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Abstract in French, German and English

Résumé

La présente thése a été fortement influencée par deux conjectures, 'une de Gelfond datant
des années 1960 et l'autre de Sarnak en 2010. Ces deux conjectures ont soulevé un grand
intérét au cours des dix derniéres années.

En 1968, Gelfond a prouvé que la somme des chiffres modulo m est asymtotiquement équiré-
partie dans des progressions arithmétiques, et il a formulé trois problémes nouveaux. Le
premier, qui portait sur la répartition jointe des sommes des chiffres relative a différentes
bases, a été intégralement résolu par Kim en 1999. Le deuxiéme et le troisiéme problémes
traitent des sommes des chiffres pour les nombres premiers et les suites polynomiales. En ce
qui concerne les nombres premiers et les carrés, Mauduit et Rivat ont résolu ces problémes
en 2010 et 2009, respectivement. Il convient en outre de mentionner qu’en 2013, Drmota,
Mauduit et Rivat ont réussi a généraliser le résultat concernant la suite des sommes des
chiffres des carrés. Ils ont démontré que chaque bloc apparait asymptotiquement avec la
méme fréquence.

La conjecture de Sarnak concerne la fonction de Md&bius, une fonction multiplicative trés
importante tant en théorie des nombres qu’en combinatoire. Elle encode la structure mul-
tiplicative des entiers naturels et constitue l'inverse pour la convolution de Dirichlet de la
fonction constante égale & 1. Selon cette conjecture, il n’y a pas de corrélation entre la fonc-
tion de Mobius et des fonctions « simples », plus précisément déterministes. Cela implique
notamment que ces derniéres fonctions ne peuvent servir d’approximation pour la fonction

de Mo6bius.

La présente these traite de la répartition de suites automatiques le long de sous-suites par-
ticuliéres ainsi que d’autres propriétés de suites automatiques. On désigne comme suite
automatique des suites a(n) sur un alphabet fini qui sont produites par un automate fini. Ce
genre de suites a suscité un grand intérét ces 15 derniéres années. Elles sont trés étroitement
lies aux systémes dynamiques, aux développements digitaux, aux suites équiréparties, et
également a la théorie des nombres.

Selon 1'un des résultats principaux du présent travail, toutes les suites automatiques vérifient
la conjecture de Sarnak. Moyennant une approche légérement modifiée, nous traitons égale-
ment la répartition de suites automatiques le long de la suite des nombres premiers, ce qui
peut étre considéré comme un cas général du deuxiéme probléme de Gelfond.
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Dans le cadre du traitement de suites automatiques générales, nous avons mis au point une
nouvelle structure destinée aux automates finis déterministes ouvrant une vision nouvelle
pour les automates et/ou les suites automatiques.

Dans la derniére partie de la thése, nous étendons les résultat de Drmota, Mauduit et Rivat
concernant les suites digitales qui sont un cas particulier des suites automatiques. Cette
approche peut également étre considérée comme une généralisation du troisiéme probléme de
Gelfond.



Deutsche Kurzfassung

Die vorliegende Dissertation wurde durch zwei Vermutungen, einer von Gelfond aus den 60er
Jahren des 20. Jahrhunderts und einer von Sarnak aus dem Jahr 2010, die in den letzen 10
Jahren in der Zahlentheorie grofe Beachtung gefunden haben, stark beeinflusst.

Im Jahr 1968 bewies Gelfond erstmals Gleichverteilungsresultate der Ziffernsumme modulo
m in allgemeinen arithmetischen Progressionen und stellte weiters drei Probleme. Die erste
handelt von der gemeinsamen Verteilung der Ziffernsummen beziiglich verschiedener Basen
und wurde 1999 vollstandig von Kim gelst. Die zweite und dritte Frage beschéftigen sich
mit der Ziffernsumme von Primzahlen und polynomialen Teilfolgen. Mauduit und Rivat
16sten diese Probleme fiir Prim- und Quadratzahlen im Jahre 2010 bzw. 2009. Weiters ist zu
erwahnen, dass im Jahr 2013 Drmota, Mauduit und Rivat das Resultat betreffend der Folge
der Ziffernsumme der Quadratzahlen verallgemeinerten. Sie zeigten, dass jeder Block - d.h.
Teilfolge der Lange L - asymptotisch gleich haufig auftritt.

Die Sarnaksche Vermutung betrifft die Mébius Funktion, welche eine wichtige multiplika-
tive Funktion in der Zahlentheorie und der Kombinatorik ist. Sie kodiert die multiplikative
Struktur der natiirlichen Zahlen und bildet das inverse Element zur Eins-Funktion beziiglich
der dirichletschen Faltung. Er vermutet, dass die Mobiusfunktion nicht mit “einfachen” -
konkret deterministischen - Funktionen korrelieren. Das heiftt insbesondere dass die Mo6bius
Funktion nicht durch solche Funktionen approximiert werden kann.

Die vorliegende Dissertation behandelt die Verteilung von automatischen Folgen entlang
spezieller Teilfolgen und andere Eigenschaften von automatischen Folgen. Automatische
Folgen sind Folgen a(n) iiber einem endlichen Alphabet, die die Ausgabe eines endlichen
Automaten sind. Diese Art von Folgen erhielten in den letzten 10 oder 15 Jahren grofe
Aufmerksamkeit. Es gibt sehr enge Beziehungen zu dynamischen Systemen, zu Ziffernen-
twicklungen, zu gleichverteilten Folgen und auch zur Zahlentheorie.

Ein Hauptresultat dieser Arbeit besagt, dass alle automatischen Folgen die Sarnak-Vermutung
erfiillen. Durch eine leicht abgewandelte Herangehensweise behandeln wir auch die Verteilung
von automatischen Folgen entlang der Teilfolge der Primzahlen, was als Verallgemeinerung
des zweiten Gelfondproblems gesehen werden kann.

Im Zuge der Behandlung von allgemeinen automatischen Folgen wird eine neue Struktur fiir
deterministische endliche Automaten entwickelt, welche eine neue Sichtweise fiir Automaten
bzw. automatische Folgen ermdglicht.

Im letzten Teil der Dissertation erweitern wir das Resultat von Drmota, Mauduit und Ri-
vat auf digitale Folgen - die insbesondere automatische Folgen sind. Auch dies stellt eine
Verallgemeinerung des dritten Gelfondproblems dar.
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Abstract

The present dissertation was inspired by two conjectures, one by Gelfond stated in the 1960’s
and one of Sarnak in 2010. These two conjectures have received great attention throughout
the last ten years.

In 1968 Gelfond proved that the sum of digits modulo m is asymptotically equally distributed
along arithmetic progressions. Furthermore, he stated three problems which are nowadays
called Gelfond problems. The first problem deals with the common distribution of the sum
of digit function with respect to different bases and was completely solved by Kim in 1999.
The second and third questions are concerned with the sum of digits of prime numbers and
polynomial subsequences. Mauduit and Rivat were able to solve these problems for primes
and squares in 2010 and 2009 respectively. It should also be noted that in 2013 Drmota,
Mauduit and Rivat generalized the result concerning the sequence of the sum of digits of
squares. They showed that each block appears asymptotically equally frequently.

Sarnak’s conjecture is related to the Mobius function, which is an important multiplicative
function in number theory and combinatorics. It encodes the multiplicative structure of
the natural numbers and forms the inverse element to the one-function with respect to the
Dirichlet-convolution. He conjectured that the Mdbius function does not correlate with
simple 7 - more precisely deterministic - functions. This means that the Moébius function can
not be approximated by such functions.

This dissertation deals with the distribution of automatic sequences along special subse-
quences and other properties of automatic sequences. Automatic sequences are sequences
a(n) over a finite alphabet, which are the output of a finite automaton. This type of se-
quences has received great attention in the last 10 or 15 years. There are very close relations
to dynamical systems, to digital representations, to equidistributed sequences and also to
number theory.

A main result of this thesis is that all automatic sequences satisfy the Sarnak conjecture.
Through a slightly modified approach, we also deal with the distribution of automatic se-
quences along the subsequence of primes. This can be seen as a generalization of the second
Gelfond problem.

In the course of the treatment of general automatic sequences, a new structure for deter-
ministic finite automata is developed, which allows a new view for automata or automatic
sequences.

In the last part of the dissertation, we extend the results of Drmota, Mauduit and Rivat to

digital sequences - which are in particular automatic sequences. This is also a generalization
of the third Gelfond problem.



Chapter O

Introduction

0.1 Introduction in English

A central concept in this thesis are automatic sequences. Therefore, we need to define the
digital representation of an integer n, also known as a numeration system. In a general
setting, such a system is just an injective map from the non-negative integers to a set of
sequences of digits.

The most well-known numeration system is the decimal system, used throughout everyday life
by a large part of the world population. Slightly less well-known are the binary system and
also the hexadecimal system, which have massively gained importance due to the development
of digital computing machines. A natural generalization of these numeration systems is to
take an arbitrary bases k, where £ > 2 is an integer: every non-negative integer n can be

written in a unique way as
n= Z 5§k)(n)ki,

i>0

where 5§k) € {0,...,k—1} and 5§k) = 0 for all but finitely many ¢. This concept of base-k
representation will be important throughout this thesis and we denote by (n); the digital
expansion of n in base k without leading zeros, i.e. (n); = (5,(~k)(n), . ,eék)(n)) where r =
|log,(n)]. This finite sequence can be interpreted as a word over the alphabet {0, 1, ..., k—1}.
We denote for w = (wy, ..., w,) the corresponding natural number [w]j, := >/ k'w,_;.

There exist many generalizations, for example digital representations in base (—k) or 3 where
g eRT\Q.

A deterministic finite automaton, or DFA, is defined to be a quadruple A = (@, X%, 9, qo),
where () is a finite set of states, Y is the finite input alphabet - we restrict ourselves mostly
to the case ¥ = {0,...,k—1} -, §: Q x X — @ is the transition function and ¢y € @ is the
initial state. The transition function ¢ assigns to each state ¢ € @) and letter of the input
alphabet a € ¥ a successive state p € (). We extend the function J in a natural way to a
function which we also call 6 : Q x ¥* — @), where X* denotes the sets of words with letters



10 CHAPTER 0. INTRODUCTION

in X
6(gq, ab) = 6(d(q,a),b)

for all a,b € ¥*. Thus, for a word w of length n we find that §(¢, w) consists of n appli-
cations of the original function 6. We always read words from left to right i.e. for digital
representations of numbers we start with the most significant digit.

A DFAO A =(Q,%,6,q),A,7) is a DFA with an additional output function 7: @ — A. In
this thesis we restrict ourselves mostly to complex-valued output functions; i.e. 7: ¢ — C.
We omit A = C in this case.

We have now described the necessary objects to define an automatic sequence.

Definition 0.1.1. We say that a sequence a = (a,,)nen is a k-automatic sequence, if and only
if there exists a DFAO A = (Q,X ={0,...,k—1},0,q0, A, 7) such that a, = 7(5(qo, (n)x))-

Automatic sequences have drawn a lot of attention during the last 10 or 15 years and are
the main subject of this thesis. There are close relations to dynamical systems, to digital
expansions, to uniformly distributed sequences and also to number theory. We will find links
to all of these topics throughout this thesis.

There are two two lines of research that have influenced this thesis. The first one is a recent
conjecture by Peter Sarnak in 2010, concerning the Md&bius function . The Mobius function
is defined by

(1) if n is square-free and
u(n) = k is the number of prime factors
0 otherwise.

We say that a sequence a is orthogonal to p(n) if

Z app(n)| = o (Z |an\) .

n<N
There exists an old - relatively vague - principle (the Mébius Randomness Principle, see for
example |28, p. 338|), which states that every “reasonable” bounded complex sequence is
orthogonal to the Md&bius function. The reasoning behind this principle is that the Mobius
function changes signs so randomly that it induces sufficient cancellation. Peter Sarnak
conjectures that a special class of “simple” sequences is orthogonal to the Md&bius function.

Conjecture 0.1.2 (Sarnak Conjecture). [{0] Let u be the Mébius function. For any bounded
complex sequence &(n) observed by a deterministic flow | (X, S), it holds that

> Emp(n) = o(N).
n<N
'Here we use the little-o notation. Let f,g : N — RT. We say that f = o(g) if and only if
lim, 0 f(n)/g(n) = 0.
2A dynamical system F is a pair (X, S) where X is a compact metric space and S : X — X is a continuous
map. For a dynamical system to be deterministic means that - roughly speaking - there are only few different
orbits.




0.1. INTRODUCTION IN ENGLISH 11

Numerous papers are dedicated to show orthogonality to the Mobius function for certain
types of sequences or deterministic flows.

The second major influence are the so called Gelfond-problems, which concern very special
automatic sequences, namely the sum of digits in base k£ modulo m. For k = m = 2, one
obtains the Thue-Morse sequence. We define

tim = (sk(n) mod m),en,

where s;(n) denotes the sum of digits of n in base k:

sk(n) = Z 65“ (n).

120

The first distributional property of t ,, was found by Gelfond [22] who showed that if ged(k—
1,m) =1, then for every £ € [0,...,m — 1],

N
{n < N :sg(an+b) = ¢ mod m}| = p— + O(N')

holds for some 1 > 0. This means exactly that linear sub-sequences of tj ,, are uniformly
distributed on the values {0,1,...,m — 1}.

Additionally, Gelfond formulated three problems which are known as the Gelfond Problems.
All of these problems cover distributional properties of tj .

1. If ky, ky > 2 are co-prime integers and ged(k; — 1,mq) = ged(ky — 1,m2) = 1 then

+ O(N')

{n < N : sk, (n) = £, mod my, sk, (n) = o mod my}| = g

holds for all /1, /5 and some n > 0.

2. If k> 2 and ged(k — 1,m) =1 then
N
Hp < N :pePAsg(p) = ¢ modm}| = % + O(N'™)

for all ¢ and some i > 0. Here 7(x) denotes the number of primes < z.

3. If K > 2 and ged(k — 1,m) = 1 then for each integer polynomial P(z)
N 1
{n < N :s,(P(n)) =¢fmod m}| = — + O(N'™")
m
for all ¢ and some n > 0.
In 1972, Besineau was able to solve the first problem [4]. Kim was able to generalize this

result to k-additive functions - i.e. functions which fulfill f(ak®+b) = f(a)+ f(b) for a > 1,
¢>1,0<b<k’-and was also able to formulate an explicit error term [31].
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However, it took almost 40 years until the second and third problem were solved or came
close to a solution. The second problem was finally solved by Mauduit and Rivat in 2010 [37].
In 2009, the third problem was solved for quadratic polynomials by Mauduit and Rivat [36].
Additionally, there is a solution by Drmota, Mauduit and Rivat [I4] for prime numbers k
which are sufficiently large with respect to the degree of P(x). The treatment of exponential
sums with Fourier-theoretic methods that has been developed by Mauduit and Rivat was a
breakthrough in this field and will also be utilized throughout this thesis.

A natural generalization of the sum of digits function are digital functions. We say that a
sequence a is a digital sequenceﬁ] in base k if there exist an integer » > 1 and a function
F :Z" — C such that F(0,...,0) =0 and

a, = Z F(ei(n),...,cir1(n)).

>0

This sum is well defined since F(0,...,0) = 0. One could also consider an alternative
definition, where we expand the sum to i € Z and define e_;(n) := 0 for all ¢ > 1.

In the first chapter, we give an introduction to automatic sequences. We present some ex-
amples of automatic sequences and display some classical results for automatic sequences.
A more detailed study of automatic sequences is given in [I]. Furthermore, we will discuss
two important subclasses of automatic sequences - namely invertible and synchronizing auto-
matic sequences. Finally, we will mention some recent results about subsequences of certain
automatic sequences. Most of these results rely on some kind of Fourier-analytic treatment
and these methods will also be used in this thesis.

In Chapter 2, we present a new structure for strongly connected DFA, namely naturally
induced transducers. This structure combines the ideas of invertible and synchronizing au-
tomata. We will show that these aspects behave almost independent of each other. The
synchronizing part can be analyzed by elementary methods. The invertible part is much
more challenging and we obtain results that allow us to find distributional results later.

Chapter 3 is completely dedicated to the Sarnak Conjecture. We give examples that satisfy
the Sarnak Conjecture and state the Sarnak Conjecture for sequences. Therefore, we assign
to a sequence a dynamical system in a canonical way. We say that the sequence satisfies the
Sarnak Conjecture if every sequence obtained by this dynamical system satisfies the Sarnak
Conjecture. Subsequently we will prove the following theorem.

Theorem 0.1.3. Let p be the Mébius function, (a,)nen an automatic sequence and let (X, .S)

be the symbolic dynamical system associated with (a,)nen. Then for all sequences (n) =
f(S™(x)), with x € X and f € C(X,C), we have

S e(mu(n) = o(N).

n<N

To obtain this result, we use the structural result found in Chapter 2. Therefore, we need
to analyze the synchronizing and the invertible part of naturally induced transducers. The

3Sometimes digital sequences are also referred to as strongly block-additive function
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synchronizing aspect can be treated quite easily. The invertible part takes some effort to
deal with. Therefore, we use and adopt the strong framework developed by Mauduit and
Rivat which was used to show that the Rudin-Shapiro sequence is orthogonal to the M&bius
function.

Chapter 4 and 5 are inspired by the Gelfond problems and their natural extension to other
sequences - in this case some special automatic sequences. In Chapter 4, we study at first the
distribution of automatic sequences along arithmetic progressions. Therefore, we use the con-
cept of naturally induced transducers. This result was included in this chapter to illustrate
the used method to find the limiting distribution of subsequences of automatic sequences.
Thereafter, we describe the distribution of automatic sequences along prime numbers under
some technical conditions that we also need for the first result of this chapter. This corre-
sponds to the second Gelfond problem and is much more difficult to achieve. The technical
conditions may seem too restrictive, but actually, it is not even clear for which automatic se-
quences there exists a limiting distribution if one considers the subsequence along the primes.
Nevertheless, we are able to show the following result.

Theorem 0.1.4. Let A = (Q', %, ', q, 7) be a strongly connected deterministic finite automa-
ton with output (DFAQO) with ¥ = {0,...,k — 1} and §'(q,0) = qi. Then the frequencies of
the letters for the prime subsequence (ay,)pep exist.

The proof of this theorem allows to determine these frequencies which correlate in some sense
to the distribution of the automatic sequence along arithmetic subsequences. The methods
to show this result are quite similar to the methods used in Chapter 3. However, one needs
a bit more effort to determine the limiting distribution.

In Chapter 5, we generalize the result of Drmota, Mauduit and Rivat, who showed that
(t2.2(n?))nen is normal, to digital sequences, which are a special class of automatic sequences:

Theorem 0.1.5. Let b be a strongly block-additive function in base q and m’ € N with
ged(q — 1,m) = 1 and ged(m’, ged(b(n))nen) = 1. Then (b(n?) mod m/),en is normal i.e.
every subsequence of length k appears with asymptotic frequency (m’)=*.

The proof mainly follows the ideas of Drmota, Mauduit and Rivat in [14]. Exponential sums
are manipulated and a so called “carry property” is used to reduce the problem to statements
about Fourier-transforms. This part can be adopted easily. However, the statements about
the occurring Fourier-transforms pose the main difficulties and can not be adopted easily.

0.2 Deutsche Einleitung

Das zentrale Thema dieser Arbeit sind automatische Folgen. Um diese definieren zu kdnnen,
benétigen wir zuerst noch zwei weitere Konzepte. Das erste Konzept ist die Zifferndarstellung
einer ganzen Zahl n, auch Zahlensystem genannt. In einem allgemeinen Kontext ist ein solches
System eine injektive Abbildung von den natiirlichen Zahlen in die Menge von Folgen von
Ziffern.
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Das bekannteste Zahlensystem ist das Dezimalsystem, das von einem grofsen Teil der Welt-
bevélkerung verwendet wird. Weniger bekannt sind zum Beispiel das Bindrsystem und das
Hexadezimalsystem, die jedoch durch die Entwicklung digitaler Rechenmaschinen stark an
Bedeutung gewonnen haben. Eine natiirliche Verallgemeinerung dieser Zahlensysteme ist die
Darstellung von Zahlen in Basis k, wobei k > 2: Jede natiirliche Zahl n kann eindeutig in
der folgenden Form geschrieben werden

n= 5§k)(n)ki,

wobei 55’“) € {0,...,k — 1} und 55“ = 0 fiir fast alle 7. Die Darstellung von Zahlen in
Basis k ist von essenzieller Bedeutung in dieser Dissertation und wir bezeichnen mit (n); die
Zifferndarstellung von n in Basis k ohne fithrende Nullen: (n), = (57(]“) (n),... ,gék) (n)) wobei
r = [log,(n)]|. Aukerdem bezeichnen wir fiir w = (wo, ..., w,) die entsprechende natiirliche

Zahl [W]k = Z::O kiwr,i.

Es ist weiters zu erwédhnen, dass es etliche andere Zahlensysteme gibt, z.B. mit negativer
Basis —k oder irrationaler Basis € RT \ Q.

Als néchstes definieren wir deterministische endliche Automaten. Ein deterministischer endli-
cher Automat ist ein Quadrupel A = (Q, %, 6, qo), wobei @ eine endliche Menge an Zustédnden
ist, . ist das endliche Eingabealphabet, § : Q x ¥ — @ ist die Ubergangsfunktion und ¢y € Q
ist der Startzustand - wir beschrinken uns meistens auf den Fall ¥ = {0,...,k — 1}. Die
Ubergangsfunktion § ordnet jedem Paar bestehend aus einem Zustand ¢ € @ und einem
Eingabesymbol a € ¥ einen Nachfolgezustand p € @ zu. Wir erweitern die Funktion ¢ in
natiirlicher Weise zu einer Funktion - die wir ebenfalls § nennen - § : ) x ¥* — @, wobei X*
die Worter mit Buchstaben in X2 ist:

d(q,ab) = d((q,a),b)

fiir alle a,b € X*. Insbesondere besteht fiir ein Wort w der Lange n, §(¢, w) aus n Anwen-
dungen der urspriinglichen Funktion 6. Wir lesen Worter immer von links nach rechts, d.h.
wenn wir als Eingabe die Zifferndarstellung einer Zahl verwenden, lesen wir zuerst die Ziffer
mit dem hochsten Stellenwert.

Ein deterministischer endlicher Automat mit Output (DFAO) A = (Q, %, 9, qo, A, T) ist ein
DFA mit einer zusétzlichen Funktion 7 : @ — A. Wir beschrinken uns jedoch meistens auf
komplexwertige Funktionen 7 : Q — C. In diesem Fall schreiben wir A = (Q, %, 6, qo, 7).

Nun sind wir in der Lage automatische Folgen zu definieren.

Definition 0.2.1. Eine Folge a = (a,)nen heifst k-automatische Folge genau dann wenn es
einen DFAO A = (Q,X ={0,...,k—1},0,q0, A, 7) gibt, sodass a, = 7(d(qo, (n)x))-

Automatische Folgen fanden in den letzten 10 bis 15 Jahren grofse Beachtung und sind das
zentrale Thema dieser Dissertation. Es gibt Verbindungen zu dynamischen Systemen, Zif-
ferndarstellungen, gleichverteilte Folgen und auch Zahlentheorie. In dieser Arbeit werden wir
alle diese Themen aufgreifen.
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Es gibt zwei Entwicklungen in der Zahlentheorie, die diese Dissertation stark beeinflusst
haben. Die erste ist eine Vermutung von Peter Sarnak aus dem Jahr 2010 betreffend die
Mébius-Funktion. Die Mobius-Funktion ist wie folgt definiert,

(1)t wenn n quadratfrei ist und
u(n) = k die Anzahl der verschiedenen Primfaktoren von n ist
0 sonst.

Wir sagen dass eine Folge a orthogonal zur Mébius-Funktion ist wenn

Z anp(n)| = o (Z |an).

n<N
Es gibt ein altes - relativ vages - Prinzip (genannt Mobius Randomness Law) , das besagt,
dass jede “verniinftige”, beschrinkte komplexwertige Folge orthogonal zur Md&biusfunktion
ist [28] Seite 388|. Die Idee hinter diesem Prinzip ist, dass die M6bius Funktion so zuféllig das
Vorzeichen dndert, dass es zu hinreichenden Ausloschungen kommt. Die Sarnak Vermutung
besagt, dass eine spezielle Klasse von “einfachen” Folgen orthogonal zur Mobiusfunktion ist.

Conjecture 0.2.2 (Sarnak Vermutung). {0/ Sei p die Mébiusfunktion. Jede komplezwer-
tige beschrinkte Folge £(n) die von einem deterministischem dynamischen SystemE] (X,S)
realisiert wird - d.h. es gibt eine stetige Funktion f : X — C und einen Startwert xo € X,
sodass £(n) = f(T"(xg)) gilt -, erfillt

S e(mu(n) = o(N).

n<N

Zahlreiche Publikationen behandeln die Orthogonalitit bestimmter Folgen oder dynamischer
Systeme zur Mobiusfunktion.

Der zweite grofse Einfluss auf diese Dissertation sind die sogenannten Gelfond-Probleme.
Diese betreffen sehr spezielle automatische Folgen, nédmlich die Ziffernsummenfunktion von
n in Basis £ modulo m. Das beriihmteste Beispiel dafiir ist die Thue-Morse Folge die dem
Fall £ = m = 2 entspricht. Wir definieren

tem = (sk(n) mod m),en,

wobei si(n) die Ziffernsumme von n in Basis £ ist:

sk(n) == Z 51@) (n).

120

4Wir verwenden hier die klein-o Notation. Seien f, g : N — R* Funktionen. Wir schreiben f = o(g) genau
dann, wenn lim,, . f(n)/g(n) = 0 gilt.

°Ein dynamisches System ist ein Paar (X, S) wobei X ein kompakter metrischer Raum ist und S : X — X
eine stetige Abbildung ist. Ein dynamisches System ist deterministisch wenn es topologische Entropie 0 hat.
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Das erste Resultat fiir die Verteilung von ty ,, stammt von Gelfond. Er zeigt in [22] dass fiir
99T (k —1,m) =1 und jedes ¢ € {0,...,m — 1}, n > 0 existiert, sodass

{n < N :si(an+b) = ¢ mod m}| = N + O(N'™)
m

gilt. Das bedeutet, dass die linearen Teilfolgen von tj,, gleichverteilt sind auf den Werten
{0,...,m —1}.

In seiner Arbeit formuliert Gelfond drei weitere Probleme, die spéter als GGelfond-Probleme
bezeichnet wurden. Alle diese Probleme betreffen die Verteilung von t,, entlang spezieller
Teilfolgen.

1. Seien ki, ko > 2 teilerfremde Zahlen und ggT(ky — 1,mq) = ggT (ks — 1,mz) = 1, dann
gilt

+ O(N'™")

{n < N : sk, (n) = £, mod my, sk, (n) = o mod my}| = e

fiir alle /1, {5 und ein n > 0.
2. Sei k> 2 und ggT(k —1,m) = 1, dann gilt

Hp < N :pePAsk(p) = ¢ modm}| = # + O(N*)

fiir alle £ und ein 7 > 0. 7(x) bezeichnet hier die Anzahl der Primzahlen < x.

3. Sei k > 2 und ggT(k — 1,m) = 1 dann gilt fiir jedes Polynom P(z) mit ganzzahligen
Koeffizienten

N
{n < N :sx(P(n)) = ¢ mod m}| = p— + O(N*)
fiir alle £ und ein n > 0.

Bereits im Jahr 1972 16ste Besineau das erste Problem [4]. Kim verallgemeinerte das Resultat
auf k- additive Funktionen, d.h. Funktionen f die f(ak’+ b) = f(a) + f(b) erfiillen, wenn
a>1,0>0,0<b<k’gilt, und konnte auch einen expliziten Fehlerterm angeben|[31].

Es dauerte jedoch fast vierzig Jahre bis das zweite und dritte Problem geldst bzw. teilweise
gelost wurden. Das zweite Problem wurde von Mauduit und Rivat im Jahr 2010 gelost [37).
Das dritte Problem wurde im Jahr 2009 von Mauduit und Rivat fiir quadratische Polynome
gelost [36]. Auferdem gibt es eine Losung fiir Basis k& wobei k eine Primzahl ist, die grof ist
in Anbetracht des Polynomgrades. Diese Resultate beruhen auf der Behandlung von Expo-
nentialsummen mit Fourier-theoretischen Methoden, die von Mauduit und Rivat entwickelt
wurden. Dies stellt einen Durchbruch in diesem Gebiet dar und wird in dieser Dissertation
verwendet.
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Eine natiirliche Verallgemeinerung der Ziffernsummenfunktion sind digitale Funktionen. Eine
Folge a heikt digitalf|in Basis k, wenn es r > 1 und F : Z" — C gibt mit £(0,...,0) = 0 und

an =Y FEP ), el ).

i>0

Diese Summe ist wohldefiniert, da F'(0,...,0) = 0 und fast alle ¢; = 0. Man kann auch

eine Variation dieser Definition betrachten. Dafiir definiert man 5(_]? (n) :==0 fiir i > 1 und
erweitert die Summe auf i € Z.

Im ersten Kapitel dieser Dissertation geben wir eine Einleitung zu automatischen Folgen. Wir
prisentieren einige Beispiele und klassische Resultate fiir automatische Folgen. Eine wesent-
lich detailliertere Behandlung von automatischen Folgen findet sich in [I]. Weiters beschreiben
wir zwei wichtige Klassen von Automaten bzw. automatischen Folgen, ndmlich invertierbare
und synchronisierende Automaten bzw. Folgen. Auferdem besprechen wir aktuelle Resultate
fiir Teilfolgen spezieller automatischer Folgen, die teilweise auf Fourier-theoretische Methoden
zuriickgehen und in den spédteren Kapiteln verwendet werden.

Im zweiten Kapitel prisentieren wir eine neue Struktur fiir Automaten, genannt “naturally
induced transducers”. Diese Konstruktion kombiniert Ideen von invertierbaren und synchroni-
sierenden Automaten. Wir werden sehen, dass diese Aspekte beinahe unabhéngig voneinander
behandelt werden konnen. Der synchronisierende Teil kann verhaltnisméfig leicht behandelt
werden, es reichen dafiir bereits elementare Methoden. Der invertierbare Teil ist deutlich
schwieriger zu behandeln und wir werden Resultate beweisen, die spater fiir Verteilungs-
Resultate von speziellen Teilfolgen verwendet werden.

Das dritte Kapitel behandelt die Sarnak Vermutung. Wir nennen einige Beispiele, die die Sar-
nak Vermutung erfiillen, und formulieren eine Version der Sarnak Vermutung fiir Folgen. Es
gibt eine kanonische Art einer beschrinkten komplexwertigen Folge ein dynamisches System
zuzuordnen. Wir sagen daher, dass eine Folge die Sarnak Vermutung erfiillt, wenn jede Folge
des zugehorigen dynamischen Systems die Sarnak Vermutung erfiillt. Der Rest des Kapitels
dient dazu das folgende Resultat zu beweisen.

