molecules can diffuse (for instance 4 directions in
a bi-dimensional system or 6 in a 3D system). kg = % and Dy, is the diffusion

coefficient of a molecule Ay.

¢ Each subvolume is associated with the characteristic time of the next event calcu-

lated according to the Gillespie formula ([13])

Inrand;

T =
VR + VD,

where rand; is a random number uniformly distributed between 0 and 1 and as-
sociated with the the subvolume ¢

Iterations during the time experiment

¢ The next event occurs in the subvolume iy which has the lowest characteristic

time 7;,. The time t,,c,, of this new event is eaquivalent to ¢,,c,, = T;,-
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¢ We have to choose between a reaction or diffusion jump out.

* A random number (rand) between 0 and 1 (uniformly distributed) is chosen, if

vR,iO

— 0 3 reaction occurs, otherwise there is a molecule diffusion.
UD,ig VR,

rand <

— Assuming a reaction
Which reaction occurs ? In a similar way, a random draw chooses the k'

reaction if:

k—1 k
Zl Tj.io Zl Tj.io E—1
= = Dy o B
—T—— < rand < ——— considering Z rj;=0fork =1
Tjig > T Jj=1

=1 j=1

— Assuming a diffusion
Which chemical species jumps ? By comparison with the diffusion rates, a

random draw gives the diffusion jump out of the k' species if:

k—1 k
> ka i Ka,jmjio
Jj=1 Jj=1
< rand <
molecules molecules
Ka,j1j.io > kajngi
=1 j=1

k—1
where > kqjnjq, = 0fork = 1.
i=1
Then a neighbouring subvolume iy is randomly chosen among the 2V neigh-

bouring subvolumes (according to the N-dimension of the problem).

* Considering the event which occurs in the subvolume iy, we have to modify the
number of molecules in the subvolume iy but also in the neighbouring subvolume

iy if there was diffusion jump out.

¢ Finally we recalculate the new values 7;, et 7;,, according to Gillespie:

/
nest _ Inrand next Inrand

=7, —— and T =T —

10 10 . i iy 20 . .
UR,ig T UD,ig UR,iy T UD.iy

1.5.3 The connectivity matrix

For a rectangular bi-dimensional system with n x p subvolume, each of them has 4

neighbours, north, south, east, west (except on boundaries). The connectivity matrix
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helps us to identify the 4 neighbouring subvolumes’ indices. The matrix dimension is
therefore (4, n x p). The i** column stores the indices of the four neighbouring subvol-
umes of the i subvolume. Subvolume boundaries do not have 4 neighbours, therefore
the subvolume index is duplicated.

The number of the i*" molecules is stored in a list of n x p elements. There are equal
numbers of lists and species.

Considering a 3D-system, we have m pages, n columns and p rows which describe
subvolumes indexes. In figure (1.6) n = 3, p = 2 and m = 4. For instance, the subvol-

ume with index 8 is surrounded by subvolumes with indices 7, 9, 11, 14 and 2.

19 | 20 | 21
22 | 237 24
13|14 | 15 .
16 | 7] 18]
718 |.9 )
10| ] 2]
1|2
4 5|6

FIGURE 1.6: Example of subvolume index organization in a 3D system.

1.54 An application

The simplest system considers a first order reaction of decomposition of a set of molecules

dN4

7 = —kN4 then

A in a 2D-medium without diffusion. The kinetic law gives :
N4 = Nye ¥ where N is the initial number of A and k (here we chose k = 1 s71)
the rate constant. The figure 1.7 compares the analytical and stochastic results which
are very close and confirm the efficiency of the algorithm. Figure 1.8 shows a graphical

distribution of the molecules. In the initial configuration all molecules are black, after

its decomposition the molecule disappears and becomes white.
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1.0 T T T
— Stochastic simulation
----- Deterministic solution

0.6 B

0.4} .

Fraction of A

0.2 B

0.0 1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (s)

FIGURE 1.7: Evolutions of the reactant fraction for a first order reaction
solved with the Gillespie algorithm and the deterministic one. The rate
constantis k = 1 s~ 1.

1.6 Mesoscopic reaction-diffusion models

The standard assumption for biochemical models is that the spatial distribution of reac-
tants is homogeneous. Actually with this hypothesis, the system can be described with
easy to compute ODE. Nevertheless, this assumption suffers some exceptions ([15, 16]
or B). The homogeneity of the chemical component concentration depends on the dif-
fusion rate in the cell. Instead of using ODE or PDE (partial differential equations)
with finite differences, one way to handle the vast state space is to use a Monte Carlo
method [17] introduced by Gillespie in 1976 ([13]).

In previous chapters we used the assumption that ROS distribution is homoge-
neous. Let us consider the example of H2O,. In order to study the influence of com-
partmentalization during the action of a molecule of H>O2 coming from outside the
cell (through the membrane) and diffusing in the whole cell with a view to reacting
with a substrate A, we build a hypothetical model. This model considers 40 molecules
of H2Os (it corresponds to 22 nM slightly above the steady state of 20 nM of H>O5 in E.

coli according to Seaver and Imlay [18]) continuously coming through the membrane
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_ 2.5 sec 3.0 sec 3.5 sec 4.0 sec

Simulation was run with a rate constant of 1 s~* in a bi-dimensional square system of 100 by 100

subvolumes. The initial configuration assumes a uniform random distribution of the reactant molecule.

FIGURE 1.8: Reactant distribution in a first order reaction solved with
the Gillespie algorithm.

mostly near the pole (in order to accentuate the diffusion distance) and able to diffuse
in the cell. We test the reaction between H50; (cross marker in figure 1.9) and two sets
of 500 molecules of substrate unable to diffuse (because compartmentalized in a fixed
area of the cell), a first set of molecule A fixed near the membrane and a second set
of molecule A’ fixed on the centre of the cell. After a reaction between H2O5 and A
or A, all molecules disappear but H20, is immediately reproduced coming from the
membrane so that its concentration remains constant. In order to compare the effect
of compartmentalization of A and A’ we set the same rate constant for both reactions
between H,Oy and A or A'.

We compare the kinetics of this hypothetical compartmentalization model with the
homogeneous dynamical system referring the set of ordinary differential equations

written below :

H202 = cte M =0

HyOy+ A~ ¢ & Ll = —k[H,00) (4]

HyO5+ A' = ¢ AV = —k[Hy0,] [A)
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w ™ * Molecules H,0O, coming from
RE the membrane and able to diffuse

+
+
o + /
f"’ r 4
/ + + +
Set of molecules 4’

t 4
+
unable to diffuse "* "‘t‘

Set of molecules 4
unable to diffuse

FIGURE 1.9: Configuration of a hypothetical model of compartmental-

ization. 40 molecules of H>O> coming through the membrane near the

pole and diffusing in cell in order to react with two sets of 500 molecules
of A on centre or A’ near one pole.

The algorithm used for the study is the Next Sub-volume Method (NSM) the Gillespie-
like method presented in the previous subsection. It approaches the spatial effects of
diffusive phenomena and chemical reaction.

An example of simulation is shown in figure 1.10. This simulation shows that even
if the rate constant is high (10° M~1.s71), the diffusion is fast enough to make the com-
partmentalization negligible. Moreover, H2O; generally reacts with rate constant lower
than 102 M—1.s~! ([19].

According to the Next Sub-volume Method, the side length ¢ of the square sub-

volumes has to satisfy the two inequalities
R </ and 6% < Tmin
where R is the larger protein radius and D the smallest diffusion constant

The first inequality indicates that dissociation events can be properly defined within
sub-volumes. The second criterion specifies that the time for any molecule to leave a
sub-volume is much smaller than the shortest reaction time 7,,,;, among the molecular
species, so that all molecules are homogeneously distributed within the sub-volumes.

The 3D simulations were performed with ¢ = 0,1 ym and the depth h = ¢ of the
sub-volumes, which is many times larger than the average protein radius.

As H>0-, molecules number is a constant, the reaction follows a first order kinetic

with rate constant k' = k [Hy03]. [H2Os] = ./_\/']X_V (the Avogadro constant N4 ~ 6.10%
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FIGURE 1.10: Decrease in molecules A by reaction with H,O, accord-
ing to 3 models : solid line corresponds to homogeneous repartition of
A and H>0; (solved with a deterministic ODE description), dotted line
corresponds to the compartmentalization model with the fixed set of A
on the centre of the cell and dash line corresponds to the compartmental-
ization model with the fixed set of A’ near the pole. The rate constant is
10° M~1.s7! and initially there are 40 molecules of H>0O5 (which remain
constant) and 500 molecules of A.
mol~!). Considering N = 40 molecules of HyOs in the sub-volume V = (3 = 10718
L, the concentration is then ¢ ~ 70 umol.L~! and the characteristic time is therefore
T=1/K =700 s.
With usual diffusion constant D larger than 1071° m?.s7!, the second inequality is

respected. For instance, water diffusion constant is 10 x 1072 m2.s~!

In conclusion, while studying reactive oxygen species we will assume for biochem-
ical reactions that the spatial distribution of reactants is homogeneous. Nevertheless
this assumption cannot explain compartmentalization effects such as DnaK action. In-
deed, DnaK initially localized on foci, quickly diffuses during alcoholic stress in order
to interact with abnormal protein. DnaK is then located on the abnormal protein aggre-
gate and finally goes back to foci. We developed a model using stochastic methods to
understand DnaK action in appendix B. This study is parenthetical to our work, used to

complete experimental data realised by our team (Audrey Dumont unpublished data).
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1.7 Organization and aim of the Thesis

The aim of the thesis is to improve understanding and knowledge of the ROS dynamic
and oxidative stress consequences on cell fate. We first examine behaviour of global
cells towards endogenous (the 3 ROS) or exogenous (principally H203) oxidative stress
with a deterministic approach and then, thanks to this first approach we focus on the
fate of the single cell from a stochastic angle which is more appropriate to small sys-
tems. Moreover our knowledge of thee behaviour of cell colonies will help us to exam-

ine the single cell more closely.

1.7.1 Hydrogen peroxide mode of action

Imlay and Linn [20] show that exposure of logarithmically growing Escherichia coli
to hydrogen peroxide (H203) leads to two kinetically distinguishable modes of cell
killing. Mode one killing is pronounced near 1 mM concentration of H>O» and is
caused by DNA damage, whereas mode two killing requires higher concentration (
> 10 mM). The second mode seems to be essentially due to damage to all macro-
molecules. This phenomenon has also been observed in Fenton in vitro systems with
DNA nicking caused by hydroxyl radical (HO*®) [21].

To our knowledge, there is currently no mathematical model for predicting mode
one killing in vitro or in vivo after HoO, exposure. Moreover, mode-one death has not
previously been explained. Imlay and Linn [20] suggested that perhaps the amount
of the toxic species was reduced at high concentrations of HoO» because hydroxyl (or
other) radicals might be quenched directly by hydrogen peroxide with the concomi-
tant formation of superoxide anion (a less toxic species). We will first re-examine this
assertion both in vitro and in vitro.

We have then proposed a simple model, using Escherichia coli as a model organism
and a set of ordinary differential equations. Using this model, and testing multiple
parameters we particularly focused on available iron and cell density, two factors po-

tentially involved in ROS dynamics.
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1.7.2 The major defences relative roles against hydrogen peroxide

We then investigated the relative contributions of the various reactions to the dynamic
system and searched for approximate analytical solutions for the explicit expression of
changes in H,0; internal or external concentrations. Although the key actors in cell
defence are enzymes and membrane, we asked what was their involvement with in-
creasing H2O, concentration level. We examined the ratio between maximal external
H>05 and internal H>O concentration. Based on these analyses and in order to intro-
duce a concept of dose response relationship for HoOs-induced cell death, we devel-
oped the concepts of “maximal internal H>O» concentration” and “cumulative internal

H>05 concentration” (e.g. the total amount of H,05).

1.7.3 ROS in single cell

In the previous studies, we considered a large set of cells, so the system was described
with a large number of molecules and chemical reactions could proceed in a determin-
istic manner. However, in a single cell, only a few types of molecules exist, therefore
stochastic effects can become predominant. Many questions remain about the origin
and generation of noise particularly in gene expression. Stochastic switches in bacteria
can offer a explanation, as bacteria respond to environmental stress by inducing the
expression of adaptive genes. Using E. coli as a model organism, and considering only
elementary chemical stochasticity we study ROS distribution for cells in physiological

conditions.
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Abstract

Imlay and Linn show that exposure of logarithmically growing Escherichia coli to
hydrogen peroxide (H,0,) leads to two kinetically distinguishable modes of cell
killing. Mode one killing is pronounced near 1 mM concentration of H,O, and is
caused by DNA damage, whereas mode-two killing requires higher concentration
(> 10 mM). The second mode seems to be essentially due to damage to all
macromolecules. This phenomenon has also been observed in Fenton in vitro
systems with DNA nicking caused by hydroxyl radical (HO").

To our knowledge, there is currently no mathematical model for predicting mode
one killing in vitro or in vivo after H,O, exposure.

We propose a simple model, using Escherichia coli as a model organism and a set
of ordinary differential equations. Using this model, we show that available iron
and cell density, two factors potentially involved in ROS dynamics, play a major
role in the prediction of the experimental results obtained by our team and in
previous studies. Indeed the presence of the mode one killing is strongly related to
those two parameters.

To our knowledge, mode-one death has not previously been explained. Imlay and
Linn (Imlay and Linn, 1986) suggested that perhaps the amount of the toxic species
was reduced at high concentrations of H,O, because hydroxyl (or other) radicals

might be quenched directly by hydrogen peroxide with the concomitant formation

http://dx.doi.org/10.1016/j.heliyon.2015.00049
2405-8440/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2.1 Introduction

The principal reactive oxygen species (ROS) — superoxide O3, hydrogen peroxide
H>0,, and the hydroxyl radical HO® — are generated by sequential reductions of
molecular oxygen and are continually produced in cells. Oxidative stress results from
an imbalance between exposure to ROS and defences against ROS, potentially causing
damage to all macromolecules [1]. There is increasing evidence to suggest that the cu-
mulative damage caused by ROS contributes to many diseases, including age-related
disorders, such as Parkinson’s disease and Alzheimer’s disease, and cancer [2].

The ability of bacteria to cope with these ROS species has been studied in detail
[3-10]. Briefly, in Escherichia coli, cytoplasmic superoxide dismutases (Mn-SOD and Fe-
SOD) constitute the principal system responsible for keeping O3~ concentration below
2x 10719 M [11]. Alkyl hydroperoxide reductase (Ahp) and catalases (KatG and KatE)
keep H>O, concentration below 20 nM [12]. These concentrations of these two ROS
species need to be kept very low as they are linked to the formation of HO® via the Fen-
ton reaction (HyOy + Fe?t — HO®*+ HO™ + Fe?t), against which cells have no known
defense [13]. Indeed, O3~ rapidly destroys the [4Fe-4S] clusters of dehydratases, lead-
ing to the release of reactive iron (Fe?t), which may then react with H2Os to generate
HO* (Fenton reaction).

Imlay and Linn [13, 14] show that exposure of logarithmically growing E. coli to
H>0, involves two kinetically modes of cell killing. Mode one killing pronounced near
1 mM concentration of H,0, is caused by DNA damage, whereas mode-two killing ap-
pears with higher concentration (> 10 mM) and seems to be essentially due to damage
to all macromolecules.

In this study, we aimed to use E. coli as a model organism, to investigate ROS dy-
namics and to understand the presence or not of the first killing mode. We used data
from a large number of articles dealing with enzyme or molecule concentrations, ki-
netic properties and chemical reaction rate constants to generate a mathematical model

based on a set of ordinary differential equations relating to fundamental principles of
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mass balance and reaction kinetics. To our knowledge, no such mathematical model al-
lowing the prediction of ROS concentration and explanation of mode one killing, after

H>0, exposure, has ever been developed before.

2.2 Materials and methods

All numerical simulations were carried out using the MATLAB ODE solver odel5s for
stiff differential equations. The multistep solver odel5s is a variable order solver based

on the numerical differentiation formulas.

2.3 Results and discussion

2.3.1 The key role of free iron, its decrease during oxidative stress

The first aim of this study was to determine whether in vivo Fe** should be taken
into account as variable when trying to predict the mode one killing. Our interest in
Fe?t stems from its involvement in the Fenton reaction, which leads to the forma-
tion of HO®. It is therefore important to determine whether Fe?* concentration can
be assumed to be constant, as a first approximation, or whether it must be treated as
variable, when estimating HO® concentration. Indeed, literature shows studies consid-
ering free iron as a constant [15] and other presenting iron evolution [16].

Our study will not mention copper. Indeed although either copper or iron can
reduce H,O, in vitro, iron is the responsible species in vivo. Indeed, the amount of
available copper may be too small. Imlay indicates that mutants that lose the abil-
ity to control copper levels exhibit normal resistance to H>Os [17]. Thus, copper is
liganded by the large pool of intracellular thiols (including glutathione which is in mil-
limolar concentration) that blocks the participation of copper in HO*® formation in vivo.
Moreover, H,O, -oxidizable copper is located in the periplasm; therefore, most of the
copper-mediated hydroxyl radical formation occurs in a compartment far away from

DNA.
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A simple in vitro system

The simplest in vitro system was proposed by Luo et al. [18] only considering 80 nM
of Fe2t and 17 1M DNA. They show that DNA nicking is maximal at 0.056 mM H>0,
concentration after a 7.5 minutes experiment.

The chemical reactions which describe this system are :
Fe?t 4+ HyO, r pest + HO™ + HO®* (Fenton reaction)
k
HO® + HyOy — Oy~ + H.O+ H* (Quenching reaction by Hy03)
HO® + DNA ™% products (DNA nicking)

The resulting dynamical system of ordinary differential equation is :

d[zf tO'] = kp [Fet] [Hy04) — kg [HO®] [HyO3) — kpna [DNA] [HO®]
@ = —kp [Fe*t] [Hy0)]

d[fiiztoz] —  —kp [Fe**] [H:05] — kq [HO®] [H205]

ABXA — kpwa DN A)HO"

Taking the reaction rate constants found in literature, kr = 4.4 x 102 M s~ [5], kg =
2.7 x 10" M s7! [19] and kpya = 4.7 x 10° M s~! [20], the simulation shows exactly
the same maximum (figure 2.1) when reporting average DNA nicking (during time

experiment) versus H,0O; concentration.

In this system, it is obvious that free iron decreases because there is no way of
recycling; nevertheless we present a hypothetic simulation considering free iron as a
constant. This hypothetic simulation realized with d [Fe*"]| /dt = 0 makes clear the
need to take into account free iron as a variable even in a simple system in order to see
mode one killing; and it also shows that iron decrease is responsible of the first killing
mode. Imlay first discussion [14] concerning the quenching of HO® with H20O5 in order
to interpret mode one killing have to be forgotten. The quenching only slows down the

DNA oxidation (caused by HO*®) but it cannot be responsible for the mode one killing.
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FIGURE 2.1: Simulation for H>O>-mediated mode 1 killing (left panel)

in a Fenton system obtained with 80 nM of Fe?* and 17 uM DNA.

Mode one killing disappear (right panel) when free iron is artificially

taken constant (the dynamical system has been modified by taken
d [Fe*™] /dt = 0).

2.3.2 Mathematical analysis of the in vivo Fenton system

DNA nicking involves a reaction between DNA and HO?®, therefore, in order to see
mode one killing, HO® concentration must reach a maximum as a function of exoge-
nous H>0Oy concentration. Considering in vivo Fenton system we have to take into
account H,0, scavenging enzyme (Alkyl hydroperoxide reductase and catalases). Let
us examine whether this system is consistent with a maximum level of HO® concen-
tration when challenging H>0O>. Our model does not take into account molecules com-
partmentalization.

HO* depends on time ¢ and [H205],,; (exogenous HzOy concentration). If HO®

out

reaches a maximum value, that implies that a mathematical derivative of HO® versus

[H205),,, reached zero. Before evaluating %

out

, we need to know how HO*® levels
change.

The most important cellular sinks for hydroxyl radical are reactions with major cel-
lular components like proteins, metabolomes,... The quenching reaction (with H205)
may be relevant under in vitro conditions when H2O, concentration is very high (and
DNA concentration very low), but under a physiological setting or even when cells
are exposed to external HoO2, H2O3 will not be a major sink for hydroxyl radical. In-

deed, reaction rate constant of HO® between organic cellular compounds (like proteins,
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L and

metabolomes,...) are closed to diffusion limit rate constant kg sy ~ 101 M~ s~
organic cellular compounds concentration [Organic] is higher than 10 mM, therefore
under the mode one killing where H>0O5 concentration is under 4 mM, we can write

the inequality :

Vorganic sinks _ kdiff [OT’gCLTL’L'C] [HO.] _ kdiff [OT’gCLTL’L'C] ~ 103 > 1
Vquenching kQ [HQOQ] [HO.] kQ [H2O2]

This inequality means that the quenching reaction can be neglected in the study of
mode one killing.

Moreover, concerning HO® production, we do not consider Haber-Weiss reaction,
a reaction whose relevance in vivo is questionable [21, 22]. In fact, when adding this
reaction, we saw no significant change in ROS or DNA kinetic. Therefore, within cells,

for a given exogenous H>O» concentration, HO*® levels obey the following reactions:

Fe*t 4+ Hy0, k—F> Fe3t + HO~ + HO®* formation (Fenton reaction)
HO®* + X; LR products consumption by a moleculeX;
In vivo, because HO® reacts with various molecules we generalise the system and
demonstrate that we need to consider available iron as a variable.
Proof by contradiction (reductio ad absurbum): Suppose that free iron is constant.
Considering N reactions (of rate constant k; between an organic X; compound and
HO?®) and assuming X; concentration is constant because X; is in large excess (for ex-
ample DNA, proteins, metabolomes,...). Therefore HO® levels obey the following ki-
netic differential equation:

d[HO"]
dt
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Internal H>O; concentration is also dependent on ¢t and [H203],,,;, as follows:

out’
[H209] = f (t, [H202] 1)

In addition, the more exogenous H,07 added, the more H,O; penetrates the cell, so f is

q 0f ([H202],,,,,.t)

out AN~ > 0. The mathematical

a monotonic increasing function of [Hy0]

out

derivative of HO® versus [H205],,, gives:

d[HO"] / 247 OF ([H209)] >
—_— = kp [Fe*t out: ! ki | exp | =) ki[X;]t
d[H200] ¢ < 0o Fe) 5[H202]0ut Z P ; il
This expression obviously indicates that % > 0 because all terms are positive.

out

For this reason, in this model, there should be no peak when changes in HO*® levels
are plotted against exogenous H2Os levels. This conclusion is in contradiction with
mode one killing observation, therefore we must consider Fe%t concentration to de-
crease with increasing HoO3 concentration.

We can notice that a direct proof, without supposing free iron constant, gives by

derivation of (*) :

% N </0 W (e 1200) XD (Z ki [Xi] t') dt') X exp <— > ki [Xi]t>

out =1

Of([H202] 1 O|Fe2+
where Fipez2+ (11,0,]) = [[F "] Sa[Hzoiz}m ) + [H20] _a[h[rgog} O]ut]
This expression can reach zero only if:
H O [Fe*t
[FeQJr] af([ 202]out7 ) [HQOQ] [ € ] =0
~—— a[HQOQ]out Hf—/a[I{2O2]out
>0 >0
>0
82

It demonstrates that necessarily % < 0, meaning that [Fe**] is a monotonic

out
decreasing function of [H20s]

out*®

So, to explain the experimental curve for DNA nicking in vitro, we must consider

Fe%t concentration to decrease with increasing H20O; concentration.
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Mathematical model

The first difference between in vivo and in vitro experiments is the value of H2O» ex-
ogenous concentration needed to reach maximum in the mode one killing [13]. This
difference is for a number of reasons. First cell membrane and cell scavenger (Ahp and
catalase) reduce H>O; concentration within the cell; therefore mode one killing appears
with higher concentration of H,O» concentration in vivo. Then there are many sinks for
hydroxyl radical and free iron evolution has to take its recycling into account. The
model has to be completed with the following equations, of course we only present the
major reaction involved in the description of the mode one killing; for instance we do
not add reaction between organic compounds and H2O» which is negligible when com-
pared to enzymatic dismutation. This model is deliberately simple in order to examine

the predominant effects.

