Apprentissage non supervisé de flux de données massives : application aux Big Data d'assurance

par Mohammed Ghesmoune

Thèse de doctorat en Informatique

Sous la direction de Mustapha Lebbah et de Hanane Azzag.

Le président du jury était Céline Rouveirol.

Le jury était composé de Marc Gelgon, Allou Badara Samé, Salima Benbernou, Christophe Cérin, Marcin Detyniecki.

Les rapporteurs étaient Marc Gelgon, Allou Badara Samé.


  • Résumé

    Le travail de recherche exposé dans cette thèse concerne le développement d'approches à base de growing neural gas (GNG) pour le clustering de flux de données massives. Nous proposons trois extensions de l'approche GNG : séquentielle, distribuée et parallèle, et une méthode hiérarchique; ainsi qu'une nouvelle modélisation pour le passage à l'échelle en utilisant le paradigme MapReduce et l'application de ce modèle pour le clustering au fil de l'eau du jeu de données d'assurance. Nous avons d'abord proposé la méthode G-Stream. G-Stream, en tant que méthode "séquentielle" de clustering, permet de découvrir de manière incrémentale des clusters de formes arbitraires et en ne faisant qu'une seule passe sur les données. G-Stream utilise une fonction d'oubli an de réduire l'impact des anciennes données dont la pertinence diminue au fil du temps. Les liens entre les nœuds (clusters) sont également pondérés par une fonction exponentielle. Un réservoir de données est aussi utilisé an de maintenir, de façon temporaire, les observations très éloignées des prototypes courants. L'algorithme batchStream traite les données en micro-batch (fenêtre de données) pour le clustering de flux. Nous avons défini une nouvelle fonction de coût qui tient compte des sous ensembles de données qui arrivent par paquets. La minimisation de la fonction de coût utilise l'algorithme des nuées dynamiques tout en introduisant une pondération qui permet une pénalisation des données anciennes. Une nouvelle modélisation utilisant le paradigme MapReduce est proposée. Cette modélisation a pour objectif de passer à l'échelle. Elle consiste à décomposer le problème de clustering de flux en fonctions élémentaires (Map et Reduce). Ainsi de traiter chaque sous ensemble de données pour produire soit les clusters intermédiaires ou finaux. Pour l'implémentation de la modélisation proposée, nous avons utilisé la plateforme Spark. Dans le cadre du projet Square Predict, nous avons validé l'algorithme batchStream sur les données d'assurance. Un modèle prédictif combinant le résultat du clustering avec les arbres de décision est aussi présenté. L'algorithme GH-Stream est notre troisième extension de GNG pour la visualisation et le clustering de flux de données massives. L'approche présentée a la particularité d'utiliser une structure hiérarchique et topologique, qui consiste en plusieurs arbres hiérarchiques représentant des clusters, pour les tâches de clustering et de visualisation.

  • Titre traduit

    Unsupervided learning of massive data streams : application to Big Data in insurance


  • Résumé

    The research outlined in this thesis concerns the development of approaches based on growing neural gas (GNG) for clustering of data streams. We propose three algorithmic extensions of the GNG approaches: sequential, distributed and parallel, and hierarchical; as well as a model for scalability using MapReduce and its application to learn clusters from the real insurance Big Data in the form of a data stream. We firstly propose the G-Stream method. G-Stream, as a “sequential" clustering method, is a one-pass data stream clustering algorithm that allows us to discover clusters of arbitrary shapes without any assumptions on the number of clusters. G-Stream uses an exponential fading function to reduce the impact of old data whose relevance diminishes over time. The links between the nodes are also weighted. A reservoir is used to hold temporarily the distant observations in order to reduce the movements of the nearest nodes to the observations. The batchStream algorithm is a micro-batch based method for clustering data streams which defines a new cost function taking into account that subsets of observations arrive in discrete batches. The minimization of this function, which leads to a topological clustering, is carried out using dynamic clusters in two steps: an assignment step which assigns each observation to a cluster, followed by an optimization step which computes the prototype for each node. A scalable model using MapReduce is then proposed. It consists of decomposing the data stream clustering problem into the elementary functions, Map and Reduce. The observations received in each sub-dataset (within a time interval) are processed through deterministic parallel operations (Map and Reduce) to produce the intermediate states or the final clusters. The batchStream algorithm is validated on the insurance Big Data. A predictive and analysis system is proposed by combining the clustering results of batchStream with decision trees. The architecture and these different modules from the computational core of our Big Data project, called Square Predict. GH-Stream for both visualization and clustering tasks is our third extension. The presented approach uses a hierarchical and topological structure for both of these tasks.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.