Theorem 0.2.3. Sei u die Mébiusfunktion, (a,)nen eine automatische Folge und sei (X, S)
das dynamische System assoziiert mit (ap)nen. Dann gilt fir alle Folgen {(n) = f(S™(x)),
mit © € X und f € C(X,C),

Y &m)uln) = o(N).

n<N

Fiir den Beweis verwenden wir die Struktur, die wir in Kapitel 2 beschrieben haben. Hier
miissen wir den synchronisierenden und den invertierbaren Teil behandeln. Der synchroni-
sierende Teil kann relativ einfach behandelt werden. Die wesentliche Schwierigkeit besteht
in der Behandlung des invertierbaren Teils. Dafiir verwenden und adaptieren wir die Ideen
von Mauduit und Rivat, die sie verwendet haben um zu zeigen, dass die Rudin-Shapiro Folge
orthogonal zur Mé&biusfunktion ist.

6Digitale Folgen werden manchmal auch als stark block-additive Funktionen bezeichnet.
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Kapitel 4 und 5 behandeln Erweiterungen der Gelfond Probleme auf automatische Folgen. In
Kapitel 4 beschreiben wir zuerst die Verteilung von automatischen Folgen entlang von arith-
metischen Progressionen. Hierbei verwenden wir insbesondere ,naturally induced transducer®
und dieses Resultat dient hauptséichlich der Priasentation der verwendeten Methode.
Danach behandeln wir die Verteilung von automatischen Folgen entlang der Primzahlen -
jeweils unter einer technischen Bedingung. Dies entspricht dem 2. Gelfond Problem und ist
deutlich aufwindiger. Die verwendete technische Bedingung mag anfangs vielleicht willkiir-
lich oder zu stark erscheinen. Es ist jedoch unklar fiir welche automatischen Folgen man
iiberhaupt die Existenz einer Grenzverteilung fiir die Teilfolge entlang der Primzahlen bzw
arithmetischer Progressionen erwarten kann. Wir beweisen das folgende Resultat.

Theorem 0.2.4. Sei A = (Q',%,8,q),7) ein stark zusammenhdngender deterministischer
endlicher Automat mit Output (DFAO), wobei ¥ = {0,...,k — 1} und §'(q,0) = ¢,. Dann
ezistiert eine Grenzverteilung fir die Teilfolge (a,)yep entlang der Primzahlen.

Der Beweis dieses Satzes erlaubt die Bestimmung der Grenzverteilung, wobei diese von der
Verteilung von linearen Teilfolgen der automatischen Folge abhingt. Die Beweisidee ist sehr
dghnlich zu den Methoden, die in Kapitel 3 verwendet werden, es ist allerdings etwas mehr
Aufwand notwendig um die Grenzverteilung zu bestimmen.

In Kapitel 5 verallgemeinern wir ein Resultat von Drmota, Mauduit und Rivat [14], das be-
sagt, dass (t22(n?))neny normal ist, auf digitale Folgen, die insbesondere automatische Folgen
sind:

Theorem 0.2.5. Sei b eine digitale Folge in Basis ¢ und m' € N, wobei ggT(q—1,m') =1
und ggT(m’, ggT(b(n))nen) = 1. Dann ist (b(n?) mod m’),en normal, d.h. jede Teilfolge der

Linge k kommt mit asymptotischer Héiufigkeit (m')™* vor,

Hierfiir folgen wir grofsteils der Argumentation von Drmota, Mauduit und Rivat [I4]. Sie re-
duzieren das Problem, unter Zuhilfenahme einer sogenannten “carry-property” fiir die Ziffern-
summenfunktion, zu spezielle Aussagen iiber Fouriertransformierte. Dieser Teil kann leicht an
die verdnderte Situation angepasst werden, jedoch stellen die entsprechenden Aussagen {iber
die Fouriertransformierten fiir digitale Funktionen eine grofse Herausforderung dar und kon-
nen nicht leicht von den entsprechenden Resultaten fiir die Ziffernsummenfunktion abgeleitet
werden.



Kapitel 1

Automatic Sequences

We use this chapter to highlight classical properties of automatic sequences and also to discuss
some new results concerning automatic sequences. Throughout this chapter, we give only few
complete proofs and refer mostly to the literature.

In Section we define automatic sequences give some basic properties and examples. In
Section we discuss some other equivalent definitions of automatic sequences that are
sometimes useful. Section contains some results for frequencies of (automatic) sequences.
In the last section we present new results concerning the distribution of subsequences of
automatic sequences. These are particularly interesting as they build the base for large parts
of this thesis.

The results of Abschnitte bis are taken from [I], where a much more detailed study
of automatic sequences is given.

1.1 Introduction to Automatic Sequences

We start this section by a short discussion of base-k representations of natural numbers.
It is a well-known fact that - for every k > 2 - every non-negative integer n can be written

in a unique way as
n= Z 5Ek)(n)ki,
i>0

where &?l(k) €{0,...,k—1} and €§k) = 0 for all but finitely many ¢. There exists an explicit

(k)
o= 2] |2

formula for ;":
We denote by (n), the digital expansion of n in base k without leading zeros, i.e. (n)y =

(57@ (n),... ,&ték) (n)) where r = |log,(n)|. This finite sequence can be interpreted as a word
over the alphabet {0,1,...,k — 1}. Conversely, we denote for w = (wy,...,w,) the corre-
sponding natural number [w]y, :== > k'w,_;.

19
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Let ¥ be a finite set. A word of length n is a map from {0,...,n — 1} to 3. Similarly we
define an infinite word to be a map from N — >. If n = 0, we get the empty word, denoted
by €. The set of all finite words made up of letters chosen from X is denoted by X*. If w is a
finite word, we denote its length by |w]|.

The fundamental operation on words is the concatenation. We concatenate two finite words
v, w by juxtaposing their symbols and we denote this by vw.

Ezample. Let ¥ = {a,b},v = aab and w = bba. Then vw = aabbba.

To describe automatic sequences, we need to define deterministic finite automata first .

A deterministic finite automaton, or DFA, is defined to be a quadruple A = (@, X, 9, q),
where () is a finite set of states, ¥ is the finite input alphabet - we restrict ourselves to the
case X ={0,...,k—1}-,0:@Q x ¥ — @ is the transition function and gg € @ is the initial
state.

We extend ¢ to a function d : Q X ¥* — @, in a natural way, by

6(gq, ab) = 6(d(q,a),b)

for all a,b € X*. Note that we always read words from left to right i.e. for digital represen-
tations of numbers we start with the most significant digit. By definition d(q, w) consists of
|w| “steps” for every w € ¥*.

A DFAO A = (Q,%,6,q0,A,7) is a DFA with an additional output function 7 : @ — A. In
this thesis we restrict ourselves mainly to complex-valued output functions; i.e. 7: () — C.
We omit to denote A = C in this case.

We have now described the necessary setting to define an automatic sequence.

Definition 1.1.1. We say that a sequence a = (a, )nen is a k-automatic sequence, if and only
if there exists a DFAO A = (Q,X ={0,...,k —1},0,q0, A, 7) such that a,, = 7(6(qo, (n)x))-

1.1.1 Examples of Automatic Sequences

In this part, we give some examples of automatic sequences. We start by a very easy and
fundamental example of automatic sequences.

Theorem 1.1.2. Every periodic sequence is k-automatic for all k > 2.

Beweis. Let a = (ay),>0 be a periodic sequence with period ¢t. We define the k-automaton
A=(Q,%,0,q,A,7), where ¥ = {0,...,k — 1} as follows:

Q=A{0,...,t—1},
7 =0,
0(q,b) = (kg +b) mod ¢ Vge Q,bey,
7(q) = a, Vg € Q.
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One finds easily by induction on the length of w that
0(0,w) = [w]r mod t

and the result follows directly. O]

Another prominent examples of automatic sequences is the Thue-Morse sequence t = (t,,)n>0,
given by t, = s3(n) mod 2, where s, is the base-2 sum-of-digits functionﬂ We present the
automaton that produces the Thue-Morse sequence using a transition diagram.

A transition diagram is a directed graph. The vertices of the transition diagram correspond
to the states of the automaton and the labeled edges corresponds to the transition function.
More precisely, a labeled edge from ¢; to ¢o with label a corresponds to d(qi,a) = go. The
initial state is indicated by an unlabeled arrow entering the state. The value of the output
function 7 of a state ¢ is written in the same vertex as the state, separated by /.

Ezample (Thue-Morse automaton). The transition diagram of the Thue-Morse automaton
is given below.

0 0

1
1

The Thue-Morse sequence is an example of a digital sequence, which are the main subject
of the last chapter of this thesis. We use here the definition given in [T, p. 83].

Definition 1.1.3. We call a sequence (a,),>o digital in base k and of length m if there exists
a function F : {0,...,k — 1} — C, where F(0,...,0) =0 and

=Y F(e, 1(n),....e" (n)).

i>0
This sum is well defined since F'(0,...,0) = 0 and can be rewritten as
r—1
k k
an = F(Eena). e (), (1.1)
=0

where r = |log,(n)].

Theorem 1.1.4. Let (a,)n>0 be a digital sequence in base k. Then (a, mod m'),>¢ is a
k-automatic sequence for every m’ € N.

L Let (n), = (55“ (n),... ,5E)k) (n)) be the representation of n in base k. Then, we define the sum-of-digits
function in base k as follows,

sg(n) = Z Sgk) (n).
=0
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Beweis. We define the DFAO A = (Q, %, 0, qo, 7) as follows.

As always we set ¥ = {0,...,k — 1}. We see that a, is defined by a summation of r + 1 =
|logi(n)] + 1 terms and d(qo, (n)x) consists of r 4+ 1 steps. The idea is that the i-th step in
computing 6(qo, (n)x) corresponds to the addition of the (r — ¢)-th summand in (1.1)). Thus
we need to “remember” the m — 1 last digits that we have read and the value of the partial
summation up to this point.

Let Q = {0,...,k—1}""' X Z,y and qo = (0™~1,0). The first component corresponds to the
last m — 1 digits when reading (n); from the most significant digit to the least significant
digit. The second component gives the value of the summation up to this step. Therefore, we
define for € € &

6(((ag, ... am—2),b),¢) :=((ar,...,am—2,),(b+ Fl(ag,...,am_2,¢)) mod m’).

Furthermore, we define 7((a,b)) = b for all a € {0,...,k — 1} 1 and b € {0,...,m' — 1}.
One finds easily by induction on the length of w that 6(qo, w) = (W', afw),) where w' is the
word consisting of the last m — 1 letters of 0™ 'w. Thus we have 7(6(go, W)) = afw, - O

Another prominent example of a digital sequence is the Rudin—Shapiro sequence (7,),>0-

Ezample (Rudin-Shapiro sequence). Let (n)s = (1 (n), . .. ,5(()2) (n)) be the representation of
n in base 2. The n-th element of the Rudin—Shapiro sequence is then given by

(ZS 2) 2(-231 ) mod 2.

By following the proof of Theorem we construct the automaton corresponding to the
Rudin—Shapiro sequence. In the first component we remember the last digit and in the second
one the partial summation result.

0 0

start —

Lastly, we want to mention an example of an automatic sequence, that has a connection to
game theory.

FEzample (The Tower of Hanoi Sequence). We consider the classical Tower of Hanoi problem.
There are three pegs and N disks with radii 1,2,..., N. Initially they are all placed on peg
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1 one with decreasing radii from bottom to top. A legal move consists of taking the top disk
of a peg and moving it to another peg that is empty or the top disk has a larger radius. The
goal of the problem is to move all N disks from peg 1 to another peg by only using legal
moves.

It is well known that the optimal solution consists of 2V — 1 moves. We denote by a, b, ¢ the
moves that take the topmost disk of peg 1 (resp. peg 2 and peg 3) and moves it to peg 2
(resp. peg 3 and peg 1). Furthermore we denote by a, b, ¢ the inverse moves, e.g. @ moves the
topmost disk from peg 2 to peg 1. The optimal sequence to move 3 disks from peg 1 to peg
2 is given by

acbacha.

One can show that there exists an infinite sequence of moves such that the first 2" — 1 moves
give an optimal solutions to move N disks from peg 1 to peg 2 if N is odd or to peg 3 if N is
even. For a more detailed treatment see [I]. Indeed one finds that this sequence is automatic
and given by the following automaton.

1.1.2 Basic Properties of Automatic Sequences

In the definition of automatic sequences we demanded that the input of the automaton is
the canonical representation of n, i.e. without leading zeros. However, there always exists a
(possibly different) automaton that has the same output as the original automaton and does
not change the output when adding leading zeros.

Theorem 1.1.5. Let (a,)n>0 be a k-automatic sequence. Then there exists a k-DFAO A such
that a,, = 7(0(qo, (n)g)) for all n > 0, where also 6(qo,0) = qo. This implies T(0(qo, (n)x)) =
7(6(qo, 0(n)x)) for all i > 0, i.e. the output does not depend on the representation of n.

Beweis. Let A" = (Q',{0,...,k —1},¢,¢), A, 7') be an automaton generating a. We define
a new automaton A = (Q,{0,...,k—1},0,q0, A, 7) as follows:

Q=Q U{q}
5(q,a) = 0'(q,a) Ve Q' aed{0,....k—1}
6(q0,0) = qo
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8(qo, a) = d(qp, a) Vae{l,...,k—1}

(@) =7() Vgeq"
We find that for all n > 0 and i > 0
7(6(q0, 0" (n)x)) = 7((q0, (n))) = 7(8"(go, (&) = 7' (8" (g0, (1))
7(8(q0,0%) = 7(g0) = 7'(g0) = 7'(8" (45, (0)))-

]

Furthermore, we can rename the output of an automatic sequence and obtain again an
automatic sequence.

Theorem 1.1.6. Let u = (uy)n>0 be a k-automatic sequence with values in A and let p :
A — A. Then the sequence p(u) = (p(uy))n>o0 is also k-automatic.

Beweis. By the definition of k-automatic, there exists a DFAO A = (Q, {0,...,k—1},6,q0, A, 7)
such that u, = 7((qo, (n)x)). Now consider the DFAO A" = (Q,{0,...,k—1},9,q0, A, poT).
Clearly, this DFAO generates p(u). O

Finally, we show that the product of two automatic sequences is again automatic.

Theorem 1.1.7. Let a = (a,)n>0 and b = (b,)n>0 be two k-automatic sequences with values
in Ay, Ay, respectively. Then a x b = ([an, by])n>0 s k-automatic.

Beweis. Let A = (Q,%,0,q, A, 7) generate a and A’ = (Q', X, 0, ¢(, A’, 7’) generate b. Then
A" =(Q x Q',%,0",[qo, q0), A x A, 7") generates a x b where

0"([g,4],¢c) = [0(g,;¢),0'(d',c)]  VqeQ,d €QceX
™(l¢.q]) = [r(q), 7' (¢)] VgeQ,d Q"

1.2 Equivalent Definitions for Automatic Sequences

Automatic sequences are interesting objects and there are other equivalent approaches to
define this class of sequences. We will mention here two alternative ways to define automatic
sequences. Even more characterizing properties can be found in [IJ.
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1.2.1 Fixed Points of Uniform Morphisms

We start by defining morphisms.

Definition 1.2.1. Let ¥ and A be alphabets. A morphism is a map h from >* to A* such
that h(zy) = h(x)h(y) for every word z,y € ¥*.

Clearly, if h is a morphism, then we have h(e¢) = €. Furthermore, once h is defined for all
elements of X, it can be uniquely extended to a map from ¥* to A*. Therefore, we give a
morphism by specifying its action on .

We are specially interested in the case where ¥ = A. This allows us to iterate a morphism.
We define h°(w) = w and h"*1 = h(h"(w)) for all w € ¥*.

Throughout this work, we work with uniform morphisms. We call a morphism k-uniform if
|h(a)] =k for all a € ¥. A coding is a 1-uniform morphism.

Remark. Suppose we have a k-uniform morphism ¢ such that ¢(a) = av for some a € A, v €
A*. Then, we can construct an infinite sequence/word as a fixed point of ¢ by taking the
limit

w = lim ¢"(a).

n—oo

Theorem 1.2.2 (Cobham [8]). Let k > 2. Then a sequence u = (uy)n>o s k-automatic if
and only if it is the image of a coding of a fixed point of a k-uniform morphism.

Beweis. A detailed proof can be found for example in [I, Theorem 6.3.2]. However, we want
to give the basic idea on how to show this result.

Suppose u is the image of a fixed point of a k-uniform morphism. More precisely, let u = 7(w)
for a coding 7 : A — A’ and w = ¢(w) for a k-uniform morphism ¢ : ¥* — ¥*. We write
W = wowjws ... where all w; € A. We define now a DFAO A = (A, {0,...,k —1},0,q0,7)
where gy = wp and 6(q, a) is the a-th letter of ¢(q). One finds easily that w,, = d(qo, (n)x) for
all n > 0. Thus we find

tun = 7T(wn) = 7(6(q0, (n)k))-

Let u be k-automatic, then it is generated by a DFAO A = (Q,{0,...,k—1},4d,q0, A, 7). By
Theorem we may assume that (qp,0) = ¢o. We define a morphism ¢ : Q* — Q* by

¢(q) = 0(q,0)d(q,1)...0(q, k — 1)

for all ¢ € ). One can then easily show that (d(qo, (n)x))n>0 is a fixed point of ¢ and the
theorem follows. O

1.2.2 The k-Kernel

The next characterization is given in terms of the so called k-kernel and will be useful to
treat arithmetic subsequences of automatic sequences.
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Definition 1.2.3. Let u = (uy),>0 be an infinite sequence. We define the k-kernel of u to
be the set of subsequences

Kk<U) = {(uki,n+j>n20 1> 0and 0 <5< k’z}
Theorem 1.2.4. Let k > 2. The sequence u = (uy)n>0 @5 k-automatic if and only if Ki(u)

18 finite.

Beweis. See [I, Theorem 6.6.1] for a detailed proof. O

FEzample. We calculate the k-kernel of the Thue-Morse sequence t = (t,,)n>0-

Recall that t,, = so(n) mod 2. We find for all i > 0,0 < j < 2° that sy(n2°+j) = s2(n) +s2(5)
and, therefore, ¢,9:; = (£, + s2(j)) mod 2. This shows that the 2-kernel of the Thue-Morse
sequence is given by {t, (t + 1 mod 2)}.

We are now able to show that any arithmetic subsequence of an automatic sequence is again
automatic.

Theorem 1.2.5. Let u = (u(n)),>o0 be a k-automatic sequence. Then for all integers a,b > 0
the subsequence (u(an + b)),>o is also k-automatic.

For this proof it is particularly useful to use the characterization of automatic sequences by
the k-kernel.

Beweis. If a = 0, then u(an + b) = u(b) is a constant sequence and therefore trivially k-
automatic. Let now a > 0. Since u = (u(n)),>o is k-automatic, it has a finite k-kernel which
we denote by

Ki(u) = {(u1(n))nz0, (u2(n))nz0, - - - s (Ur(12) )20}

Our goal is to show that the k-kernel of v = (v(n)),>0 = (u(an + b)),>¢ is finite. Therefore
we consider the following set of at most 7 - (a + b) sequences

S={(ui(an+¢))p>0:1 <1 <r,0<c<a+b}.

We claim that every element of the k-kernel of v is an element of S, which is sufficient to prove
the theorem. Therefore, we need to consider (v(k°n + j))n>0 where e > 0 and 0 < j < &°.
Using the division algorithm, we can write

ja+b=dk°+ f,
where 0 < f < k® and 0 < d < a + b. This gives
v(kn+ j) = u(a(kn + j) + b) = u(k*(an + d) + f).
By the finiteness of the k-kernel of u there exists ¢ such that
u(km + f) = ui(m)
for all m > 0. Putting m = an + d yields in total that
(V(kn + 7))o = w(k®(an 4+ d) + f)nso = ui(an + d)p>o € S.
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1.3 Frequencies

Some of the main goals of this thesis concern the frequency of letters in subsequences of
automatic sequences. Therefore, we give a brief overview about results of frequencies of
(automatic) sequences. Once again, a more detailed treatment can be found in [IJ.

Let x = (x,)n>0 be an infinite sequence with values in A. We define the frequency of the
letter a € A as

<N:z, =
Frey (o) = g [0 <N 20 =)

if this limit exists. Furthermore, we define the logarithmic density of the letter a as

) 1 1
LogFreq, (a) = ]%13;0 Tog N g -
n<N

Tn=a
if the limit exists.

These two limits are quite closely connected as the following proposition shows.

Proposition 1.3.1. If the frequency of a in the sequence x exists, then the logarithmic
frequency of a in x also exists, and these two frequencies are equal.

Beweis. See [Il, Proposition 8.4.4. O

The frequency of a letter need not exist for general automatic sequences. However, Cobham
showed in 1972 that the logarithmic density always exists.

Theorem 1.3.2. Let x be an automatic sequence. Then all letters occurring in x have a
logarithmic frequency.

Beweis. See [II, Corollary 8.4.9]. O

Although the frequencies need not exist for automatic sequences, we can find a restriction
for what values the frequencies can take.

Theorem 1.3.3. Let x be an automatic sequence. If the frequency of a letter exists, then it
1s a rational number.

Beweis. See [I, Theorem 8.4.5]. O

Remark. As every periodic sequence is k-automatic for every & > 2, we see that every
g € QN [0,1] appears as the frequency of a letter of an automatic sequence.

Finally, we give a property of automatic sequences that ensures the existence of the frequen-
cies of all letters.
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Definition 1.3.4. We say that an automaton is strongly connected if and only if for every
¢1,q2 € Q exists a word w € ¥* such that 6(q1, w) = ¢o.

Furthermore, we say an automaton is primitive if and only if there exists n > 0 such that for
all q1, g2 € Q exists a word w € ¥* such that |w| = n and §(¢1, w) = ¢o.

We say an automatic sequence a is primitive if and only if there exists a primitive DFAO
that generates a.

Remark. We see easily that a strongly connected automaton where also d(qo, 0) = ¢o holds is
already primitive.

Theorem 1.3.5. Let x be a primitive automatic sequence. Then the frequencies of all letters
exist, and are nonzero.

Beweis. See [I, Theorem 8.4.7]. O

1.4 Recent Results for Automatic Sequences

We present in this section some recent results concerning (special) automatic sequences that
are of importance for this thesis.

1.4.1 Synchronizing Automata

There is a recent paper by Deshouillers, Drmota and the author [IT] that treats a special class
of automatic sequences, namely synchronizing automatic sequences, which are important for
this thesis.

We call a DFAO A = (Q, %, 9,0, A, 7) synchronizing if there exists a synchronizing word
wo € X* whose action resets A, i.e. wy leaves the automaton in one specific state, no matter
which state in @ it is applied to: 6(q, wo) = 0(qo, Wo) for all ¢ € Q). Note that the output
of a synchronizing automaton for an input word only depends on the last occurrence of the
synchronizing word and the part thereafter. Furthermore, we call an automatic sequence
synchronizing if there exists a synchronizing DFAO that generates this sequence.

Remark. Let A be a DFAO and a be the corresponding automatic sequence. Suppose there
exists n > 1 such that every word w € 3" is synchronizing. Then, a is a k™ periodic function.
This class of automata is particularly interesting as Berlinkov showed in [2] B] that “almost
all” automata are synchronizing.

We will mention now the most important results of this paper:

The first result gives bounds on how often synchronizing words occur and will also be used
later.

Lemma 1.4.1 (Lemma 2.2 [I1]). Let A be a synchronizing DFAO. There exists n > 0 such
that the number of words of length n which are not synchronizing is at most O(k"(=7)),
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This lemma states that if you take a word of length n at random, the probability that it is
not synchronizing is very small - i.e O(k™"").

The main idea to treat synchronizing automatic sequences is to approximate them by periodic
sequences. This yields the following results.

Theorem 1.4.2 (Theorem 4.4 [L1]). Suppose the a € AN is a synchronizing automatic
sequence. Then for every a € A the frequency Freq,(a) exists.

Although not explicitly stated in the original proof, one can use the arguments to show that
there exists 7 > 0 such that

[#{n < N :a, = a} — N - Freq,(a)] < N7 (1.2)

The authors of [I1] also show that the frequencies for certain subsequences of synchronizing
automatic sequences exist, namely the subsequences along the set of primes and along positive
integer valued polynomials.

Furthermore, they show that - under some technical conditions - the frequencies for the
product of two synchronizing automatic sequences exists and is given by the product of the
frequencies of the two synchronizing automatic sequences.

Lastly, Deshouillers, Drmota and the author show that synchronizing automatic sequences
are orthogonal to the Mobius function and even fulfill the Sarnak conjecture - we will discuss
this again in Chapter

1.4.2 Rudin—Shapiro Sequence

Next we discuss a result by Mauduit and Rivat [38]. They study sequences with digit pro-
perties and in particular the Rudin—-Shapiro sequence (7,),>0 - which we already discussed
- along the subsequence of primes, i.e. (1,),ep. Therefore, they developed a strong frame-
work that allows to find results for subsequences along primes and also the correlation with
the Mobius function. From now on, we fix an integer k£ which we use as a base for digital
expansions. This framework requires that the sequences fulfill the following two conditions.

The first condition is called carry property and states in some sense that a disturbance of
“low digits” usually does not influence the contribution of “high digits”. Therefore they define
for « € Nand f: N — U a truncated version of f by f,(n) := f(n mod k?).

Definition 1.4.3. A function f : N — U has the carry property if uniformly for (A, a, p) € N3
with p < X, the number of integers 0 < ¢ < k* such that there exists (ny,ny) € {0,...,k*—1}2
with

JUEY +ny 4 n2) f(CEY + 1) # faqp(Ck™ + 1y 4+ 02) foy o (k> 4 11) (1.3)

is at most O(k*~?) where the implied constant may depend only on k and f.

The second property states that the - slightly generalized - Discrete Fourier Transform is
uniformly small.
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Definition 1.4.4. Given a non decreasing function v : R — R satisfying limy_,, v(\) = +00
and ¢ > 0 we denote by F, . the set of functions f : N — U such that for (a,\) € N? with
a<chandteR:

EAY D fuk®)e(—ut)| < k7O (1.4)

u<kX

They show that these properties are sufficient to find the following statements.

Theorem 1.4.5. Let v : R — R be a non decreasing function satisfying limy_, v(\) = 400,
and f : N = U be a function satisfying Definition [1.4.3 and f € F, . for some ¢ > 10 in
Definition[1.4.4]. Then for any 6 € R we have

< ¢1(k)(log x)cz(k)xk—v(%(log ©)/(80log k)] /20 (1.5)

S Am) £(n) elbn)

n<x

for some explicit constants cy, cs.

A denotes here the Mangoldt function which is defined by A(n) = logp if n = p* for some
p € Pand ¢ € N and A(n) = 0 otherwise. This is not explicitly a theorem about prime
numbers, but one can find a corresponding theorem for primes by partial summation.

Theorem 1.4.6. Let v : R — R be a non decreasing function satisfying limy_,o, y(\) = +o0,
and f : N — U be a function satisfying Definition [1.{.5 and f € F, . for some ¢ > 10 in
Definition |1.4.4]. Then for any 6 € R we have

< c1(k)(log x)gﬁ max(w(k),2) ;. |, ~7(2|(log #)/(801og k)] /20 (1.6)

> u(n)f(n)e(dn)

n<x

for the same constants c1,co as in Theorem[1./.5.

The proof relies first on Vaughan’s identity [29]. Thus it is sufficient to estimate bilinear sums
of the form

Z Z Ay f (M),

One of the main ideas of the proof is to use the carry property - after applying the Cauchy—
Schwarz inequality or variants of it - to reduce the problem to sums over short intervals.
Then, one can use a Fourier-analytic treatment as the Fourier transform is uniformly small.

This paper is of particular interest as we will later generalize its results slightly. This gene-
ralization will play a substantial role for Chapter [3|and Chapter
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1.4.3 The Thue—-Morse Sequence along Squares

The next result is due to Drmota, Mauduit and Rivat [I4] and concerns the subsequence of
the Thue-Morse sequence along squares, i.e. (£,2),>0.

It is a well-known result that the subword complexity of automatic sequences, i.e. the number
of different blocks of length n that appear within the sequence, grows at most linearly.

Theorem 1.4.7. [Corollary 10.3.2 [1]] Let a be an automatic sequence. Then the subword
complexity of a,

pa(n) = #{(ai, ..., aq;n-1) 1 >0}

18 sub-linear, i.e.

For a random sequence u € {0,1}" one finds that p,(n) = 2" almost surely. Thus, we see
that automatic sequences are far from being random.

However, the situation changes completely when one considers the subsequence along squares.
They showed that not only p ,),.,(L) = 2L but were able to show how often such a block
appears.

Theorem 1.4.8. [Theorem 1 [T]|]] The sequence (t,2)n>0 is normal, i.e. for any L > 1 and
any (bo,...,br—1) € {0,1}*, we have

.1 . 1
lim N#{Z < N : tZ‘Q = bo, . 7t(i+L—1)2 = bL—l} — 2_L

N—o0
To prove this result, they start by relating the problem to a statement on exponential sums.
They apply then Van-der-Corput type inequalities and use results on carry propagation to
reduce the problem to sums that only depend on few digits of (n?, (n+1)2,..., (n+L—1)?).
Thereafter they have to handle quadratic exponential sums and statements about Fourier
terms.

1.4.4 Invertible Automatic Sequence

In order to define the class of invertible automatic sequences, we need another concept con-
cerning automata, namely transition matrices.

Let A= (Q={qo,---,q-1,2=A{0,...,k —1},0,90, A, 7) be a DFAO. We define the tran-
sition matrices M, € 7' for ¢ € ¥ to be the matrix, such that the entries are given by
M5 = 1is(g;.0)=q:)-

One finds easily that for a transition matrix, in each column there exists exactly one 1 and all
other entries are 0. We denote as usual the j-th standard vector in Z' (that is, all entries are
0 except the j-th, which is equal to 1) by e;. We see easily that §(g;,e) = ¢; fore € ¥,4,j <t
if and only if e; = M. - e;. This can easily be extended to w = wg---w; € £*: §(qj, W) = ¢;
if and only if e; = M, - - - My, - €;.
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Definition 1.4.9. Let u be a k-automatic sequence. Then we call u an invertible k-automatic
sequence if there exists a primitive DFAO that generates u and all transition matrices are
invertible.

This class of automatic sequences was introduced by Drmota and Morgenbesser in [13],
where the subsequences along the squares were studied. Furthermore, Drmota also adopted
and applied the framework developed by Mauduit and Rivat to study the subsequence along
the primes and the correlation with the Mébius function [13].

One of the main ideas to obtain these results is to utilize the group structure that is given by
the transition matrices. Furthermore, these results rely among other things again on carry
properties and Fourier estimates concerning the transition matrices.