Internal hydrogen peroxide kinetics

d [H204]

H20
dt - kpr2od2
Klat? [Ahp] [H20,] A
_ i : Dismutation by Ahp HyOy — H20 + 10,
[HQOQ] + KM
kKat [Kat] [HQOQ]

cat

B [HQOQ] + Kﬁat

: Endogenous production

: Dismutation by Kat H,O» ﬁ H50 + 1504
—kaif¢ ((H2O2] — [H204],,) : Diffusion across cell membrane
—kp [HoOs] [Fe*T] : Fenton reaction

External hydrogen peroxide concentration ([H205],,,;) strongly depends on cell num-
ber (noted n), indeed, the higher cell density, the faster the media is detoxified. The cell

density involvement will be discussed in section 3.

External hydrogen peroxide kinetics

d|H,0O n- Vm erna
% = kaipp— M ([Hy0) — [H2O0] )

‘/;mternal
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Vinternal Yepresents intracellular solvent-accessible volume.

Cell numbers n double every 20 minutes according to an exponential law.

Hydroxyl radical kinetics

We consider N reactions of rate constant k; between an organic X; compound (pro-
teins, metabolites,...) and HO®. Nevertheless, DNA was treated separately (out of the
sum) in order to examine its damage during oxidative stress, so it comes to the follow-

ing equations:

. N
< [ZtO ] =kp [F62+] [HQOQ] - Z ki [Xz] [HO.] —kpna [DNA] [HO']
i=1
% = —kpna[DNA][HO®|
Recycling of free iron

Free available Fe?t is oxidized during Fenton reaction but Fe3" is then reduced
by cellular reductants. However, the identity of the biological reductants in vivo re-
mains unclear [23], Fe?t might also be reduced at varying reaction rates by a range of
cellular reductants, such as glutathione, L-cysteine, NAD(P)H and FADH; [?4]. The
kinetic of iron recycling has to take into account the fact that reductant concentrations
also decrease with increasing value of exogenous concentration of H,O; because of re-
ductant reactions with various ROS. For instance Brumaghim et al. [25] report that in
vivo NADH concentration reduce by half when challenging about 0.2 mM of H,0 (Fig.
2.2). Therefore we corrected recycling rate with a Hill factor (noted f ) of coefficient 1
(because decrease is hyperbolic) often used to describe reaction of inhibition [26]. We
consider here that H,O, inhibits the efficiency of the reductants to recycle F e3t into

Fe?t .
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For instance, reduction by NADH gives the kinetic rate:

v = knapw [Fe*T| [NADH]

red

CNADH
where [NADH| = fnapu|NADH]|,and fnapu = Ub%ﬁ% where Cf%‘DH is the

1/2
H>05 concentration needed to reduce by half the initial concentration of NADH.
[NADH], represents NADH concentration without oxidative stress.
Hill correction factor fits Brumaghim [25] experimental results by taking Cf%‘D H =02

mM (this value was found using a least square approximation).

800
*

600 |

=

=

= 400/ ]

(]

s

Z 200 ]
% 2 4 6 8 10

[H,0,] (mM)

FIGURE 2.2: in vivo NADH levels after HoOschallenge of E. coli (* marker
for Brumaghim measurements and dots for our mathematical model).

We can then write Fe?t reduction kinetic rate by NADH :

NADH
(71/2

[Ho05] + CNAPH

oNaPH = knapu [Fe*T| [NADH],

red

or
NADH
NADH [Fe] — [Fe*"] s
= NADH], [F
Vel knapm| Jo [Fe] [Fe] [Hs05] _|_C{\/f,24DH
because [Fe?T| = [Fe] — [Fe?t| where [Fe] represents the total free available iron

concentration in cell.
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We can also write

NADH
oNADH _  NADH [Fe] — [Fe*'] Cija
red max [F@] [H2O2] + CNADH

1/2

where vYAPH = kyapu[NADH], [Fe]

According to Brumaghim et al. [25] NADH oxidation experiment, 16 uM of in vitro
initial NADH concentration are oxidized by 80 uM of Fe3* with an initial rate constant
(obtained by measurement of NADH absorbance at 340 nm) ky app [Fe*t] =2.3x1074
s~1, so with physiological concentration, the maximal rate constant for F’ e3t reduction
will be near kxapg[NADH], [Fe] =107" M s~ L.

Brumaghim et al. produce the same study with NADPH, and according to their ex-
perimental results we have ky appu[NADPH], [Fe] =4x107? M s~! and C{%‘DPH =4
mM.

Moreover, cell counts many reductants like ascorbate which may represent an alter-
native way to generate Fee?" [27]. Thiols and in particular glutathione GSH in physio-
logical systems, are important agents responsible for helping to maintain aerobic cells
in a reducing state, despite an oxidizing environment. Nevertheless, a growing body of
evidence suggests that thiols, as electron donors of metal-catalyzed oxidation systems,
can paradoxically be responsible for the generation of reactive oxygen species [28]. For
instance, Netto and Stadtman [29] report that Dithiothreitol reduces Fe3t with a con-
stant rate near 2.5 M~ !s™!, therefore v[%51 = kpgy [Fe] [RSH], > 1075 M s

We can notice that the upper limit for vZ4 = kp.q [Fe] [Red], is near 10° M s™!

max

(using the rate constant of diffusion limited reaction which is near 10! M—1s71,

and
assuming [Red] < 1072M and [Fe] ~ 20 uM). Of course the real (but unknown) value
should be much weaker.

By adding N reductants (noted R;), reduction rate can be written :

NI Y L i G
red vt max,i [Fe] [Ho0o) + C{/2

Of course, we cannot find the values of all kinetic constants in literature for in vivo
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system whereas it is a crucial issue; we therefore use an average formula with only two

constants:
C,  [Fe]— [Fe?t]
VUred = Umax
[H202) + C, [Fle]

When [H;0;] — C,), the efficiency of the reduction is reduced by half, vy,x represents
the maximal rate of Fe3 reduction, this rate is obtained in a hypothetic scheme when
[H202] — 0 (meaning that reductants are the most efficient at low H2O5 concentration)
and when [F 62+] — 0 (meaning that Fe3 concentration is maximal).

We then have to examine the involvement of these two constants (v, and Cp) on
mode one killing. Finally free iron kinetic is approached to:

d [Fe*]
dt

Cy [Fe] — [Fe*t]
[H205] + C [Fe]

= —kp [F€2+] [H202) + Umax

The figure 2.3 represents the principal interactions between the reagents used in the

mathematical model.

Scheme of the model

GSSH, NAD"
X ovidized pmducrs
)C Fe Reductants

GSH, NADH, .

% DNA, metabolome,
proteins...

FIGURE 2.3: Scheme of ROS interaction in the mathematical model.
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Choice of kinetic constants

According to Park et al. [5] experiments, at 37°C and neutral pH, the Fenton rate con-
stant for DNA-bound iron was kz = 4400 M s~! but this constant is higher when iron
is bound to ATP. As mode one killing concerns DNA damage, we use kr = 4400 M s—1
for our simulation. Indeed HO*® reacts very fast and therefore only impacts the nearest
organic compounds.

DNA concentration refers to nitrogenous bases concentration, this concentration is
set to 5 x1073 M, corresponding to approximately 4.6 x10° pairs (with the proportion
of each base set at 25 %, which is close to the value proposed by the CBS genome atlas
database of Hallin and Ussery [30]).

We then consider N reactions of rate constant k; between an organic X; compound
(orsite) and HO* (,JZV: k; [X;] [HO®]). For instance Bennettet al. [31] report total metabolome
concentration of 366 1rnM (100 millions metabolites/cell) greatly exceeded the reported
total protein concentration of 7 mM (2.4 million proteins/cell). Nevertheless, with an
average of 400 residues per protein, it represents 2.8 M of feeding sites for HO®.

Using Bennett et al. [31] metabolome concentration and Buxton and Greenstock [19]
rate constant we evaluate % k; [X;]. For unknown values, we set k; = 2 x 10° Mol L~!
s~! (this value is assumedzfc:) be the in vivo diffusion-limited rate constant), or we use
the rate constant of a similar compounds (see Table 2.1).

By adding all metabolite of this partial table 2.1 we obtain é\]f? [X;] ~ 230 mM

i=

metabolomes
N N

and > ki [Xi] ~ 243 x 10° s~! by linear extrapolation, if > [X;] =~ 230
i=1 i=1

metabolomes metabolomes
N
converge to 300 mM, then Y. k; [X;] will converge to 3.2x10% s~L.
=1

metabolomes
Adding the 7x400 mM of protein residues that can react by nearly diffusion-limited
N
rate constant (2 x 10° M~!s71), it gives > k; [X;] ~ 70 x 10% s71.
prloztelins
N
Finally > K [X;] ~ 73 x 108s71.
=1

organic
N
We assume that Y k; [X;] ~7.3 x 10° s~! (Supplementary Material A), which corre-
i=1
sponds to a mean rate constant of 2 x 10° M s~ ! for reaction between HO® and organic
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compounds.

Influence of the viscosity of the medium

Chemical rate constants were estimated in aqueous solutions, in which the rates of
diffusion-controlled reactions are limited by viscosity to an estimated 10! M s~!. For
our model, the first step towards approximating the cytoplasmic conditions was the
re-estimation of all chemical rate constants limited by diffusion phenomena. Indeed,
in a diffusion-controlled reaction, the formation of products in second-order chemical
reactions occurs more rapidly than the diffusion of reactants. The rate of reaction is
thus limited by collision frequency kinetics. Smoluchowski [32] suggested that the
upper limit (almost 10'° M s~! in aqueous solution) for the diffusion-limited rates of
bimolecular reactions depended on molecule size and shape, but that this limit was also
linearly dependent on the diffusion coefficient of the medium. According to the Stocks-
Einstein equation, viscosity is one of the major parameters determining the diffusion
coefficient of species in condensed media. Some experimental measurements [33-35]
have indicated that the cytoplasm has a viscosity about one or two orders of magnitude
greater than that of water. The diffusion coefficient and, consequently, the diffusion-
limited rate of reaction, should be about one or two orders of magnitude lower (100-
10 times lower) than that in water. Nevertheless, according to other measurements
[36, 37], diffusion of small molecules in the cytoplasm is only 2-5 times lower than in
aqueous solutions, therefore we assumed that all second-order reaction rate constants
would be limited to 2 x 10 M s™! in cytoplasm which is only five time less than in

aqueous solution.



TABLE 2.1: Ordered kinetic rate constants and concentration of the major metabolites in E.coli. (*) values limited in vivo by the
diffusion-limited rate constant assumed to be 2x10° M~!s~!

Metabolites X; Concentration [X;] (Mol L™!) Rate constant k; (Mol L™! s7!) cumulative ]XV:lk:, [X;] (106 s71)
Glutamate 9.6 x1072 2.3 x108 22
Glutathione 1.7 x1072 1.3x10'9 (%) 56
Fructose-1,6-bisphosphate 1.5 x1072 2.6x108 60
ATP 9.6 x1073 8.9x10° (*) 79
UDP-N-acetylglucosamine 9.2 x1073 4x 10 for uridine (¥) 97
Hexose-P 8.8 x1073 1.4x10° for glucose-P 115
UTP 8.3 x1073 4x10? for uridine (*) 131
GTP 49 %1073 8x10? for guanosine (*) 141
dTTP 4.6 x1073 4.7x 10? for thymidine (*) 150
Aspartate 4.2 x1073 7.5x107 151
Valine 4.0 x1073 8.5x10% 159
Glutamine 3.8 x1073 8.4x10% 166
6-Phosphogluconate 3.8 x1073 3.0x10? for gluconate (*) 174
CTP 2.7 x1073 6.1x107 (*) 179

474
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Alanine 2.6 x1073 7.7x107 180
NAD* 2.6 x1073 3.2x10% (*) 185
UDP-glucose 2.5 x1073 4x10 for uridine (*) 190
Glutathione disulfide 2.4 x1073 9.3x10% (*) 194
Uridine 2.1 x1073 4x107 (*) 199
Citrate 2.0 x1073 5x107 199

uDP 1.8 x1073 4x10? for uridine (*) 202

Malate 1.7 x1073 8.6x107 (*) 206
3-Phosphoglycerate 1.5 x1073 ?=2x10° 209
Glycerate 1.4 x1073 ?7=2x10° 211
Coenzyme A 1.4 x1073 3.1x10° (*) 214
Citrulline 1.4 x1073 1.2x10° 217
Pentose-P 1.3 x1073 1.6x10? for ribose 220
Glucosamine-6-phosphate 1.2 x1073 ?7=2x10° 222
Acetylphosphate 1.1 x1073 ?=2x10° 224
Gluconolactone 1.0 x1073 1.7x10° 226
GDP 6.8 x10~4 8x10? for guanosine (*) 228
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Acetyl-CoA 6.1 x10~* 3.1x10° for CoA (*) 229
Carbamylaspartate 5.9 x10~4 7.5x107 for aspartate 229
Arginine 5.7 x10~* 3.5x10° (*) 230
Succinate 5.7 x10~4 3.1x10% 230
UDP-glucuronate 5.7 x10~* 4x10? for uridine (*) 231
ADP 5.6 x1074 8.1x107 (*) 232
Asparagine 5.1 x1074 4.9%107 233
a-Ketoglutarate 4.4 x1074 8.3x10® for glutaric 233
Lysine 4.1 x107* 3.5x108 234
Proline 3.9 x10~* 3.1x10% 234
dTDP 3.8 x10~4 4.7x10° for thymidine (*) 235
Dihydroxyacetone-P 3.7 x10~4 ?=2x 107 235
Homocysteine 3.7 x10~* 3.5x10'0 (*) 236
CMP 3.6 x10~4 6.5x107 (*) 237
Deoxyribose-5-P 3.0 x1074 2.1x10° 237
Isoleucine+leucine 3.0 x10~4 1.8x10° 238
AMP 2.8 x1074 4.1x10° (*) 238

9%
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Inosine monophosphate 2.7 x10~* 2.6x10° (*) 239
PRPP 2.6 x1074 1.6x10? for ribose 239
Succinyl-CoA 2.3 x1074 3.1x10° for CoA (¥) 240
Inosine triphosphate 2.1 x1074 4x10? for inosine 240
Guanine 1.9 x10~* 9.2x107 (*) 241
Phosphoenolpyruvate 1.8 x10~* 3.7x107 for pyruvate 241
S-Adenosyl-L-methionine 1.8 x10~4 8.5x10? for methionine (*) 241
Threonine 1.8 x10~* 5.1x10% 241

FAD 1.7 x10~* 7= 2x10° 242
Methionine 1.5 x10~* 8.5x107 (*) 242
2,3-Dihydroxybenzoic acid 1.4 x10~* ?7=2x 107 242
NADPH 1.2 x107* 7= 2x10° 242
Fumarate 1.2 x10~4 6.0x10° (*) 243
Phenylpyruvate 9.0 x107° ?=2x 107 243
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Position and width of mode one killing

Position of mode one killing corresponds to the concentration of H>O; where the maxi-
mum of DNA damage occurs. Position and width of mode one killing of course depend
on reaction rate constants and in particular on the recycling rate of free iron character-
ized by vmax and Cy. Mode one killing can also be described by its intensity (DNA
oxidized proportion) but it is impossible to directly link bacterial survival curve to in-
tensity of DNA oxidized proportion whereas survival bacterial curve should occur at
the same position and should present approximately the same shape. Therefore we
focus on the position and the width of mode one killing. We previously show the par-
ticular importance of iron evolution; therefore we will next focus on the two parameters

Ymax and Cy introduced to describe its kinetic.

The influence of Vmax

For next simulations we set Cy = 1mM (the influence of this constant will be dis-
cussed later) and we observe the influence of the parameter vy,.x. According to the
previous discussion vpax > 1076 M s™1

Figure 2.4 shows that an increasing value of vn,ax involves a higher position of
mode-one killing but also a higher intensity of DNA oxidation. Indeed vpaxis linked to
the cell potential to reduce Fe3t to Fe?™ and therefore to drive Fenton reaction more
efficiently.

The simulations are consistent with the mode-one killing experimental position
near 1-3 mM.

When Fe?t recycling rate is too high (inset fig. 2.4) mode-one killing disappear

because Fe?t concentration remains constant.

Moreover, Imlay et al. [13] showed that if the availability of cellular reducing equiv-

alents is increased as the result of respiration inhibition (through cyanide and NADH
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FIGURE 2.4: Average DNA oxidation (during 15 minutes) dependence
upon H;O, external concentration and maximal Fe?T recycling rate

Umax- Co is set to 1 mM. Initially, cell density was set to 107 cell/mL.
The kinetic parameters used for the simulation are gathered in table 2.2.

dehydrogenase mutations), mode I killing was enhanced. Our model is able to repro-

duce this phenomenology, as demonstrated by the direct correlation between the vy ax

parameter and the percentage of oxidized DNA (Figure 2.4).

The influence of Cy

As () is increasing, mode-one killing is shifting into high position and high inten-

sity according to figure 2.5. In order to fit with Imlay’s experimental results Cy has to

stay in a range between 0.1 and 1 mM.

The influence of free available iron [Fe]
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TABLE 2.2: Summary of the different constants used for in silico simula-

tions. (*) this value is limited the in vivo diffusion-limited rate constant

assumed to be 2x10° M s~1. (**) We also tested value from 10 to 40 uM
for the simulation showed in figure 2.6.

Constants Value Reference
kgfjj? 15 uM s~ 1 [8, 38]
Kﬁ“t 59 x1072 M 9]
Ko 12 x10° M [12]
kEat [K at] 49 x 1071 M st
kP [ Ahp 6.6 x107* M s~!
kai ff 70 s
Wnternal 3.2 X 10715 L [ ]
kpna 47 x 10° M st (%) [20]
kp 4400 M s~ ! [5]
Initial Fe?* concentration By default 20 uM (*¥)
Initial cell density n From 106 to 10?
Co Tested from 0.1 to 5 mM This work
Umax Tested from 1to 50 uM s~ ! and 3 M s~!  This work
Simulation time 15 minutes [14, 39]

Iron chelators such as dipyridyl that can penetrate bacteria prevent external H2Oo
from damaging DNA by reducing free available iron thanks to chelation [13]. Over-
expression of ferritin, a storage protein that specifically sequesters iron also prevents
damage [40]. But E. coli mutants that over-import iron are more sensitive to DNA
damage when challenging external H2O [41]. Figure 2.6 reports the same conclusion

with increasing damage when free available iron concentration increases.

2.3.3 Cell density involvement.

Under conditions of exogenous H,0O; stress, H2O5 elimination is dependent on cell
density. However, nothing is currently known about internal H>O5 concentration dur-
ing HO5 exposure. Under these conditions, internal H,O, concentration results mostly
from influx due to diffusion across the cell membrane, because endogenous production
is negligible. Moreover, the more cell density increases, the faster the medium is detox-

ified. This phenomenon involves a decrease in exogenous H>O; concentration and
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FIGURE 2.5: Average DNA oxidation (during 15 minutes) dependence
upon H,0; external concentration and parameter Cp. vmax is set to 50
pM s1. Initially, cell density was set to 107 cell/mL. The kinetic param-
eters used for the simulation are gathered in table 2.2.
consequently in internal H>O> concentration. Figure 2.7 reports in vivo experimental

detoxification of the medium with two different concentrations (A) and it also shows

the corresponding in silico simulation which correctly fits the experiment (B).

As reported in figure 2.8, simulation shows that depending on cell density external
average H>O» concentration can be two orders of magnitude lower as the initial H20,
exogenous concentration. This difference is involved in the disappearance of the mode

one killing at high cell density as observed in figure 2.9.

The major characteristics (intensity, width, position) of mode one killing is strongly
dependent on cell density. Whereas the mode one killing seems to be present under

3x107 cell/ml, it disappears over 10% cell/ml. This phenomenon has been observed
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FIGURE 2.6: DNA oxidation (average during 15 minutes) dependence

upon H,0O; external concentration and free available iron concentration.

Parameter Cj is set to 0.5 mM and vy is set to 50 uM s~ 1. Initially

cell density was set to 107 cell/mL. The kinetic parameters used for the

simulation are gathered in table 2.2.

experimentally by our team (unpublished data). Indeed even at 10% cell/ml the mode
one killing may disappear because it may be combined with mode two killing which
emerges after 10 mM. This phenomenon is particularly non linear (see inset of figure

2.9) whereas external average H2(O; concentration follows a nearly linear evolution

compared with initial H,O2 exogenous or compared with cell density.

2.4 Conclusions

We present here a simple model that allows the understanding of DNA oxidation dy-
namics within E. coli after H,Oy exposure. The objective of the model presented is to
essentially describe in a dynamic way the nature of H2O> toxicity to an organism, in
this case E. coli. Even if this model could seem imperfect, we believe that the scientific

community will be able to challenge and improve it. For instance, using this approach,
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FIGURE 2.7: E. coli (MG1655) (in vivo A) cells were grown aerobically
in liquid LB broth, at 37°C, with shaking at 160 rpm. When the ODg
reached 1, the cells (diluted till 9 10°/ml or not diluted) were exposed
to various concentrations of HoO5 for 15 minutes. Extracellular H5O-
concentration was determined by TECAN readings at ODs¢o, with the
Amplex® red hydrogen peroxide/peroxidase kit. Extracellular H2O-
concentration, determined after 15 minutes of incubation with various
amounts of exogenous H20s, in a wild-type strain incubated in LB, at
37°C, in the presence of 400 ppm COs. (This experiment was carried out
by A. Gerstel) Exogenous H>O; concentration simulated under the same
experimental conditions (in silico B).

we were able to demonstrate iron or cell density involvement in HO® dynamic and by
consequence in DNA oxidation within E. coli. Indeed, without taking into account the
evolution of those two parameters, we were not able to reproduce mode one killing ex-
perimental results obtained in the literature. Moreover the first killing mode can only

be explained with iron decrease and not with quenching reactions which are responsi-

ble for slowing down oxidation but not for the oxidation peak.
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The kinetic parameters used for the simulation are gathered in table 2.2.
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Abstract

We recently developed a mathematical model for predicting reactive oxygen species (ROS)
concentration and macromolecules oxidation in vivo. We constructed such a model using
Escherichia coli as a model organism and a set of ordinary differential equations. In order to
evaluate the major defences relative roles against hydrogen peroxide (H2O;), we investi-
gated the relative contributions of the various reactions to the dynamic system and
searched for approximate analytical solutions for the explicit expression of changes in HoO,
internal or external concentrations. Although the key actors in cell defence are enzymes
and membrane, a detailed analysis shows that their involvement depends on the H,O, con-
centration level. Actually, the impact of the membrane upon the H,O, stress felt by the cell
is greater when micromolar H,O- is present (9-fold less H,O- in the cell than out of the cell)
than when millimolar H,O, is present (about 2-fold less H-O, in the cell than out of the cell).
The ratio between maximal external H,O, and internal H,O, concentration also changes,
reducing from 8 to 2 while external H,O, concentration increases from micromolar to milli-
molar. This non-linear behaviour mainly occurs because of the switch in the predominant
scavenger from Ahp (Alkyl Hydroperoxide Reductase) to Cat (catalase). The phenomenon
changes the internal H,O, maximal concentration, which surprisingly does not depend on
cell density. The external H>O, half-life and the cumulative internal H,O, exposure do
depend upon cell density. Based on these analyses and in order to introduce a concept of
dose response relationship for H,O,-induced cell death, we developed the concepts of
“maximal internal H,O, concentration” and “cumulative internal H,O, concentration” (e.g.
the total amount of H,0,). We predict that cumulative internal H,O, concentration is respon-
sible for the H,O,-mediated death of bacterial cells.