Invertible automatic sequence are in some sense the opposite of synchronizing automatic
sequences:

For an invertible automaton, we find that 6(.,w) is invertible for all w € X* i.e. for all
g € Q,w € X" exists exactly one ¢’ such that §(¢, w) = ¢. Thus, we can backtrack any
element under the transition of any word.

For a synchronizing automaton with synchronizing word wy we find that (., wq) is as far
from invertible as possible, as all states are mapped to exactly one state and all “information
is lost”.



Kapitel 2

Naturally Induced Transducers

We develop in this chapter for any strongly connected automaton a new structure - namely
naturally induced transducers - that mimics the behavior of the automaton. This structure
combines aspects of invertible and synchronizing automata, and makes an easier treatment
of the automatic sequence possible. We will see that the two aspects are almost independent
of each other and can be analyzed independently. The synchronizing part can be analyzed
by elementary methods. However, the invertible part is much more challenging and we will
make an effort to understand it sufficiently well to be able to obtain distributional results. To
illustrate the effectiveness of this concept, we will derive the densities of automatic sequences
along arithmetic subsequences - under some technical conditions.

At the beginning of this chapter, we give some more necessary definitions. A finite-state
transducer 7T is a sextuple (@, X, 9, qo, A, \), where @ is a finite set of states, ¥ is the input
alphabet, ¢ is the transition function, ¢y is the initial state, A is the output alphabet and
A @ x Y — A*is the output function. We will restrict ourselves to A : Q x ¥ — A and
Y={0,...,k—1}.

A transducer can be viewed as a mean to define functions: on input w = wjw, ... w, the
transducer enters states go = 6(qo,€),(qo, w1), - .., 0(qo, wiwy . .. w,) and produces the out-
puts

A(qo, w1), A(0(qo, wr), wa), ..., AN(6(qo, wrws . .. wr_1), w;).
The function T'(w) is then defined as

r—1

T(w) = H A(0(qo, wiws ... w;), Wwitq).

§=0
We also define the slightly more general form,

r—1

T(q,w) := H AO(q, wws . .. w;), wit1).

J=0

Throughout this work we assume that (A, o) is a group generated by im()\) and the product
in the definition of 7" is a in general non-commutative product according to o.

33
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We define for a set M C A the inverse set and the multiplication of two sets M7, My C A as
usual,

M= {gge M}
My - My := {g1 0 g2|g1 € My, g2 € Ms}.

We say a transducer (or analogously a DFA) is synchronized if and only if
dgeQ.w,€X" Vg €Q:(q,wy) =q.

We call w, a synchronizing word.
We define for o € S,, and a n-tuple x = (x1,...,2,)

o-X = (ngl(l), . 71'071(”)).

2.1 Automaton to Transducer

In this section, we develop a special way to construct for an automaton A = (@', %, ¢, ¢) a
naturally inducedtransducer T4 = (Q, %, 0, o, A, A) which contains all the information of A.
The main idea is to merge some states of A into a single state of 74 consistent with ¢ and
0’. To illustrate this concept, we start with a motivating example:

Example. We treat the sequence of moves, for the Tower of Hanoi problem, which we already
mentioned in Chapter [Il The automaton generating this sequence looks as follows.

One finds easily

5'({a,ﬁb, c},0) ={a,c,b} (5'({a,ﬁb, ct, 1) = {¢ b, a}
§'({a,b,¢},0) ={a,c,b}  §({a,b,¢},1) ={c,b,a}.

Consequently, we want to merge the triple (a,b,c) into a single state gy (i.e. g = (a,b,¢))
and ¢; = (a,b,c). We find

5/((]0’ O)

I
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[\]
w
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S
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=
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We define (A := S3)

0(90,0) =q0  (q,1)=g¢
6(q1,0) =q0  daq1,1) = qo
AM@o,0) =(23) Ao, 1) = (13)
Aq1,0) = (23) Aq1,1) = (13)

and find that 0'(¢;,€) = A(gi,€) - 6(gi, €) holds. This is already the first example of a naturally
induced transducer.

To formalize this idea we first define induced transducers; we denote here by m(q) the first
coordinate of q.

Definition 2.1.1. We call a transducer T, induced by a DFA A = (Q',X,0, ¢}) if and only
if
7?4 = (Q7 27 57 qo, A? )\) where

1) Ing e N:Q C (Q)™

)
2) m(q0) = 0
)
)

3) A< S, is the subgroup generated by A
4) Vg € Q.a € X:8(q,a) = Mg, a) - 0(g, a).

We call T4 a naturally induced transducer if furthermore

5) Vi#j <ng,q€Q:mlq) #mq),

)
6)vq17éq2€Q/§U€Sno qd1 = 0 - (9,
7) Ta is strongly connected

) T

8

A 1s synchronizing

holds.

Remark. Properties 5)-7) only assure that T, is chosen minimal to certain aspects.

Ezample. We call T, the trivial transducer induced by A when:

no=10Q=0Q ,A={id},Vg€ Q,a € X:d(qa)=70(qa),\q,a) =id.

The trivial induced transducer is a naturally induced transducer if and only if A is synchro-
nizing and strongly connected.

Proposition 2.1.2. For every strongly connected automaton A, there exists a naturally indu-
ced transducer Ta = (Q, 3,0, qo, A, \). All other naturally induced transducers can be obtained
by changing the order on the elements of () and possibly changing the initial state qq.
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Beweis. The given proof is not constructive, but could be modified to be constructive as all
appearing objects are finite. We start by defining ng(A) := min{|0'(Q’, w)| : w € £*} and

S(A) = {M C Q' : |M| = no(A), 3w € ¥* with &(Q', w) = M},

which are exactly the sets of size ng(A) that are reachable from @ using ¢’. One observes
easily that an automaton is synchronizing if and only if ng = 1 and invertibldl] if and only if
no = |Q’].

Now we are prepared to construct a naturally induced transducer for A, similar to the previous
example.

We choose ng = ng(A). Furthermore, we choose any ordering <, of )’ such that ¢ is the
minimal element. For every M € S(A) we define a corresponding ng-tuple gy, which consists
of the elements of M ordered by <. We define Q) := {qy : M € S(A)}. (As A is strongly
connected it follows directly by property 4) that) @’ is covered by S(A) and we define ¢
as an arbitrary element ¢y € @ such that ¢ € M. (Note that m (qn) = ¢ since g is the
minimal element).

Take an arbitrary gy, € Q. By minimality of |M| for a € 3 we have ¢'(M,a) € S(A). Thus we
define 0(qur, @) = qs(r,q)- We define X' : (Q')" — S, such that for all ¢ N'(q) - ¢ is ordered
with respect to <o and A : Q X X = S, Maar, a) = N (8 (qur, a)) ™t

Let A be the subgroup of S, generated by A. This defines an induced transducer 7, =
(Q? E: 57 9o, Aa )‘)

It remains to show that this induced transducer is a naturally induced transducer. 5) and
6) follow directly from the construction of the transducer. Every ¢y € @ corresponds to
M € S(A) for which there exists wj, such that ¢'(Q',wy) = M. Thus it follows directly
that for all gy € @ it holds 6(qar, War) = g which shows that the constructed transducer
is synchronizing and also strongly connected.

To prove the second part of this proposition we assume that Ty = (Q, 3,6, q0, A, X) is an
arbitrary naturally induced transducer. We start by showing ny = nyg.

e Assume g > ng: By the definition of ng there exists some w € ¥* such that [0"(Q', w)| =
ng. Consequently d(g, w) € (Q')™ violates 5) for every g € Q.

e Assume 7y < ng: As T4 is synchronizing there exists w € ¥* and g; such that for all
7 € Q we have 6(g,w) = q1. g1 corresponds to the set of its components M C @Q'. Since
@ covers Q' this implies that [6'(Q',w)| < 7g = |§'(Q, w)| < no(A) which contradicts
the definition of ng.

Assume now that there exists some g € @ such that no element of Q is a permutation of g.
The elements of ¢ form a set M, € S(A) and thus there exists w, such that §'(Q', w,) = M,.

(g, w,) contains exactly the elements of M, which means that it is a permutation of ¢ (by
property 5)).

The elements of () that are permutations of elements of () form a strongly connected com-
ponent. Thus, the proposition follows by property 7). O

1For the definition of invertible automata see Definition m
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Remark. Let T = (Q,%,6,q0, A, \) be a transducer fulfilling 1)-5) and 7)-8). We define an
equivalence relation ~ on @ by: ¢; ~ ¢, if and only if Jo: ¢; = 0-¢o. Then T/ ~ is a naturally
induced transducer.

Ezample. We consider the following more complex automaton with ¥ = {0,1} and find a
naturally induced transducer.

One finds that ng(A) = 3 and S(A) = {M;, My} with

Ml = 6/(Q,7 0) = {Q67 qllv qg}
M, :=0"(Q',01) = {qq, ¢5, 44 }-

We construct now a naturally induced transducer 74 and start by defining @ = {qo, ¢1} where

9 = (40, 41 ¢5)
a1 = (q0: 3 q3)-

We find

5/(q070) = (qllaqg)aqg)a 5/(%,1) = (Qf),q;pqg)
8q1,0) = (¢1, 40, @) (a1, 1) = (g0, 415 B5)

and therefore

Thus we constructed a transducer T4 (as described in the proof of Satz [2.1.2):
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0[(12)

start —(C ¢{, q1, ¢4

0/(12)
1]id

One observes easily that this is a naturally induced transducer.

1/(23)

Remark. 1t is sometimes useful to consider the automaton where each state occurs as often
as it occurs in the subsets of S(A) and "groupthem according to S(A).

Example. For the example above this gives the following automaton.
0

We end this section with a technical lemma used later.

Lemma 2.1.3. Let Ty be a naturally induced transducer. There exists Ny € N such that for
all q1,q2 € Q and n > Ny there exists w € X" such that §(q1, w) = ¢o.

Beweis. Let w, be a synchronizing word. We denote by dist(z,y) := min{n|3w € X" :
d(x,w) =y} and define Ny := |w,| + maxyeq dist(q, q').

Take q1,q2 € @ and n > Ny. There exists w; from ¢ to go of length dist(q, g2). We consider
w = 0""""’1|_di5t(q0"12)wqw1 and see that this is a path from ¢; to g2 of length n (0 denotes
the word consisting of « consecutive zeros). O

2.2 Connection between an automaton and its induced
transducer

Property 4) of an induced transducer relates one step of A to one step of T4 and A/T. In this
section we show how arbitrary many steps of A relate to T4. Therefore we start by a technical
lemma that describes how the permutation of one state ¢ € () influences the behavior of the
induced transducer.
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Lemma 2.2.1. Let A be a DFA and Ta an induced transducer. Furthermore, let 0 € Sy, a €
Y oand q= (v1,...,2,,) € Q. It holds

5/(0 g, (I) = (U © )‘(qa a)) ’ 5((]7 a)‘
Beweis. We find for 1 < k < nyg

Te(0'(0 - (@1, -, Tng), @) = ' (Tg-1(k), @) = Tom101)(6'(q, @))
= 7TU*l(k)(A(q? CL) ’ 5(Q7 CL)) = Wk(o- ) ()‘(Q7 CL) ’ 5<Qa CL)))

Thus, it holds
6/(0 g, CL) =0- (A(Qa CL) ) 5(Q7 Cl)) = (U © A(Qv CZ)) ) 5(% &).
O

Now we are ready to show a very important connection between an automaton and its induced
transducer.

Proposition 2.2.2. Let A be a strongly connected automaton and Ty an induced transducer.
For every w € ¥* we have

8 (g6, w) = m1(T(qo, W) - 6(qo, W)).
Beweis. We actually prove that for all ¢ € () and w € ¥* it holds that
(¢, w) =T(q,w) - 6(q, W),
which obviously implies the statement. We use induction on the length of w.
o |w| = 0: Obviously 0'(q,e) = ¢ = (id(d(q,€))) holds.
e w = w'z: We define ¢; := §(¢q, w’') and find

(g, w'z) =088 (q,w),x) =8(T(q, W) -q1,x) = (T(q, W) o XM(q1,2)) - 0(q1, )
— T(q,w's) - g, w's))

The third equality holds by Lemma [2.2.1]

]

This Proposition allows us to reconstruct the output of A by knowing the output of 74 and
T.

Ezxample. We continue our previous example and find
8" (q5,0110) = g5 = m1(T(qo, 0110) - (g0, 0110)) = 71(((12) 0 (23) 0 id o (12)) - qo)
=m1((13) - o) = mi(ga, G2, %) = G-



40 KAPITEL 2. NATURALLY INDUCED TRANSDUCERS

As one has some freedom on how to choose the order of the elements of () it is natural to
ask how this choice influences the induced transducer.

Proposition 2.2.3. Let A be a DFA and Ty = (Q,%,0,q0, A, \) an induced transducer. Let
T 4 be another induced transducer obtained by changing the order on every tuple ¢ € Q by a
permutation o, i.e. ¢ = o, - q (where still m (o, - qo) = q|, holds). For w € ¥* it holds that

T(qg,w)=0,0T(q,a)o0 O’(;(}]’W).
Furthermore, if Ta is a naturally induced transducer, then so is T 4.

Beweis. Let ¢ € Q,a € ¥. We define for all ¢ € Q,a € &

q:=0q"q
(g, a) == d(q, a)
A(G,a) :=0,0X(g,a) 0 05_((117@,

Q = Uyeoq and A s again the group generated by .
We claim that T4 = (Q, %,9,G, A, \) is again an induced transducer. 1)-3) follow immedia-
tely so it remains to show 4). Therefore, we compute by Lemma [2.2.1]

5,<O-q q, CL) = (o'q © )‘(qa a)) ’ 5((]7 a)
= (Oq © )‘(q> CL) © U(;(;,a)) ' (0-5(117‘1) ’ 6(Q7 a))
— X(3,a)  5(g0).

Thus T 4 is indeed an induced transducer and the stated equation follows easily by induction
on the length of w.

The last statement is very easy to verify. O]

2.3 Length restrictions for naturally induced transducers

As A is generated by A, one might assume that all elements of A can be obtained by 7.
We show in this section that this is not true in general but for certain naturally induced
transducers. Furthermore, we will show that restrictions on the length of w gives restriction
on what elements of A can be obtained by T'(¢, w).

The main result of this section — which contains all the facts mentioned above — is the
following theorem.

Theorem 2.3.1. Let A be a strongly connected automaton. There exists a minimal d € N,
mo € N, a naturally induced transducer Ty and a subgroup G of A such that the following
two conditions hold.

o Forallqe Q,w € (24" we have T(q,w) € G.
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o Forallge G,q,q € Q andn > my it holds that

{T(q,w):we X" §(qg,w)=7}=G.
d and mg only depend on A, but not on its initial state qj.

The other results of this section are rather technical and only used in this and the following
section.

According to Satz we assume in this section that 7, is a naturally induced transducer
of a strongly connected automaton. Thus, A is finite.

Paths w with the property

o(q,w) =q,T(q, w) =id (2.1)

will play an important role in this section and we start by exploring some of its properties.

Remark. Obviously concatenating two paths wy, wo fulfilling (2.1]) gives again a path fulfilling

).

We start this section by showing that every path can be extended to a path with this property.

Lemma 2.3.2. For every q € Q,w € X* there exists an tnverse path Wi € ¥* such that

(2.1) holds for wwH.

Beweis. Since Ty is strongly connected, there exists w’ € ¥* such that d(¢, ww’) = §(6(q, w), w') =
q.

We define g := T'(q,ww’). Since G is finite we know that ¢" = id for some n € N. Sin-

ce 6(q, (ww')") = q and T'(q, (ww')") = id we know that the desired property holds for

wil = w (ww')" L O

We define M, := {n € N|3w € ¥",6(q,w) = ¢,T(¢,w) = id} and it follows directly by
Lemma that M, is non-empty for all g.

Lemma 2.3.3. Let A be a strongly connected automaton and Ty an induced transducer.

There exists d = d(Ta) € N such that for all ¢ € Q : M, C d-N and d-N\ M, is finite.

Beweis. The first remark in this section shows directly that M, is closed under addition for
all ¢ € Q. Thus, it is easy to show that for every ¢ € ) there exists d, such that M, C d,-N
and d, - N\ M, is finite.

It remains to show that all d, coincide. Let ¢1,q2 € Q. There exist m € N, w; € X™ and
wy € X Ha guch that holds for wy, wy (for ¢ = ¢1). Furthermore, by Lemma and
Lemma2.3.2} there exist w, W% such that 6(g2, W) = q1,6(q1, W?) = g2 and T(g, WW?) = id.
Therefore, ww,;w? fulfill for i = 1,2 (and ¢ = ¢2). These two paths belonging to M,,
have length |w| 4+ [W%| + m and |w| + [W%| + m + d,, respectively. As M,, C d,,N we see
that dg, < d,, holds. Since ¢, g2 are arbitrary elements of () the statement follows. O
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Remark. Changing the order of the tuples ¢ € @, d does not change d(74) (since 1 —
og0idoo, ! = id). Thus we find that d(74) only depends on A and we write d = d(A) = d(Ta).

As mentioned before, we are interested in what elements of A occur for paths with certain
length. One might assume that some periodic behavior (with period d) might occur when
restricting to paths of certain length and, furthermore, that for long enough paths some
closeness properties hold.

To find some precise statements, we define

My = {T(q,w)|w € X 6(q, w) = g}

Mz.0 are all the group elements that occur when reading a word of length ¢ that corresponds
to a path from ¢ to g. Furthermore, we define Ggg(() := Up—y(q) Mqge- The following lemma
shows that this union is actually a limit.

Lemma 2.3.4. For all q,q € Q and 0 < ¢ < d—1 it holds that, Gg({) = Mg e+kq for almost
all k € N.

Beweis. 1t is sufficient to show that for each g € G5(¢) we have g € Mg ¢11q for almost all
k e N.

For g € G 4({), there exists w € X% such that (¢, w) = ¢ and T(q, w) = g. Lemmam
implies that we have for almost all &’ € N: There exists wy € X¥¢ which fulfills (2.1)). Since
ww is a path from ¢ to § with weight g, we have for almost all k£ > ko (and therefore for
almost all k € N), g € Mg 04ka- O

We are interested in how the different G 5(¢) are related to each other. We see easily that for
01592, 93 € Q, Gy (01) - Gogs(l2) C Gy s (€1 + €2) holds, but we actually even find equality:

Lemma 2.3.5. For all (1,05 € N and q1,q2,q3 € Q it holds that
GQ1Q3 (61 + 62) = GQMIQ (gl) ’ GQ2Q3 (62)

Furthermore, |Gyyq,(0)| = |G45(¢)| holds for all ¢, € Q and 0 < ¢ <d—1.

Beweis. We start by showing G4(¢)™" = Gg,(—¢) for all ¢,g € Q,¢ € N.

We know by Lemmal[2.3.2)that for each w with 6(¢, w) = g, there exists W¢. Thus we conclude
that |w| 4+ [W? = 0 mod d and, therefore, G 4(¢)~' C Gg,(—£). By inverting both sides, we
also find G z(¢) C Gg,(—¢)~! and since ¢,q and ¢ are chosen arbitrarily, G,;4(¢)™' = Gg,(—0)
holds for all ¢,q € Q,¢ € N.

The inclusion D is trivial. Let g € Gy,4,(¢1 + ¢2). By definition there exists w such that
§(q1,w) = q3,T(q1,w) = g and |w| = ¢; + {3 mod d. Lemma [2.1.3| shows the existence of wy
with 0(q1, w1) = ¢ and |wy| = ¢; mod d. We find, by the first part of this proof, an inverse
path Wi? from ¢, to ¢; such that |[wi?| = —¢; mod d holds. We see that wy := W1%'w is a
path from ¢ to g3 with |ws| = 5 mod d and

T(q1, wiws) = T(q1,w1) - T(q2, Wa) = T'(q1, w1) - T(qo, W1?') - T'(q1, W)
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=T (g1, wiwi")-g=gy.

This finishes the proof of the first statement. We see by the first part of this lemma, that
qus (f) » quz (E/) " 92 and GQ1Q3 (ﬁ) 2 g1 qus(g/) for g1 € unzz(g - gl)aQQ € GQQ(IS(E - g/)
Thus we find

|Garas(O)] = |Gy, ()]
|Garas (O)] 2 [Glaags ()]

for all g1, 2,93 € Q and ¢, ¢ € N. We can use this fact to show that
Gaoao (0)] = [Gapg(0)] = [Gg(O)] = |Glage (0)] = [Ggoqy (0)]-

Therefore we see that |G, (¢)] = |Ggyq(0)] for all ¢ € @ and ¢ € N. To complete the proof
we see that

|Gaoao (0)] = [Gog(0)] = [Gg()] = |Gz (0)] = [Goq (0)]-
O

Remark. Lemma gives a strong structural results. Take, for example, any element gy €
GQQ%(EQ)' As ‘qus(gl + 62)‘ = ’unp(gl)‘? it follows that un]?)(gl + 62) = qu2(£1> " 92. A
similar result holds for g; € G, 4, (¢1).

Corollary 2.3.6. G,(0) is a subgroup of G for all ¢ € Q.

(G4¢(0) being a subgroup is the first example for the appearance of some closeness property
occurring in this setting.

In this section, we also prove that all G,4(¢) are cosets of G, (0), but first we mention a
slightly stronger result than Lemma [2.3.4] which we need in the next section.

Lemma 2.3.7. There exists mg = mo(A) such that for all ¢, g € Q,0 < <d—1,g9 € Gz(¢)
and k > myg ezist wi, wo € X sych that wy # wy and 6(q, w;) =G, T(q, w;) = g.

Beweis. Lemma guarantees the existence of some m; such that for all ¢, € Q,0 < ¢ <
d—1,9 € Ggz(f) and k > m, exists w € L such that §(¢, w) = g, T(¢,w) = g. We show
that the desired property holds for 2m; which obviously implies the statement.

e Case |Q| > 2:
We fix ¢ # ¢ € Q% A combination of Lemma and Lemma [2.3.5 yields the
existence of some paths wi, w), of length m;d such that 6(q,w}) = ¢; as well as paths
wi, w} of length ¢ 4+ m;d such that 0(¢;, w/) =g and T'(¢, wiw/) = g.

e Case |Q] =1, |GQOQO(O)’ > 2
Thus we have Q = {qo}. We fix g1 # ga € Gpq0(0). A combination of Lemma [2.3.4] and
Lemma [2.3.5] yields the existence of some paths wi, w} of length m;d and paths w7, w/
of length ¢ + md such that T'(qo, w}) = g; and T'(qo, Wiw/}) = g.
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o Case |Q| = [Ggyq (0)] = 1:
Obviously taking any two different w; € ™4 and w € L™ such that T'(qy, W) =
id7 T<q07 W) =9, gives T(QOa W',LW) =g

Thus we constructed always two different paths with the desired properties. O

We have seen in Satz that permuting the elements of () again gives an induced trans-
ducer. We now show that by choosing the right permutations, we are able to make the actual
structure of the induced transducer more apparent.

Lemma 2.3.8. Let Ty be a naturally induced transducer. There exists a naturally induced
transducer T 4 such that id € Gg4(0) holds for each G € Q.

Beweis. The idea is to find permutations o, such that the induced transducer defined in
Satz [2.2.3) has the desired properties. We take o, € Gyy4(0) for all ¢ # g and o, = id. By
Satz [2.2.3, we find Gg57(0) = Ggyq - 0", which directly finishes the proof. O

We consider, from now on, only naturally induced transducers for which id € G,(0) holds
for all ¢ € Q.

We define G := G ,,,(0) and find that the condition above is already sufficient to make G5 (¢)
independent of ¢,q, which makes the actual structure more apparent.

Proposition 2.3.9. There exists gy € A such that we have for all q,q € Q,0 € N
Ga(0) = G- g6 = g5 - G-

Remark. 1t follows easily that d|ord(go) and for d > 1,y ¢ G.

We also find that A =G -{gf: 0 e N} ={gf: { €N} -G, ie. G < A.

This proposition shows together with Lemma that Mg, depends only on (¢ mod d) for
large /.

Beweis. As a first step, we prove that for all ¢, € @ we have G5(0) = G:

We know by Lemma [2.3.5] that G,q(0) = Gq0(0) - Goq(0) and without loss of generality by
Lemma [2.3.8] id € G4,(0). Thus we have G, (0) - Ggq(0) 2 G - id and, by comparing the
cardinality, we see that G,,(0) = G. Analogously, one finds that G,3(0) = G. Lemma [2.3.5)
gives again G3(0) = Ggq(0) - G45(0) (i.e. G = G- Gz(0)) and one concludes by a reasoning
similar to above Gz(0) = G.

Now we consider G4 (1). We find by Lemma
Gooqo(1) = G - Ggoqo(1) = quqo(l) -G
We now select an arbitrary element g of G4, (1) and find

Gaap(l) =G-g0=90-G.

One shows easily by induction that G, (¢) = G - g6 = g§ - G holds for all £ € N.
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It just remains to note that

Gqﬁ(@ = Gy (0) “Gaogo (6) ) qué(o) =G- (g(l; : G) -G = gg -G.

Thus we can prove now Theorem [2.3.1]

Proof of Theorem [2.3.1: We choose all the variables as defined throughout this section. The
statement of this theorem follows easily by a combination of Lemma [2.3.4] and Satz[2.3.9, O

Remark. For the period p of A, one finds easily that p|d. However, p = d need not hold as
the subsequent example shows.

Example. We continue our example for the tower of Hanoi problem. The corresponding au-
tomaton is of period 1 and we have already found the naturally induced transducer and we
recall the functions 4, \.

0(g0,0) =q  (q,1) =

0(q1,0) =q0  d(q1,1) = qo
)\(CIU,O) = (23) (o, 1) ( 3)
AMq1,0) = (23) Mg, 1) = (13),

where ¢o = (a,b,c) and ¢ = (a,b,¢). One finds easily that d = 2 together with G =

2.4 Arithmetic restriction for naturally induced transdu-
cers

Theorem [2.3.1] shows that all elements of G occur when we restrict ourselves to paths whose
length is divisible by d. We show in this section that — similar to Abschnitt — restrictions
on [w]; mod (k% — 1) lead to restrictions on what elements of G occur.

The main result of this section is the following theorem.

Theorem 2.4.1. Under the same conditions as in Theorem there exist natural num-
bers ko,my, by and d' (where ged(k,d') = 1) together with a naturally induced transducer
Ta fulfilling the properties of Theorem a subgroup Gy of G and g, € G fulfilling the
following two conditions.

e For all q,q € Q it holds that
{T(q,W) - q € Q7W € (Edko)*76<QJW) - qa [ ]k — f mOd d} GO g() - gO GO’
e For all ¢,5 € Q,m >my,g € Gy exists d"(q,q)|k" fulfilling

ged{[w]i : w € %™ §(q,w) =q,T(q,w) =g} =d - d"(q,7).
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All of the variables only depend on A, but not on its initial state qj.

The rest of this section is again rather technical and only used to show this theorem.

We only consider G (i.e. weights corresponding to paths whose length is divisible by d) as
just the same phenomena occur in the general situation. To assure that we are only working
on these elements, we only consider paths whose length is divisible by d.

Lemma [2.3.7] assures, that we have for £ > my

V(Lq € Q \V/g € G ElWl,WQ S Ede Wy ?é W275(Qawi) = 67T(Qawz) =g-

Therefore, we define for £ > mgy,g € G

dg’g := max{m € N|3r : Yw € % such that 6(q,w) = g and T(¢,w) = g = [w];, = mod m}.

An equivalent definition for dfg is the greatest common divisor of all differences of numbers
corresponding to paths of length d¢ from ¢ to ¢’ with weight g. We will use one of the two
definitions depending on the situation. Our next goal is to show that dg?e converges to some
d(q,q) for all g € G.

Lemma 2.4.2. Let q,q € Q. There exists d(q,q) such that for all { > mg,g € A we have
d(q,@)|d§?€ and there exists my, (not depending on q,q) such that for all £ > m{,g € A we

have dfﬁ =d(q,q).

Beweis. We start by showing that for all £,{' > mg,q,q € Q and g1,9o € G it holds that
di . pldgs . Theorem shows that there exists w € X such that §(¢,w) = ¢ and

T(q,w)=aq -g;l. We find

d o= QCd({[Wl]k - [W2]k: W, € YA with 5(Q»Wi) =4q, T(Q»Wi) = 91})

qq
g1+
| QCd({[WWﬂk - [sz}k W, € % with 5(anWi) =4q, T(q, WWz‘) = 91})
= ged({[wilr — [wali : w; € % with §(q, wi) =7, T(q, w;) = ga})
= J%4

g2,¢

The minimal value of dfg for all £ is denoted by d2? (we choose £y > mg such that dféo
and since

— d1)

d9 — J%4 < J%4
g

_ J99
gl+0o — gl dq

there exists my, such that for all £ > my( it holds that dfe = d%. It also follows directly that

di? = di? for all g1, g» € A. For d(qq) := d? the result follows directly. O

Let w € %¢ and suppose 6(g, w) = g, T'(q, w) = g, we then denote r{?(g) := [w]; mod d(q,q)
as we see directly that this definition does not depend on the choice of w, but only on ¢,q
and g. More generally, it follows that for w € 3¢, §(q, w) = g we have

ri(T (g, w)) = [w]), mod d(q,7).
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Remark. Since any word containing a synchronizing word is again synchronizing, and by
assumption 74 is synchronizing and strongly connected, there exists a minimal ¢4 = (y(A)
such that for all ¢ € Q exists w, € 2% with

Vge @ :6(q,wy) =q.

We find an important restriction on d(q,q).

Lemma 2.4.3. We find for every q,q € QQ

E*(k* —1) = 0 mod d(q, q).

Beweis. We fix ¢,q and start by considering the case where we concatenate a word w with
some words wi, wy from left and right, respectively, such that the weight does not change:
Let w € X% wy wy € 9™ (my > my, my > dml) such that §(q,wy) = ¢, T(q, w1) = id
and 6(g, wg) = G, T(q, wg) = id. We see that

Pintgsamy (T(¢, W1w))
[Wl]kkmz + [W]k

[W1]ek™ + [Wo

8 my (T (@, WW2))
[W]ik¥™ + [ws]r mod d(q,q)
(w

Je(E%™ — 1) mod d(q,7q).

The left hand side of the last equation only depends on wy, wy and ms. By choosing dmy >
ly+ 1, w = 0wz or w = 1wz and — if w is not of sufficient length — adding zeros from the
left we find

[Wals (k™ — 1) = (K% + [wgls) (k™™ — 1) mod d(q,7)
kP (k%™ — 1) = 0 mod d(q, 7).

Comparing the results for m; and m; + 1 completes the proof. n

This allows us to decompose d(q,q) into two co-prime factors d'(q,q), d”(q,q) such that
d'(q,9)|(k% — 1) and d”(q,q)|k*. On the one hand d”(q,q) corresponds to restrictions on
how you can reach the state g, on the other hand d’'(q,q) corresponds to some restrictions
modk? — 1, which is of greater interest for us.

Lemma 2.4.4. For every q,q € Q it holds that d'(A) := d'(qo,q0) = d'(¢,7)-

Beweis. Since we have already gained some knowledge about d(q,q) we can adopt Lem-
ma 2.4.2] to our needs.
Let £, 01,0, > m), q1, ¢, 1,32z € Q and paths w € X% from ¢, to g7 with weight id, w’ € X2
from @5 to g with weight ¢d. It follows, as in Lemma [2.4.2]
d(q1,q2) = A oy, = ged({[Wilk — [waly : wi € STOHHE) with §(qr, wi) = qo, T(qr, wi) = id})

| ged({[wwiw']p — [wwow']y,

w; € 2% with a1, ww,w') = g2, T'(q1, ww;w') = id})
= ged({k% ([w1]p — [walr) : wi € 3% with 6(q, w;) = @, T(q1, wi) = id})
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= K2} = k" d(71, )

for arbitrary qi, g2, q1, 2. Thus we find d'(q1, ¢2)|d'(q1, G2). As changing the order of some state
q € Q does not change d(Ta) (id — o4 0id oo, "), we find that d’ only depends on A. O

As mentioned before, we are more interested in d' and define s{%(g) := r#(g) mod d’'. We find
the following important properties:

Lemma 2.4.5. For all q1,q2,q3 € Q,m1,ma > my, and g1, g2 € G follows
Srims (91 + g2) = s (g1) + s (g2).
Beweis. This follows directly from the fact that k%" = 1 mod k% — 1. O

Lemma 2.4.6. There exists ko € N such that for every { > m{ we have s5)*(id) =0 & ( =
0 mod k.

Beweis. We find by Lemma Str 10y (1) = s’ (id) + sz’ (id) mod d'. The statement

follows by the same arguments as we used in the proof of Lemma [2.3.3] O

Remark. One can actually prove that the Lemma above holds for all ¢ € N for which s5% (id)
is properly defined. Furthermore, kq|d’ holds.

We further follow the ideas of Abschnitt and find the following result.

Lemma 2.4.7. There exists a naturally induced transducer T 4 such that E%I)mé (id) = 0 holds
for allg € Q.

Beweis. We want to find some permutations o, such that applying them gives an induced
transducer with the desired properties. Let ¢ # qo, take w € L%o™0 guch that w = 0 mod
d',6(qo, w) = q and define o, = T'(gp, w). W.l.o.g. we restrict ourselves to w = w'w,, where
w, is again a synchronizing word — we can easily choose a suitable w’.)

By choosing o, = id we find by using Satz that T(qo, w) = T(qo, W) - T'(qo, w) ™" = id.
Note that applying these permutations does not change the property id € Gy,,(0) used in
Abschnitt O

We consider from now on only naturally induced transducers such that SZEZ% (id) = 0 holds

for all ¢ € Q.
We find a similar result to Abschnitt concerning Mz ¢, which shows that s%/(g) only
depends on ¢ mod kg and g.

Proposition 2.4.8. For all q,q € Q,g9 € G and { € N, { > my, we have
qu(g) = S¢ mod ko (g>a

where $¢(g) = St mod ko (9) = SZ‘;?EHM mod ko)(g)'
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Beweis. We find by Lemma that
0= Sg(;fg(;lg)(ld) = SZ‘;?WO (ud) + SZZ‘JnfO(id) = SZZ(;% (1d).
Let us now assume ¢ > bkomy, and we compute

517(9) = Stk M0 (i) + 572G (9K + 10, (id)

= SZ"_qé’komo (9) = SZ%%ZO+<4 mod ko)(g) + Si‘lq& mod ko)—3komo (id) = s¢(g)-

Let now ¢ > my. We find
336(9) = qu(g) + 58371(Zd) = 5335]407,@6 (g) = 5S¢ mod ko (9)7
which finishes the proof. O

We define G, := {g € G : so(g) = (}.

Corollary 2.4.9. Gy is a subgroup of G.
Beweis. The statement follows directly by Lemma [2.4.5 [
Thus we can prove now Theorem [2.4.1]

Proof of Theorem [2.4.1: Of course we choose ko, m(, lo, d and G as we defined them throug-
hout this section. To prove the first part we choose g as an arbitrary element of G; and the
proof follows by the same arguments as in the proof of Theorem [2.3.1] The second part is
just the result of Lemma [2.4.4 O

Example. We continue our example for the tower of Hanoi problem. The naturally induced
transducer we considered was

0](23)

We have already seen that d = 2 holds. Now we derive d’, Gy, g{,. We find easily that w,, =0
is a synchronizing word. We see, that T'(¢,w) does not depend on ¢, which simplifies the
treatment. Furthermore, it is easy to prove that for all w € (X%)* = {0, 1,2, 3}*

T(q,w) = (123)W.
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We compute

(g0, 00) = 0(qo, 11) = qo

Consequently, we find d' = 3,Gy = {id}, g, = (123),ky = 1 and d"(qp,q0) = 1. We also
mention that d”(.,q) = 1 and d"(.,q;) = 2 without proof.

2.5 Reduction to special naturally induced Transducers

We want to show how to reduce the general setting of an automatic sequence to automata
with special properties.

Proposition 2.5.1. Let a = (a,)nen be a k-automatic sequence. There exists p € N and
A=(Q,{0,..., kP — 1},8,q)) such that a is generated by A and for every Automaton A;,
that is the restriction to a final component[| of A, it holds that d(A;) = ko(A;) = 1.

Beweis. Let A= (Q,{0,...,k—1},0,g) be an automaton that generates a. We can assume
without loss of generality that 5(%, 0) = G and every state g € @ is reachable from g. Let
Q,,...,Q, be the final components of A. We denote by A; the automaton that corresponds
to the restriction of A to @, with arbitrary initial state.

We define p = lem(d(A)ko(A1),. .., d(As)ko(A)) and note that d(4;) and ko(A;) do not
depend on the initial state of A; — compare Theorem and Theorem The idea is
now to take the p-th poweréf A which gives the desired property.

Therefore we define A = (Q, {0, ..., k?—1},d, o) where ¢’ is the extension of § to {0,..., k—
137 = {0,...,k? — 1} from letters to words of length p. We see that A generates a as
4(qo,0) = Go ensures that adding leading zeros does not change the output (of A).

One observes easily that every final component of A is contained in a final component of
A: The strongly connected components of a directed graph form a new directed acyclic
graph where every node corresponds to a strongly connected component. There exists an
edge between two such nodes if and only if there is an edge between two states of these
strongly connected components. Every final component of A is part of a final component of
A, since there exists a path (whose length is divisible by p) from every strongly connected
component, which is not closed under ¢ to a final component. Therefore, we can restrict
ourselves to consider only a final component Q..

It remains to show d(A;) = ko(A;) = 1. For this purpose, we want to describe how a naturally
induced transducer of A; looks like. Let TZ], =(Q,{0,...,k —1},8,q0, A, \) be a naturally

induced transducer of A;. As d(A;)ko(A;)|p we know by Theorem that for all ¢1,¢2 € @
and g € G there exists w € {0,...,k? — 1}* such that §(¢;,w) = ¢ and T(q1,w) = g.

This means, in particular, that there exists w € {0,...,k? — 1}* such that 6(¢;, w) = ¢2 and
T(q1,w) = id. Thus Satz shows that we can describe the states of A; as the elements

2 A final component is a strongly connected component that is closed under .
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corresponding to some coordinates of Tz : m;(¢q1) and 7i(g2) belong to the same strongly
connected component for all ¢1, g2 € @ as w satisfies ¢'(m;(¢1), W) = m;(¢2). This implies that

Qi ={m(q)lg € Q, L € I},

holds for some index set I C {1,...,n0}. We claim that T := (Qy, P, or, (qU>],G[,X[) pro-
vides a naturally induced transducer of A;. Here we again denote by § the extension of &
from letters to words, A coincides with 7" for words of length p (for 74) and G is defined as
in Theorem Furthermore, we use (.); to denote the projection to the coordinates of I.
Theorem assures that 77 is an induced transducer. To see that 77 is synchronizing we
just have to take a synchronizing word w,, of T4 and add leading zeros such that it is a word
whose length is divisible by p.

However, it is possible that property 6) may not hold, but we already discussed in Ab-
schnitt 2.1] that this can be fixed easily.

By the construction of 7 we see easily that d(A;) = ko(A;) = 1 holds. O

This Proposition can be simplified under suitable conditions.

Corollary 2.5.2. Let A= (Q',%,8,q}) be a strongly connected automaton, such that
¢'(9,0) = qy. There exists a strongly connected automaton A such that d(A) = ko(A) =1
and the automatic sequences generated by A and A coincide.

Beweis. We consider the proof of Satz and see directly that A — as considered in the
proof of Satz [2.5.1]— has only one strongly connected component. It just remains to note that
the automatic sequences generated of A and A coincide since adding leading zeros does not
change the output. O
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Kapitel 3

Automatic Sequences fulfill the Sarnak
Conjecture

3.1 The Sarnak Conjecture

The M6bius function is defined by

(1) if n is square-free and
pu(n) = k is the number of prime factors
0  otherwise.

We say that a sequence a is orthogonal to p(n) if

Z app(n)| = o (Z |an\> .

n<N

There exists an old - relatively vague - principle (the Mébius Randomness Principle, see for
example [28, p. 338]), which states that every “reasonable” bounded complex sequence is
orthogonal to the Mobius function. The reasoning behind this principle is that the Mo6bius
function changes signs so randomly that it induces sufficient cancellation. However, it is
unclear which sequences are “reasonable”. One approach is that “simple” sequences should be
“reasonable”. “Simple” could be interpreted by the computational complexity of the sequence,
but Peter Sarnak proposes another notion of “simpleness” by dynamical systems. A dynamical
system (or flow) F'is a pair (X, S) where X is a compact metric space and S : X — X is
a continuous map. We call a dynamical system deterministic if its topological entropy is
zero, which will be the notion of “simpleness” that we use. We say a sequence (£(n))nen is
realized by a dynamical system (X, S) if there exists a start-point zy and a continuous map
f: X — C such that £(n) = f(S™(xg)) for all n € N.

In 2009, Peter Sarnak stated the following conjecture [40]:

Here we use the little-o notation. Let f,g : N — RT. We say that f = o(g) if and only if
lim, o f(n)/g(n) = 0.

33
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Conjecture 3.1.1. Let p be the Mobius function. For any bounded sequence (n) realized by
a deterministic dynamical systemﬂ (X, S5), it holds that

> Enu(n) = o(N).

n<N

This conjecture has aroused great interest and numerous papers were recently devoted to
show the Sarnak conjecture for different classes of dynamical systems [5], 6, [7, 10, 12, 16} 17,
20, 4] 25, 33, 135, 44).

Sarnak stated his conjecture in terms of a deterministic dynamical system (X,S). We are
interested in special dynamical systems that origin from a sequence:

Fix a sequence a = (a,)nen that takes values in a finite set A. We denote by S the shift ope-
rator on the sequences (AY) in A and define X := {S"(a) : n € Ny}. By taking the product
topology of the discrete topologies on each copy of A, we find that AY is compact and comple-
te. The product topology is induced by the following metric d(z,y) = Y oo s 27" 'd, (20, Yn)
on X, where d,, denotes the discrete metric on A. The dynamical system (or flow) (X, S) is
called the symbolic dynamical system associated with a.

Therefore, we say that a sequence a fulfills the Sarnak conjecture if the symbolic dynamical
system associated with a fulfills the Sarnak conjecture. For more information about symbolic
dynamical systems and their complexity see for example [18, 21].

It is easy to compute the topological entropy of a symbolic dynamical system associated to
a sequence a € AN, We find (see for example [34]) that the topological entropy is equal to
lim,,_ o 2 aT(L"), where the subword complexity of a was defined in Abschnitt

A Mébius-randomness principle is often closely related to a Prime Number Theorem (PNT),
i.e. an asymptotic formula for the sum an (n)u,, where A denotes the von Mangoldt
function. That is A(n) = logp if n = p* for some p € P and ¢ € N and A(n) = 0 otherwise.
An estimate of > _ A(n)u, can be used to estimate

Dt

p<zT
pEP

n<x

by partial summation. For example by using the following identities one can hope to relate
a Mo&bius-randomness principle to a Prime Number Theorem

= uld) 10g

d|n

1= Zu(dmﬁ

d|n
where 7 denotes the divisor function.

Some classes or examples of automatic sequences, which are observed by a deterministic
dynamical system, have already been covered:

2A dynamical system is a pair (X, S) where X is a compact metric space and S : X — X is a continuous
map.
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e The Thue-Morse sequence:

— A Mobius-randomness principle follows from the work of Indlekofer and Katai |27,
30]
— Dartyge and Tenenbaum [9] give additionally an explicit error bound

— A Mobius-randomness principle and a PNT by Mauduit and Rivat [37]

The Rudin-Shapiro sequence:

— Tao suggests a strategy to prove a Mébius-randomness principle in [42]

— Mauduit and Rivat provide a different approach which allows to prove a Mdbius-
randomness principle and a PNT for more general functions [38§]

e Sequences generated by invertible automata

— Sarnak conjecture [19]

— A Mobius-randomness principle and a PNT [13]
e Sequences generated by synchronizing automata

— The Sarnak conjecture and a PNT [11]

Some special digital functions (e.g. the parity of occurrences of a word in the digital
expansion)

— A Mobius-randomness principle together with a PNT [26]

The purpose of this chapter is to prove the Sarnak conjecture for all automatic sequences,
which covers all results concerning automatic sequences mentioned above.

Theorem 3.1.2. Let p be the Mobius function, (a,)nen be an automatic sequence and let
(X, S) be the symbolic dynamical system associated with (anp)nen. Then for all sequences
&(n) := f(S™(z)), withx € X and f € C(X,C), we have

S Emutn) = o(N).

n<N

3.2 Reduction of Theorem [3.1.2

We reduce in this section the main Theorem of this chapter to statements concerning
naturally induced transducers.

First we present a lemma that reduces the Sarnak conjecture for the symbolic dynamical
system associated with an automatic sequence to a Mobius randomness law for (possibly
different) automatic sequences.



56 KAPITEL 3. AUTOMATIC SEQUENCES FULFILL THE SARNAK CONJECTURE

Lemma 3.2.1. Suppose that for every automatic sequence (a,)nen with values in C
Z w(n)anr = o(N), (3.1)
n<N

uniformly for r € N. Then Theorem holds.

Beweis. Let us fix one automatic sequence b = (b, )nen that takes values in C. Let (X, .S) be
the symbolic dynamical system associated with b. [11, Lemma 2.1] shows that it is sufficient
to show that for every j > 1 and every g : C/ — C it holds that

Z u(n)g(bnM, brntrsts - bn+r+j—1> = O(N)

n<N

uniformly for » € N. However, a combination of Theorem [1.2.5] Theorem [1.1.7 and Theo-

rem [1.1.6] shows that a, = g(bn,bns1,--.,byyj—1) defines again an automatic sequence and
hence the statement follows. O

To further reduce this result we need some ideas of representation theory and a method to
detect certain digits of (n),. We cover the most important definitions and notations briefly.
A representation D is a continuous homomorphism D : G — U, where U; denotes the group
of unitary d x d matrices over C. A representation D is called irreducible if there exists no
non-trivial subspace V' C Uy such that D(g)V C V holds for all g € G.

For a € R with 0 < a < 1 we denote by x, the characteristic function of the interval [0, )
modulo 1:

Xa(®) = [2] = [ —a].

n —mk H
Xkt T =1

if and only if (ex_1(n),...,ex—u(n)) and (m); coincide up to leading zeros.

In Abschnitt [3.3] we show the following result.

One finds that

Proposition 3.2.2. Let T be a naturally induced transducer by A and suppose that d(A) =
1,ko(A) = 1 holds. Let, furthermore, D be a unitary irreducible representation of G, r, A1, Aa €
N,0 <b< kM and m < k™. It holds

S e ("”‘W1)D<T<qo,<n+r>k>>u<n> —oN),  (32)

ku
n<N
n=m mod k*2 F

uniformly for r where v is the unique integer satisfying k' < N < k.

Remark. n = m mod k*? obviously fixes the last \y digits of n. Furthermore, X1k () fixes
the digits v — Ay, ..., v — 1.
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Our goal of this section is to show that Satz implies Theorem [3.1.2]
We fix any € > 0 and need to show that there exists Ny such that for N > Ny(¢e)

|S(r,N)| <eN

holds for all r, where

S(r,N) = Z w(n)ap,r-

n<N

Let us first present the most important ideas for this proof. Obviously, we can only work
with naturally induced transducers, when we restrict ourselves to the final components of A.
Therefore we fix some of the first digits of (n + r) which allows us to work with a strongly
connected component of ()'. Thereafter, we also fix the last digits of (n+7) to fix §(q, (n+7)x).
It then remains to find suitable estimates for 7'(q, .).

More precisely, Satz shows that there exists a DFAO A = (Q',%,d,q),7) such that
Y =H0,...,k —1},0(q),0) = ¢}, and a, = 7('(q, (n)x)). Let @, ..., Q, be the strongly
connected components of ()’ that are closed under ¢’. Furthermore, let A; be the restriction
of A to Q). Satz states that d(A4;) = ko(A;) = 1 holds.

We define the naturally induced transducers for these components by
7?47; = (QZ) Z? (S’iv A’h >\l)
and let w; be a synchronizing word of T4, (we intentionally avoid to fix the initial state here).

Lemma 3.2.3. Suppose M is the set of integers n such that there exist vi,vo € ¥ satisfying

L (n)k = ViVy
e Forallqd € Q' :(q,v1) € UQ,

o For alli:w; is a subword of va, i.e. Vo is a synchronizing word for all A;.
Then M has density one.

The motivation for the set M is that whenever you read a word corresponding to some n € M,
you end up in one final component @)} — this is achieved by v;. The purpose of v, is not so
obvious but will be more apparent shortly.

Remark. Let n € M. By the definition of M it follows that the considered properties hold
also for unreduced digital representations of n (i.e. with leading zeros).

As the proof of Lemma is rather technical, we postpone it to Abschnitt [3.7]

We assume for simplicity that |a,| < 1 holds for all n € N. We denote by v the unique integer
satisfying k¥~ < N < k.
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The first idea is to remove the digits of n+r of positions v, v+ 1, ... and restrict ourselves to
(n+ ) mod k¥ as these integers form (at most) two intervals with combined length at least
k¥~!. Therefore, we want to detect the digits of n + r at the positions v — Ay, ..., v — 1 for
some fixed value A\; — only depending on ¢ — that we choose shortly:

5 utmanse| = | 3 oo (M e

n<N n<N p<kr
n+r —bkvM
o ) e L
b<k* |In<N
n-+r — bkv—M o
< 30w (i + 3 N
b<kM In<N b<k
beM bg M

Choosing A; such that [{b < kM|b & M}| < k™ gives

£
6N D 181(br, M|+ 5N

b<kM
beM

where

(n +r —bkv ™M

) Hnane

Sl = Sl(b, r, N) = Z XE—>M

n<N

We rewrite r = r; + k¥ry with vy < k¥ and 1,79 € N, and split the sum over n into two
parts. We denote by (n)k the unique word w of length ¢ such that [w];, = n mod k' and find

n—+r—bkvM
si<| 3 x( r bk )mn)T(a'(qg,(nw)k))

kl/
n<N
n—+ry<k?
n+4r—bkvM
FOX e () @l s r)@)‘
kY —r1<n<N

— Z Xi—M (n +r —bk¥~ 1) M(n)T((S/(Qé), (Tz)k(b)zl(n + 7,)2—)@))

kl/
n<N
n<k’—r1
n+r —bkv—M Yy
Do xem ( 2z ) p(n)(8 (g, (r2 + D)} (n + 1))
kY —r1<n<N
Thus we find

|S1| < 1S2(b, 1, min(N, & — 1), 0" (qq, (r2)x))| + |S2(b, r1, N, 8" (g5, (r2 + 1)k))|

3.3
+ |Sa(b, r1, kK — 11,0"(qp, (ra + 1)i))] (33)
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where

n 7,/ o v—A1
Sabr' V) = 3 xen (L) w0 (k)

kv
n<N’
for N' + ¢ < kV.
We simplify (3.3) to

1S1(b,7, N)| <3 max max |Sy(b, 7", N', )| (3.4)
r ,N'eN ¢'euQ),
' +N'<k¥

We work now on an estimate for Sy. We can rewrite (b)z1 = vyvy where 0'(¢',vy) € Q) for
some 1.

We denote by ¢; = 0'(qp,v1) and Ay = (@}, %, 0;,0'(¢',v1),7i) the restriction of A to @,
ie. 0 = bilgixs, Ti = Tlq). Let 7f4q, =(Q,%,9,q0, A, \) be a naturally induced transducer of
Ay. We define M), as the set of synchronizing words of length A\ of 774(1, and note that for

wo € M,,,w € X* it holds that d(qo, wwg) = d(qo, Wo). Lemma shows that there exist
¢, > 0 such that |[(X*2\ My,)| < ck(=*2 holds for all A\, € N. Satz shows that

n+r —bkv—M
Z Xk‘_)‘l ky N(n)

n<N’

(T, valn + 1)), valn + 1)L “)))\

Z Z Xk—™ n+r bk 1)#(”)

m<k> 2 n<N’
n+r'=m mod k*2

(s (T (o, valn + 7)™ )5 (g0, valn + 1)1 M)))\

I v—>\1
<Y Y e (””kf”f )u<n>

meMy, n<N’
n=m—r' mod k*2

(1 (T (g0, V(o + 7)) o, <m>22>>>' T ke

|52(b7 Tla Nl? q/> =

We choose )\, such that ck=2 < i and find

|52<b,7’/7]\/’7q/)| < Z ’Sg(b,r/jj\f/’m,ﬁq,) +?k >\1
m<kA2 '
where
n+r —bkv—M
Sg(b, r” N’jm,ﬂqi) = Z Xk—M ( % ) ,u(n)

n<N’
n=m mod k*2
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7(m1(T(qo, va(n + 1)y )6 (g0, (m)y?))).
Note that A; and A\, are independent of N and N’.

We define ¢; := §(qo, (b)) and find T'(qo, (b)k(n—kr’)z_’\l) = T(qo, (b)x) o T(qu, (n+r/)z_’\1) as

well as T(qo, va(n + 7)) = T(qo, va) o T(qu, (n +1')¥ ™), since vy is synchronizing. This

gives in total
T(qo, va(n +7");™™) = T(qo, va) © T(qo, (b)x) ™" © T(qr, (B)x(n + ")),
We define for w € £* a function fus : G — C
fup(@) = 7(m1(T (g0, v2) © (T(qo, (b)) ™" 0 0) - (3(q0, W))))-
Thus we find (m1 (T(g0, Va(n + /)7 ™) - 8o, (m)y?))) = Fnyr2 4 (T (g0, (D)i(n2 + )i M). We

denote by F(7a,) := {fwp : w € ¥*,b € N}. Note that ’]—"(TAq,)‘ < Q] - |G| holds, as

8(qo, w) can take at most |Q| and T'(qo, va) o T'(qo, (b))~ ! can take at most |G| values. We
find

n4r —bkv—M
S3(b7 7“’, N/> m, 7;1(1/1) = Z Xk=*1 ( kv ) :u(n)f(m)z{b(T(qO? (n + r/)k>)
n<N’
n=m mod k2

With T'(n) := T(qo, (n)x) we find

Ss(b, 1, N’ n 41— bk /
3( 7T 9 7m7 7?4(1/) S fGI}l:l(%—f ) Z Xk7A1 ky /"L(TL)f(T(n + r ))
a n<N’

n=m mod k2

Consider a finite group G. It is well-known that there only exist finitely many equivalence
classes of unitary and irreducible representations of G (see for example [41, Part I, Section
2.5]).

The Peter-Weyl Theorem (see for example [32] Chapter 4, Theorem 1.2]) states that the
entry functions of irreducible representations (suitable re-normalized) form an orthonormal
basis of L?(G). Thus we can express any function f: G — C by these My entry functions:

Let D) = (dg-”/))ij be representations of the equivalence classes mentioned above and

f G — C. Then, there exist ¢, such that

o)=Y cdl"(g)

L< My
holds for all g € G. Thus we find

n+ 1 — bkv—M ,
si<pme| 5 e )0+ )|

ky
1 n<N’
n=m mod k*2 F
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where ||.|| - denotes the Frobenius norm, c is the maximum of all possible values of ¢, - M,
and Dy is the finite set of all possible appearing representations for J (7j4q, ).
1

If we denote by Tg, the function T for TAq/ we find in total
1

Z w(n)angr| < gsN—i—c Z sup Z

NG
N A r 71\[ eN A
n< b<k™M N <kv m<k?2

n r — v—A1
S X T e () w0

q'euQ; DED,, n<N’
n=m mod k*2 F

Note that Dy is finite and only depends on the automatic sequence a.

|S(T,N)|§§5N+CZ o>

b<kM m<k*2 ¢;€UQ; DEDy

+ I bku—/\l
sup max Z Xp-M1 <n 4 ) p(n)D(Ty (n+1"))||

T’ENN,<kU n<N'’ kll
n=m mod k*2 F

where A1, Ay and D, only depend on e. This finally proves the following proposition, which
recapitulates the results of this section.

Proposition 3.2.4. Assume that Satz[3.2.9 holds. Then Theorem [3.1.9 follows.

3.3 A general Mobius Principle

The goal of this section is to establish the setup to show Satz . Therefore, we generalize
the setup of Mauduit and Rivat which they used to study the Rudin—Shapiro sequence in
[38] - we already briefly mentioned this result in Abschnitt We also need that the
Discrete Fourier Transform of the sequence is uniformly small and some sort of quantitative
statement about the carry propagation. In Abschnitt we show that for all but very
special representations we have a uniformly small Discrete Fourier Transform for D(7'(.)).
In Abschnitt we show that carry propagations happen rarely. We leave the full proofs of
the generalized results of [38] to Abschnitt , as they are technical and very similar to the
original proofs.

We consider a function f : N — U, where U, denotes the set of unitary d x d matrices. Let
k € N. We denote by fy the k*-periodic function defined by

vn €{0,...,k* =1}, Vm € Z, fr(n+mk*) = f(n).

Furthermore, we define f, \(n) := fa(n)f.(n)? for u < A, where A¥ denotes the conjugate
transpose of the matrix A.
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It is necessary to use matrix valued functions instead of complex valued functions as in [3§],
as we are working with representations.

Definition 3.3.1. A function f : N — U, has the carry property if there exists n > 0 such
that uniformly for (A, o, p) € N® with p < A, the number of integers 0 < ¢ < k* such that
there exists (ny,ny) € {0,...,k* — 1}* with

FUR 40y 4 12) " FRS +11) # faro(Ck* + 11 + 1) for p(Ck + 1) (3.5)
is at most O(k*~"°) where the implied constant may depend only on k and f.
Remark. One can obviously exchange with

FOE* 4+ ) FOE™ 4+ ny 4 ng) # farp(C6* + 1) for ,(C6* + 1y + ng).

We introduce a set of functions with uniformly small Discrete Fourier Transforms as in [38]:

Definition 3.3.2. Given a non decreasing function v : R — R satisfying limy_,o, 7(\) = +o00
and ¢ > 0 we denote by F, . the set of functions f : N — U, such that for (o, \) € N? with
a<chandteR:

EAY fuk®)e(—ut)| < kO, (3.6)

u<k*

F

One obvious difference to [38] is that we consider matrix valued functions. Moreover, the
original definition of the carry property requires n = 1. Nevertheless, we find similar results
as in [38] in this more general setting. The results of [38] have already been generalized to
matrix valued functions in [I13] and to a weaker carry property (although still more restrictive
than Definition in [26]. We discuss the proof for the following theorems in Abschnitt

Theorem 3.3.3. Let v : R — R be a non decreasing function satisfying limy_,o, y(\) = +o0,
and [ : N — Uy be a function satisfying Definition for some n € (0,1] and f € F, . for
some ¢ > 10 in Definition [3.3.9. Then for any 0 € R we have

< c1(k)(log x)cz(k)xk—m(ﬂ(log x)/(801og k)J/207 (3.7)

S Am) F(n) e(bn)

n<x

with the same constants as in [38].

Theorem 3.3.4. Let v : R — R be a non decreasing function satisfying limy_,o, y(\) = +o0,
and f : N — Uy be a function satisfying Definition for some n € (0,1] and f € F, . for
some ¢ > 10 in Definition [3.3.9. Then for any 0 € R we have

< ¢1(k)(log x)%-ﬂ-i max(w(k),2) g =nv(2|(log #)/(80log k) | /20 (3.8)

™ u(n) £ (n) e(0n)

n<x

with the same constants as in [38].

We now want to show that Definition holds for f(n) = D(T'(n)) for almost all unitary
irreducible representations D where y(\) = '\ — ¢ for some ' > 0 and ¢ € R.
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3.4 Fourier Estimates

One of the most difficult parts of this approach is to find sufficient bounds for the Fourier
terms. The proof is rather technical. However, it justifies some results of Chapter [2

Let T4 be a naturally induced transducer of A and suppose that d(A) = 1, ky(A) = 1 holds.
We distinguish at this point some special representations, for which we need a different
approach.

Lemma 3.4.1. There exist d special 1-dimensional representations Dy, ..., Dy_1 defined by
£ 50(9)
Dy(g) :==e (TO, :
for £ =0,...d — 1, where sq is defined by so(T(q,w)) = [W]x mod d'.
Beweis. The proof follows directly by Theorem and Theorem O]
Note that Dy(T(qo,w)) =e((¢-[w]g)/d) for £ =0,...,d — 1,w € ¥*.

We fix T4 and try to find unitary, irreducible representations D of G for which we have
exponentially decreasing bounds for expressions similar to

Y

=S DT, (wi) ef~u)

u<kX

2
uniformly in ¢.

We already see that D = Dy is a special case for which we are not able to find exponentially
decreasing bounds as

";HEADE(T(QM —ut) k;A ;A ( <_t>)

gives 1 for t = ¢/d’, which is the trivial bound. Nevertheless, we are able to find exponentially
decreasing bounds for all other unitary and irreducible representations of G:

Theorem 3.4.2. Let D be a unitary and irreducible representation of G different from
Dy,...,Dgy_y1. There exists n > 0 such that

= DTG, (k4 ) el—u) | <k (3.9)

u<k*

2

holds uniformly fort e R, g € Q,r € N and o € N.

The proof is carried out throughout this section. We define

= Z D(T(q, (uk™ +1)x)) e(—ut)

u<k>
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and for r < k¢

Ualtr) = o S DT (g, () el —ut).

u<kr

We see that these two definitions look very similar, but it turns out to be much easier to deal
with .