PLOS ONE | DOI:10.1371/journal.pone.0159706  August 5, 2016
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The previous chapter developed a mathematical model for predicting reactive oxy-
gen species (ROS) concentration and macromolecules oxidation in vivo. We constructed
such a model using Escherichia coli as a model organism and a set of ordinary differen-
tial equations. In order to evaluate the major defences relative roles against hydrogen
peroxide (H203), we investigated the relative contributions of the various reactions to
the dynamic system and searched for approximate analytical solutions for the explicit

expression of changes in H,0; internal or external concentrations.

3.1 Introduction

Oxygen is indisputably essential for life, but it can also impair cell ability to function
normally or it can participate in its destruction ([1] and [2]) because of the generation
of reactive oxygen species (ROS) like hydrogen peroxide (H20z2), superoxide (O3™) or
hydroxyl radical (HO?®).

In order to better understand ROS dynamic within cells, we recently developed a
mathematical model ([3]) for predicting reactive oxygen species (ROS) concentration
and macromolecules oxidation in vivo. This first study principally focuses on HO*®
dynamic and its consequence on DNA whereas the current study will mainly focus on
H09 dynamic.

Escherichia coli was used as a model organism. In order to build our mathematical
model we used data from a large number of articles dealing with enzymes or molecule
concentrations (in E. coli, kinetic properties and chemical reaction rate constants). We
were then able to propose a mathematical model based on a set of ordinary differential
equations relating to fundamental principles of mass balance and reaction kinetics. It
offers the possibility to simulate properly the experimental results obtained by biolo-
gists and therefore to understand the biological parameters involved in the observed
phenomena.

The purpose of this study is to use our mathematical model in order to better un-

derstand H2O, mode of action on E. coli as a model organism.
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In aerobic organisms, oxygen oxidizes redox enzymes, generating a flux of H2Oo
that can potentially damage the cell. For instance, Escherichia coli generates about 14
uM H209 per second when it grows aerobically on glucose ([4]). In order to cope with
H>0O, stress, microbes typically contain multiple catalases and/or peroxidases. E. coli
contains one Alkyl hydroperoxide reductase (Ahp) and two different catalases (Cat).
Alkyl hydroperoxide reductase is the primary scavenger for endogenous H2O; in E.
coli ([5]). Catalase contributes little when H,Os levels are low, but it becomes the most
effective scavenger when H2O; levels are high ([5]). Moreover, membrane permeability
is part of the global defence process against H,O ([4]). However, to our knowledge,
the question of their relative involvement remains unsolved especially with regard to
the exogenous H>O concentration.

Mechanisms involved in H>0O; induced cell death were studied by Imlay and Linn
([6] and [7]) who showed that the exposure of E. coli to H20O; led to two different modes
of killing. The first was observed at low H>0; concentration (1-3 mM H>0>) and re-
sulted from the DNA damage caused by HO® ([7]). The second resulted from damage
to unknown macromolecules, inflicted more directly, through H>0Os-mediated oxida-
tion. However, and to our knowledge, the question of the relative involvement of the
cumulative or the maximal H>0, dose involvement in this phenomenon remains un-
solved. Dose response is a question often raised about radiative hazards. For instance
Harrison et al. ([8]) indicated median survival times in rats following intravenous in-
jection of polonium-210. The total alpha-particles-emitted numbers show that the cu-
mulative dose and not the maximal dose is principally responsible for death.

Using our mathematical model, we first investigated the relative role of the different
ways (principally Ahp, Cat and membrane) for cells to decrease and fight HoO» oxida-
tive stress. Here we predict that their involvement depends on the H,O; stress level.
Moreover and as observed for radiative hazards, we predict that cumulative internal

H>05 concentration is responsible for the HyO-mediated death of bacterial cells.
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3.2 Materials and Methods

The model assumes that all molecule concentrations are homogeneous in cells. We
therefore describe the problem with a dynamic system of ordinary differential equa-
tions (ODE) instead of using a complex algorithm such as the Next-Sub-Volume Method.
Indeed, one algorithm generally used to study the compartmentalization of molecules
in microorganisms (for instance E. coli) is the Next-Sub-volume Method. It is a Gillespie-
like ([9] and [10]) method approaching the spatial effects of diffusive phenomena and
chemical reaction. According to the Next Sub-volume Method, the side length ¢ of the

square sub-volumes has to satisfy the two inequalities

R < land 745y = 6% < Treact
where R is the larger radius of a molecule of substrat
and D the diffusion constant of H20
T4if f represents the characteristic time of diffusion

Treact T€Presents the characteristic time of reaction

The first inequality indicates that dissociation events can be properly defined within
sub-volumes. The second criterion specifies that the time for any molecule to leave a
sub-volume is much smaller than the shortest reaction time 7,,;, among the molecular
species, so that all molecules are homogeneously distributed within the sub-volumes.
For example, the 3D simulations are typically performed with ¢ =0,1 ym and the depth
h = ¢ of the sub-volumes, which is many times larger than the average radius of a
substrat even protein. Considering the H2Oy molecule maximal number, the reaction
initially follows a pseudo-first order kinetic with rate constant ¥’ = k [H20] and the
characteristic time of reaction is therefore 7 = 1/k’. This time has to be compared to
the characteristic time of diffusion of HoOs : 74;5¢ = 6% ~107% s (with H,O, diffusion
constant D =2 107 m?.s71). This comparison gives 7 = 1/k’ = 1/k [H202] > 107 or
[H202] < 10°/k. Even with very high rate constant such as 105 M~!s7!, the inequality
imposes [H202] < 1 M. In conclusion, while [H205] < 1 M, the diffusion within the cell

is faster than the reaction rate and we do not need to consider compartmentalization.
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O3~ and H,0O; are involved in many reactions. Of course we do not take all possi-
ble reactions into account, for instance, we do not consider the Haber-Weiss reaction,
because our simulations showed no change with or without its consideration and more-
over because the relevance of this reaction in vivo is questionable ([11] and [12]); actu-
ally adding the Haber-Weiss reaction, numerical simulations show that it is negligible
whether H,0O, concentration is under 0.1 mol-L~1. Using published rate constants, we
propose here some simplifications and approximations of the system achieved by ne-

glecting the kinetically non-significant reaction. HO® was studied in a previous article

(D).

3.2.1 Superoxide kinetics

Superoxide is involved in the following kinetically significant reactions:
Its production :

metabolism production i) O
Its tree ways of dismutation (by SOD, by GSH and spontaneously)

ko 1
Oy +H" —

1
—HyOy 4+ -0
sop 322t 502

1
03~ + GSH + H* "¢ 5GSSG + Hz0

ks
205_ + 2HT =5 H505 + O9

Those reactions lead to the following ordinary differential equation (ODE) coming from

the balance between production and consumption:

d[05"]
dt

_

—k [SOD] [057] — kasu [GSH] [057] — 2ksp [05_]2
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3.2.2 Internal hydrogen peroxide kinetics

H>0, appears significantly in the following reactions : Its productions :

k,/
metabolism production — Hy0s

o ka1 1
(0 +H+SOH2D§H202+§OQ
Its dismutation by catalase (Cat) or Alkylhydroperoxidase (Ahp)

o 1
Hy0, <% H,0 + 502

1
H,05 22 1,0 + 502

Its diffusion across cell membrane

ka;
Hy05 Y HyOput

kairs has been calculated using the membrane permeability coefficient (P = 1.6 x

1073 cm/s), the membrane surface area (A = 1.41 x 10~7 cm?) and cell volume (V =

3.2 x 1071° L) given by Seaver and Imlay ([4]), therefore kq;r; = £25.
The ODE becomes :
dt !

+5ks [SOD] [03]
ki [Ahp) [HxOo] kgt [Cat] [Ho0,)

_ Mcat cat

[HyOq] 4+ K1 [H20,] + K i
—kaiff ([H202) — [H202] out)

where Hy05,,+ corresponds to HoO in the external habitat of the cell.
Ky (KEA for catalase and K ]‘C;[hp for alkylhydroperoxidase) is the Michaelis con-

stant. keqr (kX9 for catalase and k277

P ot for alkylhydroperoxidase) is the turnover num-

ber, it represents the maximum number of molecules (here H2O7) that an enzyme is
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able to convert into products per second.

3.2.3 External hydrogen peroxide

out __ de n: ‘/zn
dt Y gt = Vi

d[H205], ([H205] — [H202),,)

The cell density is given by n. V;, represents the cell internal volume and Vj,,; corre-
sponds to the total volume. Of course, as microorganisms cannot take up more space

than their medium, we have the inequality V,,; — nVj, > 0.

3.2.4 Cell density

For under 10 minutes experimental time (consistent with most of our simulation), cell
density could be considered as a constant but for long time simulation we propose
the logistic equation for cell growing function. The logistic equation (also called the
Verhulst model) is a model of population growth first published by Pierre Verhulst ([13]

and [14]). The continuous version of the Verhulst model is described by the following

dn_ (o
dt_rn Nomaz

where r is the Malthusian parameter (rate of population growth) and 7,4, the maxi-

differential equation:

mum sustainable population. This differential equation gives an analytical solution:

noert

) = T e

Nmaz

where ng is the initial density. This value depends on the experiment. We choose
carrying capacity nyq, = 5 X 109 cell/mL. The maximal rate of growth usually shows
that a growing bacterial population doubles at regular intervals near a characteristic

time 74 ~ 20 minutes. Therefore n(t) expression also gives:

n02t/Td
L (2t 1)

n
ma

n(t)
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where r = In(2) /4.

Nevertheless this characteristic time depends on cell history and stress. For exam-
ple, even 0.2 mM of H>O> when added to a logarithmically growing E. coli population
is enough to generate an immediate decrease in the number of viable cells. This phe-
nomenon is transient and the original number of viable cells is recovered only about 40
minutes after the occurrence of the sub-lethal stress ([15]). This transient phenomenon
is mirrored at the population level by a lag phase in which optical density remains al-
most constant for about 40 minutes. A fraction dies, and then the remaining bacteria
resume growth so that the number of viable cells reaches the original number. For in-
stance Chang et al. ([16]) also report a lag phase of about 40 minutes after an addition
of 1.5 mM of H>0,. In order to take into account this phenomenon we consider that
Tq — o0 if t < 40 minutes so that n(t < 40 min) = constant after HoO oxidative stress.

We were not concerned with stationary phase because no experiment carried out in

this work reached the maximum sustainable population.

3.2.5 Kinetic constants

The kinetic constants used in this work are gathered in Table 3.1 and 3.2 according to

Imlay and Fridovich ([17]) and Seaver and Imlay ([5] and [4]).

TABLE 3.1: Kinetic constants used to describe H50O, evolution.

Kinetic constants

k1 5.7 x 107 mol-L=1.s7!
ko[SOD] | 2.8 x 10 s7!

ko 1.5 x 10 mol~!-L-s~!
Vi 3.2x 107 L

K, 12 x 10 mol-L~1-s™*
k2P Ahp) | 6.6 x 1074 mol.L~1.s~1
K" 1.2 x 10~ mol-L !
EEdCat] | 4.9 x 107 mol-L=1.s~1
KRt 5.9 x 1073 mol-L~!
kdz’ff 705!
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TABLE 3.2: Kinetic constants used to describe O3~ evolution.

Constants Value

ki 5.7 x 1079 mol- L= 1.s7!
ka[SOD)] 2.8 x 10* s~ 1

ko 1.5 x 109 mol~t.L-s~!
kasp|GSH] | 1.3 x 10! s~ 1

kasu 2.6 x 10> mol~!-L-s~!
Esp 5.0 x 10° mol~1-L-s!

3.2.6 Numerical simulations

All numerical simulations were carried out using the MATLAB ODE solver odel5s for
stiff differential equations. The multistep solver odel5s is a variable order solver based

on the numerical differentiation formulas.

3.3 Results and discussion

This section presents the analytical study of the dynamic system. This analysis will
provide us with insight into the kinetic parameters significantly important for the dy-
namics of ROS. The first subsection introduces O3~ kinetics and evolution with differ-
ent phenotypes of E. coli. The second subsection then develops H20> kinetics which
lightly depends on O3~ kinetic.

3.3.1 Superoxide evolution

According to this dynamical system the following analysis is made without exogenous
stress.

In the wild-type strain

In the wild-type strain, the resolution of O3~ concentration gives :
057) ~ (03], (1-e00)

indeed GSH and spontaneous dismutation are negligible because ks, < kgsuy [GSH]| <

k2 [SOD]the. O3~ concentration rapidly reached its steady-state value, in less than 1
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ms, actually the characteristic time is given by W. This time, which was dependent
solely on SOD concentration and the SOD catalytic degradation rate k3, corresponds to
the characteristic time require for the re-establishment of equilibrium.

If we assume that SOD concentration and O3~ production change over time, and
that their equilibrium time values are probably significantly shorter than 1 ms, then the
steady-state value of O3~ concentration is always reached but depends purely on O3~

production rate and SOD catalytic degradation rate (k2), which are time-dependent.

k1 (t)

For each time, we can write that the O3~ concentration is [037] (t) = BEODD

For example, with published values [18], O3~ concentration is 2.1 X 10719 M : this
value fits the Imlay prediction well, and it corresponds to the equilibrium between
O3~ production (parameter k;) and the rate of scavenging of this radical by SOD.

We confirmed this approximation, by comparing the analytical solution (A) with the
numerical solution (M) in figure 3.1. Indeed this comparison help us to check whether

the suggested approximations used to find an analytical expression are valid.

0.25

0.20 1

0.05 .

0.00 0.05 0.10 0.15 0.20
Time (ms)

FIGURE 3.1: Change in O3~ concentration in the E. coli wild-type strain.

(A) corresponds to the analytical solution according to the simplified

system and (M) corresponds to whole model solved with numerical

methods. Cell density has no influence on the pattern of superoxide
concentration evolution.
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In a wild strain, the two major reaction involving superoxide are its production and

its consumption by SOD.

In a SOD(-) mutant

In a SOD (-) mutant, changes in O3~ concentration were explained principally by the

following differential equation :

d |03 ]
dt

= k1 — kgsu [GSH] [057]

The resolution of O3~ concentration gave: (05~ | ~ [037]__ (1 — e Fesul@SHIY) which
rapidly reached its steady-state value, in less than 0.5 s. Actually the characteristic time
is m This time, which was dependent only on GSH concentration and the GSH
catalytic degradation rate kg sy, corresponds to the characteristic time required for the
re-establishment of equilibrium.

If we assume that GSH concentration and O3~ production can change over time,
and that their equilibrium time values are probably significantly shorter than 0.5 s,
then the steady state value of O3~ concentration is always reached but is dependent

purely on O3~ production rate and the GSH catalytic degradation rate kg s, which are

time-dependent.

k1 (t)

For each time point, we can write that O3~ concentrationis [O3 7] (t) = TGS

For example, with published values [18], O3~ concentration is 4.4 x 10~7 M. This value
is consistent with the predictions of Imlay and corresponds to the equilibrium between
O3~ production (parameter k;) and the rate of scavenging of this radical by GSH.

For confirmation of this approximation, we compared (figure 3.2) the analytical so-

lution (A) with the numerical one (H):
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0.45

0407 . ......... u 7

0.35] ]

0005 50 100 150 200 250 300 350

Time (ms)

FIGURE 3.2: Changes in O3~ concentration in a SOD(—) mutant. (A)

corresponds to the analytical solution according to the simplified system

and (M) corresponds to the whole model solved with numerical meth-

ods. Cell concentration has no influence on this pattern of superoxide
concentration evolution.

In a SOD(-) GSH(-) mutant

In a SOD(-) GSH(-) mutant, the change in O3~ concentration can be explained princi-
pally by the following differential equation according to the spontaneous dismutation:

d[o5”]

o 12
dt = kl - 2k3p [02 :|

O3~ concentration obeys the function :

1— eft/QT

[057] = 0% e T omier

_ 1 o— _ k
where 7 = e and [02 ]OO = ’/219;

O3~ concentration rapidly reaches its steady-state [O3~] _ value, in less than 1 s (7 is
the characteristic time). This time, which is dependent solely on the dismutation rate

ksp, corresponds to the characteristic time required to re-establish equilibrium.
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If we assume that O3~ production can change over time, and that the equilibrium
time is probably significantly shorter than 1 s, then the steady-state value of O3~ con-
centration is always reached but is dependent purely on O3~ production rate, which is
time-dependent.

For each time point, we can write that O3~ concentration is [057] (t) =~ ];2(3

With published values, the O3~ concentration is 2.4 x 10-%M, a value consistent with
the predictions of Imlay [18], and corresponding to the equilibrium between O3~ pro-
duction (parameter k;) and its spontaneous dismutation.

The analytical solution (A) and the numerical solution (M) are the identical because

they solved the same system (figure 3.3).

2.5

2.0t .

1.5+ .

' 1.0f 1

0. ‘ ‘ ‘ ‘ ‘ ‘ ‘
8.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

FIGURE 3.3: Changein O3~ concentration in SOD(—) GSH (—) mutants.

(A) corresponds to the analytical solution according to the simplified

system and (M) corresponds to the whole model with numerical meth-

ods. Cell concentration has no influence on this pattern of superoxide
concentration evolution.

Superoxide summary

The table 3.3 summarizes the superoxide steady-state concentrations.
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TABLE 3.3: Superoxide steady-state concentration. Superoxide steady-
state concentration. At steady state, the internal concentration is shown
for cells in LB at 37 °C without exogenous hydrogen peroxide.

[057] (mol L) In this work Imlay, Fridovich [15]

Wild type 21 %1070 2.0 x10710
SOD(-) GSH(+) 4.2 x1077 49 x1077
SOD(-) GSH(-) 2.4 x107° 6.7 x1076

In a wild-type strain, Fe concentration is 10 uM, and, in a SOD™ strain, Fe concentration is 80 M [19].

3.3.2 Internal hydrogen peroxide
Without exogenous stress

In the wild-type strain, O3~ equilibrium is rapidly reached. Indeed the characteristic
time of O3~ evolution is m ~ 35us. Therefore we can consider O3~ as a con-
stant and we can assume that [O37] (t) ~ [037|_ (supporting information data for
demonstration).

So in terms of changes to internal H2O2 concentration, we approach
kj 4 1/aka [SOD] [O57] =~ K} + 1j2k1 because [O57] ~ [O37]  Let us call k{ + k1 =
kprod-

That is a first point, O3~ dismutation by SOD involved nearly an increase of 25 %

in the endogenous H>O» production.

Moreover, in the absence of exogenous H202, we can consider that :
[Hy04] < KilP K{

so the differential equation system can be simplified to a linear system:

d[H205] KX (ARp) kK9t [Cat]
A0 [ e ca H0s] — ks ([HaOs] — [H20
n prod ( e Kt [H202] = kaify ([H202] = [H202] )
d[H20s],,
Heslost 1 (111205] ~ 1:03])
with :
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Ahp

Kat
Let us call kc‘}t( i}?ﬁ 2] + "“C*;@ifﬁﬂ = Kenz, then the differential equation system can be
M M

written with a matrix structure:

d [H205] | Fprod N — (kenz + kairf)  kairf [H205]
dt N
[HQOQ]out 0

K dif —K digy [H205]

out

The matrix eigenvalues are A\ > Ag:

N (kenz + kaipr + K airs) + \/(k‘enz t kaipp 4 Kais)® — AkenK airs B
1 p—
2

N (Kenz + kaiff + K aigg) — \/(kenz tkaifp K aipr)® — Akensk aif s —0
2 p—
2

According to the value of the reaction rate constant, we can make the following

approximation: A\; ~ —Mri"gdmk(’ﬁff and Ao = — (kepz + kaify)-

The full matrix V' with columns corresponding to the eigenvectors is:

v Kairr+ M Faigr+M
Kaifs Kaifs
[HQOQ] AB)‘lt 0
The system becomes =V
[H205) 1 0 Be?2t

The resolution shows a bi-exponential expression:

kj T O
[Hy05] = (k’dz‘ff + )\1) AeMt 4 (k,diff + )\2) Betet 4 1P d

kenz

k
[H205],,,; = ]’CéliffAe)\lt i kéﬁffBeAQt n prod

eENnz

with

k 70 k; 70
4 ([H202]0 - kin:> k/diff - ([HQOQ]outo - kpemd) (k/diff + A2)
B (A1 — A2) Kaisy

kpro kpro
5 ((F20]0 = 222 ) Kaigs = ([H205]puio = 5222) (W aigs + A1)
B (A2 = A1) K aigy




Chapter 3. The major defences relative roles and consequences in E. coli 79

In this first approach, [H203], = 0 and [H20],,,,, = 0 : initial concentrations are taken

out

to be zero.
From the very beginning,
[H200] = (K aiy + M) A+ (Kaigs + A2) Be' + —]Zi:)j as eM! ~ 1 because || ~ 0.

k k
Therefore A ~ —7—257— and B = —2*—
enzR' dif f (k?enz +kdiff)

kaify K, "
) 9

k
B g Rena e Raifr
diff £ =i T e k) T (o + ki)

kélsz + )\2 ~ — (kenz + kdiff);

. k _ )
In conclusion : [H203] ~ W <1 —e (kem+kdsz)t>
1

[\®]
(9,

[\
=)

[S—
N

—
=)

W

Internal hydrogen peroxide concentration (nM)

o

4 6 8
Time (ms)

)
[\®)

FIGURE 3.4: Changes in internal H2O> concentration in the wild-type

strain with 107 cells ml~!. (+) corresponds to the analytical solution of

internal H>O; evolution according to the simplified system and (o)) cor-
responds to the whole model solved with numerical methods.

The first plateau (in Fig. 3.4) corresponds to the compromise between production

and consumption, but consumption now also depends on diffusion across cell mem-

brane. Indeed, the value of this first plateau is approximately kﬂj’jr%

The numerical values are ([4]) :

Ah Ka
ken> =633 571 with 7’%%;‘:1’} —550 5 ; 7kc;§%§?ﬂ —83 57 ; kgigp =705
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These values indicate that diffusion across the cell membrane accounts for approxi-
mately 10 % of the H2O, eliminated, a level of activity close to that of Cat activity (~ 12
%). As previously reported ([5]), Ahp was identified as the principal scavenger (~ 78
%).

The first plateau concentration for H,0O; is therefore ke,f’ii'iiiw ~ 21 nM.

For instance, in an Ahp(-) mutant without Cat induction, this concentration would

kprod
pTo! ~
be TKeTiGn] ~ 97 nM.
‘K]Iéat thaiff

Aot

After this transition step, we had e ~ 0. The change in H20O2 concentration

therefore follows this equation:

kprod . kprod kdiff et
Kens ke (kenz + kdiff)

[H205] =

This second step is slower and depends on the number of cells, with the final steady-
state concentration of H>O; reached more rapidly for denser cell populations (Fig 3.5
and 3.6).

The final steady-state value is [H20s], = %’—”’Zd ~ 23.5 nM and is not dependent on

cell number. This value is close to that obtained by numerical simulation (23.9 nM) and

to that proposed by Imlay (20 nM) ([4]).