Lemma 3.4.3. Let D be a unitary representation of G. Assume that there exists n > 0 such
that

[0 .at, )], < &7
holds uniformly for ¢ € Q,\,a € N,t € R and r < k*. Then Theorem holds for D.
Beweis. We postpone this proof to Abschnitt O

Therefore, it is sufficient to prove the following proposition.

Proposition 3.4.4. Let D be a unitary and irreducible representation of G different from
Dy,...,Dy_y. There exists n > 0 such that

< kM
2

> D(T(q, (wi(r))) e(—ut)

u<kA

holds uniformly for g € Q,\,a € N;t € R and r < k°.

We use the recursive structure of transducers to find recurrences for these Fourier terms.
Lemma 3.4.5. Let g € Q, \,a € N;t € R and r < k*. It holds for all m < A

1

= Y D(T(q, (e)) e(—e(R* 1))l (k7). (3.10)
km

e<km

1/}/\ ot 7) =

Beweis. We know that T(q, (6)2”(1/)2_’”(7")2) = T(q,(e)i) - T(5(q, (e)7), (u’)g_m(r)g) for
u' < k’™, By distinguishing the m most significant digits of u, we find

PRaltr) =5 Z > D () ™" (r)R) e(— (kA 4 u)t)

e<k™ y/ <kr—m

= kim S° DT, () e(—e (k1)

e<km

w<kA—m
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The main idea is to find m € N e, < kK™ such that two or more terms on the right hand
side of (3.10)) cancel — at least partially. This means that we want to find 1, e, such that

6(q,e1) = d(q,€2) and
| D(T(q,1)) e(—e1k*™t) + D(T(q, £2)) e(—e2k* ™) ||, < 2 = &,
for some £ > 0. We split the proof into two parts — depending on the dimension of D.

Lemma 3.4.6. Let D be a unitary and irreducible representation of G of dimension at least

2. Then Satz[3.4.4] holds for D.

Beweis. We need to show that there exists n > 0 such that Satz holds. Theorem [2.3.7]
shows that there exists for every g € G a path w, € ¥ such that 0(¢, w,) = ¢,T(¢, w,) =g
holds. We find using Lemma that

1 m m (©)7)
|5 ot 7 H2 oo Z D(T(q,(2);)) e(—e(k*~ °t))% qmoa (t,r)
e<k™o0 2
1 —m,
< o ZD(T(CI,Wg))e(—[wg]kl@A DYN g alt5T)
geG 9
1 mo A—mg (g,(¢) mo)
— | @@, @) e(—e ke,
€<k7n0
e#[wglkVgeG
S DT, wy)) e(— Wk 00| ([ (1))
geG 9
- |G| H
RS bl t
M ot
1 m )\ m, /7
< o | K7 =161+ | 2 Dg)e(—wylek ot | mas [, (07
geG 9
Thus it is sufficient to show that for all ¥ € R holds
> " D(g)e(—[wglit)|| <G| (3.11)
geG 2

Since the left hand side is a periodic and continuous function in ¢, this implies that there
exists 1’ > 0 such that

ZD ngt)

geG

< |Gl -

2

for all ¢ € R. This gives in total

/

A e k] L]
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and the statement follows easily as i’ only depends on G and D (but not on A, a, ¢’ or 7).
What follows is a variation of the proof of |15, Lemma 4]:

Let us assume — on the contrary — that there exists ¢ € R such that

ZD ngt)

geG

=1Gl.

2

This holds if and only if there exists 0 # y € C? such that

2

= D (Dlg) e(=[Wy i)y, D(g2) e(=[wg]it)y) = |G [lyl3

9  91,92€G

ZD —[wlit")y

geG

However, the Cauchy-Schwarz inequality implies

[(D(g1) e(=[wg,]it")y, D(g2) e(=[Wgo]it)y)]
2 2
< | D(g1) e(—[we, it )35 11D (g2) e(— W)ty ll; = llyll3-
For equality to hold in (3.12) it is necessary that the D(g;) e(—[wy,]xt") are linearly dependent.

Since we find for g; = go = id the summand (e(—[w;|xt")y, e(—[W;q4]rt’)y) we obtain for all
ge G

(3.12)

D(g) e(—[wlut")y = e(=[widlxt))y,

i.e. y is an eigen-vector of all D(g),g € G. We define W = span(y) and find D(g)W C W
for all g € G. This means that D would be reducible which yields a contradiction.

Therefore (3.11)) holds, which concludes this proof. O

Lemma 3.4.7. Let D be a one-dimensional, unitary and irreducible representation of G

different from Dy, ..., Dgy_1. Then Satz holds for D.

Beweis. Our goal is to show that there exists some ' > 0 (only depending on G and D) such
that

(3.13)

it ), < (1= a0 gy )
holds for all £ € R. This implies again Satz for some 1 > 0 as in the proof of the previous
case.

We need two different estimates for this step and start to work on the first estimate.

We start by using the properties of G, i.e. {g € G : so(g) = £} = Gy-(gp)", to find restrictions
for D.

Assume that D(g) = 1 for all g € Go. It follows that D(g,) = e(¢/d’) for some ¢ < d' since
(g0)* € Gy and therefore we see directly that D = D,. Thus we know that there exists g € G
such that D(g) # 1.

We use Lemma to see that there exist w;g, w, € ™ such that §(g, wiq) = d(q, w,) = ¢
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and T'(q,w;q) = id,T(q, w,y) = g holds. By using Lemma [3.4.5] (with m = mj), we find (as
in the proof for representations of dimension > 2)

(T(q, Wia)) e([wial k08 )03 50 (¢, 7)

)\ma

1
Hw()l\,a(t7 7")“2 < W

+ D(T(g, wy)) e([wglkot)y) o) (t’T>H2

A—my,a
k™o — 2
: — max (t,r)H :
k™o qeq 2
We see that the first term of the right hand side equals
1
|| etwialek?58) + D(g) - e(fw, altr)]
= =7 |1+ Doy eliwale = [wils) q_ . <t,r>H2.

Now we use Lemma [3.4.5| again with m = ¢, to find in total

Thus we find the first estimate:

K7 =24 1+ D(g) e(([wlk — [Widl )&~ 01)|
k™o

[esaen)|, < max 0], (0], (319)

To find the second estimate, we use Lemma |3.4.5| with m = ¢, and find

Ao, (t,r)H2 '

195,01, < max

For convenience we assume that the maximal value of the right hand side is attained at q.
Theoremshows d'-d"(q,q) = ged{[wi]x — [Wa]r : w; € ¥ with §(q, w;) = ¢, T(q, w;) =
id}. Therefore, there exist N € N, ;5 € ZV x ZN such that d'-d"(q,q) = >, -y i ([Wilk —
[w;]) where w;, w; € ¥™0 such that §(¢,w;) = §(q,w;) = q and T(¢q,w;) = T(q, w;) = id.
By Lemma |3.4.5| and the same arguments we used above, we find

Hlb)‘ fo, a(t " Z D q’ W’L [Wi]kk)\_zo_mot)w?\ffofmﬁ,a (tv T)
i<N 9
e [l
——; — Max ' , T
k™o geqQ —fo—mg, 2
_ 1 A—Lo—m/
o km6 Ze([wz]kk Ot) —m), (t,?“) 9
i<N
| (0]
——; — Max / , T .
k™o geqQ o 2

Thus, we find in total

k7o — N+ [0, e([wil ik~ 07mt)|
k™o

maxH@/z/\ to— moa(t,r)Hg. (3.15)

[t <
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We combine (3.14) and (3.15) and find

< (1 P )1 + D(g) e(([wglk — [Wz‘d]k)kkmat)‘ TN ‘Zi<N e([Wz‘]kkAgomét)D

q
t 7
Hw’\’a( ) 2~ 2kMo
q
s i,
It remains to show that

1+ D(g) e(([wolk — [Waa )l 00| +

> elfwilk o 00)

<N

<N+2 (3.16)

holds for all t € R as the left hand side is a periodic and continuous function in ¢. We
distinguish the following two cases.

At first let us assume d'tk*™0 € Z:

Since g € Gy we know that [w;q] = [w,] mod d' and, therefore, the first term of the left
hand side of equation simplifies to |1+ D(g)|. By the definition of g, we find that
|1+ D(g)| < 2 and, therefore, equation holds.

The remaining case is d'tk* ™o ¢ Z:

Let us assume

> e([wilek?0m0t)| = N.

<N

This implies ([w;]p — [w;]p)k* 0™t € Z for all i,j < N. As d’ - d"(qo,qo) is a linear
combination of ([w;], — [w;]), we find d' - d"(q, q)k*~*~™0t € Z. This yields a contradiction
since d”(q, q)|k*. Therefore, we have

> e([wilik*mot)| < N

<N

and, consequently, equation (3.16]) holds, which finishes the proof. O

3.5 Carry Lemma

We fix a strongly connected automaton A satisfying d(A) = 1 - see for example Satz[2.5.1] Let
Ta=(Q,%,6,q),G, \) be a naturally induced transducer. Thus, Ty is synchronizing and we
find that there exists 7 > 0 such that all but O(k"1=")) words of length n are synchronizing
- see Lemma We show in this section that the function f(n) = D(T(n + r)) has the

carry property — uniformly in 7.

Lemma 3.5.1. Definition holds — uniformly in r — for f(n) = D(T(n + r)) where D
s a unitary and irreducible representation of G, n is given by Lemma and the implied
constant does not depend on r.



3.6. PROOF OF PROPOSITION 3.2.2 69

Beweis. We fix A, p and a. We rewrite r = r1k® + ro where r1,79 € N,ry < k% We want
to distinguish the form of ¢ + rq, i.e. the maximal number ¢ such that the digits at position
a,...,a+tof ((4+r1)k*+ni+ne+ry can be affected by the carry of ny+ns—+rs. As ny+ng+ry <
3k* — 3 limits the carry to 0,1, or 2, we define ¢ := max(vy({ + 71 + 1), v,(¢ + 71 +2)). Thus
we know that the digits at position a+t+1 of (¢k®+ny +ng+1) and (£k* + ny + 1) coincide
for « = 1,2,... and are equal to the digits at position ¢ + ¢ of ¢ + r;. We fix ¢ such that
t < p and count the number of integers ¢ such that holds for some ny, ny. As the terms
corresponding to the digits of index a + ¢t + ¢ cancel for ¢ > 1, we find
D(T(qo, (Ck* +ny + na + 7)) D(T(qo, ((k* + 1 + 7))
= D(T(6(qo, (L(ﬁ + rl)/ktj i)y (CE* +ny + ng + 7)) H

D(T(5(qo, ([(£+ 1) /K )), (Ck* + 0y + 7))
and

D(Tos p(qo; (k% + 1 +ng 4+ 7)) D(Tos o (qo, (Ck% 4+ 11 + 7))
= D(T(5(qo, (| (€ + 1) /K 77" (€6 + ny 4 ng + 1))
D(T(6(qo, (L(ﬁ + rl)/ktj 2T, (CE® + ny +7)2T).

Thus, the number of integers ¢ (with fixed ¢ and r) for which (3.5) holds for some ny,ny
can be bound by the number of integers ¢ such that ((£+ ry)/k")}"" is not synchronizing —

otherwise d(qo, ([(£ +71)/k'])x) = 0(qo, (L(€ +71)/k'])s™") would imply that does not
hold. By Lemma we know that this number is bound by O(k(P—(=MEA=r) for some
n > 0 where the constant only depends on k£ and A. Note that there are only two possibilities
for the digits with index 0,...,¢t — 1. By summing over ¢ we find that the number of such ¢
is bound by

cz APEp=0A=0) | pA-p < ckre Z ft=n) 4 pA-p
t<p t<p

< ek + krP
n)

1— k0=

and the result follows easily as ¢ does not depend on A, p, « and r. O]

3.6 Proof of Satz [3.2.2

We are now ready to show Satz [3.2.2]
The proof for Satz differs when D = D, and we start by considering this specific case.

Lemma 3.6.1. For all ¢ < d', A\, \a,7 € N and b < k', m < k™ we have

S e (” o ) DUT (g0, (n 4+ P)))yu(m)|| = o(N)

kl/
n<N
n=m mod k*2 F

uniformly in r € N.
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Beweis. We find by the characterizing property of D, (i.e. D(T(qo, (n)r)) = e(fn/d"))

> e () it o+ )

n<N
n=m mod k2 F

S e () (s

n<N
€ m g
d’

n=m mod k*2

S

m/ <k 2d’
m/=m mod k2

n 41— bkv=M
Z Xk—* kv 1[n+r m’ mod k d'] “(n)

n<N

As
Z n—+r— blfl/—)\l
Xk7A1 kl,
n<N
is indeed a sum over at most two intervals included in [1,..., N — 1], the result follows from

the well know result

S an) = o(N).

n<N
n=r mod s

O
Proof of Satz[3.2.3: For D = D, Lemma [3.6.1] gives the desired result. Suppose from now on

D # D, for all ¢ < d'. We rewrite the left hand side of ([3.2]) using exponential sums and
obtain using Vaaler-approximation - Theorem [3.7.2]

> X e (M) T e () b+ )
F

n<N h<k*2 n<N
1 h _ n4r—bkv—M
<o 2 | X e (nn) X anttme (W) D i)
h<k?2 ||n<N | |<H F
1 n+4r—bkv—M
fo 2 e (n) X e (W) D+ o)
hek?z ||n<N W |<H »

We choose H = k* and therefore |ap (k=1 k*M)| < k™, |by (K7, kM) | < k1 holds. Thus,
the sum above is bound by

1 1
ka\z Z kM Z

h<k*2 |R/|<EkM

e (g + ) ) pern nto

F
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< 42161]113 Z e(n)D(T(n+r))u(n)

However, as D(T'(n + r)) fulfills Definition and Definition uniformly in 7, we can
apply Theorem [3.3.4] This finishes the proof. ]

3.7 Technical and Auxiliary Results

In this section, we will provide the proofs for some results mentioned earlier, where the proof
is technical and seemed to disturb the flow of reading.

3.7.1 Technical Results

The first result stated that some properties occur 6ftenin the digital representation of num-
bers. More explicitly, we need to show that the set M described in Lemma has density
1.

Proof of Lemma[3.2.3 One sees easily that it is sufficient to show that
MN[0, k*
lim MA0.EY)

v—00 k2v

holds. We define M :={n € N|V¢' € Q' : §'(¢, (n)x) € UQ.} and My, := {n < k¥|wiws...w; is a subword
The idea is to show that both sets have density one.

Noting that [(M N [0,k*))] > |(M; N[0,k%))| - |(Mz,)| gives then immediately the desired
result.

=1

Thus, it just remains to show that M; and M, have density 1.
Therefore we define M , == {n € N|0'(¢, (n)x) € UQ;} and see that M; = NM; ,. Thus it
is sufficient to show that M, , has density 1.

One finds easily that for each ¢ € Q' there exists w, € {0,...,k —1}* such that ¢'(¢;, wg)
belongs to @) for some i. We take m to be the maximum of these lengths. As each @) is
closed under ¢’ we may assume that each of these paths w, is exactly of length m. We split

Q' into two different parts, i.e. Q' = UQi7@ = @Q"\ Q. We show that
‘{w € {0,... . k—1}": 8 (¢, w) € O} < gmgnt-n (3.17)

where 7 is defined by n = 1 — log(k™ — 1)/ log(k™) > 0 such that
Em—1 = gma-m,

We show (3.17) by induction on n. The statement is trivial for n < m. We find for n > m
(as @) is closed under §’)

{wesr:d(d,w)eQ}| =
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=Y Hwi €3¢ w) =i} [{wa € 5™ §(q), wa) € Q'
4eq’

<Y Kwiex (g w) = qi} - (K= 1)
4 eq’

= |{W cyn—m. 5/((]/,W) c /Q//}’ . km(lffi) S kmk(nfm)(lfn)km(l,n).

Lemma shows
. M2,z/
Jm =2 =1
which finishes the proof. m

We prove the following relation between very similarly defined terms that appeared when we
estimated the Fourier terms. More explicitly, we show that a uniform estimate for

[o3a ], < &7

implies Theorem [3.4.2]

Proof of Lemma[3.4.5 We start by proving

[#fat)ll, < D max

1<5<A

11
—+ . (3.18)

‘a .7 (t,r mod k%) ERESY

We rewrite r = mk®™ + r9k® + r3 where r3 < k* and ry < k*, such that uk® +r =
11kt 4 (u + r9)k® + r3. Let us first consider the case r; > 0. We find by distinguishing
u+ry < kM and u+ry > kP,

$latr) =5 D D(T(q (ro)s(u+r2)i(rs)y)) e(—ut)
u<k?
+ % Z D(T(q, (r1 + Di(u+ 1y — EMp(rs)e)) e(—ut)

u<k?
u+rg Zk:>‘

= 2D, () Y DIT((g, (), (R el—(uf — 7))

ro<u!/ <k

5D, (ry+ D) 3 DET((a. -+ D) R e~ — 72+ K)).

u' <ro
This gives

68,067, < max |32 DO GO el

qeqQ
ro<u/<k* 9
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1
+ max —
7eQ kX

Y DT, (W)i(rs)i)) e(—u't)

u' <rg

2

The case v = 0 can be treated similarly and we find in this case

[t ), < mas s | X0 DG, GOt el —a't)

rasu' <k 2 (3.19)
1
+max s | > DIT(d, (w)i(rs)i) e(—u't)
u/<rg 2

We work from now on just with the case r; = 0 as the case r; > 0 works similarly. We rewrite
ro = rhkA "t 4l with 1), < k,rj < k*~1 and find by distinguishing the most significant digits
of u’ the following upper bound for the right hand side of (3.19):

5 Y max| ST DO ) el

rh+1<uf <k ub<kA—1 9

bormax| ST DO )e(r))) el

kA q'eQ
rli <ul<kA—1 9

b S max | ST DO ) ) el

7EQ
u <}, ub<kr—1 9

+smax | 57 DO ) 09)7) o)

uly<ry )
The first and third line give

k

T Vralti ).

By applying this step inductively we find (3.18). Thus it just remains to use the bound of
Praltsr)

/ 1 1
q q «
a0l < 2 may [ sattr mod k)|, 5+ 5
<) kORI 4
<A
f—(1=n)
—An -
<ck gy =) + k0
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3.7.2 Van-der-Corput’s inequality

The following lemma is a generalization of Van-der-Corput’s inequality.

Lemma 3.7.1. Let N be a positive integer and Z(n) € C™*? for all 0 < n < N. Then we
have for any real number S > 1 and any integer k > 1 the estimate

Y Zn)| < N+k(S-D+1 > (1 - %) > (Z(n+ks)Z(n)") (3.20)
[s|]<S

S
0<n<N P 0<n<N—ks

where tr(Z) denotes the trace of Z.

Beweis. See [15]. O

3.7.3 Vaaler’s method

The following theorem is a classical method to detect real numbers in an interval modulo 1
by means of exponential sums. For a € R with 0 < a < 1, we denote by x, the characteristic
function of the interval [0, «/) modulo 1:

Xo(Z) = |2]| — |2 — ] . (3.21)

The following theorem is due to Vaaler [43].

Theorem 3.7.2. For all o € R with 0 < a < 1 and all integer H > 1, there exist real-valued
trigonometric polynomials A, p(x) and By p(x) such that for all x € R

Xa(2) — Aa,u(2)| < Bon (). (3.22)
The trigonometric polynomials are defined by
Aan(r) =Y an(e, H)e(ha), Bou(z) = > bu(a, H)e(hx), (3.23)
\h|<H \h|<H

with coefficients ap (o, H) and by (o, H) satisfying

aO(avH) =, |a’h(a7H)| < min <a7 ﬁ) ) |bh(aa H)| < H;—O—l (324)

Using this method we can detect points in a d-dimensional box (modulo 1) - which will be
useful in Kapitel b}

Lemma 3.7.3. For (ay,...,aq) € [0,1)¢ and (Hy,..., Hy) € N with Hy > 1,..., Hy > 1,
we have for all (zy,...,x4) € R?

d d
T e, @) =TT Aay o, ()
P j=1

where Aq u(.) and B, g(.) are the real valued trigonometric polynomials defined by (3.23]).

< Z HXaj (:L’j> HBC!]',H]' (xj) (325)

0£IC{L,....d} 5&J el
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Beweis. See [14]. O
Let (Uh ,Ug) € N with U; > 1,...,U; > 1 and define oy = 1/Uy,...,aq = 1/U,. For
j=1,. dandeRwehave

> Xa, (x - %) =1. (3.26)

OSUJ' <Uj

Let N e Nwith N> 1, f:{1,..., N} 2 R%and g: {1,...,N} — C such that |g| < 1. If
f=(f1,...,fa), we can express the sum

S = ég(n)
" S = i}g(m O<UIZ<U1 Xan (fl(n) - %) “'0<;U o (fd( . gj)

We now define (Hy,..., Hy) € N® with H; > 1,..., Hy > 1,

N
=30 S Awa (A0 5 ) e X A (Sl - 1)
n=1 0<u;<U; 0<ug<Uyg

Lemma 3.7.4. With the notations from above, we have

D ol o DD VR

(=1 1<ji<<jp Y b |<HR U |y |<H /U,
N
> e (hy Uy fiu(n) + -+ + hy,Uj, £i,(n))|
n=1
Beweis. See again [14]. O

3.8 Proof of Theorem [3.3.3] and Theorem

The proof of Theorem and Theorem is completely analogous to the corresponding
proof in [38]. One of the main ideas is to use the Vaughan method. It follows from the
following identity concerning the von Mangoldt function. Let U,V > 1. Then

A(n) = A(n) 1,0(n +Z a) log(b) Z S ou = > A o).

=n_ cd=a ab=n clb
a<V a<UV c<V,d<U a>Ub>V <V
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Using this identity, one can find estimates for
> Am)f(n)
n<N

by estimating sums of type I

Si0) = Y > flmn)e(6mn)|,

T <mEM | e (M,N)
where I(M,N) C [0, M N] is an interval, and sums of type II
Srr(0) = Z Z by f(mn) e(@mn)

%<m§M %<n§N

for any a,,,b, € C with |a,,| < 1,|b,| < 1. A very similar result is true when considering

> uln)f(n).

n<N

This is a classical method used for complex valued functions f. However, one can easily
generalize this method for matrix valued functions f.

We will only comment on how to adopt the original proof in [38] to our situation. We only
describe the important changes briefly (and assume that the reader is familiar with [3§]).
First we comment on how to adopt the auxiliary results of [3§].

For a generalization of [38, Lemma 3] see [15]. [38, Lemma 6] as well as the Cauchy-Schwarz
inequality can be easily adapted to matrix-valued functions, where we use the Frobenius
norm instead of the absolute value. These results change at most by a factor v/d.

[38, Lemma 8| can be adopted to our case where the proof stays unchanged:

Lemma 3.8.1. Let f : N — Uy satisfies Definition with n > 0. For (u,v, p) € N> with
2p < v the set € of pairs (m,n) € {k* 1 .. k* — 1} x {k*71, ... k¥ — 1} such that there
exists { < k' with f(mn+ k)2 f(mn) # fui2,(mn + k)" fi0,(mn) satisfies

card £ < (log k)kH+v=m7. (3.28)

[38, Lemma 9| can be adopted as well:

Lemma 3.8.2. Let f : N — Uy satisfying Definition and (u, v, o, pi1, f2) € N° with
po < pn < < pag, < v oand 2(pg — p) < po. For (a,b,c) € N3 the set E(a,b,c) of pairs
(m,n) € {k*=1 . kH =1} x {k¥7L ... kY — 1} such that

Fus(mm 4 am + b+ ) f,, (kv 40 40 (mn + am + bn + ¢))
# fur(mn 4 am +bn + )" £, (kFor,0 m (mn + am + bn + c))

satisfies

card €(a, b, ¢) < max(7(k),log k)ps® v ntuo—pm) (3.29)
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Sums of Type I

We take a non decreasing function v : R — R satisfying lim o v(A\) = +00, ¢ > 2 and
f : N = Uy be a function satisfying Definition and f € F, . according to Definition[3.3.2]
Let

1 < M < N such that M < (MN)'Y3, (3.30)
Let p and v be the unique integers such that
1< M < kM and k7' < N < k.

Let 6 € R, an interval I(M, N) C [0, M N] and

Si) =Y > f(mn)e(@mn)]|| . (3.31)

M <M ||n:mnel(M,N) r
a4 <

Proposition 3.8.3. Assuming (3.30) and with ¢ > 2, we have — uniformly for 6 € R — that

)

S1(0) < (log k)% (i + v)2kH =37 (3.32)

Proof (Sketch): The proof proceeds as in [38] up to [38] equation (32)]. We find

— 1
) = g X ke (~ i)

v<kpty—a
1 o H o ut
Eugkaf(vk )7 f(u+ vk )e(_ku+l/>'

Here we needed to ensure the correct order of the terms. From now on the proof does not
change and we just have to take the factor n into account when using Definition We
find for example

card W, < k#rvner

Thereafter one only needs to keep the order of the terms as the values of f are now matrices
and thus the order of the terms is important. However, this does not change any important
properties and all arguments of [38] still hold. By taking n into account, we find

|S72(M, d)|| . < (log k)2 tv—ne1/2

—np1/2
Spa(0) < (oghy? 3 F
1<d<M

B w+v 2
pr=n 3 1+mn

then gives the desired result. O]

< p(log k)32 kne/2,

Choosing
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Sums of Type II

We take 7 : R — R a non decreasing function satisfying limy_,., 7(\) = +o00,c¢ > 10 and
f N = Uy be a function satisfying Definition and f € F, . in Definition Let
1 < M < N. We denote by i and v the unique integers such that

U< M < k" and BV ' < N < k.
Let us assume that
—(p+v)<p<v<—(u+v). (3.33)

We assume — as in [38] — that the multiplicative dependency of the variables in the type II
sums has been removed by the classical method described (for example) in [37, Section 5].
Let 0 € R, a,, € C,b, € C with |a,,| <1,|b,| <1 and

Sr(0) = Z Z by f(mn) e(@mn)

where we sum over m € (M /k, M] and n € (N/k, N]. We will prove

Proposition 3.8.4. Assuming (3.33) and ¢ > 10, uniformly for |a,,| < 1,]b,| < 1 and 0 € R,
we have

1571 (0)|| p < max (7 (k) log k, log® k)4 (1 + v) 3 (rmax(@®).2) putv—557(2Le/15]) (3.34)

Beweis. The proof of the corresponding result in [38] is the most difficult part — quite long
and complicated. We will try to focus only on the necessary changes and keep it as short as
possible, as no important new ideas are needed.

We find by using the corresponding results:

M;N2 L MN 3 (1 _ 1) (S (1))

HSH(Q)H% < 2

1<r<R

with

Si(r) = Z Z bpsrbp f(mn +mr) f(mn)® e(6mr),

m nel(N,r)
where I(N,r) = (N/k, N —r]. Let
fo = [+ 2p. (3.35)

As we are only interested in tr(S;(r)), we can — by well-known properties of the trace —
exchange the order of the matrices

tr(S1(r)) = Z Z b rbn tr(f (mn + mr) f(mn)") e(0mr) (3.36)

m nel(N,r)
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—Z Z b rbn tr(f(mn)™ f(mn +mr)) e(@mr) (3.37)
m nel(N,r)
Z Z b b f(mn) f(mn +mr) e(@mr) | . (3.38)
m nel(N,r)

We denote from now on by S the corresponding sum where we exchange the order of the
matrices, e.g. :

= Z Z b rbn f(mn)? f(mn +mr) e(@mr). (3.39)

m nel(N,r)
If f satisfies the carry property described in Definition then by Lemma the number
of pairs (m,n) for which f(mn)? f(mn-+mr) # f.,(mn)" f,,(mn+mr) is O(k*T~"7). Hence
tr(S1(r)) = tr(Si(r)) = tr(S{(r)) + O(k"+=) (3.40)

where

- Z Z bn-&-raf,uz (mn)Hfug (mn + m’l“) e(9mr).

m nel(N,r)

Note that it was important to change the order of the matrices first to apply Lemma [3.8.1
Using again the Cauchy-Schwarz inequality for the summation over r and |tr(A)| < || A| » Vd,
leads to

MAN*  M?N?
ISuO) Ik < =+ R 3 ISI0)3 (3.1)
1<r<R

When applying the Van-der-Corput inequality for the summation over m (see for example
[15]) we need again to keep the correct order of terms. We find

M?N?R MN ~
> ISI)E < + tr(S2)
S S
1<r<R
with
Z Z (1——> 0kt1rs)Sh(r, 5)
1<r<R 1<s<S8
where

S(r, s) Z Z Fua ((m 4 sEF )M f, (4 k) (04 1)) fuy (m(n 4 1) £, (mn)
= Z Z fm m + sk‘”l)n)Hfmm((m + sk“l)n)Hfmm((m + sk")(n + 7))

i ((m + sk )(n + 7)) i (m(n + T))Hfm,m (m(n + T))Hfm,uz (mn)ful (mn).
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However, we find that tr(§§(r, s)) = tr(S4(r, s)) for

S508) = 32 22 S (1) (04 5K 0 (0 K1)+ 1)) e+ )

and, therefore,

S IS0  M’N’R | MN
< Tg S

1<r<R

where

Z Z (1 - —) OkMrs)Sy(r, s).

1<r<R 1<s<S

We choose the order of the terms such that we are able to use the Cauchy-Schwarz inequality
later in a sufficient way. Whenever we use Definition m (at least implicitly), we find a
different error term e.g. : instead of |38, (60)] we can use

card £, iy 0 (1, 8) < max(7(k),logk)(p + y)w(’f) fhtv—2m0"
Thus we find
So(r,s) = S3(r, s) + O(max(7(k),log k) (1 + y)w(k)ku—ku—znpz)’

where the order of the terms in S3 has to be changed:

B mn U mn + mr Ul
=YY T Y e (- ) v (M - i)

m N O<ug<kH27H0 0<uy <kH27HO

g(up)g(ug + k:“l_“osn)Hg(ul 4 k1 HOogp 4 k“l_“osr)g(ul)H.

This impact of n carries through the rest of the work and we will only comment on the specific
form of some intermediate results, e.g. Sy:

hgsr
Sy(r,s) = k2(n2—po) Z Z ang (K012 H)ay, (kMo~F2 H) Z Z e (]wim)

|ho| <H |h1|<H 0<ho<kH2=H0 0<hg<kH2~HO

G(ho — h2)g(—ha)"G(hs)g(hs — hy)"

ZZ < ho + hl mn + himr + (hQ + h3)/€"“8n>
L2

The definitions of Sg and S; have to be adopted as well, e.g. :
~ ~ 2
Sz(hy) = Z |g(h" — hy)g(h")™| ..
0<h/<kH2—HO

The following arguments of |38 carry over to this generalization.

We find the following lemma, which is the analogon to [38, Lemma 10]
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4
p< (2+§C),0

then we have — uniformly for X\ € N with +(po — p10) < X < 3(p2 — po) —

S [0 B < k) g e

0<h<kr2=h0 0<k<kH2—HO—A

Lemma 3.8.5. If

where

Y(A) — p1 + Ho,

; (3.42)

YA, 1 — o) =

Beweis. The proof works as in [38], where one has to be careful to keep the order of the
terms. However, this does not change the proof substantially and by using the new estimate
given by Definition [3.3.1] one finds the desired result. O

The rest of the proof does not change and it just remains to balance the error terms differently.
One finds in total, uniformly for # € R
||SH(9)H;17 < k4u+41/+u1—uo(k—'yl(uz—uo—Zp,m—uo) + k" log k)
(7 (k#ams) 4 ppams-ieies o)
+ (log k)s(ﬂ + V)3k4u+4y+3(u2—uo)+2p(k—ug + /{J_V)
+ max(log k0, (k) k=20
+ max(7(k), log k) (p + v)*®) pAuriv=2me"

Note that only the first and last error terms have changed compared to [38]. As in [38], we
assumed

2 = pu+2p
pa = p—2p
fio = 1 — 20/
p<v<3p.

In total, we find

1.511(0) HZ; <L 7(k)(p2 — M)w(k)k4u+4u+%”7"(u1—uo)—%v(2p) log k*
+ (lOg ]{)B(ILL + y)3k4u+41/+3(;¢17}m)+14p7u
+ max(log k*°, T(kuo))k4u+4u—2p
+max(7(k), log k) (ju + v) B et

Taking

p = ny(2p)/10],
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we have 1 — g = 2p" < ny(2p)/5 < np/5, and thus

247 n 3 n 7(2p)
2 — u0) = 24(20) < v (2p) — LA (2p) = —p 2P
5 (1 — po) 27( p) < mm( p) QV( P) n—

Furthermore, we choose
p = Lu/15),
which yields by the same arguments as in [38] that — finally —
1512 (0) 7> < max(r (k) log k, log® k) (ju + v Foex@ B2 et drmm LIS/,

which completes the proof of Satz O

Proof of Theorem [3.3.4] and Theorem [3.3.3 It just remains to use the estimates of sums of
type I and type II to find the corresponding estimates, see for example [38]. ]



Kapitel 4

Subsequences of Automatic sequences

The setup we have developed in Kapitel 2] und [3] can also be used to work with linear
subsequences and also to derive a Prime Number Theorem for a large class of automatic
sequences — which covers almost all mentioned results at the beginning of Chapter [3]

This chapter is dedicated to show the following two results.

Theorem 4.0.1. Let A = (Q',%,¢,q), ) be a strongly connected deterministic finite auto-
maton with output (DFAO) with ¥ = {0,...,k — 1}, 0'(¢),0) = ¢, and automatic sequence
u. Then the frequencies of letters in (Wanip)nen exists for every a,b € N.

Theorem 4.0.2. Let A = (Q',%,d,q), ) be a strongly connected deterministic finite auto-
maton with output (DFAO) with ¥ = {0,...,k — 1}, §'(q),0) = ¢, and automatic sequence
a. Then the frequencies of the letters for the prime subsequence (a,),cp ezist.

Remark. The proofs allow us to determine these frequencies.

All block-additive, i.e. digital, functiond!] are covered by Theorem [4.0.2} For the residue of
any block-additive function f mod m satisfying (k — 1,m) = 1 and (ged(f(n)nen),m) = 1
one finds that all letters appear with the same frequencies along the primes.

Let a be an automatic sequence. We have observed in Chapter[I]that every linear subsequence
is again an automatic sequence. However, it is not clear if the existence of densities for the
original sequence a implies the existence of densities for its linear subsequence and how these
densities are related.

Remark. The requirements in Theorem and Theorem [4.0.2]for the DFAO A are sufficient
to ensure frequencies for the automatic sequence itself. On the one hand, one might relax these
conditions without changing the theorem itself. On the other hand, we would like to mention
that frequencies of the automatic sequence do not ensure frequencies for linear subsequences
or the prime subsequence:

!For the definition of digital functions see Chapter

83
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0 0,2 0,2

start —
1

Note that a,, = b holds in exactly two cases:

e the sum of digits of n in base 3 is even and the first digit of n in base 3 is 2

e the sum of digits of n in base 3 is odd and the first digit of n in base 3 is 1.

We are able to reformulate this characterization as the sum of digits of n in base 3 is even if
and only if n is even: we have a,, = b if and only if n is even and the first digit of n in base
3is 2 or n is odd and the first digit of n in base 3 is 1.

The corresponding automatic sequence is
abbbcbbebbebebebebbebebebebbebebebebebebebebebebebebeb

One finds easily that the automatic sequence is equally distributed on {b, c}, as the generating
automaton has only one final component which is primitive and symmetric. But, if we consider
only odd integers we are detecting the first digit of n in base 3: the subsequence of odd integers
of the automatic sequence is constant on all intervals of the form [3™,2-3™),[2 - 3™ 3™,
This shows that no densities exist for the subsequence of odd integers. This consideration
together with the prime number theorem also shows that no densities exist along the primes.

4.1 Linear subsequences of automatic sequences

We have mentioned that it is unclear under what conditions we can expect that the frequencies
of letters in subsequences of automatic sequences exist. By only considering automata that
fulfill a - rather weak - technical condition, we are able to show that the frequencies of the
letters for automatic subsequences along arithmetic progressions exist. We are also able to
express these frequencies in terms of the naturally induced transducer and it is given by .

We use Corollary and find that there exists a possible different automaton A with the
same automatic sequence as A and d(A) = ko(A) = 1. We denote by ¥ = {0,...,k — 1} the
input alphabet of A and by T = T = (Q,%,6, g, G, \) the naturally induced transducer
corresponding to A.

We need to analyze 0(qo, (an + b)) and T(qo, (an + b)x | originating from 7

Z Lugnip=al = Z Lr (0 (T (g0 (an-+b)1)-3(0, (an+b)i)))=al

n<N n<N

= > At @0 ) s(aon(m)))=a] TOD)

n<alN
n=b mod a

2The function T' was defined at the beginning of Chapter
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=Y lpmea=al D Listaomw=d 1rtao.my)=o +OO).

qgeQ oG n<alN
n=b mod a

We expect that the restriction for n effects §(.) as well as 7'(.). We rewrite a = o’ - a” where
ged(a”, k) =1 and @' | kM for a minimal ;. Of course this implies that ged(a’, a”) = 1.

Lemma shows that there exist 1 > 1 > 0 such that at most O(K**=") words of length
A are not synchronizing. Thus, we find

Z Lugpip=a] = Z Z Lir(m1(0-q))=a] Z Z

n<N qeQ oG m<k®  mi<kM
m1=b mod a’
> Lis(go,(m)i)=a) LT (0, (m)n)=c] TO(b)
n<alN

n=b mod a’
n=mk +m1 mod kATAL

B Z Z Lir(mi (o)) Z Z 1[5(q0»(mkh+m1)k)=6ﬂ

4€Q o€ m<k* mi<kM
m1=b mod a’
A
> 110 FO(NE™™),
n<alN

n=b mod a’’
n=mk* +m; mod kAt 1

where we assume that k* < N. We start to evaluate the inner most sum,

> rgemuo=l;

n<alN
n=b mod a’’ ,
n=m' mod k*
where we expect the frequencies to exist.
We want to use the following Lemma from representation theory.

Lemma 4.1.1. Let G be a compact group and v a reqular normed Borel measure in G. Then

a sequence (xp)n>o is v-uniformly distributed in G, i.e., % Y nen Oz, — Vv, if and only if

ngnoo— ;VD ) /Ddu (4.1)

holds for all irreducible unitary representations D of G.

A proof for Lemma is given for example in [32]. Since we are working here with a finite
group, we find that the error term for

1
— Op, — VU
X2

is bounded - up to constants - by the maximal error term of (4.I)). To apply Lemma [4.1.1]
we start to evaluate the left side of (4.1). Therefore we have to distinguish some special
representations, which we already encountered in Chapter
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Lemma 3.4.1. There exist d' special 1-dimensional representations Dy, ..., Dg_1 defined by

Dilg) = o (6 : 3(9)) |

for £ =0,...d — 1, where sq is defined by so(T(q,w)) = [W]x mod d'.

Remark. These representations play usually a different role than the other representations.

Note that Dy(T(qo,w)) =e((¢- [w]g)/d') for £ =0,...,d — 1,w € ¥*.
We evaluate the left-hand side of (4.1)) for D = Dy:

ST DT, (i) =Y e(%f)

n<N n<N
n=b mod a’ , n=b mod a’’ ,
n=m’' mod k* n=m’' mod k*

b'l
= 2. 2. el7
b <lem(a”,d") n<
b'=b mod o/ n=b' mod lem(a”,d")

I
n=m' mod k*

b'l N ol " d')?
= > e (7) lem(a ey O (/& ;Zji((i d’)) )
b’ <lem(a”,d") ’ ’
b'=b mod a'’

(b+x-a")l N
-y ,
d lem(a”, d") kA

z<lem(a”,d")/a"

JAdem(a”, d')?
oy —""7
-0 (i

bl 2l(a” ] ged(a”, d')) N
o\ >, e &) ged(a”,d) ) lem(a", d)EN
(l”,d’) ? )

x<d'/ ged(

JAdem(a”, d')?
A )
ro (P )

b\ N yilem(a”, d')?
= ]-[ZEO mod d’/ ged(a’,d")] € (E) W +0 (k ng(a//7 d/) :

For D ¢ {Dy,...,Dg_1} we find a good bound by applying Theorem

Let v be the unique integer such that k*~1 <z < k. We find (see for example [39, Lemma
3.7])

Y. D(T(a, ()| = Y. D(T(q, (kY +m')))| + O(k)

n<N NG
n=b mod a’’ /n<N/k
n=m’ mod k' nk> +m’/=b mod a
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_ Z % Z o (h(nk?\ +m' — b)> D(T(qg, (nk)\’ +m/)k)>

!
a
n<N/KN . h<d”

+O(k)
1 / / /
<= > (v=N)sup| Y e(nf)D(T(go, (nk +m)y))
@ p<ar e TPV
+O(k)

< (v = XN)Ew=20=m L oK),

In total, we find

o ad'kY e (%), for D= D, and ¢ =0modd'/ged(d,a")
1\}520 N Z D(T (g0, (n)x)) = { (Sl, otherwise

n<N
n=b mod a’

’
n=m’' mod k*

It remains to find the correct measure v. Therefore, we define a function f : G — C as follows
flo)=">, e L Daar/ ged(@r.am) (9)-
//) ng<d,7 a,/) ¢ ’

z<ged(d',a

We compute f(g) now for some g € Gy = {g € G : so(g) = (}.

foy=" > e <_gcd(bc;, a”)) ) (gcd({j, a”))

z<ged(d',a')
2 ( o )
= e _—
1
z<ged(d’,a’") ng(d @ )

= ged(d', a") 1io=b mod ged(d’,a)] -

Thus we can define
dv = fdp,

where p denotes the Haar-measure of G.

Let {D* = (df})ij<n,,a € A} be a complete set of pairwise inequivalent irreducible unitary
representations and set ef(9) = \/nadg;(g). Note that A is finite because G is a finite group.
Recall that the set {efs} forms a complete orthonormal system in the Hilbert space L*(G).
We obtain for Dy @/ ged(d o)) that

b’
/GDw(d’/ng(d’,a"))fle' = Z ) ¢} (W) < Dx(d//gcd(d/ﬂ//))‘Dx/(d//gcd(d/’au)) >

' <ged(d,a
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e bz
o \ged(d,a”) )

For all other representations D% = (df;)1<; j<n,, we find

(6% bx/ (6%
/Gdijf dv=> e (m) < A5G| Data / gea(.ary) >= 0

a/<ged(d,a')

This proves that (7'(qo, (n)kz))neN(m/,kM)mN(b,a“)ﬂ is v-uniformly distributed. v does not depend
on m' and the error term is of form O((N/k)1=m).

Consequently, we find

D =l = X Limeay=al O O Lstaoime™+m)e—d

n<N qeQ oG m<k* mi<kM
m1=b mod a’

Z L7 (qo(my)=o] FO(NE™™)

n<aN
n=b mod a’’
n=mk* 4+mq mod k1

- Z Z Li7(x1 (0-q))=0] Z Z 1[6(q07(mk/\1+m1)k)=q}

q€Q o€ m<k* mi<kM
m1=b mod a’
ged(d',a") 1 alN
G| [s0(0)=b mod ged(d’,a”)] a kMM

+ O(kjk-l—)\l (N/k,)\—l—)\l)l—m) + O(Nk—nk)

d(d
NZgC |G| > L (ri(o-9))= 042 D Lisgo.tmyo=

q€Q ocG qu m<kA
s0(0)=b mod ged(d’,a’)

a
o 2o a@emo=a TOR (N0 + O(NE™™)

Theorem shows that the frequencies of every letter in §(qo, (m)g) exists - where no
explicit error term is given. However, we use the stronger version ([1.2)).

Furthermore, we denote by

m1<k)‘1
m1=b mod a’

the densities of the transition restricted to m; = b mod a’. We find

d(d,
R DD DL 97

n<N q€ q€eQ
so(0)= bmodgcd(d’ a)

3N(z,y) denotes the set {n € N:n =z mod y}.
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+ O(KMM N/ L O(NE™™).

This identity is not particularly surprising. We have already seen that n mod d’ influences
which elements of G can appear. If we restrict ourselves to n = b mod a, we also induce

restrictions for n mod ged(a, d’). This corresponds to the term gci(g‘/’“)

so(c)=b oo ged(d'a)
The condition for n mod a’ gives us information for the last few steps, which accounts for the
term qu@ fz fé’:g/.

If we choose now A = |log,(N)/2] we find in total

d dl, a
> L) =N % > Y ptrioan=al ) _ fafes
G €Q

e so(0)=b gl%d ged(d' ,a) I 7€Q (42)

+O(N')

for some 1’ > 0.

4.2 Prime Number Theorem for Automatic Sequences

In this section we develop a Prime Number Theorem for a large class of automatic sequences -
i.e. we estimate the sum ) _ . A(n)a,. This gives then - by partial summation - information
about the prime subsequence of a, i.e. (a,),cp. More precisely, we show that the frequencies of
letters in this subsequence exist and are also able to derive them. We use the same notations
as in the previous section and some similar ideas. We have seen that representations play
an important role. For the prime number theorem we have to distinguish again the special
representations D,. We recall the most important facts about them.

We have defined in Chapter 2| G, := {g € G : so(g) = ¢} for £ =0,...,d'(A) — 1 and found
the following d’ special 1-dimensional representations Dy, ..., Dy defined by

oo (250,

for ¢=0,...,d — 1 and sg is defined by so(7(¢,w)) = [w]x mod d'.
Note that Dy(T(qo,w)) =e((¢- [w]g)/d') for £ =0,...,d —1,w € ¥*.
In Abschnitt [4.3] we will prove the following Proposition.

Proposition 4.2.1. Let D be a unitary, irreducible representations of G different from
Dy, 0 < ¢ < d. There exists some n > 0 such that

<L k7

2

=S DT, (p)e)) el 1)

p<k?

holds uniformly in t € R.



90 KAPITEL 4. SUBSEQUENCES OF AUTOMATIC SEQUENCES

The rest of this section is devoted to prove

Proposition 4.2.2. Suppose Satz holds. Then Theorem [{.0.9 holds.

Beweis. We start as in the previous section and find by using Korollar and Satz
that

ﬁzllaw:$ 2. 2l tOW)

a<k? p<z
(a,k*)=1 p=amod k>

A
~ w(x) > Y L@ ) s =y +O k)

a<k? p<z
(a,k*)=1 p=amod 22

We note that (a,k*) = 1 holds if and only if (g¢(a),k) = 1 where go(x) denotes the
least significant digit of z in base k. We denote again by M, = {n < k* : (n,k) =
1 and (n)y, is synchronizing}. One finds easily that [{n < k* : (n,k) = 1,n ¢ M} =
O(KM1=m) for some 1 > 0, as in the previous section.

We fix A for now to find the necessary estimates. Thereafter we let A\ grow. This then gives
the desired result.

1
() Z La,=t) = Z Z L (0 (7 (q0,(p))-5(q0, @)k ))) =]

p<zx aEMA p<z
p=a mod k*

- Howe i vo(15)

1 k)\
) Z Z Lir (s (T (g0, (p)) 3 a0r(@))))=t] FO(EAT) + O (W(x))

acM)y p<z

p=a mod k*
1 N 1
= —( § Z Z 17-([#1(T(qo7(p)k)'Q)):b} —|—O(k’ ) + 0 ﬂ_(x)
qeEQ  a€M), p<z

4(qo,(a)x)=q p=a mod k>

1
- ( )Z Z 1[6(‘107(0«)]@):‘1} Z 1[7—(71—1(T(q07(p)k’)'Q)):b]

9€Q a<k? p<z
(a,k)=1 p=a mod k*
k)\
+0(/<;—M)+o( )
()

Thus we are interested in the distribution of T'(qo, (p)x) along primes in arithmetic pro-
gressions. We use the following result which is rather technical. We postpone the proof to
Abschnitt .3
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Lemma 4.2.3. Let A € N, T be a naturally induced transducer with function T". For every
g € G exists f, such that

1
T a ) > = = fy+o(1) for o — oo
Y Y <z
pEapmod 22

holds (uniformly) for all a < k* such that (a,k) = 1.

By writing
>l @wwon=t = ) lm@o= Y, l@wm=d
p<w geG p<z
p=a mod k* p=a mod k*
we find that

Z Lir (e (T(qo,(p))-a)=b) = (@5 1, k) fop + o(m(x; 1, k7))

p<z
p=a mod k*

holds, where

oo =D fo lirmga)=t -

geG

Therefore, we are interested in the quantity
1
S o < 1 o)) = L8(ao. (@)e) = .

We want to show that it has a limit (for A — 00). We start by rewriting it as

1 Z ! |{a<k:A_1:5(qo,(a-k+ao)k):CI}‘

90(/5) ao<k k)\il
(ao,k)=1
1 1 .
" elk) > 2 Lowan=i jamr {a < K7 0lao, (@) = ¢}
14 ( aok:<)l€ ) q'€Q
ag,k)=

Thus it is sufficient to show that = |{a < k*~* : §(qo, (a)x) = ¢'}| has a limit. However, T is
synchronizing and strongly connected and therefore primitive. It is a well-known result that
the densities exist in this setting, see for example Theorem [1.3.5] This allows us to write

{a <k : (eo(a), k) = 1,0(q0, (a)i) = a}| = o (k*) fy + o( (k™).

where f, does not depend on A. Thus we find in total

% 2 et = ﬁ D (@) fy - ol p (k) (s 1K) fop + 0l 1K) + Ok ™)
pse 7€Q
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1 —AN
—qufqb+ 71’,@) o(m (x;1,kk))+mo(¢(m)+o(k ).

q€Q

To show that the sum of the three error terms is smaller than &, we choose A such that the
second and third error term are bounded by €/3. Then we find for = large enough that the
first error term (for this given \) is also bounded by £/3 (note that k! < ¢(k*) < k).
Consequently we find

which — finally — finishes the proof of Satz [

Remark. The error terms can be made explicit. We find for example that the error term in
Lemma is actually of the form O(k~""). The dominant error term seems to correspond
to the distribution of primes in arithmetic progressions.

Remark. As mentioned earlier, Theorem [4.0.2] covers block-additive functions. However, to
find the corresponding result for block-additive functions the group structure degenerates
to an additive structure and many arguments simplify (e.g. one does not need to use group
representations).

4.3 Technical Results

Proof of Satz[{.2.1]: By classical partial summation one finds the following well known result
(see for example [37, Lemma 11]).

If f:N — Cis such that |f(n)| <1 for all n € N then

>_f) ZA

p<zx
This result can easily be adopted to matrix valued functions. Thus we find

max
log T t<z

O(V). (4.3)

1 1
logk” (k) e

+O(k™/?)

|| 37 A)D(T(qo, (n)1)) elnt)

n<t

Z D(T'(qo, (p)x)) e(pt)

p<k”

F

As D(T(n)) fulfills Definition and Definition [3.3.2] we can apply Theorem and

find that the right hand side is asymptotically bounded by

maxt™" + O(k™"/?)

t<kv

for some n' > 0 — if we only choose 7’ strictly smaller than 7 to remove the other terms. This
gives directly the desired result. O]
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4.3.1 Frequency of T" along primes
We show in this subsection that the frequencies of the sequence (T'(qo, (P)x))peparr) €xist
and are independent of a and .

Lemma 4.2.3. Let A € N, T be a naturally induced transducer with function T. For every
g € G exists f, such that

1
m(z;a, k) > lrai=a = fo +0(1) forz — oo
Y ) <z
pzapmod kA

holds (uniformly) for all a < k* such that (a,k) = 1.

Beweis. We use again Lemma [4.1.1
The sequence we are concerned about is (T'(qo, (P)x))pep(ar)-

We start by computing the left hand side of (4.1)) for D = D, for our specific sequence. Recall
that d'|k — 1 holds.

p<x
p=a mod k*
1
=1 lp/d
b m(x;a, k) 1; e(tp/d)
p=a mod k*
1
— lim —— S e(b)d) 1
z—oo m(x; a, k) g(; 1;
p=a mod k*
p=b mod d’
1
- e(tb/d')
p(d') g
(b,d)=1
= S(4,0;d).
ErRE

Here S(a, b; c) denotes the Kloosterman (or Ramanujan) sum, defined by

Sabic)= 3 e (‘”““ - bf) ,

z<c
(z,0)=1

where  denotes the multiplicative inverse of x modulo c.

Furthermore, we want to show that

lim ———— S D(T(g, (p)e)) =0

a0 (x5 a, kM) =

p=a mod k*
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holds for D ¢ {D, : ¢ = 0,...,d — 1}. We use a standard technique of analytic number
theory to restrict ourselves to sums with x = k. Let v be the unique integer such that
kvt < x < k”. We find (see for example [39, Lemma 3.7])

1 1
w(wa ) ng; D(T(qo, (P)r))|| < Vzlelﬂg ol a B p;u e(0p)D(T(qo, (p)k))

p=a mod k* la p=a mod k* F

We can rewrite the condition p = @ mod k* using exponential sums and find that the right
hand side is bounded by

1
Ur (R a, k) pen

Ly iy (hp k‘) e(6p) D(T (qo, (9)1))

h<k* p<kV

F

> (v +0)) pertan <p>k>>H

p<kV

> e?)D(T (a0, (p)1)

p<k¥

< y—————— supmax
(kY5 a, k) ger h<i

1
<y -
= V(b 0, k) e

F

Thus we find — by using Satz — that

) 1 —L_S(¢,0:d"), for D= D
s S DT () = { A7 DS D

z—oo (x5 a, kM) o

p=a mod k*

otherwise,

We define the function f by

A J— d
flg) = () + gp(d’)S(l’O’d)Dl(g) +...+ o)
-1

— o(d')

S(d —1,0;d')Da-1(9g)

For v < d', we find:
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d/
T o e

z<d
(z,d")=1

In total we find

for (v,d') =1

otherwise,

st + o) = { 77

i.e. f is a positive function. We can actually rewrite this by using Theorem [2.4.1}

flg) = { Sy for (s0(g),d') =1 |

0, otherwise,
Thus we can define
dv = fdp,

where p denotes the Haar-measure of G.
Our goal is to show that (T'(qo, (P)k))pep(arr) is v-uniformly distributed in G.

Let {D* = (df})ij<n,,a € A} be a complete set of pairwise inequivalent irreducible unitary
representations and set efi(g) = /nad§;(g). Note that A is finite as we are actually considering
a finite group G. Recall that the set {ef;} forms a complete orthonormal system in the Hilbert
space L*(G). We obtain for D, that

1 S 1
Dyfdv = —— S(m,0;d) < Dy|D,, >= ——=S(£,0;d).
/c & p(d') mqu ( )< D p(d') (60:0)

For all other representations D = (df;)1<i,j<n,, we find

1 -
A fdv = —— S(m,0;d) < d%|D,, >= 0.
/G ij v (p(d/) Z (m7 ) ) < z]’ >

m<d’

This proves that (7'(qo, (P)k))pep(ax>) is v-uniformly distributed, where v does not depend
on a. O]
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Kapitel 5

Normality of digital sequences along
squares

The goal of this chapter is to give new examples of deterministic sequences - actually even
almost periodic sequences - whose subsequence along the squares is normal. The result also
gives many new examples of normal numbers in any given base.

The results of this chapter are a continuation of a work by Drmota, Mauduit and Rivat [14],
which we discussed in Section [[.4]

We have already discussed in Chapter 1 that the subword complexity of automatic sequences,
i.e. the number of different blocks of length n that appear within the sequence, grows at most

linearly (this was Theorem [1.4.7)).

For a random sequence u € {0, 1}" one finds that p,(n) = 2". Thus, we see that automatic
sequences are far from being random.

However, the situation changes completely when one considers the subsequence along squares.
Drmota, Mauduit and Rivat gave a first example for that phenomenon. They considered the
Thue-Morse sequence (t,),>0 and showed that not only p( (L) = 2%, but were able to
prove how often such a block appears.

t,2)n>0

N
]\}gnoo N#{Z < N :tp = b(), ce 7t(i+L—1)2 = bL—l} = Q—L,

where (t,,)nen denotes the classical Thue-Morse sequence. We go here a step further and show
a similar result for digital sequences by the same method.

We use here a slightly different definition of digital functions.

Definition 5.0.1. We call a function b : N — N a strongly block-additive q-ary function or
also digital function if and only if there exist m € Nyg and F' : {0,...,¢ — 1} — N such
that

b(n) = Flejim(n),....c; (n)).

jET

97
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A quite prominent examples of strongly block-additive functions is probably the sum of digits
function in base ¢, s,(n). This is a strongly block-additive function with m = 1 and F(z) = x.
Another prominent example is the Rudin-Shapiro sequence which is given by ¢ = 2,m = 2
and F(z,y) = = -y - i.e. it counts the number of blocks of the form ”11” in the digital
expansion in base 2.

5.1 Outline

The goal of this chapter is to give a proof of the following theorem.

Theorem 5.1.1. Let b be a strongly block-additive function and m' € N with ged(q—1,m') =
1. Then (b(n?) mod m/),en is normal i.e. every sub-sequence of length k appears with asym-
ptotic frequency (m')~F.

Further, we also fix an arbitrary strongly block-additive function b - and therefore ¢ and m
- and m’ satisfying ged(q — 1,m') = 1.

In order to prove our main result, we will work with exponential sums. We present here the
main theorem on exponential sums which we will prove throughout this chapter and further
show its connection to Theorem B.1.11

Theorem 5.1.2. For any integer k > 1 and (ag,...,qp_1) € {%,...,%}k such that
(g, ..., a5-1) # (0,...,0), there exists n > 0 such that

Z <Z&gb ((n +0)? )<<N1‘". (5.1)

n<N
Lemma 5.1.3. Theorem implies Theorem [5.1.1].

Beweis. Let (co,...,cr_1) € {0,...,m' —1}* be an arbitrary sequence of length k. We count
the number of occurrences of this sequence in (b(n*) mod m’),<y. Assuming that (5.1) holds

we obtain by using the well known identity — Z;’igl e(-f) = m’ for £ = 0 mod m’ and 0
otherwise — that

[{n < N : (b(n*) mod m’,...,b((n +k —1)*) mod m') = (co,...,ck-1)}|

= Z l[b n2)=co mod m’] 1[((n+k 1)2)=cg_1 mod m/]

n<N

—ZH Z( n+e>2>_c£>)

n<N {= 0

1 agco + -+ A Ch1 oy
S I S G e zm (0 +07)
’ 1}k

CYRRN (e

'We define e _;(n) =0 for all i > 1.
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N
=——+O (N
(m/)k + ( )
with the same 77 > 0 as in Theorem To obtain the last equality we separate the term
with (ag,...,a4_;) = (0,...,0). O

It remains to show Theorem
The structure of the full proof of Theorem is presented below.

In Section we derive the main ingredients of the proof of Theorem which are upper
bounds on the Fourier terms

k—1
1
Hy(hd)=— > e (Z by (u+ 0d + i) — hq*> ,

q 0<u<g? =0

where I = (ig,...,i,_1) € NF with some special properties defined in Abschnitt and by
is a truncated version of b which is properly defined in Definition [5.2.1}

The main results of Section are Propositions [5.3.7] and [5.3.8] Proposition yields a
bound on averages of Fourier transforms and Proposition yields a uniform bound on
Fourier transforms which is harder to prove.

In Section we present some auxiliary results also used in [14].

In Section [5.5, we complete the proof for Theorem [5.1.2] We use Van-der-Corput-like ine-
qualities in order to reduce our problem to sums depending only on few digits of n?, (n +
1)%,..., (n+k—1)% By detecting these few digits, we are able to remove the quadratic terms,
which allows a proper Fourier analytic treatment. After the Fourier analysis, the remaining
sum is split into two sums. The first sum involves quadratic exponential sums. The result

from Section allows us to find a proper bound here.

The Fourier terms H{(h,d) appear in the second sum and Propositions [5.3.7] and [5.3.8| will
provide the necessary bounds.

For the proof of the main theorem we have to distinguish the cases K = ag+---+ a1 € Z
and K ¢ 7Z. Sections |5.5.1]and [5.5.2| tackle one of these cases each. In Section we prove
that —if K € Z — we deduce Theorem from Proposition [5.3.7 For K ¢ Z, Section [5.5.2)
shows that we can deduce Theorem from Proposition [5.3.8]

5.2 Digital Functions

Definition 5.2.1. we define the truncated function b, and the two-fold restricted function
b,u,/\ by
ba(n) =Y F(gjem-1(n), ... 2;(n)) and by (n) = by(n) — b, (n).

J<A

We see directly that by(.) : N — N is a ¢*™™~! periodic function and we extend it to a
(¢*™~! periodic) function Z — N which we also denote by by(.) : Z — N.
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For any n € N we define F(n) := F(e,_1(n),...,0(n)).

Thus we can rewrite b(n) as follows

-5 (1557

since F'(0) = 0.

Now, we want to show that for any block-additive function, we can choose F' without loss of
generality such that it fulfills a nice property.

Lemma 5.2.2. Let ' : N — N be a strongly block-additive function corresponding to F”.
Then, there exists another strongly block-additive function b : N — N corresponding to F'
such that

b(n) =b'(n) (5.2)
Z F(ng’) =0 (5.3)

holds for all n € N.