Kat
For instance, in an Ahp(-) mutant without Cat induction, this value would be W ~
kLat[Cat]

cat

179 nM (identical to the numerical simulation value and close to the value of 100 nM
proposed by Seaver and Imlay ([4]).
This second step in the change in H>0; concentration dependson A\; ~ — ngjri’z”)kéh £
enz di

which depends on cell concentration via the &7 ; ;.

The results are summarized in Table 3.4.

TABLE 3.4: H,0; steady-state concentration.

[H205] (nmol L) In this work | Seaver, Imlay [4]
Wild type 24 21
HPI+ HPII+ Ahp- (AhpCF(@) 179 100
HPI- HPII- Ahp+ (K atE K atG) 28 23

At steady state, the internal concentration is shown for cells in LB at 37°C.
(a) without induced HPI levels.
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FIGURE 3.5: Changes in internal H2O> concentration in the wild-type

strain with 10¢ cells ml~!. (+) corresponds to the analytical solution

according to the simplified system and (o)) corresponds to the whole
model and a numerical solution.

With exogenous stress

We propose linear approximations of Michaelis-Menten kinetics. Internal H»O2 con-
centration approximately follows the law outlined below. Let us consider an exper-
iment involving the addition of exogenous H2O2. The initial ROS concentrations in
the cell are taken to be the steady-state values obtained without exogenous H>O,. The

system requires modification as follows :

d [H509 o
% = K| + ek [SOD] [057]
ke [Ahp] [HOo] kgt [Cat] [HyO,)
[HoOo] + K0 [HyOo] + Kf4!
—kairy ((H202] = [H202] )
d[HQOQ]Out . n - Vip
—x = kdszm ([H202] — [H202],,,,1)

As the system is nonlinear there is no analytical solution so with a view to solving
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FIGURE 3.6: Changes in H>O> concentration in the wild-type strain with

10° cells ml~!. (+) corresponds to the analytical solution according to

the simplified system and (o)) corresponds to the whole model and a

numerical solution.

the system, we had to compare the value obtained for the internal concentration of
H>0 with the Kjs values of Ahp and Cat to simplify the Michaelis-Menten expression.
Moreover, cell behavior (and thus the dynamic system) depends on the comparison of
internal H,O, concentration with the Kj; values of Ahp and Cat. This comparison is
essential to simplify the system into a linear one, which will then be solvable. This
kind of study is frequently carried out and provides useful insight into the workings of
systems. For example, Polynikis et al. ([20]) compared different modeling approaches
(complete nonlinear model, simplified piecewise linear model etc.) for gene regulatory
networks using Hill functions, a general form of the Michaelis-Menten equation.

To approximate the Michaelis-Menten hyperbole into a piecewise linear function,
let us first examine the contribution of the two enzymes.

The rate (see Fig. 3.7) followed the same pattern of change as that presented by
Seaver and Imlay ([5]). Ahp was the leading scavenger in conditions of 17 uM exoge-
nous H20; (see intersection point in Fig. 3.8).

We can consider that, in the presence of less than 10 uM H»0O», Ahp activity is linear

(Fig. 3.8) and that Cat activity is linear at concentrations below 10 mM (due to its Kjs



Chapter 3. The major defences relative roles and consequences in E. coli 83

value). At H,O; concentrations of more than 30 M, Ahp activity is saturated.

1000

800 R

600 R

400} i

2001 B

[Hy,O,] decomposed (uM/min)

0 200 400 600 800 1000

[H,O,] extracellular (uM)

FIGURE 3.7: Kinetics of exogenous H2O» decomposition for 1.5 x 108
E. coli cells ml~!. The dotted line corresponds to the Cat(-) mutant and
solid line corresponds to the Ahp (-) mutant.

According to the Michaelis-Menten equation, we should consider Ahp activity to be
linear when [H205] < K]’@hp ~ 1 uM, but linearity was observed when [H>05],,, < 10
M. It is unclear why there is a difference of one order of magnitude between exoge-
nous [H03],,,, and internal [H>O] at the limit of linearity.

Such a difference was reported in another experiment presented by Seaver and Im-
lay ([4]) while studying H2O- fluxes.

In this experiment, whole cells seemed to scavenge H20; less efficiently than cell
extracts. The cell membrane slows the entry of H2O5 , resulting in lower rates of de-
composition. It also protects cells against high H>O, concentrations, by decreasing the
maximum value of H,O; concentration. This phenomenon is described in more detail
below. The simulation (Fig. 3.9) for extract was modeled by eliminating membrane dif-
fusion and the metabolism associated with ROS production. There is a perfect match
between numerical simulation and the experimental results of Seaver and Imlay.

Two situations can be distinguished based on these previous observations.

In the first case, [H202] < KAAﬂhp corresponds to [H20s],,,;, < 10 uM and to [H20] <

K. The system approaches Michaelis-Menten terms as follows:
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FIGURE 3.8: Kinetics of exogenous H2O> decomposition for 1.5 x 108

E. coli cells ml~*. The dotted line corresponds to the Cat(-) mutant and

solid line corresponds to the Ahp (-) mutant (higher magnification for
Fig. 3.7).

kP [Ahp] [HoOo] | KE¢'[Cat] [HaOo] KA [Ahp] | KE# [Cat]

cal cal

cat cat
~ H>0
[H205] + K]e[hp [H2O9] + K]\I/(Iat sz\élhp K]\I/([at [H205)]
= kenz [HQOQ]

In the second case, if [H204] > K ]‘@h” , corresponding to [H203],,,, > 30 M and to

[H205] < K§, then the system approaches Michaelis-Menten terms as follows :

heat” [ARp] [H205] | ki [Cat] [HyOs] - (anp (o, KEE [Cat] (0
H.0 Ahp [H O]—I—KKat ~ cat [ p]+ K Kat [ 2 2]
[H205] + K 202 M M

= Ky [Ahp] + K., [H204]
where kegi'[Cat] _ k'

K]Ié, at enz:*
Then we examine Ahp activity with a micromolar exogenous H>0O concentration.
In the first case ([H202] < K ﬁhp and [H209] < K Ac;ﬂt), the differential equation sys-

tem appears to be the same as that without exogenous H,O», but [H205],,, # 0. As

out
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FIGURE 3.9: Insilico, breakdown of exogenous H,O2 by whole cells
(Ahp(-) mutant) or cell extract. Simulation runs with 4 x 10° cells ml~.
Moreover, Seaver and Imlay ([5]) observed that an Ahp(-) mutant con-
tained seven times as much total Cat as wild-type cells. We therefore
used the same ratio. This figure can be compared with the figure 3.10.

[H20s), = i’;"z‘i, the constants A and B can be simplified as follows:

— ([H200] g0 = 522 (W aigs + o)

A=
()\1 - )\2) k/diff
and )
B - <[H202]out0 - ki:)j) (K airy + A1)
- ()‘2 - >\1) k/diff
Moreover as \; ~ — kenz

Wk‘/hff and )\2 ~ — (k?enz + kdsz) with ‘)\1‘ << ‘)\2‘ and
Faifs| <<l

(Kaigs + A1) A= — (Kaips + A2

kprod Kai
B = <[H202]0ut0 o kpenz > kdsz ‘:‘L‘fkenz

therefore:

kprod kaifs kprod
H,01 = ( 1H,O Ry < Mt A2t> Fprod
[H20s] ([ 202 510 kem> Ry o € e2t) 4

kenz

This bi-exponential function shows that changes in internal H2O2 concentration follow
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FIG. 2. Decomposition of H,O, by equivalent amounts of extracel-
lular and intracellular HPI. Extract and whole cells of JI372 (ahpCF
katE) were prepared as described in Materials and Methods, and the
decomposition of 1.5 uM H,O, was monitored.

FIGURE 3.10: Extract of Seaver and Imlay [5].

two phases. There is a first phase, with a large rate constant —\y ~ key,. + kgify corre-
sponding to the scavenging process, followed by a much slower second phase, with a
low rate constant —\; > 0 corresponding to the diffusion from the external H2O into
the cell. This second phase is faster for larger numbers of cells because £/, 75 is highly
dependent on cell concentration.

—\ =~ )k&iff and as ke > kg;rf we can approach —\; =~ k:;ll.ff.

kenz
(k?enz +kairys

d[HgOg]
dt

This function therefore reaches a maximum as = ( for:

kenz k ) 2
tmax == 71 In <ﬁ> ~ 1 In ( + 7 d ff)
)\2 - )\1 )\2 (kenz + kdiff) kenzk dif f

This time is weakly dependent on cell numbers. For example, tax ~18 ms with 107

cells ml~! and 11 ms with 10° cells m1~1.

The maximum internal H>O; concentration is approximately:
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k rod kdiff k rod
H>0 ~ ( [H20 - 5
[H202] . ([ 202] 410 kem> kaiff + Kens + kenz

I;ci;ozd = [H50,] , it can be approached by:

and as [H20s) ;0 >

kairr [ HoO
[H2O2] ~ dff[ 2 2]0ut0
kdiff + kenz

max

therefore
[H209] 1 1

[H209) 00 1+ kenz/kaizr 9

The balance between the elimination processes in the value of the maximal internal

H->05 concentration is due to:

k" [Ahp]

cat

Kt (Kens + kairs)

~ 78% to Ahp

kEat [Cat]

cal

~ 12% to Cat
K]\[}at (kenz + kdsz)

and
kaifs

—— = 10%
kenz + kdiff

to elimination by diffusion throughout cell membrane

The maximal value of internal H,O5 concentration is almost one tenth the initial ex-

ogenous H,0; concentration. This phenomenon reflects the role of the cell membrane

in limiting diffusion. The need to diffuse across the cell membrane limits the influx of

exogenous HyO; and this process is highly effective at low exogenous H>O> concen-

trations. The difference of one order of magnitude between exogenous [H203],: and

internal [H205)] arises because the membrane creates a rate-limiting step.

To illustrate this, we will investigate cell behaviour in the presence of 1.5 uM exoge-

nous H50s.

After its peak value (Fig. 3.11), internal H20O5 concentration decreases because of

scavenging, but diffusion across cell membrane is the process which limits the rate of
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FIGURE 3.11: Changes in internal H,O; concentration in the wild type

after the addition of 1.5 uM exogenous H>0 with 1.45 x 107 cells ml~!.

(+) corresponds to the analytical solution according to the simplified sys-

tem and (o) corresponds to the numerical solution of the whole model.

The simulation was run with 1.45 x 107 cells ml~! (corresponding to an

ODgqp value of 0.1).

H>0, disappearance, therefore HoO, decrease is slow. The membrane creates a rate-
limiting step.

The maximal value is the approximate value of the first plateau proposed by Gonzalez-
Flecha and Demple ([21]). It corresponds to the ratio of the rate of H>O; influx by
diffusion to levels of scavenging and elimination by diffusion.

The experiments of Seaver and Imlay ([5]) showed that even non-induced cells scav-
enged micromolar concentrations of exogenous H>O> very quickly. For example, in a
culture corresponding to 0.1 ODgp unit (corresponding to around 1.5 x 107 cells ml~1),
they found that the half time of H>05 in the medium was only 3.5 minutes, and that in

a culture of 1.0 OD unit it was 20 s.

The exogenous H>0; concentration approximately follows the law outlined below:

Kpro kpro
[H202]out = <[H202]0 - p_d> Mt + Zprod

kenz kenz
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where
A 1 kenz

~ _—k;,A ~ k/.
(kenz + kdsz) def dlff

Its exponential decrease depends on the k. rate constant, which is strongly de-

pendent on cell numbers. The half-life of H2O3 in the medium is approximately ¢, ;, ~

In2

k(/i'if f

and is a decreasing function of cell number. So, with an ODgq of 0.1 (Fig. 3.12)
we find that ¢, , ~ 210 s (3.5 min) and with an ODg of 1 we find that ¢, ~ 21 s (Fig.
3.13). A comparison of the experimental data and the analytical results indicates that

our model describes the change in H2O; correctly.

i

—_—
T

o
W

External hydrogen peroxide concentration (UM)

0 5 10 15 20 25
Time (min)

FIGURE 3.12: Changes in external H>O> concentration in the wild type

after the addition of 1.5 M exogenous H2O5 with 1.45 x 107 cells ml1— 1.

(+) corresponds to the analytical solution according to the simplified sys-

tem and (o)) corresponds to the numerical solution of the whole model.

The simulation was run with 1.45 x 107 cells ml~! (corresponding to an
OD600 value of 01)

Finally we examine Ahp activitys, with a high H>0O5 concentration. In the second
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FIGURE 3.13: Changes in external H,O; concentration in the wild type

after the addition of 1.5 uM exogenous HzOs with 2 x 10% cells ml~*. (+)

corresponds to the analytical solution according to the simplified system

and (o)) corresponds to the numerical solution of the whole model. The

simulation was run with 2 x 108 cells ml~! (corresponding to an ODgg
value of 0.1).

case, when [Hy05] > K ﬁhp , corresponding to [H20s),,,, > 30 M, the differential equa-

tion system can be written with a matrix structure:

d [H205] | Fprod e (Kenz + kaigr)  kaiy [H205]
dt B
[H305] s 0 K aify —HKaifs [H202] 5,0
where k., = k| + 12k — k2 [ App) is the usual production reduced by Ahp activity
on saturation; and k., = % (only Cat follows linear kinetics)
M

The study is similar to the previous one and internal H>O, concentration can be

expressed as follows:

k/ d kd' / / ]{?l d
H.0-,] = H-0 _ Mvpro iff < Mt A 2t> pro
[ 2 2] <[ 2 2]out0 k/enz kdz’ff + k/enz e € + /

k enz

with the eigenvalue \; ~ —ka&i it and Ay = — (K enz + kairf)

~ kdiff[HQOQ]outO

The maximum will be [H20s],.. = o

. With large concentrations of
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kaiff[H202],,40

exogenous H20z, [H205] ~ Kt o This corresponds to the ratio of the rate

max

of H,0; influx by diffusion to its elimination by Cat or by diffusion only.
This expression shows that the ratio between the initial exogenous H20O2 concen-

tration and the maximal internal H>0O, concentration in the cell is:

[HQOQ]max ~ 1 ~ i(*)
H>0 kK4t Cat] 2.2
[H 2]out0 1+ kdz’fthJIé/at

The contribution of each elimination process to the value of the maximal internal H>05
concentration is:

/
k eEnz

—  ~55%toCat
k/enz + kdiff

kaifs
and ———=~45%to elimination by diffusion across the cell membrane
k enz + kdi ff

[H202] 1105

We notice that : [H202],,,10

is equal to the ratio of elimination by diffusion across the
membrane to the sum diffusion and scavenging. Of course, without membrane this
ratio will equal 1, so thanks to membrane, enzymes have to face less H,O». Moreover,
at high exogenous H20O> concentrations, this ratio is quite different from the one (i.e.
1/9) obtained at low concentration.

For instance, with an initial H,O3 exogenous concentration [Hs Og]outo =1 mM, we

obtain [H20s] ~ 0.45 mM (Fig. 3.14). The maximal value is lower than the exoge-

max
nous concentration because of diffusion and Cat activity, in this case Ahp is saturated
and therefore plays a less important role.

The exogenous H>0; concentration approximately follows the law outlined below:

k. 70 / k T 0
[H20s], = ( [HaOa]g — 272 ) X1t 4 2228
ou kenz kenz
where
/! klenz / /
MR = kaiss 7 Kaiss

(k/enz + kdsz)
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FIGURE 3.14: Changes in internal H,O; concentration in the wild type
after the addition of 1 mM exogenous H>0> with 1.45 x 107 cells ml~1.
(+) corresponds to the analytical solution according to the simplified sys-
tem and (o)) corresponds to the numerical solution of the whole model.

This exponential decrease depends on X} , which is a cell density function. The
decrease rate of HyO; can be characterized by the half-time ¢, /5. This time is approxi-
mately the same for internal and external concentration, as internal and external H>O»
decrease are strongly linked. For instance, with an addition of 1 mM of exogenous
H>0, and with a cell density of 1.45 x107 cells ml~?, the half-live is approximately

e = 1“/\1,1/ 2 ~ 6.5 minutes, this results is consistent with Fig. 3.14.

Moreover, as the exponential decrease in rate is dependent on )\, it ranges from
zero when there is no scavenger (in a cat- mutant) to kj,;, when scavengers have a
non-limiting rate constant (much higher than kg;¢r). Thus, a 10-fold induction of Cat
(experimentally observed in an Ahp(-) mutant) should increase the rate of medium

detoxification of high H>0O5 concentrations only with a ratio of:

)\ll,induction _ )\/ . 10 (k/enz + kdsz)

~ ~ 1.7
)\/1 ! (10k,enz + kdsz)

This result is consistent with the experimental data of Seaver and Imlay ([5]), who ex-

amined a doubling in efficiency when comparing the wild type and an Ahp(-) mutant.
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It should also be noted that, in a Cat(-) mutant [H505] ~ [H202] 40 = [H202),

max
(according to equation *). The maximum internal H>O; concentration rapidly increases
the exogenous H>O5 concentration and, as there is no Cat, this value remains constant,
resulting in the rapid death of the surviving bacteria. The only way to protect Cat(-)
mutant cells against high exogenous H>0O3 concentrations is to add the wild type to the

medium. This experiment has been reported by Ma and Eaton ([22]). This point will be

examined in the following subsection.

3.3.3 Consequence of defence switch in the primary scavenger

Fig. 3.15 shows that increasing exogenous H>O; concentration involves the switch be-
tween the two primary scavengers. This switch has already been reported by Seaver
and Imlay ([5]), but we show here another consequence. Actually this switch also trig-
gers a change in the maximal internal H2O, concentration viewed by cell. We also find
that this maximal internal concentration does not depend on the cell density. Neverthe-
less the temporal internal or external H,O, decrease strongly depends on cell density
(as previously reported in Fig. 3.11 and Fig. 3.12 or in the previous subsection). The
switch between the two scavengers also occurs in Fig. 3.16, actually it shows that H>O5
half-life increases when shifting from Ahp to Cat while exogenous H20; increases.
This switch involves non-linear behaviour in half-life external H>O> dependence.
Once again, Ahp seems to be more efficient but it only concerns external H>O> con-
centration under 10 uM. Above 30 M, Cat plays the major role. Unlike maximal in-
ternal H,0; , half-life depends on cell density, and the more concentrated cells are, the
faster medium detoxification occurs. Nevertheless, as reported in Fig. 3.17, under 10
uM (Ahp is the primary scavenger) the half-life does almost not depend on the initial
exogenous H20; concentration. Above 50 M, Cat is the primary scavenger and the

half-life depends on the initial exogenous H20O3 concentration.
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FIGURE 3.15: Changes in the ration between external initial H,O, con-

centration and internal maximal H> O, concentration in E. coli wild type.

The numerical solution presented in this graph was running according
to the whole model without approximation.

Cumulative internal H50O> concentration, rather than maximum internal H2O> con-

centration, is involved in the H,Os-mediated death of bacterial cells

We investigated whether the decrease in E. coli survival with increasing exogenous
H>045 concentration was linked to theoretical maximum internal HoO> concentration
or to the rate of decrease in internal H>O» concentration. Indeed, a steep decrease
indicates the perception of a low mean internal H>O> concentration by the cell. We
investigated this aspect by carrying out experiments in which only one of these two
parameters was affected at any one time. We therefore reproduced in silico the experi-
ments of Ma and Eaton on H,O>-mediated killing by E. coli wild-type (Cat(+)) or Cat(-)
strains alone or by cultures of E. coli containing similar numbers of Cat(+) and Cat(-)

bacteria. Cat(-) cells from cultures of Cat(-) cells alone or from equal numbers of Cat(-)
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FIGURE 3.16: Changes in external H»O, half-life with different initial
external HoO, concentrations and 3 different cell densities in E. coli wild
type. The numerical solution presented in this graph was running ac-
cording to the whole model without approximation.
and Cat(+) cells had similar peak H20; concentrations but different rates of decrease
in internal H>0O- concentration. This result led us to evaluate the involvement of these
two parameters. Moreover, as these experiments were performed with diluted and
concentrated cell cultures, giving similar peak H>0O concentrations but different rates
of decrease in internal HoO> concentration, we also assessed the effect of these two
parameters on cell death.
Simulations were performed with a dilute cell suspension (5 x 102 cells ml~!, Fig.
3.18 and Fig. 3.19) and a higher density of cells (107 cells ml~?!). Dilute populations of
Cat(-) cells were unable to decrease exogenous H2O; concentration. Dilute populations

of Cat(+) cells were also unable to detoxify the medium (Fig. 3.18), whereas the dense

population of Cat(+) cells halved exogenous H>O> concentration within 10 minutes
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FIGURE 3.17: Changes in external H2O, half-life with cell densities and

with 7 different initial external H>O, concentrations in E. coli wild type.

The numerical solution presented in this graph was running according

to the whole model without approximation.

(Fig. 3.18). In a Cat(-) mutant, the maximum internal concentration of H,O2 was only
2.5 times higher than that in Cat(+) cells, but survival rates were similar for dilute pop-
ulations of both Cat(-) and Cat(+) cells ([22]). As a conclusion, the maximum internal
concentration of H20 is not a biological significant factor determining survival rate.
Each single cell of the separate Cat(-) and Cat(+) populations had a maximum internal
H>05 concentration of about the same magnitude, but only cells from the high-density
populations survived in the Eaton experiments. Survival rate was always high when
medium detoxification was activated rapidly by a dense Cat(+) cell population. Thus,
even Cat(-) E. coli can survive if they are mixed with Cat(+) cells able to detoxify the
medium. We conclude that H2O; scavengers do not protect individual cells against

bulk-phase H>05, because the maximum internal concentration of H,O; did not differ

significantly between Cat(-) and Cat(+) cells. The major difference between these two
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types of cells concerned the rate of decrease in exogenous H>0O; concentration and, con-
sequently, the rate of decrease in internal H>O; concentration (Fig. 3.19). We conclude
that mean internal H>O concentration has a significant impact on bacterial survival,
whereas maximum internal H,O9 concentration does not. So H,O4 action can be com-
pared to that of the radiative exposure. This means of action is the opposite of the one
generally observed for drugs. For instance, the maximum amount of paracetamol for
adults is 4 grams per day with a regular intake of 0.5 gram over 3 days, but a single

intake of 10 grams can lead to liver failure ([23]).
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FIGURE 3.18: Simulation of Ma and Eaton experiment following ex-
ternal hydrogen peroxide concentration. Simulation of H>O> external
concentration change with dilute (102 cells per ml) Cat(-) E. coli alone
(V) or Cat(+) E. coli alone (>>) or admixed with an equal number of
Cat(+),Cat(-) E. coli (<1); and with concentrated (107 cells per ml) Cat(-
) E. coli alone (O) or Cat(+) E. coli alone (o) or admixed with an equal
number of Cat(+),Cat(-) E. coli (J). At zero time, H,Oy was added to
a final concentration of 1.0 mM, and the bacterial suspension was then
incubated at 37°C.
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FIGURE 3.19: Simulation of Ma and Eaton experiment following inter-
nal hydrogen peroxide concentration. Simulation of HO, internal con-
centration change with dilute (102 cells per ml) Cat(-) E. coli alone (V) or
Cat(+) E. coli alone (>>) or admixed with equal numbers of Cat(+),Cat(-)
E. coli (<1); and with concentrated (107 cells per ml) Cat(-) E. coli alone (¢)
or Cat(+) E. coli alone (o) or admixed with equal numbers of Cat(+),Cat(-
) E. coli (O). At zero time, H,O5 was added to a final concentration of 1.0
mM, and the bacterial suspension was then incubated at 37°C.

3.4 Conclusions

3.4.1 In the absence of exogenous stress

An analysis of the most significant kinetic reactions confirmed that steady-state internal
concentration H2Os results from the balance between its production and a combination

of Ahp degradation (78%), Cat degradation (12%) and membrane permeability (10%).

3.4.2 With exogenous H,0, stress

Prediction of H,0- levels

Under conditions of exogenous H,0; stress, H2O5 elimination is dependent on cell
density. However, nothing is currently known about internal H>O5 concentration dur-

ing H»0O5 exposure. Under these conditions, internal H,O, concentration results mostly
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from influx due to diffusion across the cell membrane, because endogenous production
is negligible. Moreover, the rate of diffusion into the cell is governed by membrane per-
meability. The internal concentration of H,O must therefore be lower than the exoge-
nous H20O, concentration. Consequently, exogenous H»>O, stress leads to an increase
in internal H»O5 concentration until a maximum is reached. This peak is followed by a
decrease in H>O5 concentration, due to elimination by the cells. We aimed to identify
the most significant parameters (kinetic constants and cell concentrations) accounting
for the maximum internal H2O5 concentration value reached and for the characteristic
time points (time required to reach half the nearest steady—state concentration) during
increases and decreases in internal HoOs concentration.

Surprisingly, based on our model, the maximal internal H,O, concentrations reached
in individual cells was not dependent on cell density, suggesting that there is no pop-
ulation protection effect. This maximum, which is reached in a few milliseconds, and
its characteristic timing, are dependent solely on exogenous H>O» concentration and
the three routes of elimination of this radical (membrane permeability, Ahp and Cat
scavenging).

For estimation of the maximal internal H50O5 concentration, we needed to distin-
guish internal H2O; concentrations for which Ahp activity predominated from those
for which Cat activity predominated. For initial exogenous H2O; concentrations below
10 M, the maximal internal H2O» concentration was defined by the balance between
the exogenous H2O- diffusion rate and the three routes of elimination. In these condi-
tions, Ahp was responsible for about 78 % of all the H2O; eliminated.The peak internal
H505 concentration was almost one tenth the concomitant exogenous H20O5 concentra-
tion. At initial exogenous H>O> concentrations of more than 30 1M, the peak internal
H>05 concentration was defined by the balance between the exogenous H20O- diffusion
rate and the possible elimination routes (Ahp activity being negligible due to satura-
tion). Thus, peak H20O2 concentrations are determined not only by Cat activity (55 %),
but also by membrane permeability (45 %). Surprisingly, at the peak internal H20O>

concentration sensed by each cell, limited membrane permeability served as a passive
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defence against H203, to a similar extent to Cat. In these conditions, internal H>0;
concentration was only half the concomitant exogenous H>O5 concentration.

We then showed that the rate of decrease in internal H>O9 concentration and its
characteristic timing were dependent principally on cell density and membrane per-
meability. This decrease was mediated not only by enzyme activity, but also by H>05
transport from the extracellular to the intracellular medium. The global kinetics of the
decrease in internal H,0O5 concentration was determined by the slowest step in the pro-
cess, diffusion across the membrane, which was limited by cell membrane permeabil-
ity. Finally, similar conclusions were reported for exogenous H>O5 concentration. The
Imlay group has shown that the elimination rate for exogenous H,0; is much lower
in intact cells than in cell extracts, indicating that diffusion across the cell membrane is
the limiting process. This observation is consistent with what is known about the most
significant kinetic parameters, including the major role played by the cell membrane.
Indeed, diffusion across the cell membrane involves the bridging of a gap between
internal and extracellular concentrations. This gap provides protection against the oxi-
dizing extracellular medium, but it also decreases the efficiency with which E. coli can
decrease the H,O, concentration of the extracellular medium (Fig. 3.13). The kinetics
of extracellular decomposition is almost exclusively diffusion-dependent and, there-
fore, very slow. As expected, the rate of HoO, disappearance (intra or extracellular)
was greater at higher cell densities.

Instead of conducting real-world experiments, using simulations is generally cheaper,
safer and sometimes more ethical. Simulations can also be conducted faster than exper-
iments in real time. For instance, at the University of Pittsburgh School of Pharmacy;,
high-fidelity patient simulators are used in addition to therapeutics ([24]). Of course
simulations have to be confronted with real experiments to test their robustness and to

be improved. Our model is one step in a global modelling of the E. coli ROS dynamic.
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Chapter 4

ROS stochasticity can explain single

cell biological specialization

4.1 Introduction

Physical laws applied to macroscopic systems are generally not adequate for micro-
scopic systems. For example, Newton’s laws of motion can solve the fall of a ball but in
order to understand the fall of a neutron we have to use the Schrodinger equation. With
the same idea, Arrhenius [1] or Eyring [2?] laws describe chemical kinetics and they are
suitable for macroscopic systems and can describe chemical reactions in a beaker where
the number of molecules is large enough to obey statistical thermodynamics, indeed let

023 molecules ! But when the

us remember that in 1 mole there are approximately 6 x 1
beaker becomes a cell, the system size forces us to re-examine our point of view. Using
E. coli, Imlay and Fridovich [3] found that superoxide (O3 ) steady state concentration
is about 0.21 nM in a cell with a volume near 3 x 10~!° L, this value corresponds to
0.38 molecule ! This number cannot follow the usual macroscopic laws. Considering
the Arrhenius law, e~"«/BT" (where E, is the activation energy) represents the proba-
bility that any given collisions will result in a reaction. 0.38 molecule corresponds to an
average value, but if we want to see a reaction (collision with a molecule in a cell) we
have to take at least 1 molecule, but 1 molecule represents 3 times the average value.

However, 0.38 molecule also means that overall, one in three cells meets a O3~ per unit

of time, but which is the chosen cell ? It is like a wheel of fortune. Actually, we realize
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that we have to forget the macroscopic point of view often described by ordinary dif-
ferential equation (ODE) and we have to focus on the stochastic behaviour of the cell
system and to use stochastic algorithms.

An essential point of this study is to follow the concentration of specific molecules
(ROS) which are present in low quantities. Let us consider a molecule which induces
the transcriptional activator or which is involved in the induction of the transcriptional
activator, even a small variation in its intracellular pool can cause greater disturbance
in the transcriptional activation. Therefore any noise involved by this molecular vari-
ability may have consequences on variability in gene expression.

Noise trigged by stochasticity has many roles in biological systems. For example,
noise generates errors in DNA replication leading to mutation and evolution, ampli-
ties or switching signals, drives divergence of cell fates [4] or simply maintains cell
individuality. According to biologists, noise mainly comes from multiple origins, such
as variability in the activity of individual genes, variations in metabolic activity, or
fluctuation of an external stress. Noise is now commonly admitted by the scientific
community and it appears to be a dogma at the single-molecule level in living cells
[5]. Whereas Van Kampen [6] investigated in a theoretical manner the possibility that
variability is inevitable in biological systems because of the random nature of chemical
reactions within a cell there is currently no concrete example of noise origin. In this
chapter we come back to this crucial origin of noise and show an example of elemen-
tary chemical reactions that generate stochastic noise.

E. coli provided an excellent model to study responses to oxidative stress [/, 8] there-
fore we study the reactive oxygen species distributions and the consequence of those

distributions on E. coli DNA damage.

4.2 Material and methods

We have already studied HO® [9], H2O; and O3~ [10] evolution in E. coli with a de-
terministic description using ODE. These previous studies focused on the consequence

of Hy0, exogenous stress and introduced more reactions but in the present study we
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only consider wild type E. coli fate without exogenous stress. The following subsections

present the assumptions and the ROS dynamics we used to describe our system.

4.2.1 Superoxide kinetics

O3~ is mainly involved in the following kinetically significant reactions:
Its production :

k
metabolism production —» O3~
Its dismutation by superoxide dismutase (SOD) scavenger of O3 .

ka1 1
05_ —I-I{Jr —2> —Hy09 + =09
SOD 2 2

These two reactions lead to the following ODE coming from the balance between pro-

duction and dismutation by SOD:

d (03]
dt

— ki — ky [SOD] [037]

4.2.2 Internal hydrogen peroxide kinetics

H>0, appears significantly in the following reactions:
Its productions :

k/
metabolism production — HyOq

_ ka1 1
(0 H™ = —H,0 -0
5 + sob 212 2+2 2

Its dismutation by catalase (Cat) or Alkylhydroperoxidase (Ahp)

1
H,05 2% H,0 + 502

A 1
Hy05 2 1,0 + 502
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Its diffusion across cell membrane
ka;
Hy05 Y HyO0ut

ka; ¢ was calculated using the membrane permeability coefficient (P = 1.6 x 1073

cm/s), the membrane surface area (4 = 1.41 x 10~ cm?) and cell volume (V = 3.2 x

1071 L) given by Seaver and Imlay [11], therefore kg;rp = £22.
The ODE becomes :
dt !

+5ks [SOD] [03]
ki [Ahp) [HxOo] kgt [Cat] [Ho0,]

_ Mcat cat

[HyOq] 4+ K1 [HoOo) + Kot
—kaiff ([H202) — [H202] out)

where Hy05,,+ corresponds to H2O in the external habitat of the cell.
Ky (KEA for catalase and K ]‘C;[hp for alkylhydroperoxidase) is the Michaelis con-

stant. keqr (X9t for catalase and k277

P ot for alkylhydroperoxidase) is the turnover num-

ber, it represents the maximum number of molecules (here H207) that an enzyme is

able to convert into products per second.

4.2.3 External hydrogen peroxide

d [HQOQ]

out — kd‘ff n- V;n
dt RENS

out — NV

([H202] — [H202] )

The cell density is given by n. V;, represents the internal cell volume and V,,; corre-
sponds to the total volume. Of course, as microorganisms cannot take up more space
than their medium, we have the inequality V,,; — nVj, > 0.

Moreover, as we consider only low cell density, we assume that % < 1 involves
% — 0 and therefore we can consider [H20>],,, as a constant which is also neg-

ligible because we set no exogenous H20; stress. Biologically it means that we have

to take into account the H»0 flux from inside to outside whereas we can neglect the
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H>0, flux from outside to inside because of the low cell density and the absence of

exogenous H»Os stress.

4.2.4 Kinetic constants

The kinetic constants used in this work are collected in the table 4.1 (concerning super-
oxide) according to Imlay and Fridovich [3] and in table 4.2 (concerning H>0O>) accord-
ing to Seaver and Imlay [12].

TABLE 4.1: Kinetic constants used to describe O3~ evolution.

Kinetic constants

k1 5.7 x 1079 mol-.L-1.s~!
ko[SOD] | 2.8 x 10 571

ko 1.5 x 10 mol~!.L-s7!
Vin 3x 107 L

TABLE 4.2: Kinetic constants used to describe H50O5 evolution.

Kinetic constants

ki 12 x 107 mol.L=1.s7!
kéﬁp[Ahp] 6.6 x 107* mol-L~1.s7!
K 1.2 % 106 mol L
K g K0 | 550 -1

kﬁz}tLp[Ah ] 6.6 x 1004 mol-L- 1.}
k5 Cat] 4.9 % 10! mol-L-1.s~!
KRat 5.9 x 1073 mol-L~!
k({ggt [Cat]/K]\[/([“t 83 s~ !

kairr 70 s

4.2.5 Hydroxyl radical

The HO*® production is given by the Fenton reaction which gives:

d[HO"
dt

= ky [Fe] [H20o]

Let us consider iron concentration as a constant, indeed without exogenous H2 O stress
iron concentration sees no significant change. Its concentration is set to 20 M. This

assumption has been extensively covered by Uhl et al. [9].
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We then consider N reactions of rate constant k; between an organic X; compound
(proteins, metabolites,...) and HO®. Nevertheless, DNA was treated separately (out of
the sum) in order to examine its damage during oxidative stress, therefore the following

equations come:

. N
: [tho . [Fe**] [H202] — Z; ki [X] [HO®] — kpya [DNA] [HO®)
% = —kpna [DNA][HO®]

4.2.6 Transcription factors that defend E. coli

To protect itself from HyOy and O3, E. coli mainly activates regulons controlled by
OxyR ans SoxR transcription factors.
When stressed under elevated levels of O3, E. coli responds by inducing SOD [13,
]. SoxR is a [2Fe-2S]-containing transcription factor that binds near the sozS pro-
moter and senses the stress. SoxR induces transcription of sozS. SoxS is a second
transcription factor that then activates scores of defensive genes that encode proteins
which suppress the toxicity of O3 . SoxRS involvement will be discussed in relation
to O3~ concentration level found in our simulation in the next section. We will neglect

the soxRS response and check this assertion ex-post.

To address the problems that H,O, causes, E. coli also maintains inducible defen-
sive regulons governed by OxyR transcription factors. Like the SoxRS system, OxyR is
not activated during normal aerobic growth. This transcription factor does not control
the basal level of defensive systems but it becomes active when elevated concentrations
of H,O, emerge. Nevertheless, as OxyR quickly responds to submicromolar concentra-
tions of H20Oy we included OxyR in our system (its influence is developed in the next
subsections and indeed shows no activation without exogenous oxidative stress, our

results indicate that the stochastic behaviour of OxyR can be neglected).
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E. coli responds to DNA damage by a highly orchestrated series of events known as
the SOS response [15-18]. A few dozen genes are involved in this mechanism, most of
them are regulated by the transcriptional repressor LexA. Among these, the recA gene
plays a major role in DNA repair. But induction of the SOS response by H20- [19] or
by ultraviolet irradiation [20] in E. coli is clearly negligible in the next 5 minutes after

the stress. Therefore we do not take into account the SOS response in our model.

4.2.7 Simulation

We use the standard assumption for biochemical models considering that the spatial
distribution of reactants is homogeneous. Actually with this hypothesis, the system
can be described with ODE easy to compute. The system is a square lattice of 32 by
32 cells corresponding to a dilute cell concentration of 10* cell/mL. According to this
dilution we assume that cell interactions are negligible therefore we do not consider
molecule diffusion from one cell to another.

One way to handle the vast state space of cell molecules distribution is to use the
Next Sub-volume Method, a Gillespie [21, 27] like mesoscopic and stochastic algorithm
proposed by Elf et al. [23, 24] and developed in chapter 1. At each time interval, the re-
action that occurs is chosen randomly according to the probabilities for the reaction to
take place in a cell. The probabilities depend on both the number of molecules and the
rate constants. We adapt the algorithm considering each cell as a sub-volume where
molecules are homogeneously distributed. There is no diffusion from one cell to an-
other.

In the initial configuration all cells own the same number of each molecule so that
there was no imbalance between two cells. Moreover we cancel extrinsic noise due to
the random fluctuations in environmental parameters (such as cell-to-cell variation in
temperature, pH, kinetic parameters, number of ribosomes,...) by taking all parameters
as constants. Therefore at the end of the simulation, the observed imbalances will only

appear as a consequence of the stochastic nature of chemical reactions. Indeed we only
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focus on the consequences of intrinsic noise resulting from the probabilistic character of
the chemical reactions following exponential laws according to Arrhenius and Eyring.

Stochastic simulations were run with Python3 [25].

4.3 Results and discussion

This section first presents the analytical study of the dynamic system. This analysis will
provide us with insight into the kinetic parameters significantly important for the dy-
namics of ROS. Then we compare those average deterministic results with the stochas-
tic simulation which will provide us with more accurate information on cell damage

distribution.

4.3.1 Deterministic previsions
Superoxide

In the wild-type strain, without exogenous stress, the resolution of O3~ concentration
gives :

(057] = [05_]00 <1 - e*kQ[SOD}t>

indeed GSH and spontaneous dismutation are negligible because rate constants are
much lower than the SOD one (ks [037] < kasu [GSH| < kg [SOD]). O3~ concen-
tration rapidly reached its steady-state value, in less than 1 ms, the characteristic time
is given by m. This time, which was dependent solely on SOD concentration and
the SOD catalytic degradation rate kg, corresponds to the characteristic time required
for the re-establishment of equilibrium.

If we assume that SOD concentration and O35~ production change over time (be-
cause of fluctuations in environmental parameters), and that their equilibrium time
values are probably significantly shorter than 1 ms, then the steady-state value of O3~

concentration is always reached but depends purely on O35~ production rate and SOD

catalytic degradation rate (k2), which are time-dependent.
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For each time, we can write that the O3~ concentrationis [0 7] (t) = kz[glﬁ(g}(t)' For
example, with published values [3], O3~ concentration is 2.1 x 107!? M : this value fits
the Imlay prediction well, and it corresponds to the equilibrium between O3~ produc-
tion (parameter k;) and the rate of scavenging of this radical by SOD.

In conclusion, in a wild strain, the two major reactions involving superoxide (its
production and its consumption by SOD) lead to a O3~ concentration at steady state
near 2.1 x 10719 M without fluctuations in environmental parameters. This value corre-
sponds to 0.38 molecule of O3~ and it means that we found approximately 1 molecule

of O3~ per 3 cells per unit of time.

Hydrogen peroxide

In the wild-type strain, without exogenous stress, O3~ equilibrium is rapidly reached,
s0, in terms of changes to internal H,O; concentration, we approach k}+1/2ks [SOD)] [O; _] =
k| + 12ky because [057] ~ [057] . Letus call k] + ki = kprog-
That’s a first point, superoxide dismutation by SOD involved nearly an increase of
25 % in the endogenous H>0O; production.

Moreover, in the absence of exogenous H202, we can consider that :
[HyOo] < KPRt

so the differential equation system can be simplified to a linear system:

d[H20,] KNP Anp) KKt [Catalase]
T — Fprod—

AR Kat
Ky Ky

) [H2Os]—kaip ([H202] — [H202],,,,)
M

Let us assume [H205] 0 (because of low cell density).

out —

Ahp Kat
Let us call kc‘}t( i}?ﬁ d + Fea f ;?Z(flase} = kenz, then the differential equation becomes :
M M
d [H 202]

dt = Rprod — (kenz + kdiff) [HQOQ]
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The approximated H,O, steady state is:

kprod

H>0 =—
[ 2 2]00 kenz+kdiff

After a characteristic time near 2 ms (m), H50+ concentration reaches a
steady state concentration of 21 nM, this value corresponds to mean of 38 molecules

of Hy04 per cell without extrinsic noise.

Hydroxyl radical production

Because of the low characteristic time, we consider the H>0O, steady state concentra-
tion as a constant because it is immediately reached. The HO® production flux (HO*®
amount production per time of unit and volume) is then :

d[HO"]
dt

(1) = hy [Fe] [Ha03)], = SForod Fe]

kenz + kdiff

This result shows a production of 1.8 nM per seconds which corresponds to 3.3
molecules of HO® produced per second. Then produced HO® will damage organic
compounds according to the differential equation leading to HO® evolution.

DNA concentration refers to concentration of nitrogenous bases, this concentration
is setto 5 x 1073 M, corresponding to approximately 4.6 x10° pairs (with the proportion
of each base set at 25 %, which is close to the value proposed by the CBS genome
atlas database of Hallin and Ussery [26]). The rate constant between HO® and DNA is
kpna =4.7x10°M s~ [27].

We then consider N reactions of rate constant k; between an organic X; compound
(orsite) and HO*® (% k; [X;] [HO?®]). For instance Bennett et al. [28] report total metabolome
concentration of 3861mM (100 million metabolites/cell) greatly exceeded the reported
total protein concentration of 7 mM (2.4 million proteins/cell). Nevertheless, with an
average of 400 residues per protein, it represents 2.8 M of feeding sites for HO®.

We assume that fj ki [X;] ~7.3x10% s71 [9], which corresponds to a mean rate con-

i=1
stant of 2x10° M s~! for reaction between HO® and organic compounds.
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According to the production rate and the HO® consumption, the HO® steady state

concentration is

o kg [Fe] [HaO9) B k¢kprod [Fe]
(; ki [ Xi] + kpna [DNA])  (ken: + k?dz‘ff)(; ki [Xi] + kpna [DN A])

HO?* concentration at steady state is 2.5 x 1071 M, this value corresponds to a mean
of 4.6 x1071? molecules of HO®. This result means that we count only 1 molecule per
2.3 x10 cell at a given time without extrinsic noise !

Therefore DNA damage quantity occurs with a rate of :

dnpna,,

ST kpna [DNA][HO® VeeuNa

which corresponds to 0.01 average DNA damage per cell per second or approximately
12 lesions per cell per generation (assuming a generation of 20 minutes and a constant
amount of DNA). For instance, 8-Oxoguanine is one of the most common DNA lesions
resulting from reactive oxygen species and Park et al. [29] reported nearly 200+50
fM/mL of 8-oxoGua per generation (for E. coli Agoo = 1) which represents nearly
120+30 oxidations. On the other hand, when HO® targets nearly 12 DNA per cell per

generation, it also targets 3200 other molecules such as proteins, lipids,...

However this deterministic discussion does not take into account ROS distribution
in cells. Therefore, in the next section, we will introduce the stochastic results. We
present one sample of our results whereas we reproduced multiple simulations which

all present very similar distributions.

The OxyR transcription factor

The E. coli OxyR transcription factor activates the expression of antioxidant defensive

activities such as hydroperoxidase I (katG) and alkylhydroperoxide reductase (ahpCF).
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The oxidation of OxyR leads to the formation of an intramolecular disulfide bond be-
tween cysteine residues 199 and 208 [30] and only oxidized OxyR (noted OxyR,,) is
capable of activating transcription.

Pathways of OxyR oxidation (by H202) and reduction can be divided into the two
main reactions:

OzyRyeq + HaOs 295 OzyRyy + 2Hs0

kRegd

OzxzyR,r + Red — OxyR,eq + Ox

These two different reactions can determine the redox status of OxyR. During nor-
mal growth of E. coli, without exogenous H»Os stress, the reaction rate for the first path-
way is low, so the second pathway is predominant. Under these conditions in wild-
type strains without exogenous stress, the cellular Red/Ox (principally GSH/GSSG)
ratio largely favors reduced OxyR [31]. We then assume that under physiological con-
ditions, OxyR concentration is a constant and is principally reduced. The number of
OxyR copies per cell is approximately estimed at 1300 according to Li et al. [32], there-
fore [OzyR], ~ [OxyR,cq] ~ 0.7uM. Moreover Aslund et al. [31] determined that
koe ~ 10° M~ 1s™ 1.

Aslund et al. also reveals that the half life of OxyR deactivation in cells after treat-
ment with 200 uM of HyOs at ODggp = 0.1 was 17 min, whereas the half life of deac-
tivation in cells at ODgpp = 1.6 became 2 min. This time depends on the capacity of
a culture to metabolize HoO,; of course dense cultures are faster. Moreover this half
life is the sum of the time needed to detoxify the medium (until H>O2 concentration
reached physiological level, it took about 1 minute with dense population, according
to the previous chapter) and the time needed to oxidize then re-reduce OxyR. We can
conclude that half life for the OxyR deactivation (reduction) should be under 1 min.