Beweis. We start by defining a new function

m—1

G(n) := Z F'(ng’).

j=1
This already allows us to define the function F":

F(n) := F'(n) + G(n) = G([n/q))-

We find directly that G(0) = F'(0) = 0. It remains to show (5.2]) and (5.3)), which are simple

computations:
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3
L

F'(ng’) + G(ng™™") = G(n)

j=1
m—1 m—1

= F'(nqj)+O—ZF’(nqj):O.
p j=1

101

]

We assume from now on that for any strongly block-additive function b (5.3) holds. This

allows us to find an easier expression for b:

Corollary 5.2.3. Let b(n) be a digital function fulfilling (5.3)). Then

=2 ([5))

and

holds for all n, A € N.
We easily find the following recursion.
Lemma 5.2.4. Let a« € N;n; € N and ny < ¢“. Then
bA(n1g” +n2) = br_a(n1) + ba(n1g™ + n2)
holds for all A > o and
b(ni1q® 4+ na) = b(ny) + ba(n1g™ + ng).

Beweis. We compute by(n1g® + ns):

ba(nig® +ng) = F

I
T

The second case can be treated analogously.

(5.5)

(5.6)
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As we are dealing with the distribution of digital functions along a special subsequence, we
will start discussing some distributional result for digital functions.

Lemma 5.2.5. Let b be a strongly block-additive function and m’ > 1. Then the following
three statements are equivalent.

(1) Ine N:m' 1 b(n)
(i1) In < q¢™:m' t F(n)
(13i) In < g™ :m’ t b(n)
Beweis. Obviously (iii) = (7). Next we show (i) = (i1):
Let ny be the smallest natural number > 0 such that m’ { b(ng). By Lemma holds
b(no) = b([no/q]) + F(no).

By the definition of ng holds m’ | b(|no/q]) and therefore m’ t F(ng) = F(ny mod ¢™).

Therefore, it just remains to prove (ii) = (ii):
Let ng be the smallest natural number > 0 such that m’ { b(ng). By (i7), we have ng < ¢™.
We compute b(ng) mod m':

b(ng) =S F Q%D = F(ny) # 0 mod m/

Jj=0

J

as | 2| < ng for j > 1 implies that F (|2 | ) = 0 mod " O

Remark. We can not replace m’ { . by ged(m/,.) = 1 in Lemma 5.2.5|as the following example
shows:

Let m =1,¢q =3,m' =6 and F(0) =0, F(1)
for all n < ¢™ = 3 and also ged(m/,b(n))
F(1)+ F(2) =5 and ged(m/, b(5)) = 1.

=2, F(2) = 3. We see that ged(m/, F(n)) > 1
> 1 for all n < ¢™ = 3. However, b(5) =
Next, we show a technical result concerning block-additive functions, which will be useful
later on.

Lemma 5.2.6. Let b be a strongly block-additive function in base q and k > 1 such that
ged(k,q—1) = 1 and ged(k, ged({b(n) : n € N})) = 1. Then there exist integers e, ey < ¢>™
such that

bl (er+1) = 1) = (g™ (e1 +1)) # b(g™ (ez + 1) — 1) — b(¢™ " (ez + 1)) mod éf )
5.7

holds.
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Beweis. Without loss of generality we can restrict ourselves to the case p € P where p | k.
Let us assume on the contrary that there exists ¢ such that

b(g" He+1)—1) —bg" (e +1)) =cmodp

holds for all e < ¢*™~!. We find under this assumption a new expression for b(n) mod p,
where n < ¢™:

neg"le= 3 bg" e+ 1) — 1) — b(g" e+ 1)

e<ngm—1
= Z b(e) + by 1(¢" 'e+¢" " —1) —ble+1)
e<ng™m— 1
= —b(ng™ Z bin—1( "t —1)
e<ng™— 1
_1) +n Z bm—l(qm_le + qm—l _ 1)’
e<qm1

where the last equality holds since b,,_1(¢™ e +¢™ ! — 1) is a ¢™ ! periodic function in e.
This gives

b(n) = b(ng™ ') =n Z b 1(@" e+ g™ —1) —¢™ e | mod p. (5.8)

e<qm71

By comparing this expression for b(1) = b(q) we find

(g—1) Z b_1(q" e+ q¢" 1 —1)—¢" 'c| =0modp

e<q'm—1

as ged(p,g—1) = 1.

Together with (5.8)) this implies that p | b(n) for all n < ¢™. This is a contradiction to
ged(p, ged({b(n) : n € N})) = 1 by Lemma O
We will use this result in a different form, given by the following corollary.

Corollary 5.2.7. Let b be a strongly block-additive function in base ¢ and m’ > 1 such that
ged(m’, g —1) =1 and ged(m/, ged({b(n) : n € N})) = 1. For every a € {5, ..., %} exist
e, e; < @™ ! and d € N such that do € 7 and

bla™(er +1) = 1) = b(g" " (en + 1) = b(g" ea + 1) = 1) + (g™ ez + 1)) = d.

Beweis. Let o = T where ged(z,y) = 1 and 1 < y | m'. We apply now Lemma for
k =y and find ey, e; such that

b(g™ Her +1) = 1) = (g™ H(er + 1)) = b(g™ (ea +1) = 1) + b(¢™ H(ex + 1)) = d,
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where
d # 0 mod y.

This implies

da:??éOmodl.

5.3 Bounds on Fourier Transforms

The goal of this section is to prove Propositions[5.3.7and [5.3.8 To find the necessary bounds
we first need to state one important result on the norm of matrix products.

Afterward, we deal with Fourier estimates and formulate Proposition [5.3.7] and Propositi-

on The following Sections and give proofs of Proposition [5.3.7 and Propo-
sition respectively.

5.3.1 Auxiliary Results for the Bounds of the Fourier Transforms

In this section we find necessary conditions under which the product of matrices decreases
exponentially with respect to the matrix row-sum norm.

Lemma 5.3.1. Let My, { € N, be N x N-matrices with complex entries My ;, for 1 <i,5 < N,

and absolute row sums
N

> Mgl <1 for 1 <i<N.

j=1
Furthermore, we assume that there exist integers mg > 1 and my; > 1 and constants ¢y > 0
and n > 0 such that

1. every product A = (A;;)uj)ep
that,

ny2 of mg consecutive matrices My has the property

77777

N
|Ai1| > o or Z |A; ;| <1 —n for every row i; (5.9)

Jj=1

77777

N
> Bl <11 (5.10)
=1
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Then there exist constants C' > 0 and § > 0 such that

r+k—1

11 ™
l=r

uniformly for all v >0 and k > 0 (where ||-||, denotes the matriz row-sum norm).

< Cg™* (5.11)

o0

Beweis. See [14]. O

Lemma 5.3.2. Let xq,x9,&1,& € R. Then

o) + i+ 0)| + ) + el + ) < 48 (sin (M))

Beweis. The proof can be found in [38]. O

5.3.2 Fourier estimates

In this section, we discuss some general properties of the occurring Fourier terms. Therefore,
we need some more definitions.

For any k € N, we denote by Z; the set of integer vectors I = (ig,...,ix_1) with ig < ¢!
and i1 < ip < 1y +qm_1 for1 </(<Fk-—1.

Furthermore, we denote by Z; the set of integer vectors I’ = (i, ...,4,_;) with i = 0 and
iy 1 <ip <)+ 1.

This set Z; obviously consists of ¢™ (g™ + 1)*~! elements. For any I € Z;, h € Z and
(d,\) € N2, we define

k-1

1
H(h,d) = pr e Z e (Z apb(u + 0d +ip) — huq_’\_m+1) : (5.12)

0§u<q>\+m—1 /=0
: 0 m'—1 A+m—1 : A+m—1
for fixed coefficients ay € {—=,...,=>}. We sum up u < ¢ because by is a ¢

periodic function. This sum H{(.,d) can then be seen as the discrete Fourier transform of

the function -
U+ e (Z ong,\(u + ld + Zg)) ,
=0

A+m—1

which is ¢ periodic.

Furthermore, we define the important parameter

K:ZOZ0+"'+OZk_1.

We would like to find a simple recursion for H), in terms of H,_;. Instead we relate it to a
different function for which the recursion is much simpler:
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GL(h,d) o Z (Zam MLy 4 0d) 4 ig) — huq’\>.
=0

u<q

This sum G4(.,d) can then be seen as the discrete Fourier transform of the function

k1
U e (Z by (g™ (u + 0d) + ig)) :
=0

which is ¢* periodic. We show now how G and H are related.

Lemma 5.3.3. Let [ € I}, h € Z,(d,\) € N> and 6 € {0,...,¢™ ' — 1}. It holds

" -1
h
Hy(h,q"'d+6)=—— > e (Zae (66 + & + 1) — C]H—;) G (h,d), (5.13)

q e=0 <k

where

Jes = Jes(I) = (ie + €5 + 5)@6{0 k-1) € Ly

-----

Beweis. One checks easily that J.5(I) € Zy,. We evaluate H](h,q™ 'd + §):

k—1
1
H(h, " d 4 0) = W > e (Z aby(u+ £(q™ d + 8) + i) — huq—Hm—l)

0<u<grtm=—1 =0

Pt DY ( Afmll))e<_qxfri—1)

e<qg™ 1 0<u<g?

‘e <§ b (@™ u+ e+ (g™ + 0) +i4)>
- 2 2e(5) ()

e<qgm 1 u<gr

k—1
e (Z a;by, ((U + Ed)qm_l + (f(g + 10 + 8)))

£=0

1 he Je
= > e(—W> Gy (h, d)

e<gm1

Next we define a transformation on Z; and a weight function v.
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Definition 5.3.4. Let j > 1 and €,6 € {0,...,¢’ — 1}. Then, we define for I € Z,,

- (|0
’ 7 0e{0,....k—1}

.....

I(1,¢,0) —e<2a4 (ie+q™" (6+€5))).

(<k

Furthermore, we extend the definition of 7V for arbitrary €,d by
Tg,é(l) = Te mod q] 4 mod q] (I)
The next Lemma shows some basic properties of these functions.

Lemma 5.3.5. Let \, j,j1,72 € N and &;,6; € {0,...,¢% —1}. Then, the following facts hold.

o Tgﬁ(]) €Ty

° T]Q le _ TJ1+]2

262 O Lo = £9q1+e1,00¢71 461

o Gl(h,d) = D g v I, u,d) e(—hug™).
Beweis. These facts are direct consequences of basic properties of the floor function. n

Now we can find a nice recursion for the Fourier transform G.

Lemma 5.3.6. Let [ € j,h € Z,d, N €N and 1 <j <\, 6 €{0,...,¢' —1}. We have

. 1 i 77 5(1)
GA(h, @d +6) = = " e(—heqg ) (1,2,6) - G, =5 (h,d).

e<ql

Beweis. We evaluate G4 (h, ¢’d + 6) and use (5.5):

k—1
: 1 :
Gi(h,¢?d+6) = m E e ( E b (™ (u 4+ (g d + 6)) 4 ig) — huq/\>
£=0

u<q>‘

k-1
FOIECI I (Zaebx(qm*ﬂ(wm)+qm—1(s+e5>+u))
£=0

e<q3 u<qgr—J

~e(—h(ug’ +¢€)g™)

k—1
= — Z <Z Oé[bj(qmil(é‘ + 65) + Zg)) e(_heq*)\)
e<qd =0
) .
Z <Zb>\ —j ( ™+ 0d) + rq + qjq t fJ) _hqu—J>

u<q>‘ J
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1 -2 Tg,a(l)
=7 v/ (I,¢e,6)e(heq ) - G%
e<q’

(h,d).

The following propositions are crucial for our proof of the main Theorem

Proposition 5.3.7. If K =0 mod 1 and %)\ < XN < A, then there exists n > 0 such that for
any I € I,

1
— > |Hhd] <gm

0<d<q

holds uniformly for all integers h.

Proposition 5.3.8. If K # 0 mod 1, then there exists n > 0 such that for any I € I,

[H (h.d)] < " max| G5y (h d/q"])]

holds uniformly for all non-negative integers h,d and L.

Proofs for Proposition [5.3.7] and [5.3.8| are given in the following sections.

5.3.3 Proof of Proposition [5.3.7

This section is dedicated to prove Proposition [5.3.7. We start by reducing the problem from
H{(h,d) to Gi(h,d) for which we have found a nice recursion.

Proposition 5.3.9. For K € Z and %)\ < XN <A\, we find n > 0 such that for any I € T,
1 2 _
~ > |G <™
0<d<g

holds uniformly for all integers h.

Lemma 5.3.10. Proposition implies Proposition [5.3.7]

Beweis. We see by (5.13) that

|Hj(h,d)| < max‘GA |d/q™ | Z |G (R, |d/q™])|
JETIy,
Thus we find
1
< > [Hmal Z Y ST G Ldfgm )] < g™
? o<d<g Jezk 0<d<q
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Using Lemma [5.3.6] it is easy to establish a recursion for
1 o
0<d<q’
where h € Z, ()\,X) €N?and (I,I') € Z?. For A, N > 1 and 1 < j < min(), \) we yield
: g1 —e)h\ — T/ (DT (1)
= Y e ( : 2> ) V(T e0, ) (oo D)@, 2o )

§<qi e1<qd ea<ql

o8 (h) =

To find this recursion, one has to split up the sum over 0 < d < ¢ into the equivalence
classes modulo ¢’.

This identity gives rise to a vector recursion for Wy y/(h) = (@ﬁ{(,(h))( ez We use the
’ I,I")eT?

recursion for j = 1:
Yo (h) = M(h/q)‘) ~W_1v-1(h)

where the 22%=1 5 226 V-matrix M(5) = (M(1,1),(5.0)(8))((1,7),(3.77))ez2 <22 is independent of
A and ). By construction, all absolute row sums of M(3) are equal to 1.

It is useful to interpret these matrices as weighted directed graphs. The vertices are the
pairs (I,I') € Z? and, starting from each vertex, there are ¢ directed edges to the vertices
(T, 5(I), Te, 5(I') - where (8,€1,82) € {0,...,q — 1}* - with corresponding weights

1 1 — 2)h —
£ <—%) vl (I, e1,0)01 (I, €2, ).

Products of 5 such matrices correspond to oriented paths of length j in these graphs, which
are weighted with the corresponding products. The entries at position ((I,I’),(J,J")) of
such product matrices correspond to the sum of weights along paths from (I, 1’) to (J, J').
Lemma [5.3.6 allows us to describe this product of matrices directly.

Lemma 5.3.11. The entry ((I,1'),(J,J")) of M(h/q*)-M(h/g*Y) ... - M(h/q* 1) equals
. —_ (61 - 52)h
3J Z Z 1[Tglé(1 [TJ S(I)=J"] V(1 e1,0)07 (I €2,6) € (—— :

(]>‘
§<qd €1,62<q7

Beweis. Follows directly by Lemma [5.3.6 O

This product of matrices corresponds to oriented paths of length j. They can be encoded
by the triple (1,e5,6) and they correspond to a path from (I,1') to (T7 (1), T7 ;(I')) with

€16 » T egd
weight v/ (I, eq,0)vi (I, &9,0) € (_(51;§Q)h>.

In order to prove Proposition [5.3.7, we will use Lemma 1] uniformly for h with M; =
M(h/q"). Therefore, we need to check Conditions and ( -

Note that, since %)\ < XN <\, we have

Uyx(h) =M(h/q*) - M(h/¢ )Wy o(h).
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Lemma 5.3.12. The matrices M; defined above fulfill Condition (5.9) of Lemma|5.3.1]

Beweis. We need to show that there exists an integer my > 1 such that every product

A = (A@,r), (1001170 €12 x T2

of mg consecutive matrices M; = M(h/q¢') verifies Condition (5.9) of

We define mg = m—1+ [log,(k + 1)]. It follows directly from the definition, that Ty (1) = 0
for all I € Zy. In the graph interpretation this means that for every vertex (I,1’) there is a
path of length mg from (I,1’) to (0,0). Fix a row indexed by (/,I’) in the matrix A. We

already showed that the entry A 1 0,0y is the sum of at least one term of absolute value
—3mg
q .

There are two possible cases. If the absolute row sum is at most
<1l-—ng

with 7 < ¢~%™ then we are done.

In case the absolute row sum is strictly greater than 1 — ), we show that |A¢ 10,0 >
g™ /2: The inequality |A(s,11),0,0)| < ¢~>™/2 implies that A7 0,0y is the sum of at least
two terms of absolute value ¢=3™°. Thus the absolute row sum would be bounded by

1 5. Cam 3 am .
E:Mwmuwﬂ<§q3°+(P—?q30):1—§q3°<1—q3W
(1.J")

This contradicts the assumption that the absolute row sum is strictly greater than
l—n>1—q .
Consequently, we yield

|A(I,1/),(0,o)\ > ¢p for ¢y = q*3mO/2_

Lemma 5.3.13. The matrices M, fulfill Condition (5.10) of Lemma [5.5.1]

Beweis. We need to show that there exists an integer m; > 1 such that for every product

B = (B(1,11),(,0)((1.1)(7.0))ex2x T2

of m; consecutive matrices M; = M(h/q') the absolute row-sum of the first row is bounded
by 1 —n. We concentrate on the entry Bg),0,0), i-e. we consider all possible paths from
(0,0) to (0,0) of length m; in the corresponding graph and show that a positive saving for
the absolute row sum is just due to the structure of this entry.

Since T(3(0) = T7¢(0) = 0, we have at least two paths from (0,0) to (0,0) and it follows
that the entry Bio,0),(0,0) i certainly a sum of ky = ko(m;) > 2 terms of absolute value ¢~*™
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(for every my; > m). This means that there are ky > 2 paths from (0,0) to (0,0) of length
my in the corresponding graph.

Our goal is to construct two paths (%, &%, 6%) from (0,0) to (0,0) such that

) . .
. L ————— 1 — &5 h
> om0, 8.5 5 e (-

i=1 q

<2-7

holds for all h € Z.

At first, we construct a path from 0 to (¢ ' —1,...,¢" ' —1,¢q™ ', ..., ¢" ") = [y € T,
with exactly ng + 1 times ¢™ ! — 1 (where ng = min{n € N : a,, # 0}). Therefore, let
ny = |log,(k —1)] +m.

Lemma 5.3.14. Let ng,n, and Iy be as above. Then
Tqulllfnofl,l(o) = Ip.
Beweis. This follows directly by the definitions and simple computations. O]

By applying Lemma we find a transformation from O to [y. This gives a path from
(0,0) to (1o, Ip) by applying this transformation component-wise. We concatenate this path
with another path (e;,es,0) of length ny = 3m — 1 where e; < ¢*"~'. The weight of the
concatenation of these two paths equals

v™(0,¢™ —ng — 1, 1)v"(Iy, e1,0)v™(0,¢™ —ng — 1, 1)v"2(1y, e5,0) e (—
(e1 — eg)h>

q)\—nl

(e1 — eg)h>

q)\—nl
= v (Ip,e1,0)07 (T, 03,0 ¢ (—

We see that

m— Toe+ g™ e,
ng‘,O 1([[]) - ( 3m—1
L 4 0€{0...k—1}
m—1 m—1/(.2m—1 __
- ( "' +q" (g 1)D
- q3m—1
L 2e{0...k—1}

B qm—l . q2m—1 0
- q3m—1 -
L £e{0...k—1}

Thus, we have found for each e, e, < ¢! a path from (0,0) to (0, 0).

We can use the special structure of I to make the weight of this path more explicit: At first,
we note that

no
E Oy = Qlp,
£=0
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by the definition of ny. Furthermore as ), oy € Z

k—1
E o = —Qy, mod 1.
l=no+1

We find by the definition of v that for each e < ¢ 1,

k—1
,U3m*1([[)’ €, O) =e (Z OQbSmfl<qmile + [(]Z)>

=0
oY 1) o)
= e (am, (b(g" le+ ¢ = 1) = b(g" e+ 1))

We find by Corollary that there exist e;, es < ¢?" ! such that
(g H(er +1) = 1) = b(g™ H(er + 1)) = b(g™ H(ea + 1) = 1) + (g™ ez + 1)) =d

and a,,d € Z.

We now compare the following two paths from (0,0) to (0,0) of length m; = ny + ny =
[log,(k —1)] 4 4m — 1:

e (e1¢" + ¢" —nyg — 1,eg4™ + ¢" —ng — 1,1): We split up this path into the path of
length ny from (0,0) to (o, Iy) and the path of length ny from (Iy, Iy) to (0,0): The
first path can be described by the triple (¢"* —ng —1,¢"™ —ng — 1,1) and its weight is

obviously 1.
The second path - i.e. the path from ([o, Iy) to (0,0) - can be described by the triple
(e1,€2,0) and its weight equals

q)\—nl

’UTL2 (107 e, O)U”Q (I(], €9, 0) (& <—w)

— ¢ (0 (B er + 1) — 1) — (g™ ey + 1))))
el (e 7 1) 1)~ b (ea T e -

oty (-2,

Thus, the overall weight of the path from (0,0) to (0,0) has weight

e(aunyd) € (-%) .

(e — eQ)h)

q)\fnl

e (e1q™,ex¢™,0): we compute directly the weight of this path:

(e —e2)h)

q/\—n1

v™(0,e1¢4™,0)v™ (0,e2g™,0) e (—
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¢ (2 areb, (€10™) — iafbml<e2qm)> ¢ (_((Z;%M)
M)

q)\*nl

e (Kb (e16™) = b ferg™ ) -
) (_ (e1 — e2)h) |
q)\—nl

(e1 —ey)h (e1 —ex)h —3my
1B(0.0).0.0)| < (ko—2+ e(anyd) e (—}Tf te _;AT? ¢

= (ko — 2+ |1 + e(an,d)]) g™
)q_3ml

We finally see that

= (ko — 2+ 2|cos (ram,d)|)g ™

Ty d 2
=|ky—2+2|1—-2(sin 5

i
< (-1 (on () o
Thus we have

i m 2 —3m —3m
> 1By < (ko —4 (Sln (2m’)> )q M (1= kog ™)

(J,J)
2
<1—-4 <sin< T >) LTI
2m/’

Therefore condition of Lemma, is verified with my = |log,(k —1)| +4m — 1 and
n =4 (sin (#))2 g™ >4 (sin (%)) (k — 1)g~ ™+ > 0. O

At the end of this section, we want to recall the important steps of the proof of Propositi-
on B.3.71 At first we observe that

1
& 2 e dP =ik m).

0<d<q
Thus Proposition is equivalent to CIDf\’A,(h) < ¢ ™. Next we considered the vector

Uyn(h) = (@f\’j’,(h) 1er and find the recursion
) k

W (k) = M(h/q*) - M(h/qg* X)Wy 0(h)
Then we defined M, := M (h/q") and showed that we can apply Lemma [5.3.1] Therefore we

know that — since ‘@f\’fi\,ﬂp(h)‘ <1

LN (W] < M- Myowialo < Cq™ < O

with C' and 0 obtained by Lemma [5.3.1} Thus we know that @f\’,i,(h) < ¢~ with n = §/2
uniformly for all h. This concludes the proof of Proposition [5.3.7]
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5.3.4 Proof of Proposition [5.3.8

We start again by reducing the problem from H{ (h,d) to G4 (h,d).

Proposition 5.3.15. For K # 0 mod 1 there exists n > 0 such that for any I € T

[GAlh, d)| < g max |G (h, [d/q" )] (5.14)

holds uniformly for all non-negative integers h,d and L.

Lemma 5.3.16. Proposition implies Proposition |5.5.8.
Beweis. Follows directly by (5.13)). O

We assume from now on that K ¢ Z holds.

We formulate Lemma [5.3.6| as a matrix vector multiplication:
Galhy fd + 6) = M "V G, hd
N +)—§5e—§ r—j (h, d)
where for any 6 € {0,...,¢’ — 1} and 2z € U we have

¢ -1

Mg(z) = Z(I[J:Tg’é(l)]vj(la g, 5)25)(1,J)ez,§-

e=0
To prove Proposition [5.3.15/ we aim to show that

Imy € N, € R such that V6 < ¢™, z € U holds || M;"(2)| < ¢™ —1. (5.15)

Indeed, we find that this is already sufficient to show Proposition [5.3.15]
Lemma 5.3.17. (5.15) implies Proposition [5.3.15]

Beweis. We first note that

M5 ()| <

holds for all j and § < ¢/ by definition.

Next we split the digital expansion of d mod g% - read from right to left - into |L/m;|
parts of length m; and possible one part of length L mod m;. We denote the first parts by
01,...,0|L/m,) and the last part by dg. Thus we find

max | G5 (h, d)| = |G(h, d)||

I1€Z,,

< x|V - Gasl 0/
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[L/m1]
1
< q_L H maXHMml qul(J 1))”(}O g(Fmod ma) . HG)\fL(h, Ld/qLJ)Hoo
j=1
1
< _L(qml o n/)LL/mﬂq(Lmodml) . HG/\—L(h, Ld/qLJ)HOO

q
<q " |Gas (b, |d/q" )]

/

g™ log(¢™1)

where 1 = > 0. O]

Throughout the rest of this section, we aim to prove (5.15)).

Therefore, we try to find for each I € Z;, and 6 < ¢"™ a pair (g1,€2) and m} < m; such that
for all z € U holds
T5(I) =Tt (1)

Eiy €i+1,0

/ ’ ! ! (516)
"uml(f,el,é) +zv™ ([, e + 1,5)‘ + ’vml(l,gg,é) + 2™ ([eg+1,0) <4 —1.

Let us assume for now that (5.16]) holds. Indeed we find

|7 2)

0o I€T, z€U 5 (1)=J}

— 5 m
= max max Z l[TE’"I 1(1,¢,0)
JET !

kle<g™
However, we find for each I some &1, &, fulfilling (5.16)). This gives

2

e Z L ) 0™ (1 g, 6) §<m1—4>+z

JET | ccqmh i=1

1

Z 61+jvm1 Ie; +]a5)

<q" 7.
Thus, we find in total
1M ()l < g™ (g™ =) < g™ =

It just remains to find e, e9, m] fulfilling (5.16]) and this turns out to be a rather tricky task.
We fix now some arbitrary I € 7 and § € N. We start by defining for 0 < x < (4dm — 2)k
and c e N

Mye= My (cmodgr) = {0 <k: Lig/qm_lj + dl = ¢ mod ¢}

and show some basic properties of M, ..

q(4m—2)k

Lemma 5.3.18. For every x < exists co such that

Z CK@Q/Z.

ZEM.’E,CO
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Beweis. One finds easily that

{0,...,k—1}: U Mx,ca

c<q”®

which means that {M, . : ¢ < ¢”} is a partition of {0,...,k — 1} for each x. Thus, we find

for every x
Z Z ozg:Zag:KgZ

Cc eeMz,c I<k
and the proof follows easily. m
Lemma 5.3.19. Let d < ¢“"2* and I € T,.

Then, there exists 0 < xo < (4m — 2)(k — 1) such that for each c < ¢*° ezists c™ < ¢g*ot(m=2)
such that

MmO,c = Mxo+(4m72),c+-
Remark. This is equivalent to the statement that
Wl/qm_lj +dty = Wz/qm_lj + dly mod g™
implies
lie, /g™ | + dly = |ig,/q" | + dly mod g™t

Beweis. We have already seen that {M, . : ¢ < ¢*} is a partition of {0,...,k — 1}. Further-
more, we find for 0 < x < (4m — 2)k and ¢ < ¢* that

U M:H— 4m—2),c+q%c’ -

c <q4m 2

This implies that { M, 4m 2. : ¢ < ¢*T™ 2} is a refinement of {M, . : ¢ < ¢°} and we find

{M(4m72)-0,c e < ]—} > {M(4m72)-1,c c< (]4m_2} > .2 {M(4m72)k,c < q(4m—2)k‘}‘

It is well known that the maximal length of a chain in the set of partitions of {0,..., k—1} is
k. This means that there exists z( such that { My, 2)4 . : ¢ < gUm=2e) = {Mam—2)(ay+1).e'
d < q(4m72)(16+1)}‘ O

Furthermore, we define

- Y

eerI),C

We can now choose my := (dm—2)k, m/ := xo+ (4m—2) where z, is given by Lemma/|5.3.19
We consider ¢y < ¢™ and ¢g provided by Lemma |5.3.18 and Lemma [5.3.19| and know that
Br.co & Z. Therefore we apply Corollary and find e, e, < ¢*"~! such that

b(g" (e +1) = 1) = b(g"H(er + 1)) = b(g" N (ex+ 1) — 1) +b(g" (2 +1)) =d



5.3. BOUNDS ON FOURIER TRANSFORMS 117

and dB; ., ¢ Z.

We are now able to define
g1 = (¢t e, + 1) — c¢f — 1) mod g*ot*m—2
g9 = (g™ ey + 1) — cf — 1) mod ¢g* "2,
It just remains to check (5.16]) which we split up into the following two lemmata.

Lemma 5.3.20. Let xq,¢; be defined as above. Then

To () = T

holds.

Beweis. We need to show that
V +q™ 1 (0d + ai)J _ V + g™ (ld + &; + 1)J

qx0+4m72 qzo+4mf2

(5.17)

holds for all £ < k and 7 = 1,2. We know that ¢ belongs to M, i 4m—2.+ for some ¢ < ¢.
Thus, we find for j = 0,1

i+ g d+e;45) | | (igmod ¢™ ) + g™ et + g+ )
qz0+4m72 -

qxo +4m—2

- ct+ & +j
- qw0+3m71

Therefore, does hold, unless
ct 4+ & +1=0mod g1,
We find
ctt+e+1l=ct +¢t ey + 1) — ¢f mod g™t
We first consider the case ¢ # cg:
¢t +e4+1=c—cy# 0mod ¢*
For ¢ = cq:
cgtei+1= (]x0+m_1(ei + 1) mod grotim=1
However
e; +1# 0 mod ¢*™

as e; < ¢! Thus, (5.17) holds. O
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Lemma 5.3.21. There exists ' > 0 only depending on m' such that for xo and ¢; defined as
above holds

2
Z ‘Ux0+4m—2(]7 £i, 5) + 2 - Uﬂ?()'f"lm—Q(]7 g + 17 5)‘ <4 - 77/ (518)

i=1
for all z € U.

Beweis. We start by computing the weights v*0+4m=2([ ;4 4, ). For arbitrary ¢ < gtot4m=2,

we find:

V(e d) = [ [ elcebagram—2(ic + ¢ (e + £d)))
<k

— H e(bm—1(ic + ¢ (e + £d))) e (arbugram—1 (|ie/qd" "] + € + €d))

1<k

= e(g(e)) ’ H € (O-/Kbl‘o-f—?)m—l (ng/qm—lj +ée+ Ed)) .

1<k

where

g(e) = Z b1 (ic + ¢ (e + (d)).

<k

Note that g(¢) only depends on € mod ¢™*.
We can describe this product by using the weights [ defined above.

vt 2(T e d) = e(g(e)) - H e (Begram—2.¢ * bagram—1 (¢ +€)).

c! <qac0 +4m—2

Furthermore, we can rewrite every ¢ < ¢**4m=2 for which Brotam—2, 7 0 as some ¢ where
c < ¢*°. This gives then

,Ux0+4m72(1’ g, d) = e(g(e)) : H € (ﬁm,c “bag+am—1 (C+ + 8))

= g(&) . H e (51;070 . bxo (C+ + 5)) : H € (ﬁxo,c : bSm—l (\‘C—Fq;; 8J))

Thus we find for € = ¢; 4+ j that:

Uxo+4m—2([’ € _'_.77 d) = e(.g(Ei + ])) ’ H € (on,c ' bﬂco(c+ + & +]))

c<q*0

+ . .
. H € (Boco,c : bSm—l <\‘C—Z+HJ ))

c<q*0

=c(g(=cg =145) - I] e (Broe-baglc" = cf =1+ )

c<q*0
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s ;
. H e(ﬁmo,c'biim—l <qm—1(ez+1)+ \‘CJF c(;xo 1+]J>)

c<q*0
=e(g(=cg =145) - [ e (Buoe - buglc™ =g = 1+1))
c<q*0
ct—cf -1+
: H e (ﬁxo,c - bam—1 (le(ei +1) + \‘ OEO jJ))
c<q”0 q
c#co

€ (/Bwo,co ' b3m—1(qm_1(ei + ]-) -1+ ])) :

ct—cf -1 |t —cf
g Lo

For ¢ # ¢, we find

as cm =c# ¢y =cf mod ¢
Consequently, we find

VP2 i d) = e(x)

v e 4 1,d) = e + &)

where
1= g(= =1+ D Proe bt = = 1)
c<q*0
- ct—cf
+ Z 6xo,c : bSmfl q (ei + 1) + q;po
c<q*0
c#co
+ Bao.co * b3m—1(q™ (e; +1) —1)
and

& =g(—cf) —g(- Z Baoe  bay (¢ —cg) — Z Baoe  bug (€™ — g — 1)

c<q*0 c<q®o0
+ ﬁ:co,co : b3m—1(qm_1<ei + 1)) - ﬂzo,co : b3m—1(qm_1(ei + 1) - 1)
Also, we find

51 - 62 = ﬂxo,cod ¢ Z7
where
d="b(g" " (e1+1)) = b(¢"(er +1) = 1) = b(g" (2 + 1)) + b(¢" (e + 1) — 1).

This implies

1
161 — & > o

=) O

It remains to apply Lemma [5.3.2] to find that (5.18)) holds with 1’ = 8 (sin (
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At the end of this section, we recall the important steps of the proof of Proposition [5.3.15]
We started to rewrite our recursion for G into a matrix vector multiplication

1 h
G,\(h, qLd+(5> = q_LM‘SL (e (—?>> G)\,L (h,d) .

We then split up this matrix M} (.) into a product of many matrices Mg (.), where my =
(4m — 2)k. Thereafter, we showed that HM(Z“()H < ¢™ — 1, where n = 8 (sin (£ ))2 This

4m/
implies then Proposition [5.3.15]
To show that ’ ng“ H < ¢™ —n, we found two different &; such that

Tamis(]) = Tg—il-l,(S(I)
o7 (11,6) + 2™ (12 +1,0)| + [0 (1,22, 8) + 20 (L ea +1,6)| < 4 —of

holds for all z € U.

5.4 Auxiliary Results

In this section, we present some auxiliary results which are used in Abschnitt to prove
the main theorem. For this proof, it is crucial to approximate characteristic functions of
the intervals [0,«) mod 1 where 0 < a < 1 by trigonometric polynomials. This is done by
using Vaaler’s method - see Section As we deal with exponential sums we also use a
generalization of Van-der-Corput’s inequality which we have already seen in Section [3.7.2]
In Section [5.4.1] we acquire some results dealing with sums of geometric series which we
use to bound linear exponential sums. Section is dedicated to one classic result on
Gauss sums and allows us to find appropriate bounds on the occurring quadratic exponential
sums in Abschnitt The last part of this section deals with carry propagation. We find a
quantitative statement that carry propagation along several digits is rare, i.e. exponentially
decreasing.

We would like to note that all these auxiliary results have already been presented in [14].

5.4.1 Sums of geometric series

We will often make use of the following upper bound for geometric series with ratio e(§), & € R
and Ll,LQ € Z, Ll < LQI

< min(Ly — Ly, [sinwé| ), (5.19)

> ()

L1 <t<Lo

which is obtained from the formula for finite geometric series.

The following results allow us to find useful estimates for special double and triple sums
involving geometric series.
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Lemma 5.4.1. Let (a,m) € Z* with m > 1, § = ged(a,m) and b € R. For any real number
U >0, we have

Z min< )

0<n<m-—1

(r222)|™) < omin <U,

sin (ﬂ'%) ‘_1) + Q?mlog@ m). (5.20)

Beweis. See for example [36] or [14]. O

Lemma 5.4.2. Let m > 1 and A > 1 be integers and b € R. For any real number U > 0, we
have

% Z Z min (U, |sin (W%*b)rl> < 7(m) U+ mlogm (5.21)

1<a<A 0<n<m

and, if |b| < 1 5, we have an even sharper bound

— Z Z mm( in (2| )<<T(m)min< )

1<a<A 0<n<m

(m2) }_1> +mlogm, (5.22)

where T(m) denotes the number of divisors of m.

Beweis. See [14]. O

5.4.2 Gauss sums

In the proof of the main theorem, we will meet quadratic exponential sums. We first consider
Gauss sums G(a, b;m) which are defined by:

m—1 2
G(a,b;m) :== Ze (W) :

n=0
In this chapter, we want to prove one classic result on Gauss sums, namely Theorem [5.4.3
Theorem 5.4.3. For all (a,b,m) € Z3 with m > 1,

m—1
2
e (an +Zm>
: : m
n=0

2m ged(a, m) (5.23)

holds.
Beweis. For a detailed proof see [23]. O

Consequently we obtain the following result for incomplete quadratic Gauss sums.

Lemma 5.4.4. For all (a,b,m, N,ng) € Z°> with m > 1 and N > 0, we have

no+N

D

n=ng+1

< (% +14+ %log 27’”) 2m ged(a, m). (5.24)

Beweis. This is Lemma 9 of [14]. O
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5.4.3 Carry Lemmas

As mentioned before, we want to find a quantitative statement on how rare carry propagation
along several digits is.

Lemma 5.4.5. Let (v, \, p) € N3 such that v+p < X\ < 2v. For any integer v with 0 < r < ¢*,
the number of integers n < q” for which there exists an integer j > X\ with £;((n+1r)?) # &;(n?)
is < ¢ TP~A. Hence, we find for any block-additive function b, that the number of integers
n < q” with

Dr-mi1 (0 +7)?) = bromi1(n®) # b((n +7)?) — b(n?)
is also < ¢?vrA,

Beweis. We follow the idea of [14] with some minor changes to suit our case better.

First we suppose that A > v+ p+3; otherwise we know that the number of all integers n < ¢”
is bounded by ¢” < gV~ ATvHet2 = g2 . g2,

We know that 2nr + r? < 2¢°1 + ¢%° < 3¢°* < ¢°**2. In order to affect the j-th digit for
J > A, it is necessary to transfer a carry for the digits p+v+2 to j. Therefore, for p+v+2 <
j' < A, aj = ¢—1 must hold. Hence there exists ¢t € N such that |n?/¢*™ 2| = ¢* P72t —1.
In other words:

2

A—v—p—24 n A—v—p—2
q t 1§—qV+P+2<q t.

Therefore, we can bound ¢t € N

n2 \‘QQV 1 J
— <t < | ——— | ="
q)\ q/\ q)\—l/—p—Q

For fixed ¢, there are at most /g — \/¢M — ¢"TPt2 = /g (1 — /1 - Wﬁ) integers
n such that [n?/q" P2 = ¢*v=,=2t — 1.
For 0 < u < 1 it holds that 1 —+/1 — u < w. Since t¢* 7?72 > 1, we know that the number of

integers n < ¢” for which there exists an integer j > X\ with ¢;((n +1r)?) # €;(n?) is bounded
by

qZV—A 1 q2u—)\ )\t q2u—)\ 1
q _ vtpt2-2/2

SV (11 ) £ X Y e Y

t=1 tq g t=1 q Pt t=1 \/%

—
*
~

q5/2q2u+p—>\'

IN

The last inequality (x) holds since

q" n q"‘ —1 n

D

t=1

=q

Sl
~
wl3
_I_
~
I
=
o~
H\d
<
~
|
| =
~
IN
—_
+
~
Il
=
—
[
~
|
(=)
~
—
SN—
)QT —
_
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0|3

241 £4—1 n+1 1
This completes the proof. O

The next lemma helps to replace quadratic exponential sums depending only on few digits.

Lemma 5.4.6. Let (A, p,v,p') € N* such that 0 < p < v < A, 20 < pu <v—yp and
AN —v <2u—pand set i = p—p'. Forintegersn < ¢”, s > 1 and 1 <r < ¢V /2 we set

n? = u1¢" + w; mod ¢! 0<w < q“l 0 <uy < gMtmimwte

(n47)% = upq” + wy mod g1 (0 <wy < ¢ O <y < TR (5.25)
2n = uzg” + ws mod M1 (0 <ws < ¢, 0<us< gt “+"/)

25¢™ 'n = v mod ¢** ™1, (0 <wv < gt rtm=h

where the integers uy = uy(n), us = us(n) ,uz = uz(n), v =v(n) ,w; = wi(n), wy = we(n)
and wsy = ws(n) satisfy the above conditions. Then for any integer { > 1 the number of
integers n < q¥ for which one of the following conditions

Sun((n +0)%) # Sy (w1 + Cus)
Sua((n 4+ 0+ s¢" ™)) # 83 (ug + fus +vg” + 20sq™ ") (5.26)
sua((n +7+ 6)2) # Sy a—ptp (U + Lug)
sur((n+r+0+ Sqw—m_l) ) # Sy a—prpr (U2 + Cug + qu/ +2(¢ + r)sqm_lq”/)

is satisfied is < """,

Proof (by [14]]). We first consider the case (n + £)?. The other cases are similar and we will
comment on them at the end of the proof. We find that

(n+ 02 = (ug + lus)g” + wy + lws + €% mod g™,

If wy +bwz + 02 < ¢ and 0 < j < A — g/ +m — 1, we have £, j((n+£)?) = &j(uy + Lug). For
wy 4 lws + 02 > ¢*, there is a carry propagation. We show that there are only few exceptions
where more than p’ digits are changed. The proof is split into the following two steps:

1. If the digits block (g;((n+£)?)) u<j<r+m—1 differ from the digits block (e;(u140us)) py<jcrtm—1—ptps
where u; = uy(n) and uz = uz(n) are defined by (5.25)), it follows that

2 2 2 2
(n+10) —anLg)JSg, or (n+10) _{(n%—f)JZl_g’
q* q* q° q* q* q°

(5.27)

for some constant C' = C'(¢).

2. The number of integers n < ¢” fulfilling (5.27)) is < ¢* .
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Obviously these two properties are sufficient to prove Lemma [5.4.6
We start with the proof of the first property. As mentioned above we just have to consider
the case wy + lws + (2 > ¢ = ¢"*". Since wy, w3 < ¢" the carry

W = Lq*“/ (w1 + lws + eQ)J

is bounded and, thus, can only attain finitely many values {1,2, ..., D} (where D is a constant
depending on ¢). These values of w will certainly affect some digits (of lower order) of uy + Cus.
Let ¥ := u; + fuz mod ¢* with 0 < ¥ < ¢”. The digits &;(us + Cus), p <j<A+m—1—p
might be affected by this carry if v € {¢* — 1,¢" —2,...,¢" — D}. Since

(n+€)2 Uy +€UJ3 w1 +€w3 +€2

= p + e mod 1
q q q
v (ws + (2
L B
q° g TP

it immediately follows that (5.27) holds with C' = D + 1. This completes the proof of the
first part.

Next, let Z denote the number of integers n < ¢” with (5.27)). By Theorem we have

Z=3" (Xa ("0 + 0 + xa (¢ " (n + 0)?))

n<q?
1 (n+0)>
<23 (arg) [ (05)
|h|<H n<g”

with a = Cq="". We can set H = ¢~

It is clear that the main contribution comes from the term corresponding to h = 0 which
gives an upper bound of form O(¢"*"). Each h # 0 with || < H = ¢” can be written as
h = KWd, where d | ¢* and ged(h', q) = 1. Therefore, we have by Lemma

Z e (hw) =0 (QV—N/Q\/E+ Mqu/2\/a>

q

n<q¥

and, consequently,

Y

0#|h|<g”’

Z o (h(n+€)2)‘ _o| e 4 p) Z %",\/g

dlg*
déqpl

n<q¥

This equals O (q”_“/2 + uq“) since

Zd—1/2<ﬁ) L
N

dlg# VPi
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where py, ..., pu(q are exactly the prime divisors of ¢. Since 2p" < u < v—p/, all contributions
are < ¢”~*. This completes the proof of the second part.

Finally, we comment on the other cases. First, there is no change for (n+ ¢+ sg"*™!)? since
the term sg"*™~! does not affect the discussed carry propagation. For (n + £ + r)?, we have

(n4€+7)* = (uy + Eug)q“l + wo + lws + 02 + 2rL.

Here we have to assure that ¢=* (wy + fws + €% + 2rf) remains bounded. However, this is
ensured by the assumption A — v < 2(u — p'). The same argument applies for the final case
(n+ 0+ sqgt™m 1 +r)2 O

5.5 Proof of the Main Theorem

In this section, we complete the proof of Theorem following the ideas and structure of
[14]. As the proof is very similar, we only outline it briefly and comment on the important
changes.

The structure of the proof is similar for both cases: At first we want to substitute the function
b by b, x. This can be done by applying Lemma and Lemma in the case K € Z.
For the case K ¢ 7 we have to use Lemma first.

Thereafter, we apply Lemma [5.4.6]to detect the digits between p and A. Next, we use charac-
teristic functions to detect suitable values for u;(n), us(n), us(n). Lemma allows us to
replace the characteristic functions by exponential sums. We split the remaining exponential
sum into a quadratic and a linear part and find that the quadratic part is negligibly small.
For the remaining sum, we apply Proposition or — depending on whether K € Z.
The case K ¢ Z needs more effort to deal with.

5.5.1 The case K € Z

In this section, we show that, if K = ag+---4+ar_1 € Z, Proposition provides an upper

bound for the sum -
So=> e (Z agb((n + e)?)) .
=0

n<N

Let v be the unique integer such that ¢~! < N < ¢” and we choose all appearing exponents
-i.e. A\ p, p, ete. - as in [14].

By using Lemma [5.4.5) and the same arguments as in [14], we find
So =51+ 0 (¢ ), (5.28)

where

Si=) e (Z agby((n + m) .

n<N
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Now we use Lemma - with Q = ¢"™ ! and S = ¢“* - to relate S; to a sum in terms
of bu,)\:

N? N
151]? < <+ g3%(52), (5.29)
where 5
=3 (1 - g) St(s)
1<s<S
and

Sys)= D e (i ar(bua((n+0)%) = bua((n + £+ SCJ‘”ml)Q))) :

nel(N,s)
where I(N, s) is an interval included in [0, N — 1] (which we do not specify).

Next we use Lemma to detect the digits of (n +£)? and (n + £ + sq™ *¢")* between
and A +m — 1 - with a negligible error term. Therefore, we have to take the digits between
@ = p— p and p into account, where p/ > 0 will be chosen later.

We set the integers u; = ui(n), us = uz(n), v = v(n), w; = wy(n), and wy = ws(n) to satisfy

the conditions of Lemma [5.4.6| and detect them by characteristic functions. Thus, we find

Sh(s) = S3(s) + O(¢" "), (5.30)

where

S0- > Y %

0<u1<U1 0<u3<Us n€l(N,s)

k—1
e <Z p(by A—ptpr (w1 + Cug) — by sy pr (ug + Lug + v(n)q”/ + 2€sqm_1q”’)>
=0

n? Up 2n U3
Xgr=ammer \ m=1 — g ) X' Nt T )

where Y, is defined by and Uy = M1+ Uy = ¢"#'+!. Lemma allows us to
replace the characteristic functions y by trigonometric polynomials. More precisely, using
(3-27) with H, = Uy¢”" and Hs = Usg”" for some suitable p” > 0 (which is chosen later and
again as a fraction of v), we have

Sé(s) = 54(8) + O(El) + O(E3) + O(ELg), (531)

where E, E3 and Ej 3 are the error terms specified in (3.27) and

Sis) = D, D).

0<uy <U; 0<u3<Us 0<v<gr—H+m—1

k—1
Z € (Z af(bp’)\—u—i—p’ (ul —+ €U3) — bp’,)x—,u,—i-p’ (Ul + €U3 + qul + 2€Sqm—1qp'))>
)

nel(N,s =0
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2
n Uy 2n U3
AUf17H1 (qA+m—1 B a) AU§1,H3 (qy+1 B 73)

1 25¢™ In —wv
q/\—u—l—m—l Z © (h q)\—,u-l-m—l ) ’

0Sh<q>‘7“+7”71

where we use the last sum to detect the correct value of v = v(n).

The error terms Fy, Es, E) 3 can easily be estimated with the help of Lemma just as
in [14]. By using the representations of A;—1 y and Aj—1 /. we obtain

1 _ _
Sa(s) = > > an (U Hy)an,(Us ", Ha)
|h1|<H; |hg|<Hs 0<h<gr—#tm—1

h h h
DN R S T )

0<u1<U1 0<u3<Us 0<v<gr—mtm—1

k—1
) (Z by a—ptpr (w1 + Lus) = by r— ey (un + lug + vg” + %Sqm_lqp/)))
=0

hin? hsn  2hsn
-Ze Pl + + o)

n ql/

We now distinguish the cases hy = 0 and hy # 0. For hy # 0, we can estimate the exponential
sum by using Lemma and the following estimate

> Vecd(hi, ) <, Hi. (5.32)

1<hi<Hy

Thus, we find

DD

0<|h1|§H1 |h3‘§H3 0§h<q>\*l’«+m*1

< )\HngqA/2+)\_H.

hin? hsn  2hsn

- ¢ q

This gives then
Su(s) = S5(s) + ONGFM), (5.33)

where S5(s) denotes the part of Sy(s) with h; = 0.

We set u; = v + ¢” v and us = ulf + ¢” uj (where 0 < v, u4 < ¢*'). Furthermore, we define
ip = [ (u} + Cu) /g |. As T = (ig)o<ocr = ([ (W] + €ul)/q” | Jo<i<k is contained in Zj, we have
- by the same arguments as in [14] -

SCESD SEED SR =T DIND DI SO SHOT e =y

|hg|<Hs 0<h<gr—ptm—1 0<uf<qv—Ht1 €T

~1
- min <N, sin <7T (@ + 2hs )) ) .
ql/ q>\—,u,
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Using the estimate |H [ (P ug + 25qm_1)| < 1 and the Cauchy-Schwarz inequality, we yield

1/2

S | 25 )| < g2 ST L ()|

0<uf<gv—Htl 0<uf<gqv—H1tl

We now replace A by A — pu+m — 1, X by v — u+ 1 and apply Proposition [5.3.7]
h, 2hs -
—n(A—p)/2 . . 3
Ss(s) < g7 "M E E min (N, sin (7r (_qV + —q/\u+m1)) ) .

|hs|<Hsz 0<h<gr—ntm—1
Then it just remains to average over s and combine all the estimates as in [14]. This gives
then

|SO‘ < quf(x\fz/) + V(w(q)+1)/2quqfn()\7u)/2 + qufp’/Q + qvfp”/Z + )\1/2ql//2+3)\/8
— provided that the following conditions hold

2 <p<v—p, pr<ul)2, <27 2 >\
= +2A—p) +2(p'+p") <AL, v—p+p" +A—p<w

For example, the choice

_ v r_ //:LLJ
A ’”ﬂzoJ and p'=p" = | 500

ensures that the above conditions are satisfied.

Summing up we proved that for " < min(1/200,7/40) - where 7 is given by - holds
So < ") < N

which is precisely the statement of Theorem [5.1.2]

5.5.2 The case K ¢ Z
In this section, we show that, for K = ag + -+ 4+ ax_1 € Z, Proposition provides an

upper bound for the sum
k—1
So = Z (S <Z ong((n + £)2)> .
=0

n<N

Let u, A\, p and p; be integers satisfying

0<p<p<p=v—2p<v<A=v+20<2v (5.34)
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to be chosen later - just as in [I4]. Since K ¢ Z we can not use Lemma directly.
Therefore, we apply Lemma with @ = 1 and R = ¢”. Summing trivially for 1 < r <
Ry = ¢”* yields

5o < L NS (1= Y i)

R R Ri<r<R R
where
k-1
Sir)= > e <Za5 ((n+ 0)? b((n+7’—|—€)2)))
neli(r) =0
and [;(r) is an interval included in [0, N — 1]. By Lemma we conclude that by o ((n +

0)?) = by oo((n + 1+ £)?) for all but (9( ~(A=v=r)) values of n. Therefore, we see that
Si(r) = Si(r) + O(g"~ ),
with

Si(r) = Z e (i ap (ba((n+0)*) = by((n+r + 5)2))> .
nel(r) \{=0

This leads to ”
2 v vt p— q
[Sol” < g* 7 g+ > 1Sl

Ri<r<R
and, by using the Cauchy-Schwarz inequality to
2v
|So\4 <<q4l/—2p+2p1 _|_q6V+2p—2)\+ % Z |S{(r)]2.
Ri<r<R

For |S}(r)|* we can use Lemma again: Let p’ € N to be chosen later such that 1 < p/ < p.
After applying Lemma with Q = ¢*t™~1 and

S =g < g, (5.35)
we observe that for any n € N we have
bA((7 + sg" ™ 71)%) = ba(®) = by (7 + s¢" T 7)?) — b (),

and thus

|SO’4 < q41/72p+2p1 + q6u+2p*2/\ Z Z |5'2 T, 3 (5.36)

R1<7'<R 1<s<S

k—1
Sa(r,s) = > e(Zae ((n+0?) = bua((n+7+0)*)

—bun((n+ "™+ 0 + bur((n+ sg"™™ 41 + 6)2))> ,
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where I5(r, s) is an interval included in [0, N — 1].

We now make a Fourier analysis similar to the case K = Omod 1 - as in [I4]. We set
U=t 1=+ Uy = ¢ #+ and V = ¢*#t™1. We apply Lemma and detect the
correct values of uy, us, uz by characteristic functions. This gives

Se(ris) = >, >, )

0<u1 <U 0<u2<U 0<u3<Us

k—1
Z e (Z Qy (bp/7/\—u+ﬂ' (Ul + €U3) — bP’J\—/H‘P' (UQ + €u3)

nelz(r,s) =0
—by a—ptpr (U1 + lus + v(n)qp/ + 2€sqm_1q”/)

a2 + g + v(n)g” + 20+ r>sqm1qf”>)>

n? Uy (n+7)?  u 2n  ug
Xomt \ pormet — g ) X0 et T )X\ T
+O(g" ™).
Furthermore, we use Lemma to replace the characteristic functions x by trigonometric
polynomials. Using (3.27) with U; = Uy = U, H; = Hy = Ug” and Hjz = Uzq?3, and integers

p2, p3 verifying
p2<p—p, ps<p—1p, (5.37)

we obtain

Sa(r,s) = Ss(r,s) + O(¢"™") + O (Es(r)) + O (E(0)) + O (Es (r)) (5.38)
+ O(Ex(0) + O (Es(r) + O (Ess(r) + O (Es(r)),
for the error terms obtained by and S3(r, s) obtained by replacing the characteristic

function by trigonometric polynomials. We now reformulate Ss3(r, s) by expanding the trigo-
nometric polynomials, detecting the correct value of v = v(n) and restructuring the sums:

1 _
S3(r,s) = Y > > an, (U Hy)

0<h<gr—r+m=1 |hy|<H;

Z ahz(U_17H2) Z ahs(U3—17H3)

|ho|<H> |h3|<H3

hiu; +h h h
DI DI D e )

0<u1 <U 0<ua<U 0<uz <Usz 0<v<V

k—1
€ (Z Qg (bp’AﬂHp’ (w1 + luz) = by a—purpr (u2 + lus)

=0
by A—ppr (w1 + Cuz + vg” + 20s¢™q”")

by a o (U + Lug +vg” 4 2(0 + r)sqmlq”/))>
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hin® + ho(n +7)?  2hgn  2hsn
Z ¢ q>\+m—1 + qv + q)\—,u '
nelz(r,s)

One can estimate the error terms just as in [I4] and finds that they are bounded by either
q"~ " or ¢*~ 2. In conclusion we deduce that

So(r,s) = Sz(r,s) + O(q”_pl) +O(¢" ")+ O(g" ). (5.39)

We now split the sum S;(r, s) into two parts:
83(7”, S) - S4<T7 8) + SL(T, 8)7 (540)

where Sy(r,s) denotes the contribution of the terms for which hy + hy = 0 while S)(r, s)
denotes the contribution of the terms for which hy + hy # 0. We can estimate Sj(r, s) just as
in [14] and find

Sirs) < vhqrtIEAIATI 40

and it remains to consider Sy(r, s). Setting u; = v/ +q¢” v}, uy = ul§+q° ub and uz = v +q” uj,
(where 0 < v, u, u4 < ¢*") we can replace the two-fold restricted block-additive functlon by
a truncated block-additive function

by s (i + fus) = bay (uh + s + | (uf + ) /g |)
by A—ptp (U2 + Cuz) = by_, <u'2 + fufy + L( + lu)/q” J)
by et (1 + €ty + "+ 205q g = by (1 + v+ 0ty + 254 ) + | (uf + ) g |)
by A—ptpr (U2 + lug + vg” +2(0 4 7)sq™ g
=br_y (U/2 + v+ 2s7¢™ 1+ O(ufy + 25¢™ ) + {(ué’ + Zug)/q’),J) .
Using the periodicity of b modulo V := ¢*=#+™~1 we replace the variable v by v; such that
v1 = u) + v mod ¢ #*tm=1 Furthermore we introduce a new variable v, such that

vy = ub + v + 2sr¢™ 7t = vy 4 ubh — v + 25r¢™ ! mod ML

We then follow the arguments of [14] and find

Sy(r,s) < ¢ Z Z Z min(U 2, hy?) Z min(U; ', hy')

0Sh<q>\7u+7n71 OSh/<q)\7,u,+7n71 |h2|SH2 ‘thlSHS

IED D DD

0<uy <g?' 0<ulj<qr’ 0<uf <gr' 0<up<Us

H“““S)(h’ h = ha, )| [HZES (= o)

A—p

1 l/

00— o+ 204

|50 |
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Z ( 2horn N 2hsn N 2hsn)
(S] 9
: q)\-‘rm—l q)\—u

v
nelz(r,s q

I(u, @) = QqﬁpJ , {“;“J {HU;—”_MD for (u, @) € N°.

The next few steps are again so similar to the corresponding ones in [14] that we skip the
details. We find

Silres) < OA—p) ged@s. ) > 3 Y min(U %5

0<uf uf, u”<qpl |h2|<Ha

Se(ha, s, 1, ug) 2 Sg(ha, s, ul, uly) />

-1
. -1 -1 . . 2h 2 )\—l/+77l—1h
E min(U; ", hy ") min (q”, sin 2T+q‘}+m,1 3 )
|h3‘<H3

with

where

2

Se(ha, s, u”, uy) Z Z ‘H/\ I, ug)(h ha, uy)

0<uf<US 0<h/ <gr—#tm—1

‘HA" ) (1 ol + 25¢™ )

(5.41)
Here we introduce the integers H) and x such that

Hé _ q’\_”+mH3/R1 _ qk—u+p’+p3—p1+m+1 = ¢". (5.42)

This leads to
Sa(r,s) K Sa1(r,s) + Ssa(r, s) + Sss(r, s),

where Sy1(r,s), Sia(r, s) and Sy3(r, s) denote the contribution of the terms |ho| < Hj, H) <
|ho| < @M1 and M IH < |hy| < H,y respectively.

Estimate of Sy (r,s) By (5.20) we have

Z min (q”,

|h3|<Hj

2h3 +2h21”qu7>‘7m+1
qV

sin 7

—1
> <L vq”,

and, therefore,
Z Z Se(ha, s, uf, U3)1/256(h27 S, s, ug)1/2

0<u/1/ u// u”<q/’ |h2‘<H/

By Proposition [5.3.§ (replacing A by A — p and L by A — p — &), we find some 0 < 7/ <1
such that

< ¢ "R max |GL( = by, [uy/q"])] -

’Hl(u” ug)(h, - h/2’ ug) JET;,




5.5. PROOF OF THE MAIN THEOREM 133

By Parseval’s equality and recalling that #(Z;) = ¢™ (g™ ! + 1)*1, it follows that

Z max ‘H,;]L(h' — hz,ug/qLJ)\Q

JET,
|ha|<H)
2 m— m— —
<3N (G — o, L /gt D < g DR
JETLy |ho|<HY

We obtain

Z ’Hi(—uu " (h/ — ha, ug)

|ho| <HY

2 Hl '
—n'(A—p—r) _ 2
<4 a <CJ*‘“)

uniformly in A, p, H), uj, v” and u%. The remaining proof is analogue to the corresponding
proof in [14]. This yields

]. ! /
=5 D D Sulrs) < v(h— )0t g, (5.43)
Ri<r<R1<s<S

which concludes this part.

Estimate of Sy (r,s) and Sy3(r,s) By following the arguments of [14] and applying the
same changes as in the estimate of S4; we find

1
2o D D Sulrs) < pps(A— )0 g, (5.44)
Ri<r<R 1<s<S

and
1 /
oo 3 S Sulrs) < p (A=) g, (5.45)

R1<r<R1<s<S

Combining the estimates for S; It follows from (5.43)), (5.44) and (5.45)) that
1 ! / /
S Z Z Su(r, s) < V3+W(Q)ql’ <q—277 (pr=p"=ps) | q "+ q—ﬂ+3p> )
Ri<r<R1<s<S
Choosing
pr=p=p. p=ps=/,
we obtain

1 ) ) / /
75 Z Z Sulr, s) < V3+w(q)qu <q—2n (P=3¢") 4 g + q—(p—3p )> .

Ri<r<R1<s<S

Since 0 < 7' < 1, we obtain using (5.40) and (5.39), that

% Z Z Sa(r,s) < ¥y (q_”'(”_?’f") +q " + q%(SA_gquSp/)) .

R1<r<R1<s<S
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We recall by (5.35) that S = ¢* and by (5.34) that u = v — 2p, A = v + 2p and insert the
estimation from above in ([5.36):

|5«0’4 < q41/—2p’ + q4u—2p + V3+w(q)q4y (q_n/(p_?,p/) i q_p/ + q_%+17p+4p/‘>
For p/ = |v/146] and p = 4p', we obtain
1So| << P/ o N1

for all n; < n//584. Therefore we have seen that Proposition implies the case K #
0 mod 1 of Theorem [5.1.21
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