In fact Aslund et al. [31] reported that the in vitro kinetics were similar to the in vivo
kinetics, complete oxidation of reduced OxyR was observed in 30 sec and a half-time
of deactivation of 5-30 min, but this time takes into account OxyR deactivation and

the detoxification of the medium. For instance, they examined the in vivo kinetics of
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OxyR oxidation and reduction after treatment with 200 uM H0O,. For wild-type cells
(ODgoo = 0.4, we made our simulation with a density of 8 x 107 cell/mL), OxyR was
oxidized fully within 30 sec after H,O; was added and 5 minutes after this treatment,
half of the OxyR protein was reduced (Figure 4.2. Another experiment showed the
half-time of OxyR deactivation in cells at ODgpp = 0.1 (our simulation used 2 x 107
cell/mL) was 17 min. Using kr.q [Red] ~ 0.1 s~land the kinetic constants in our com-
plete deterministic system based on ordinary differential equations (ODE) (presented
in the previous chapter [10]) we reproduced those experiments in the figure 4.1. Those

results are consistent with the experiments of Aslund et al..
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FIGURE 4.1: Numerical simulation of OxyR activation (oxidized) and
deactivation (reduced) when E. coli was treated with 200 uM of H20O; at
ODegoo = 0.1 (left panel) and at ODgpp = 0.4 (right panel)

H,0,
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OxyR — o — o T@duced
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FIGURE 4.2: Extract from Aslund et al. [31]. OxyR activation and deacti-
vation when E. coli was treated with 200 uM of H205 at ODgpo = 0.4

The two chemical reactions of OxyR activation (oxidation) and deactivation (reduc-
tion) lead to the following differential equation:

d [OzyR,ed]

dt = _kOm [H2O2] [OCEered] + kRed [Red] ([OmyR]O - [Oxered])
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Where [OzyR] is the total OxyR concentration in the cell. This equation was added to
the ODE system in order to reproduce the Aslund et al. experiments. At steady state

OxyR,q ratio is:

[OxyRyeq] 1
= kow [ H20
OeyBly 1+ 5=

OxyR is normally inactive during routine aerobiosis. However, Gonzalez-Flecha
and Demple [33] revealed that a intramolecular H>O» concentration ranged from 130
to 250 nM points to the existence of regulatory systems that maintain the normal intra-
cellular H20, level near 21 nM. Indeed the OxyR response is activated by micromolar
levels of external HoO2 and according to the previous chapter [10] 1 uM of external
H>0, corresponds to nearly 130 nM of internal H2O,. Therefore an intracellular H>0O5
concentration of approximately 130-250 nM is sufficient to drive OxyR into its active
form (oxidized) that actively promotes the transcription of a dozen operons around the
bacterial chromosome [34].

In order to run our numerical simulation we propose the following constants close

to the one approximately proposed by Aslund et al. [31]:
koz =1 x 105 M 1s7L; kg [Red] = 0.1 s7%; [Ozy R], = 0.7 uM (1300 copies)

kog value is also consistent with Lee et al.s” measurements [35]. We also reproduce
Aslund et al.s” experiments looking for in vivo minimum concentrations of HyO5 re-
quired to oxidized OxyR. We also found that the lowest concentration of exogenously
added H»0, able to oxidize 50 % of OxyR within 30 sec is near 5 uM (this external
concentration corresponds to 750 nM of initial internal H»O2). We can compare our
simulation (Figure 4.3) with the results of Aslund et al. and Tao [36] (Figure 4.4). Ac-
cording to Tao [36] who reproduced Aslund et al., nearly all the OxyR is found to be
in the oxidized form after 40 M of external HyO- (this external H>O- concentration
corresponds to nearly 15 M of an internal H>0O; concentration).

Using our kinetic constants, we also calculated:

[OxyR'red]

* TowyR],

~ 98% when [H202] = 21 nM (internal H20O> physiological concentra-

tion).
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FIGURE 4.3: Simulation of OxyR (reduced form) in vivo activation fol-
lowing exposure to increasing concentrations of H;O5
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FIGURE 4.4: Extract from Aslund et al. [31] (left panel) and Tao [36] (right
panel). OxyR activation and deactivation when E. coli was treated with
increasing concentrations of external H>O,
o [OzvRicd . g307 wwhen [H202] = 130 nM (internal H,O, minimal activation con-

[OzyR],

centration corresponding to 1 uM of external H»O2 concentration)

J [[Oggiﬁi‘l] ~ 57% when [H205] = 750 nM (internal H,0, concentration needed to
oxidize nearly half of oxyR, it corresponds to 5 M of external H>O; concentra-
tion)

[OxyR'red]

* Oawyn],

~ 6% when external [H2O3] = 40 uM (external H,Os concentration

needed for a complete OxyR oxidation according to Tao)

These values obtained with our model are consistent with the experimental data. Un-
der physiological conditions OxyR principally remains in its reduced form, and its acti-
vation triggers near 200 nM of intracellular H,O5. According to those values, numerical
simulations will start with a total amount of 1300 molecules of OxyR divided into 1273
(98 %) reduced molecules and 27 oxidized forms. OxyR response started to be activated

beyond 12 % of oxidation which corresponds to 156 oxidized molecules (greater than
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the 27 initial oxidized forms). The next section will show that even stochastic effects
could not trigger OxyR response because OxyR oxidized forms distribution is not large

enough.

4.3.2 Stochastic results

According to the kinetic constants used in the previous section, we implemented a
stochastic simulation lasting 200 seconds. This time is short enough to neglect biolog-
ical induction (for instance DNA repair) and long enough to reach a chemical steady-
state comportment for cell molecules. Indeed chemical characteristic times are lower

than 1 ms because of kinetic rate constant high value.

Superoxide distribution

The figures 4.5 and 4.6 show O3~ homogeneous distribution around an average value
of 0.366 molecule (consistent with deterministic calculation obtained after 200 s). The
figure 4.7 indicates the maximum number of O3~ molecules observed in a cell, it shows
that cells sometimes have to fight between 6 to 10 O3~ molecules which represent 20 to
30 times the average value. If most cells experience 0 or 1 O3~ at a given time, they can
however fight a bigger account in a short period. Nevertheless, the average number of
O3~ is evenly distributed on all cells according to the figures 4.6 and 4.8. We can also
notice (figure 4.9) that the total amount of O experiences by cell is homogeneously
distributed between 2.046 and 2.058 million (during 200 s of simulation) of oxidative
molecules which represent a very narrow range. Of course, this high value is consis-
tent with the deterministic expression k1tV;, N4 = 2.052 millions (where N4 ~ 610?3
mol~lis the Avogadro constant). Those observations let us think that significant fluc-
tuations are not hazardous to cell and that cell evolution seems to be more sensitive to
the global oxidative impact.

By comparing the concentrations of O3~ found in cells without oxidative stress with
the concentrations necessary to disrupt cell functions, Imlay and Fridovich [37] show

that 15 uM paraquat decrease 10-fold the growth rate of E. coli. They also indicated



Chapter 4. ROS stochasticity can explain single cell biological specialization

121

O, number at 200.0 s

0.7

0.6

o
&

Frequency (%)
o o
w B

o
]

°
-

0 1 2 3 4 5

0O,~ (molecules/cell)

FIGURE 4.5: Superoxide number in each cell represented in a square
lattice of 32 by 32 cells (left panel) and Superoxide distribution histogram
(right panel). O3~ number is given after 200 seconds of the stochastic
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FIGURE 4.6: Superoxide average number in each cell represented in a

square lattice of 32 by 32 cells (left panel) and the corresponding stan-

dard deviation. O3~ average value and standard deviation have been
calculated after 200 seconds of the stochastic simulation.
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that 15 uM paraquat should raise the steady-state O3~ concentration to 4 nM which

represents an average value of nearly 7 molecules of O3~ per cell. According to our

simulation (figure 4.7) nearly all cells met more than 7 molecules of O3~ as maximum

number whereas the average value is only 0.37. This result confirms the idea that cell

are sensitive to the average number and cumulative damage caused by O3~ and not by

the maximal number. Figure (4.10) shows the fate of one cell that indeed met a maxi-

mum number of O3~ equal to 7 in a tiny time interval; we noticed that this evolution

looks like a Dirac comb therefore it confirms that the maximum number does not have



122 Chapter 4. ROS stochasticity can explain single cell biological specialization
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FIGURE 4.7: Superoxide maximal number in each cell represented in

a square lattice of 32 by 32 cells (left panel) and Superoxide maximal

number distribution histogram (right panel). O3~ maximal number is
calculated after 200 seconds of the stochastic simulation.
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FIGURE 4.8: Superoxide average number in cell versus time for a system

of 1032 cells. O3~ average value has been calculated during 200 seconds
of the stochastic simulation.

a real influence. This result agrees with the one we developed with H,O, [10].
Moreover Imlay and Fridovich [37] estimated that 100 uM of paraquat should raise
the steady-state O3~ concentration to 27 nM which represents nearly 48 molecules of
O3~ per cell which is 100-fold more than the average number of O3~ without oxidative
stress and even 5-fold more than the maximum number (Figure 4.7) observed in our
simulations. Hassan and Fridovich [38] indicated that 100 ;M of paraquat only doubles
the amount of SOD. Actually SOD efficiency (because of a very high turn over) is so

important that it does not need a large number of copies.
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FIGURE 4.9: Superoxide total number produced in each cell represented

in a square lattice of 32 by 32 cells (left panel) and Superoxide total num-

ber produced distribution histogram (right panel). O3~ total number is
calculated after 200 seconds of the stochastic simulation.
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FIGURE 4.10: Superoxide number evolution in one cell during a narrow
time interval. O3~ number is calculated using the stochastic simulation
following the NSM method.

Ding and Demple [14] reported that SoxR [2Fe-2S] clusters were completely ox-
idized after only 2-min aerobic exposure of the cells to superoxide-generating agents
using 100 uM paraquat. Then sox S transcript reached a steady state within 10 min (and
a half life near 5 min) of aerobic exposure to 100 xM of paraquat. This 5 min half life
strongly depends on the paraquat concentration as reported by Lu et al. [39], therefore

if 100 uM of paraquat corresponds to a steady state of 48 O~ molecules with a 5 min
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half life, a steady state of 0.38 molecule of O3~ should give a half life long enough to

neglect soxRS response.

Hydrogen peroxide distribution

H>03 molecules follow different ranges and kinds of distribution comparing number,
maximal number or total production of molecule. Indeed, figure 4.13 indicates that
the maximum number of H>O3 molecules observed in a cell ranges between 68 and 84
molecules which is approximately twice the average value close to 38 (figure 4.12 and
4.14) or four times the minimum value observed in figure 4.11 after 200 s. Nevertheless,
the standard deviation is only about 6 molecules. These results are consistent with
the deterministic prediction. However, we can also notice (figure 4.15) that the total
amount of HyOy experiences per cell is distributed between 5.336 and 5.354 billions
of H>0, molecules which represent a very narrow range. Therefore, all cells suffer
the same cumulative amount of H,O, with some short time interval of insignificant
oxidative fluctuation.

H,O, number at 200.0 s
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FIGURE 4.11: Hydrogen peroxide number in each cell represented in a
square lattice of 32 by 32 cells (left panel) and Hydrogen peroxide distri-
bution histogram (right panel). H;O; number is given after 200 seconds
of the stochastic simulation following the NSM method.
OxyR distribution

OxyR oxidized molecules follow a narrow range distribution centred around 27 + 7

molecules with a standard deviation near 5 + 3 molecules (figures 4.16 and 4.17). This
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FIGURE 4.12: Hydrogen peroxide average number in each cell repre-

sented in a square lattice of 32 by 32 cells (left panel) and the corre-

sponding standard deviation. H>O, average value and standard devia-

tion have been calculated after 200 seconds of the stochastic simulation
following the NSM method.
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FIGURE 4.13: Hydrogen peroxide number in each cell represented in a

square lattice of 32 by 32 cells (left panel) and Hydrogen peroxide distri-

bution histogram (right panel). H,O2 number is given after 200 seconds

of the stochastic simulation following the NSM method.

average value is approximately constant in time (figure 4.19) and even the maximum
number of molecules does not deviate too far (figure 4.18) and does not exceed twice
the initial value (maximum is 54 and average value of the maximal OxyR activated
form is 38). Unlike O35~ and H20O» which have a small number of copies, OxyR (oxi-
dized) molecules present a large number of copies which reduces the effect of stochas-
ticity.

Moreover the correlation coefficient between maximum oxidized OxyR molecules
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FIGURE 4.14: Hydrogen peroxide average number in cell versus time
calculated for a system of 1032 cells. H,O; average value has been cal-
culated during 200 seconds of the stochastic simulation following the

NSM method.
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peroxide total number produced distribution histogram (right panel).

H>0O5 total number is calculated after 200 seconds of the stochastic sim-

ulation following the NSM method.

number and maximum H>0, molecule number is (over all simulations) lower than 5
%. Figure 4.20 shows a scatter plot example where the correlation coefficient is only 0.7
%, this figure contains no ambiguity concerning the independence of the two variables.
We conclude that the data pairs are not correlated at physiological concentration.
Cells with a maximum number of oxidized OxyR are not automatically those with the

maximum number of H»O. Of course this assertion should change at non-physiological

H->04 concentrations. Simulations show a maximum number of H,0O- molecules near
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85, this value is below a concentration of 50 nM which is also below the 130 nM the
minimal internal H>O5 concentration required for OxyR activation [40, 41].

Finally, after testing multiple statistical laws for OzyR,, distribution we find that
the probability that OxyR,, exceed 150 copies (minimum required for activation) is
almost rigorously null. We conclude that under physiological conditions (and with the
hypothesis used in our model) no cell activates OxyR. Indeed the maximal oxidized

OxyR proportion hardly reaches 5 % which is insufficient.

OxyR number at 200.0 s
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FIGURE 4.16: OxyR number in each cell represented in a square lat-

tice of 32 by 32 cells (left panel) and OxyR distribution histogram (right

panel). OxyR number is given after 200 seconds of the stochastic simu-
lation following the NSM method.
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FIGURE 4.17: OxyR average number in each cell represented in a square

lattice of 32 by 32 cells (left panel) and the corresponding standard de-

viation. OxyR average value and standard deviation have been calcu-

lated after 200 seconds of the stochastic simulation following the NSM
method.
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FIGURE 4.18: OxyR maximal number in each cell represented in a square

lattice of 32 by 32 cells (left panel) and maximal OxyR distribution his-

togram (right panel). OxyR number is given after 200 seconds of the
stochastic simulation following the NSM method.
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FIGURE 4.19: OxyR average number in cell versus time for a system of

1032 cells. OxyR average value was calculated during 200 seconds of the
stochastic simulation following the NSM method.

DNA distribution

Numerical simulations do not consider DNA repair, therefore we only count DNA
nicks by HO® and observed their distributions over the 1032 cell set over the 32 by
32 square lattice. One example of simulation results is shown in figure 4.21. The DNA
damage distribution follows a Poisson distribution with parameter A\ = 2,1 (average
number of DNA damage). We use the Kolmogorov-Smirnov statistic on 2 samples [47].
This is a two-sided test for the null hypothesis that 2 independent samples are drawn

from the same continuous distribution. Over all simulations, the K-S statistic is about 1
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FIGURE 4.20: Scatter plot of OzyR,, maximal number in cell versus
H>02 maximal number for a system of 1032 cells. Values have been

calculated during 200 seconds of the stochastic simulation following the
NSM method.

% (small enough) and the p-value is about 99 % (high enough), so we cannot reject the
hypothesis that the distributions of the two samples are the same. The Poisson distribu-
tion is often called the law of small numbers because it corresponds to the probability
distribution of the number of occurrences of an event that happens rarely but has very
many chances of happening. This distribution seems to fit DNA damage distribution
perfectly.

Moreover the correlation coefficient between maximum Hs0O; molecules number
and DNA damage number is lower than 3 %. It indicates that the data pairs are not
correlated at physiological concentration. Cells with maximum number of DNA lesions
are not necessarily those with the maximum number of H>O.

So, under physiological conditions, DNA damage distribution is only due to the
inherent stochastic mechanism of chemical reactions. According to the simulation, we
can notice that during 200 s, about 65 % of cells suffer less than 2 lesions whereas one
unlucky cell has to fight 8 lesions (four times the average value). This unlucky cell has
an average number of H2O; of 38 with a maximum value of 75, once again there is no
correlation between the H>O; molecules number and DNA damage. Indeed, following
the Poisson distribution, we can check that the probability for a cell to get £ = 8 DNA

lesions is P(k = 8) = 7\9_];6_/\ R~ %. This means that taking 870 cells we will get one cell
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with 8 types of damage (on average). We can also notice that about 13 % of cells show
no damage. So because damage rarely happen, it involves a large distribution which
highly segregates cells. And this is only a consequence of chemical properties, here we
do not take into account biological induction.

Here we implemented the simulation with 1032 cells, but with the same reasoning
and according to Poisson distribution, we can say that taking 109 cells we will find one
cell with 16 type of damage (on average). This value is 8 times the mean value whereas
the H>O5 average number still remains on 38 molecules. This is an extraordinary high
value, in order to reach this number of types of damage as an average value H>O> in-
tracellular should be at least 8 times. Indeed, average DNA lesions are proportional
to average [HO®] which is proportional to average [H20>]. Under physiological condi-
tions [H203] is about 21 nM. So in order to observe an average value of 16 DNA lesions,
intracellular [H,0O5] should rise to about 170 nM. Moreover because of the flux gradi-
ent between external medium and intracellular medium, 170 nM of intracellular [H505]
corresponds to approximately 1.5 uM of external H2O; [10]. At those concentrations,
defence mechanisms must be on the alert and OxyR must be activated. Nevertheless,
the unlucky cell which has suffered the 16 DNA lesions under physiological conditions
has not activated OxyR (because H>O, concentration is too low) but it will probably
trigger the regulation of DNA-repair (after an induction delay), and this cell will then
be ready to respond to adverse environmental conditions. So what we thought to be
misfortune can turn out to be an advantage over other conditions. Therefore chemical
stochasticity can explain the robustness of some cells or the deployment of specialized
cells. This is an example of rare event concerning a single molecule that involves im-

portant biological consequences.
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Total amount of DNA damage after 200.0 s
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FIGURE 4.21: DNA types of damage number in each cell represented
in a square lattice of 32 by 32 cells (left panel) and DNA damage dis-
tribution histogram with the theoretical Poisson distribution in dashed
line style (right panel). DNA damage number is given after 200 seconds
according to our stochastic simulation following the NSM method.






Bibliography

[1]

2]

(8]

[9]

[10]

S. Arrhenius, Uber die Dissociations arme und den Einfluss der Temperatur.

Wilhelm Engelmann, 1889.

H. Eyring, “The activated complex in chemical reactions”,

The Journal of Chemical Physics, vol. 3, no. 2, pp. 107-115, 1935.

J. Imlay and I. Fridovich, “Assay of metabolic superoxide production in es-

cherichia coli.”, Journal of Biological Chemistry, vol. 266, no. 11, pp. 69576965,

1991.

R. Losick and C. Desplan, “Stochasticity and cell fate”, Science, vol. 320, no. 5872,

pp. 65-68, 2008.

G.-W. Li and X. S. Xie, “Central dogma at the single-molecule level in living

cells”, Nature, vol. 475, no. 7356, pp. 308-315, 2011.

N. G. Van Kampen, Stochastic processes in physics and chemistry. Elsevier, 1992,

vol. 1.

E. Hidalgo and B. Demple, “Adaptive responses to oxidative stress: The

soxrs and oxyr regulons”, in Regulation of gene expression in Escherichia coli,

Springer, 1996, pp. 435—452.

G. Storz and J. A. Imlay, “Oxidative stress”, Current opinion in microbiology,

vol. 2, no. 2, pp. 188-194, 1999.

L. Uhl, A. Gerstel, M. Chabalier, and S. Dukan, “Hydrogen peroxide induced cell

death: One or two modes of action?”, Heliyon, vol. 1, no. 4, e00049, 2015.

L. Uhl and S. Dukan, “Hydrogen peroxide induced cell death: The major de-
fences relative roles and consequences in e. coli”, Plos One, vol. 11, no. 8§,

e0159706, 2016.

133



134

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. C. Seaver and J. A. Imlay, “Hydrogen peroxide fluxes and compartmental-

ization inside growing escherichia coli”, Journal of bacteriology, vol. 183, no. 24,

pp. 7182-7189, 2001.

——, “Alkyl hydroperoxide reductase is the primary scavenger of endogenous

hydrogen peroxide in escherichia coli”, Journal of bacteriology, vol. 183, no. 24,

pp. 7173-7181, 2001.

I. R. Tsaneva and B. Weiss, “Soxr, a locus governing a superoxide response reg-

ulon in escherichia coli k-12.”, Journal of bacteriology, vol. 172, no. 8, pp. 4197-

205, Aug. 1990.

H. Ding and B. Demple, “In vivo kinetics of a redox-regulated transcriptional

switch.”, Proceedings of the National Academy of Sciences of the U.S.A., vol. 94,

no. 16, pp. 8445-9, Aug. 1997.

J. W. Little and M. Gellert, “The sos regulatory system: Control of its state by the

level of reca protease”, Journal of molecular biology, vol. 167, no. 4, pp. 791-808,

1983.

M. Sassanfar and J. W. Roberts, “Nature of the sos-inducing signal in escherichia

coli. the involvement of dna replication.”, Journal of molecular biology, vol. 212,

no. 1, pp. 79-96, Mar. 1990.

S. L. Lusetti and M. M. Cox, “The bacterial reca protein and the recombinational

dna repair of stalled replication forks.”, Annual review of biochemistry, vol. 71,

pp. 71-100, 2002.

M. M. Cox, “Regulation of bacterial reca protein function”,

Critical reviews in biochemistry and molecular biology, vol. 42, no. 1, pp. 41-63,

2007.

O. Goerlich, P. Quillardet, and M. Hofnung, “Induction of the sos response
by hydrogen peroxide in various escherichia coli mutants with altered protec-

tion against oxidative dna damage.”, Journal of bacteriology, vol. 171, no. 11,

pp. 6141-6147, 1989.



BIBLIOGRAPHY 135

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

N. Friedman, S. Vardi, M. Ronen, U. Alon, and J. Stavans, “Precise temporal mod-
ulation in the response of the sos dna repair network in individual bacteria”,

PLoS biol, vol. 3, no. 7, €238, 2005.

D. T. Gillespie, “A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions”, Journal of computational physics, vol.

22, no. 4, pp. 403434, 1976.

——, “Exact stochastic simulation of coupled chemical reactions”,

The journal of physical chemistry, vol. 81, no. 25, pp. 2340-2361, 1977.

J. Elf, A. Doncic, and M. Ehrenberg, “Meso-
scopic reaction-diffusion in intracellular signaling”, in

SPIE’s First International Symposium on fluctuations and noise,  International

Society for Optics and Photonics, 2003, pp. 114-124.

J. Elf and M. Ehrenberg, “Spontaneous separation of bi-stable
biochemical systems into spatial domains of opposite phases”,

IEE Proceedings-Systems Biology, vol. 1, no. 2, pp. 230-236, 2004.

G. van Rossum, “Python tutorial”, Report CS-R9526, Apr. 1995, pp. iii + 65.

P. F. Hallin and D. W. Ussery, “Cbs genome atlas database: A dynamic stor-
age for bioinformatic results and sequence data”, Bioinformatics, vol. 20, no. 18,

pp. 3682-3686, 2004.

H. B. Michaels and J. Hunt, “Reactions of the hydroxyl radical with polynu-

cleotides”, Radiation Research, vol. 56, no. 1, pp. 57-70, 1973.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Ra-
binowitz, “Absolute metabolite concentrations and implied enzyme active site

occupancy in escherichia coli”, Nature chemical biology, vol. 5, no. 8, pp. 593—

599, 2009.

E.-M. Park, M. K. Shigenaga, P. Degan, T. S. Korn, J. W. Kitzler, C. M. Wehr, P.

Kolachana, and B. N. Ames, “Assay of excised oxidative dna lesions: Isolation of



136 BIBLIOGRAPHY

8-oxoguanine and its nucleoside derivatives from biological fluids with a mon-

oclonal antibody column.”, Proceedings of the National Academy of Sciences,

vol. 89, no. 8, pp. 3375-3379, 1992.

[30] M. Zheng, F. Aslund, and G. Storz, “Activation of the oxyr transcription factor by
reversible disulfide bond formation”, Science, vol. 279, no. 5357, pp. 1718-1722,

1998.

[31] E Aslund, M. Zheng, ]. Beckwith, and G. Storz, “Regulation of the oxyr tran-
scription factor by hydrogen peroxide and the cellular thiol—disulfide status”,

Proceedings of the National Academy of Sciences, vol. 96, no. 11, pp. 6161-6165,

1999.

[32] G.-W. Li, D. Burkhardt, C. Gross, and J. S. Weissman, “Quantifying absolute
protein synthesis rates reveals principles underlying allocation of cellular re-

sources”, Cell, vol. 157, no. 3, pp. 624-635, 2014.

[33] B. Gonzdlez-Flecha and B. Demple, “Homeostatic regulation of intracellu-
lar hydrogen peroxide concentration in aerobically growing escherichia coli.”,

Journal of bacteriology, vol. 179, no. 2, pp. 382-8, Jan. 1997.

[34] ]. A.Imlay, “The molecular mechanisms and physiological consequences of ox-

idative stress: Lessons from a model bacterium”, Nature Reviews Microbiology,

vol. 11, no. 7, pp. 443-454, 2013.

[35] C. Lee, S. M. Lee, P. Mukhopadhyay, S. J. Kim, S. C. Lee, W.-S. Ahn,
M.-H. Yu, G. Storz, and S. E. Ryu, “Redox regulation of oxyr requires
specific disulfide bond formation involving a rapid kinetic reaction path”,

Nature structural & molecular biology, vol. 11, no. 12, pp. 1179-1185, 2004.

[36] K. Tao, “In vivo oxidation-reduction kinetics of OxyR, the transcriptional activa-
tor for an oxidative stress-inducible regulon in Escherichia coli”, FEBS Lett., vol.

457, no. 1, pp. 90-92, Aug. 1999.

[37] K.J.Davies, Oxidative damage & repair: Chemical, biological and medical aspects.

Elsevier, 2013.



BIBLIOGRAPHY 137

[38] H. M. Hassan and I. Fridovich, “Paraquat and escherichia coli. mechanism of

production of extracellular superoxide radical.”, Journal of Biological Chemistry,

vol. 254, no. 21, pp. 10 846-10 852, 1979.

[39] C. Lu, C. R. Albano, W. E. Bentley, and G. Rao, “Quantitative and ki-
netic study of oxidative stress regulons using green fluorescent protein.”,

Biotechnology and bioengineering, vol. 89, no. 5, pp. 574-87, Mar. 2005.

[40] S. Park, X. You, and J. A. Imlay, “Substantial dna damage from submicromolar
intracellular hydrogen peroxide detected in hpx-mutants of escherichia coli”,

Proceedings of the National Academy of Sciences of the United States of America,

vol. 102, no. 26, pp. 9317-9322, 2005.

[41] S.Jang and J. A. Imlay, “Micromolar intracellular hydrogen peroxide disrupts

metabolism by damaging iron-sulfur enzymes”, Journal of Biological Chemistry,

vol. 282, no. 2, pp. 929-937, 2007.

[42] F. ]J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit”,

Journal of the American statistical Association, vol. 46, no. 253, pp. 68-78, 1951.







Chapter 5

Conclusions and perspectives

This thesis presents multiple aspects of ROS dynamic with both analytical or theoretical
demonstrations and deterministic or stochastic numerical simulations. We have shown
that our models can be used to interpret or even predict some experimental results. Let
us come back to the main results presented in this thesis.

Our work first deals with Imlay and Linn [1] two modes of Escherichia coli cell killing
experiments. A simple model demonstrates (mathematically and numerically) that free
available iron decrease is necessary to explain in vitro or in vivo mode one killing which
cannot appear without it and that H,Oy quenching or consumption is not responsible
for mode-one death. Moreover using our model, we were also able to demonstrate that
cell density is strongly involved in HO® dynamic and by consequence in DNA oxida-
tion within E. coli. Indeed, without taking into account the evolution of free available
iron or cell density, we were not able to reproduce mode one killing experimental re-

sults obtained in the literature.

In order to evaluate the major defences relative roles against H,O, we investigated
the relative contributions of the various reactions to the dynamic system and searched
for approximate analytical solutions for the explicit expression of changes in H>0; in-
ternal or external concentrations. Although the key actors in cell defence are enzymes
and membrane, a detailed analysis shows that their involvement depends on the H20,
concentration level. Actually, the impact of the membrane upon the H>O, stress felt

by the cell is greater when micromolar H>O> is present (9-fold less H20Os in the cell
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than out of the cell) than when millimolar H5O, is present (about 2-fold less H>O» in
the cell than out of the cell). The ratio between maximal external H,0O> and internal
H>05 concentration also changes, reducing from 8 to 2 while external H,O, concentra-
tion increases from micromolar to millimolar. This non-linear behaviour mainly occurs
because of the switch in the predominant scavenger from Ahp (Alkyl Hydroperoxide
Reductase) to Cat (catalase). The phenomenon changes the internal H>O2 maximal con-
centration, which surprisingly does not depend on cell density. The external H,O- half-
life and the cumulative internal H>0O5 exposure do depend upon cell density. Based on
these analyses and in order to introduce a concept of dose response relationship for
H>0»-induced cell death, we developed the concepts of “maximal internal H>O; con-
centration” and “cumulative internal H2O2 concentration” (e.g. the total amount of
H>05). We predict that cumulative internal H>0O5 concentration is responsible for the
H>0>-mediated death of bacterial cells. This study also allows us to better interpret Ma

and Eaton’s [2] experiments which consider different E. coli mutants and cell densities.

It has also recently been suggested that the carbonate radical (CO3 ™), generated by
a reaction between HO® and carbon dioxide C'O,, are formed in E. coli [3], increasing

the known range of ROS.

HO®* +COy — HY +CO3~

However, no direct proof has yet been obtained for the existence of this new ROS in
vivo. Indeed, the methods used to study short-lived species, such as the spin trap-
ping of radicals, cannot easily differentiate between HO® [4]. Ezraty [5] showed that
increases in atmospheric C'O, concentrations are associated with an increase in DNA
damage estimated by 8-oxo-guanine levels. Our team (Audrey Gerstel unpublished
data) also measured p-nitrosodimethylaniline (pNDA) oxidation via a Fenton system
(Fe(I1)/H202 — 75 uM iron) experimentally, at two different concentrations of atmo-
spheric CO3 : 0 and 1000 ppm. We found that pNDA oxidation was dependent on

CO7 concentration. These two in vitro experiments show that, contrary to Ezraty in
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vivo results, increases in C'O» ,, concentration lead to a decrease in Fenton oxidation
efficiency. Therefore, we investigated whether the simulation of ROS/CO, ,, interac-
tions in vivo could account for those experimental results. Our in silico experiments
could partially explain some experimental results, but they are strongly dependent on
the rate constants which are not well known. We have to deeper our model in order
to avoid some contradictory results, then we hope to unify in vitro, in vivo and in silico
observations.

Our team (Audrey Gerstel unpublished data) also reproduced mode one killing ex-
periments with different E. coli mutants (for example OxyR null mutant), cell densities
or C'O, atmospheric various partial pressures (which involve various C'O; 4, concen-
tration according to Henry’s Law). In silico experiments were able to reproduce exper-
imental results but some missing data (for example E. coli COy(,4) production in LB)
were invented to test our model. Experimental results show a high dependency upon
CO», but to complete our mathematical model we first have to perform more in vivo

experiments in order to obtain more rate constants or missing data.

The last chapter of the thesis looks closely at on the single cell, a micro-system
where chemical reactions may proceed in a deterministic manner because only a few
types of molecule exist in a cell, therefore stochastic effects can become predominant.
We showed that elementary chemical stochasticity allows bacteria to segregate special-
ized cells in prevision of possible stress challenge. Actually, whereas ROS distribution
does not activate defence regulation without exogenous stress, we demonstrated that
this distribution may activate DNA repair mechanism because DNA damage shows a
very large range distribution following a Poisson distribution which perfectly describes
rare events. Moreover superoxide, hydrogen peroxide, OxyR and DNA damage dis-
tributions caused by hydroxyl radical are not statistically correlated. DNA damage
distribution is only due to the fact that DNA nicks are the result of a succession of
rare events which involve a small number of molecules. To complete this stochastic

approach, we could improve the model by adding the SoxR transcription factors and
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eventually the SOS response, but this improvement will have to be tested over a longer
period in order to be significant. Then simulations could be compared with SOD ex-
perimental distribution obtained by our team. Finally we could also imagine adding

CO» interactions with ROS to examine its involvement in cell DNA bases damage.

Using biological, chemical, physical, mathematical or computational models, this
interdisciplinary thesis can lead to a better understanding of the ROS dynamic but it

also confirms to scientists the interest there is in blending together scientific fields.
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Appendix A

Numerical methods for ODE

A.1 Runge-Kutta

A.1.1 ODE discretization

This part studies the following first order differential equation which is a Cauchy prob-

lem.
W — f(to(t) 0<t<T

v(0) = v

where f : [0,7] x R — R is a continuous function and vy € R.

For the numerical approximation, A is the fixed step size of the uniform subdivision
(tn)nepo,ny from the interval [0, T]: ¢, = nh and ¥, represents the numerical approxi-
mation of v, = v(t,) for 0 < n < N. The different methods exposed here are one-step

methods because the determination of 9,4 is made knowing the previous value v,,.

A.1.2 Runge-Kutta methods (RK)
Presentation

The general form of the Runge-Kutta methods is
f)n-i—l = Up + h® (tn7 ﬁnv h)

where @ is called the increment function. It is defined by:

P (tn,f)n,h) = Z biki with Vi € [[1,8]], ki = f (tn + Cz‘h,f)n +h Z aijk:j>
i=1 =1

=
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TABLE A.1: Butcher table for RK methods

c1 | ann aiz ... ais

C2 a1 a2 azs

Cs as] As2 ... Udsg
bl b2 A bs

s represents the method number of level.
The coefficients a;;, b; et c¢; characterize completely one RK method. The following table
outlines the choice of coefficients (Butcher table).

The Runge-Kutta methods are based on the increase in the number s of the function
evaluation in order to ameliorate the accuracy of the numerical approximation. When
the a;; coefficients are null for j > i,¢ = 1,2,..., s then each k; can be found explicitly
with the ¢ — 1 previous coefficients. The RK method is then explicit, otherwise it is
implicit. In other words, if the a;; is a lower triangular matrix with a null diagonal, the

RK method is explicit

Method Construction

Let us rewrite the differential equation with a view to integrating the expression

dzé(tt) = f(t,v(t)) or du(t) = f (t,v(t))dt
After integration between ¢,, and ¢, 1, it gives:
tn+1
v (tns1) =0 (tn) + / f(ru(r))dr

tn

The RK numerical scheme proposes to integrate the function f : ¢t — f (¢,v(t)) thanks
to a classic quadrature method. The simplest way approximate f with its value f(t,),

is the rectangle method:

v (thrl) =0 (tn) + / f (tn’{}(tn)) dr = v (tn) +f (tnaﬁ(tn)) / dr
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TABLE A.2: Butcher table for Euler method

0
1
TABLE A.3: Butcher table for modified Euler method

0 0
Up| 1 0
0 1

then

f[)nJrl = f[)n + hf(tna fDn)

And we find again the Euler method presented in 1. Its Butcher table is: With the

midpoint method, the numerical scheme becomes:
Unt1 = On + hf(tn + Y2, 0, 1,)
by replacing Uyl =0 (tn + 1oh) = 0y + Yohf(ty, 0, ) with the Euler method:
Upy1 = Un + hf(tn + 1oh, Op + 120 f (tn, On))
We find the modified Euler method The trapezoidal rule gives the Heun method

2~}nJrl = Up + g [f(tm{}n) + f (thrlaﬁn + hf(tmﬁn))]

TABLE A.4: Butcher table for Heun method
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TABLE A.5: Butcher table for the RK4 method

0 0

1y h 0

1 0 12 0

1 0 0 10

‘ 1/6 2/6 2/6 1/6

TABLE A.6: Butcher table for Newton method

0 0

1/3 130

2/y “ls 1 0
1 1 -1 10

| s 3k 3k s

In order to get higher order method we need to develop the exact solution v,, but
also the numeric one ¢, with a Taylor series expansion near » = 0. A comparison
between h' coefficients for i = 1,...,p gives conditions for the parameters a;; et b;.
Avoiding calculi, we simply show some Butcher Tables found in literature ([1] and [2]).

The first one is based on Simpson’s rule, it is the “famous” RK4 method. It needs 4

evaluations of the function f and it is an explicit method. We can also write
ki=f (tm 611)

h _ h
k2 —f <tn+§7vn+ §k1>

h _ h
ks = f <tn+§7vn+ §k2>

ky = f (tns1,0n + hks3)
5 N h
Up4+1 = Up + E [kl + 2ko + 2k3 + /{34]

The next method also uses 4 evaluations but it is found according to Newton’s rule.

This table gives the following numerical scheme:
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TABLE A.7: Butcher table for Cash-Karp method

0 0

s s 0

310 3/10 910 0

6/10 310 =910 12/14 0

1 —1l/5y 5/ ~T0/57 35/07 0

g | 1631/55996 175/519 575/13804  44275/110592  253/4096 0

37/378 0 25021 125 /594 0 512/1771
2825 /97648 0 18575 /18384 13525 /550096 277/14336 1y
kl = f (tn, 611)

h _ h
k2 :f <tn+§7vn+ §k1>

2 h
ky = f (tn + i~ gh hk2>

ky = f (tns1,0n + hky — hko + hks)
- . h
Up41 = Up + g [/{?1 + 3ko + 3k3 + /{:4]

The Cash-Karp method uses 6 evaluations of the function but it offers a 4 or 5 order
approximation depending on the choice of the b; coefficients.

The first line of the b; coefficient gives the 5 order method whereas the second one
proposes a 4 order method.

Finally the Runge-Kutta-Fehlberg method also uses 6 evaluations of the function
and it proposes a 4 or 5 order approximation depending on the choice of the b; coeffi-
cients. The first line of the b; coefficient gives the 4 order method whereas the second

one proposes a 5 order method.

A.2 Adaptative RK methods

Chemical or biological systems are kinetically described with a high number of reac-
tions. This generally leads to a system of non linear differential equations. Concentra-

tions (notation C; for the i’ reactant among a total of N reactants) are the time functions
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TABLE A.8: Butcher table for Runge-Kutta-Fehlberg method

0 0
Ly Ly 0
12/35 3/32 932 0
12/131 1932/3197  —T200/3197  T296/5197 0
1 439416 -8 3680/513 8454104 0
L —8o7 2 —354d /565 185974904 — 0
25/16 0 1408 /o565 2197/4104 1 0
16/135 0 6656/19805  28561f56430 950 2/55

we have to calculate. The numerical resolution depends on the constants rate (k;) and
the orders («a;) of each reaction. The dynamical system can be written with a matrix

structure.

0 — F(t,C) witht € [0,T)

C(0) = Cy

where F : [0,T] x RY — R¥ is a continuous function ; Cyp € RY and F : C +— F(O)
depends on the constants rate k; and the orders ;. Overall, RK methods obey the
following scheme:

Cn+1 = én + h® (tm éna h)
where ® is the increment function.
0] <tn, C’n, h) = z /BZKZ with Vi € [[1, S]] , K = f <tn + (5Zh, C’n +h z Oéinj>
i=1 =1

s is the method number of stages.

The timescale over which chemical reactions occur covers many orders of magni-
tude. Without detailing the whole concept of convergence, RK methods converge and
therefore are accurate enough only if the step size h is lower than the smallest charac-
teristic time in the dynamical system. For instance, in E. coli, O3~ dismutation by SOD
presents a half life of ;=25 us ([3]) whereas H,O5 dismutation by catalase shows a half
life of 75 =10 ms ([4]). In order to solve H20O; evolution the step size of the numerical
method has to be smaller than 75, but with a view to solving O3~ evolution it has to be

under 7. Of course to approximate both evolutions, the step size has to be below the
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smallest half life. Let us first take h =1 us. After 100 ps (four times the half life of O57)
O3 has practically reached its steady state. The algorithm has run 100 time points. In
order to observe 1 second with the same step size, the algorithm has to undergo a total
of 1 million points of time evaluation. That number can decrease if we increase step
size, indeed H20O; evolution is slower. The method has to adapt the step size, small for
fast evolution and high for slow evolution.

In order to adapt the step size h, we have to evaluate the local error. In practice
the local error is estimated a posteriori because it is easier than a priori. The method
strategy uses two RK methods with different orders (p and p + 1) but with the same K;
coefficients. The difference between the two approximative numerical solutions gives

an estimation of the method local error.

One famous adaptive method is the Runge-Kutta Fehlberg which considers one

RK4 and one RK5 explicit method:

25 1408 2197 1
Cf_ffl C —|—h< 1—|——K3+—K4——K5>

216 2565 4104 5
CHES =Cp+h < 11365 K + 162685265 K3+ %Kz — %Ks, + 52—51(6)
K, =F <tn, én>
Ky=F (tn + %,én + %K1>
K3:F<t +38h C, +§—ZK1+§—ZK2>
(o 2 TR, 0
Ky=F <tn +h,C, + %Kl — 8hKy + 3??2}1 Ky — fﬁgz K4>
K¢=F (tn + g,én — %Kl + 2hKy — %Kg — %m — %Kg,)

fffl‘l (respectively Cfﬁ5) represent the numerical approximation of C,, = C(t,,) given

by the RK4 (respectively RK5) method. The local error obtained after the n' iteration
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E,, with a step size h,, is evaluated in the following way:
B, = CREE— GRS — (GRS = Cpiy) = (CRIT = Cuga) = O(3) + O(h5) ~ AR}

After the nextiteration, the local erroris F,, 1 ~ Ahfl 41-Asaresult, B, 1 = B, ( hz_:;l ) 5.
We wish the local error to remain lower than a given tolerance ¢, therefore F,, 1 < e.
Then E,,+1 = E, (hg—:lf <eor hppr < hn(ELn) v The local error is calculated after
each iteration until the end of the simulation.

If the error criteria are respected, the approximative solution estimated by the RK5

1/5
method is kept and the step size can increase with the rule: 2,41 = min <hmax, %hn, hn, <Ein> ) ,

1/
otherwise h,+; = max <hmin, %hn, hn (]z%) ) hmin et hmax represent the extreme
values for the step size. This method is used by the M AT LAB® ode45 function or the

Python odeint function.

A.3 Multistep methods

Let us consider the following ODE with its Cauchy problem:

Qi) — f(t,u)t € [0,T]

u(0) = ug

where f : [0,7] xR — R is a continuous function and ug € R. With a view to construct-
ing a numerical approximation, the discretization is made with the step size h which
involves the uniform subdivision (ty),,c [, n) for the interval [0, T: t, = nh, then @, isa
numerical approximation of u,, = u(t,) for 0 <n < N.

We introduce multistep methods (MS). A p-steps method calculates 4,41 with the
values uy, tp—1,. .., Un+1—p- MS methods need a specific procedure to start and calcu-

late the p — 1 first values @, @o,. .., Up—1. An RK method is generally used.
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A.3.1 Adams-Bashforth methods
Presentation
An integration of the problem gives:

tn+1

ultnr) =ulta) + [ F(ru(r))dr
tn
The method approximates the function f with the interpolating polynomial of de-
gree p — 1 at node (t,—;, fn—) for 0 < i < p — 1 with the notation f;, = f (t5, ux).
Then

pfl tn+1
g1 = +h Y B0 fuor  with g0 =4 [ 00 (t)dt
k=0 tn
¢y . is the Lagrange interpolating polynomial of degree p — 1 ; £} (tn—g) = Oy 4. The

Adams-Bashforth methods are explicit.

Examples

2-steps method

Les us introduce II the interpolating polynomial of f at the two nodes (t,,—1, f,—1) and

(tn fn)-

t—t,
- 4 =
tn - tn—l fn !

(fn - fn—l)
h

(t) = (fo — fn-1) (t = tn) + fr1

This yields:

2TLn—l—l = 2TLn +

tn

And finally

or
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In a similar way;, it gives:
3-steps method: ty41 = Uy, + % (23fn, — 16fn—1 + 5fn—2)
4-steps method: Up11 = Uy, + % (55fn — 59fn—1+37fn—2—9fn_3)

5-steps method: 41 = Uy + 75 (1901f,, — 2774 fp—1 + 2616 1, — 1274 f_3 + 251 fn_4)

A.3.2 Adams-Moulton methods
Presentation

By integrating:

tn+1

U (tpt1) = u(ty) + / f(ryu(r))dr

Here we approximate the function f with an interpolating polynomial of degree p at
nodes (tn41—i, fn+1—i) for 0 < i < p with the notation f; = f (tx,ux). The Adams-

Moulton methods are implicit.

Examples

1-step method

Let us introduce II the interpolating polynomial of f at nodes (t,+1, fnt1) (tn, fn)-

1) = (s = fo) i fu = D oy 4,
It gives:
tnt1 P 97 tn+1
lipg1 = Gy + / II()dt = iy, + (f"“h_ In) [( _2 n) + fo [
tn tn

Finally 41 = 4, + 7(f”+}ff") {%2] + fnhor
- . h
Up4+1 = Uy + 5 (fnJrl + fn)

We found the trapezoid rule.

In a similar way:
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2-steps method: i1 = Ty + 15 (5fns1 + 8fn — fa1)

3-steps method: ty41 = Uy, + % (9fn+1 +19fn —5fn-1+ frn2)

4-steps method: 11 = G + 75 (251 fp11 + 646 f,, — 264f,—1 + 106 f,—2 — 19f,—3)
A.3.3 Nystrom methods

Presentation

ODE integration gives:

W (tns1) = (tn 1) + / f (7, u(r)) dr

tn—1
The function f is approximated with an interpolating polynomial of degree p — 1 at
nodes (tp—i, fn—i) for 0 < ¢ < p — 1 with f; = f (tx,ur). The Nystrom methods are
explicit.
Examples

2-steps method

I1 is the interpolating polynomial of f at nodes (¢,,—1, frn—1) and (t,, fr).

(fn B fnfl)

t—ty,
I(t) = (fn—fn—l)ﬁ+fn71 = N (t —tn) + frn1
It gives:
tn41 (f f ) (t ' )2 (2}
e [ Sl I T
tn—1

tn—1

Finally 41 = tp—1 + w [%} +2f,_1hand

27Ln—l—l = 2171—1 + 2hfn
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It is also called the Leapfrog method.
In a similar way:
3-steps method: 1 = Up—1 + % (Tfn = 2fn-1+ fn-2)

4-steps method: 11 = Up—1 + % (8fn —Bfn—1+4fn—2— fn-3)

A.3.4 Milne-Simpson methods
Presentation
These methods use the following integration:

tn+1
wltnrs) = ulta) + [ F(rulr))dr
tn—1
The function f is now approximated by the interpolating polynomial of degree p at
nodes (ty41—4, fnt1-:) for 0 < i < p with fi, = f (tx, ur). The Milne-Simpson methods

are implicit.

Examples

2-steps method

IT is the interpolating polynomial of f of degree 2 at nodes (ty+1, fn+1), (tn, fn) and
(tn—1, fn—1)-

(t —tn) (t —tn-1) (t —tn1) (t—tn-1) (t —tny1) (t —tn)

+/fn

H(t) = fn+1 +fn—1

(thrl - tn) (thrl - 751171) (tn - thrl) (tn - 751171) (tnfl - thrl) (tnfl - tn)

Then

fn

TH(E) = 2250 (6 ) (8~ o) — 22 () (E— ta) + 22

2h?

(t - thrl) (t - tn)
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tn+1
Since @41 = tUp—1 + [ II(¢)dt:

tn—1
~ ~ h
Up4+1 = Up—1 + g (fnJrl + 4fn + fnfl)

A.3.5 Backward Differentiation Formulas

BDF methods are MS implicit methods. BDF directly approximate the value of the first
derivative of u at node ¢, through the first derivative of the polynomial interpolating
u at the g+2nodes ¢y, 41, ty, ..., th—q, Where p = g+ 1 represents the step of the method.
2-steps method

IT is the integrating polynomial of degree 2 of u at nodes (fp41,un+1), (tn,uyn) and
(tn—1,un—1). In a similar way:

Un

h?

T(t) = S5t (= ta) (¢ = tum1) = 75 (¢ = tusn) (E = tao) + St (6= tan) (t— )

2h?

The derivative of IT at ¢,,1 is:

dH w U Uy —
4 (tn1) = % (2lnt1 = (b1 + ) =75 (2lngr = (ngs + 1))+ 2nh21 R
and finally %—E{(tnﬂ) = 3u2"h+1 - 42u_]: + ugfz :

Considering the EDO
W) — f(t,u) telo,T]

u(0) = ug

Attt $(tn1) = f (tnt1,Unt1) = fas1, therefore numerical approximation gives

dIl 3Upt1  AUn  Up—1 -
=T tn - T o1 o1 - 7511 s Un — Jn
dt( +1) oh oh + oh J (tng1, Ung1) = fast

. 4 1. 2
Up+l = gun - gun—l + ghfn+1

We can also calculate:

o 18 ~ 9 ~ 2 ~ 6
3—St€ps method: Un41 = 7Un — 77Un—1 + 11 Un—2 + ﬁhfn-l—l

—
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e _ 48~ 36 ~ 3 ~ 12
4-steps method: tp11 = 55Un — 55Un—1 + 25un 2 — 55lin—3 + 5z N fni1

. _ 300~ 300 ~ 75 ~ 12 ~ 60
5-steps method: tp 11 = 57Uy — J37Un—1 + 137un 2 — 137 Un—3 t j57Un—4 + 1370 nt1

6-steps method:

- 360~ 450 ~ 400 ~ 225 ~ 10 ~ 60
Un+1 = Tq7Un = Tq7Un—1 T Tq7Un—2 — T7Un-3 + 147“n 4 = T7ln—5 + 17 fn1
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Appendix B

A passive physical model for DnaK

chaperoning and disaggregation

B.1 Introduction

Protein chaperones are present in all domains of life and serve multiple functions in
protein homeostasis. DnaK chaperone network controls proteostasis in bacteria. It
plays an essential role in the prevention and the amelioration of stress-induced protein
damage. In over 1200 sequenced bacterial genomes, only two members of the order
Aquificales lack HSP70 genes [1]. Actually, one major challenge for cells is to ensure
that proteins are properly folded and targeted to the different cellular compartments.
External stress may eventually lead to proteostasis breakdown and in particular to pro-
tein misfolding. Therefore, to cope with noxious off pathways in protein fate, cells
have evolved universally with a view to conserving molecular chaperones which act to
guide the precise partitioning, localization and folding of proteins [2, 3]. DnaK chap-
erones are essential during the protein denaturation that occurs during heat shock or
other external stress [4-7].

During stress, the DnaK can bind and prevent the aggregation of misfolded proteins
and thereafter act to solubilize protein aggregates. Therefore chaperone functions are
closely linked to protein folding and aggregate processes [8-10].

In unstressed cells, DnaK localizes to multiple and dynamic foci, but re-localizes

to focal protein aggregates during stationary phase. The number of foci varied among

161
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cells [11] and within the same cell at different time points, however the number of
foci had a slightly negative correlation with the length of the cell. Fay and Glickman
indicated that DnaK has two modes of chaperone function, a first one in native protein
folding in which it is localized in peripheral foci, and a second one in aggregate stress
processing in which DnaK re-localizes to central immobile foci of protein aggregates.
Our experimental data (figure B.1) also show this original behaviour. First located
on foci, DnaK proteins quickly diffuse during alcoholic stress in order to interact with
abnormal protein. DnaK is then located on the abnormal protein aggregate and finally
goes back to foci. The aim of this work is to reproduce such behaviour using kinetic
constants (rate constants or diffusion coefficients) found in literature. Actually, using
computational modelling, we wonder whether the known properties of the DnaK sys-
tem are sufficient to reproduce the observed dynamics using only classical physical and
chemical laws.This issue was already raised 70 years ago by Erwin Schrédinger when
he wrote “What is life”. He was already interested in whether new physical or new
chemical laws were necessary to describe biological systems. Like the DnaK issue, he

wondered how “a single group of atoms existing in one copy produces orderly events”.

FIGURE B.1: Green fluorescent DnaK protein microscopy. Time-lapse

microscopy of DnaK aggregates during E. coli outgrowth in LB with an

alcoholic stress. Exposure time was 6 minutes. Time in white indicates

minutes after start of outgrowth. The white bar (at 52 minutes) indicates
1 pym.



Appendix B. A passive physical model for DnaK chaperoning and disaggregation 163

B.2 Materials and methods

The standard assumption for biochemical models is that the spatial distribution of re-
actants is homogeneous. Actually with this hypothesis, the system can be described
with ordinary differential equations (ODE) or partial differential equations (PDE) easy
to compute. Nevertheless, this assumption suffers some exceptions [12, 13]. The ho-
mogeneity of the chemical component concentration depends on the diffusion rate in
the cell. Instead of using ODE or PDE with finite differences, one way to handle the
vast state space is to use a Monte Carlo method introduced by Gillespie in 1976 [14,

]. This section studies a mesoscopic reaction-diffusion with protein compartmen-
talization solved with the Next Sub-volume Method, a Gillespie like mesoscopic and
stochastic algorithm proposed by Elf et al. [16, 17]. At each time interval, the reac-
tion that occurs is chosen randomly according to the probabilities for the reaction to
take place. The probabilities depend on both the number of molecules and the rate

constants.

B.2.1 Presentation of the model

The DnaK chaperone system has been characterized in E. coli and seems to have impor-
tant functions in stress resistance. The minimal model of the DnaK mechanism in E. coli
cells should include description of many chemical reactions. In many cases detailed
mechanisms and kinetics of molecular processes are not perfectly known. Chaperone
proteins interact with their substrate which can aggregate. Non-linearities arising from
this complex topology of such networks make it difficult to intuit quantitative or even
qualitative behaviour of the system.

In this study, we propose a simple model based on reaction-diffusion. Diffusion
follows macromolecular diffusion law in crowded solution (Han and Herzfeld 1993)
and enzymatic reactions obey the Michaelis-Menten mechanism. In our model we only
use known physical or chemical properties of molecule. The model considers a few

hypotheses which are quickly described here.
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In the DnaK action model, considering 4 types of molecules (DnakK, abnormal pro-
teins, DnaK-protein complex and normal proteins), different events occur with differ-
ent probabilities.

In our model, the Michaelis-Menten mechanism is :

E + P ::1 EPF 2 B4 p
1

Tko T o

production P

Where E is the DnaK enzyme, P* the abnormal protein, EP* the DnaK-protein
complex and P the normal protein.

To mimic the aggregation phenomenon, we consider that when two molecules of
P* meet, they create a physical or chemical binding, the produced dimmer (P*), has
a higher molecular weight involving a smaller diffusion coefficient. The dimmer can
also be associated with other P* and step by step there will appear an aggregate of
n abnormal proteins (P*),. In order to describe the aggregation we use the random
polymerization model proposed by Kodaka [15]. The more size aggregate grows, the
more its diffusion coefficient decreases thanks to crowding effect [19] and size effect
[20-22].

To mimic the initial DnaK foci, we only suppose that there are areas in the cell which
are characterised with a 50 times smaller diffusion coefficient. We simply consider that
those areas present more interactions like Van der Waals forces or hydrogen bonding
that act as if the media present a higher viscosity and by consequence a smaller diffu-
sion coefficient. Therefore the probability for DnaK to stay on foci is fifty time greater

than outside the fodi.

B.2.2 The aggregation phenomenon

To describe the aggregation phenomenon, we use the random polymerization model

proposed by Kodaka [15].
1

[
" 1+ kp[Pyt
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In this case, [P*], is the initial concentration of abnormal protein monomer. r is the
fraction of the total binding sites already engaged in bonding. kp is the rate constant
of the bimolecular association.

The increasing of aggregate size also involves modification in its diffusion coef-
ticient. Two effects have been taken into account: the first one is the crowding effect
developed by Han and Herzfeld [19] and the second one is the size effect well described
by other teams [20-22] and principally based on the Stockes-Einstein equation.

The crowding and confinement effects show that the apparent diffusion coefficient
decreases roughly exponentially with the protein volume fraction v, according to the
function 3.

Moreover, the size effect essentially shows that the diffusion coefficients also de-
pend on the protein size according to the inverse of the cube root function c.

Therefore, we adopt the following equation to mimic the evolution of the diffusion

coefficient with the degree of polymerisation:

size

ef fect
~ =
Dyp=Dy- an) - f(n)
—~—
crowding
ef fect
1
a(n) = (n)~3

2 v 9 v’ 9 v
B(n) = exp <_§ <31 —pvp + 2 (1 —pvp)2 - 4 (1 —pvp)3>>

D represents the diffusion coefficient of the monomer. v, is the volume fraction de-
fined as the volume of an aggregate divided by the volume of the mixture prior to

mixing. This value is directly linked to the degree of polymerization of the aggregate.

B.2.3 Algorithm

The algorithm is published as supplementary material to Elf and Ehrenberg [17, 23]. It
is a Gillespie-like [14, 15] method approaching the spatial effects of diffusive phenom-

ena and chemical reaction.
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The event data consists of two types : reactions and diffusions. Reactions describe
the chemical interaction between particles within one sub-volume. As a consequence,
the number of particles change within the sub-volume according to the chemical reac-
tion stoichiometry.

Diffusions describe the movement of a molecule from one sub-volume to a neigh-
bouring sub-volume. The reaction and diffusion rates in a single sub-volume depend
on the numbers of molecules and their rate constants or diffusion coefficient.

The propensity p, that a first order kinetic reaction A — product occurs in a sub-
volume with volume V' during the next time d¢ is modelled as - d¢ - V" where it is in-
dicated that the rate » depends on the concentrations c of the reactant A in sub-volume
and the rate constant k. The kinetic law is therefore r = k - c and the propensity of the

reactionis: p, = k-c-V -Ny-dt, or p, = k- ny - dt assuming ¢ = V’}(}A and n4 is

the number of A molecules (N4 is the Avogadro constant). If this reaction occurs, the
number of A molecules in the sub-volume is reduced by one and the number of prod-
uct molecules is increased by one. A chemical reaction only affects one sub-volume
state.

For a second order kinetic reaction A+ B — product, the kineticlawis: r = k-c4-cp
and the propensity of the reaction is : p, = V—/]:/A “na-np-dt

The diffusion of an A molecule to a neighbouring sub-volume is treated as a first
order reaction with a rate constant of k; = 422, where D is the diffusion coefficient
of A and / is the side length of the sub-volume. Therefore, the propensity that an
A molecule diffuses from one sub-volume ¢ to one of its neighbours j during dt is
pag=kqg-na-dt = 622 -n4 - dt. If a diffusion event occurs the number of A molecules in
sub-volume ¢ decreased by one and the number is increased by one in its neighbour j.

Let us enumerate the different molecules considered in the model and their possible

events:

For the enzyme E :

* [ can diffuse with propensity % -ng - dt in the cell and with probability a% .
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ng - dt in the foci. € < 1 indicates that the enzyme has a better affinity for the

sub-volume that represents the foci.
® FE can react with (P*), with propensity k—‘} “ng-npx-dt,

¢ E can appear as a product of the complex dissociation with propensity k_1 -ngp«-

dt,

® [ can be produced with probability kq - dt which does not depend on any con-

centration, but this propensity falls to zero after the ethanol flux is stopped.

For the abnormal protein or aggregate (P*),,:
e (P*), can diffuse with propensity % -nps-dt,
* (P*), can react with £ with propensity k—vl -ng-npx-dt,

* (P*), can appear as a product of the complex dissociation with propensity k_; -

negpx - dt.

e (P*), can be produced with propensity k{, - d¢ which does not depend on any

concentration, but this propensity falls to zero after the ethanol flux is stopped.

For the complex:

* EP* can diffuse with the same propensity as (P*),, (i.e. % -np~ - dt) because it is

bound to the aggregate,
e EP* can dissociate to E and P* with propensity k_; - ngp~ - dt,
¢ EP* can dissociate to E and P with propensity ks - ngp+ - dt,

* EP* can appear as a product of the reaction between E and P* with propensity

o

Y - nE - np- - dt.
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B.2.4 Constants used for simulation and validity

According to the Next Sub-volume Method, the side length ¢ of the square sub-volumes

has to satisfy the two inequalities
R < fand & < Tiin (*)
where R is the larger protein radius and D the smallest diffusion constant

The first inequality indicates that dissociation events can be properly defined within
sub-volumes. The second criterion specifies that the time for any molecule to leave a
sub-volume is much smaller than the shortest reaction time 7,,,;,, among the molecular
species, so that all molecules are homogeneously distributed within the sub-volumes.

The 3D simulations were performed with ¢/ = 0.1 um and the depth h = ¢ of the
sub-volumes, which is many times larger than the average protein radius.

Then we checked that the characteristic time of each reaction is much larger than
the characteristic time of diffusion of the molecule.

The Michaelis-Menten [24] mechanism used in our simulation is :

* k1 « k2
E + P l;ﬁEP — FE+ P

-1
Tko ko
production P

Where k¢ and k{, are respectively the rate constant of production of DnaK and ab-
normal protein during the ethanol stress step occurring during the first 6 minutes.

Let us examine the incidence of each reaction and its constant rate.

e Reaction E + P* £> EP*

ki = 4.5-10° mol~'.L.s~! (Schmid et al. 1994) is a second order rate constant in-
volving a half life time 7, = ,%16 where c is the concentration of reacting molecules
which is given by ¢ = 3 (the Avogadro constant V4 ~ 6 - 10%* mol ™). Con-
sidering NV ~ 10 molecules of moving P* or E in the sub-volume V = ¢3 = 10718

L, the concentration is then ¢ ~ 20 umol.L~! and 7; = 0.1 s. This value has to be

compared to £2/6D where D is the diffusion coefficient of the reacting molecule.
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Literature reports a large range of value [25-29] from 1071% to 10~ m2.s7!, but

the (*) relation imposes that D > % ~ 1071* m2.s7!. We tested many values

1

and we noticed that under 10~ m2.s~! simulations do not give the same results

and do not follow the experimental data.

k_
e Reaction EP* % E + p*

k_1 = 1.8 sl is a first order rate constant [30] involving a half life time 7_; =

,15%21 = 0.4 s. This value gives the same conclusion as the previous one.

® Reaction EP* ﬁ E+P
ks = 0.011 s~! Schlecht et al. [31] give a half life time 7 = 12—22 = 63 s which is
higher than the later one, therefore the conclusions do not change.

e Reaction P — P*

ky = 0.045 molecule.s~! is the rate of abnormal protein production during stress,

with a half life time 7} = k,l,o ~ 228> 6%. This value was calculated so that ag-
gregated proteins increase from 0 to 35000 during the 6 min of the alcoholic stress
of our simulation. Actually, Winkler et al. [32] estimate that maximal aggregated

proteins is about 33000.

e Reaction ¢ — F

ko = 7 -10~* molecule.s™! is the rate of enzyme production with a half life time
T = k—lo ~ 1400 s. (19 > 65—;). The initial pool of DnaK was set to about 9300
molecules and this induction rate allows them to increase to 10000 molecules.
This value can be compared with the 9900 proposed by Mogk et al. [16].

In the case of the highest diffusion constant for a protein (D; = 5- 107! m2s71),

2 /6Dy is about 33 us, which is much shorter than the chemical life times of all

molecules.
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B.3 Results and discussion

Due to the stochastic nature of this algorithm, a single execution is not sufficient to
draw one satisfactory conclusion. Therefore, a number of replications of the same
model but with different seeds for the random number generator were run. Simula-
tions always show similar patterns.

To simulate the interactions between molecules in a spatial and temporal context,
the Next Sub-volume Method imposes a grid on the inner cell volume. In each sub-
volume, we set a homogeneous distribution of particles of which interactions are de-
scribed by events. These events take place with specific rates that depend on the state
of the sub-volume which is characterized by the current number of particles and the
different rate of reaction or diffusion. The time between one event and another is an ex-
ponentially distributed random number with mean equal to the reciprocal of the sum
of reaction and diffusion rates. Therefore a high kinetic rate, high diffusion constants
or a large number of particles inside the sub-volume involves a drastic reduction of
the inter-event times which can fall under the millisecond. Consequently the system
can undergo enormous modifications within one second. Such a phenomenon occurs
during the aggregate formation.

DnaK are initially placed on 4 foci. Aggregation of abnormal protein (Figure B.3)
and DnaK diffusion (Figure B.2) outside foci take place in less than 1 min like in the
experiment. Simulation shows the aggregation of proteins on random areas and the
superposition of the DnaK chaperone on the same areas.

One of the amazing observations (Figure B.2) is that DnaK come back to their initial
foci after the destruction of the aggregate and this phenomenon occurs without any
active processes, indeed our model is only based on passive processes such as diffusion.

In order to check the influence of compartmentalization during the action of DnaK
we made different simulations with or without aggregation and with or without the
foci.

We first observed the system without aggregation and without the foci; this system

is perfectly homogeneous. It can therefore also be solved thanks to a set of ordinary
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t=5s t=81s t=143 s

t=174 s =308 =600 s

t=715s t=900 s t=1200 s

FIGURE B.2: DnaK evolution in E. coli with NSM simulation, after an
alcoholic stress produced during the first 6 minutes.

differential equations.

dE * 9]
4Bl — kg —k [E) [P+ (k_1 + ko) [EP]
if t<360s
Al = Ko —ki [E][PY] + ko1 [EPY]
if t<360s
| 2570 = b B (P~ (hr + R (P

* ks w k2
E + P ];ﬁ EP* —FE+P
Tho o
production P

The solution of this dynamical problem is deterministic whereas the one obtained
previously is stochastic. This first study helped us to confirm the convergence of the

stochastic system to the deterministic one and indeed both evolutions are perfectly

similar (Figure B.4).
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t=15s t=81s t=143 s

t=174 s t=360 s t=600 s
&
t=715's t=900 s t=1200 s

FIGURE B.3: Abnormal proteins evolution in E. coli with NSM simula-
tion, after an alcoholic stress produced during the first 6 minutes.
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FIGURE B.4: Free DnaK, DnaK-protein complexes and free abnormal
proteins evolution after an alcoholic stress in a homogeneous system.
Comparison of the stochastic simulation (red points) and the ODE de-
terministic model.
Consequently we could validate our stochastic model and we then modified it to
consider foci and /or protein aggregate.
The unhooking of the black curve (Figure B.6) (corresponding to the real model,

with foci and with aggregation) with the other one in free DnaK evolution, appears

near 3 minutes. This phenomenon appears simultaneously with the formation of the
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FIGURE B.5: Evolution of the number of abnormal protein obtained by

the simulation with the next sub-volume method. Red : without foci and
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FIGURE B.6: Evolution of the number of free DnaK obtained by the sim-

ulation with the next sub-volume method. Red : without foci and with-

out protein aggregate ; Black : with foci and with protein aggregate ;

Green : without foci and with protein aggregate ; Blue : with foci and
without protein aggregate.

big aggregate which is observed between 174 and 360 seconds in figure B.2. The aggre-

gate may operate as a cage that reduces the efficiency of DnaK to complex abnormal
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proteins, but surprisingly abnormal proteins decrease more efficiently with the aggre-
gate when DnaK owns foci (black curve) than without aggregate (blue curve) (Figure
B.5). Therefore assuming DnaK foci we can consider that abnormal protein aggregation
is a positive biological evolution process, because according to our simulations protein
aggregates offer a better way for DnaK to act.

Moreover this model (for this study) answers Erwin Schrodinger’s question. Here,
it is unnecessary to invoke new physical or new chemical laws to describe even com-

plex biological systems.
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Résumé

Les Formes Réactives de 1'Oxygéne (FRO) regroupent des molécules comme les radicaux
superoxide (O37) et hydroxyle (HO®) ou le peroxyde d’hydrogéne (H202) qui sont produites
en permanence au sein des cellules en aérobiose. Malgré des systémes de défense, des FRO
peuvent réagir fortuitement avec des protéines, des lipides ou ’ADN provoquant des dommages
cellulaires dont les mécanismes ne sont pas encore entiérement élucidés. Afin d’appréhender ce
“stress oxydant”, cette thése présente des simulations numériques de la dynamique de FRO en
utilisant la bactérie E. coli comme organisme modéle. Dans un premier temps, les simulations
numériques sont réalisées de fagcon déterministe sur un ensemble de cellules. L’étude de la mor-
talité de E. coli exposé a HoO2 montre que le fer intracellulaire libre et la densité cellulaire,
deux facteurs potentiellement impliqués dans la dynamique des FRO, jouent un réle primordial
dans l'interprétation expérimentale comme par exemple le comportement bi-modal de E. coli
opposé a HoO>. Nous avons également évalué les roles relatifs des principales défenses mises
en place contre HoOs a savoir la membrane cellulaire et les enzymes. Une étude détaillée in-
dique que leur implication dépend non linéairement de la concentration en HyO5. Dans une
seconde approche et grace a I’étude déterministe nous réduisons ’échelle d’étude pour nous
ramener a la cellule unique dans les conditions physiologiques. La taille du systéme impose
alors des méthodes numériques stochastiques. Il apparait ainsi que la stochasticité intrinséque
des réactions chimiques associées aux FRO permet a certaines bactéries de se différencier en
vue d’un futur stress. En effet, bien que la distribution statistique des FRO ne déclenche pas
le systéme de régulation de défense dans les conditions physiologiques, nous montrons qu’elle
peut en revanche enclencher les mécanismes de réparation de ’ADN dont les lésions sont le
résultat d’une succession d’événements rares impliquant un trés faible nombre de molécules.

Abstract

The Reactive Oxygen Species (ROS) are molecules (superoxide O3~ , hydrogen peroxide
H505 and hydroxyl radical HO®) that are continuously generated in living cells as a conse-
quence of aerobic life. They are partially eliminated by scavenging systems. Nevertheless, ROS
can unfortunately react with cellular proteins, lipids or DNA leading to cell damage. The me-
chanisms of such lesions is still being studied : we are talking about “oxidative stress”. Using
Escherichia coli as a model organism this thesis is concerned with the numerical simulation of
ROS dynamics. In the first part of this work, simulations were performed in a deterministic way
to predict the behaviour of a set of cells. By studying killing of E. coli by exposure to HyO2, we
show that intracellular available iron and cell density, two factors potentially involved in ROS
dynamics, play a major role in the prediction of experimental results in particular in bimodal
cell killing. We then evaluate the relative roles of major defences against H>Os. Although the
key actors in cell defence are enzymes and membrane, a detailed analysis shows that their
involvement depends on the H2O2 concentration level. In the second part and thanks to the
first deterministic approach, we study more closely the fate of the single cell with a stochas-
tic point of view in physiological conditions. We show that elementary chemical stochasticity
allows bacteria to segregate specialized cells in prevision of possible stress challenge. Actually,
whereas ROS distribution does not activate defence regulation without exogenous stress, we
demonstrate that this distribution may activate DNA repair mechanisms because DNA nicks
are the result of a succession of rare events which involve a small number of molecules.
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