Géométrie Arithmétique sur les variétés Abéliennes : minoration explicite de la hauteur de Faltings et borne sur la torsion

par Benjamin Wagener

Thèse de doctorat en Mathématiques. Théorie des nombres

Sous la direction de Marc Hindry.

Soutenue le 22-11-2016

à Sorbonne Paris Cité , dans le cadre de École doctorale de Sciences mathématiques de Paris Centre (Paris) , en partenariat avec Institut de Mathématiques de Jussieu-Paris Rive Gauche (équipe de recherche) et de Université Paris Diderot - Paris 7 (1970-2019) (établissement de préparation) .

Le président du jury était Antoine Chambert-Loir.

Le jury était composé de Marc Hindry, Antoine Chambert-Loir, Walter Gubler, Pascal Autissier, Carlo Gasbarri.

Les rapporteurs étaient Gaël Rémond, Walter Gubler.


  • Résumé

    Ce travail comporte essentiellement deux conclusions. D'une part nous déterminons une minoration de la hauteur de Faltings d'une variété abélienne quelconque sur un corps de nombres faisant intervenir de nouveaux invariants non archimédiens. Il s'agit de la première partie de ce travail dans lequel nous introduisons systématiquement ces invariants. Ils sont liés à la géométrie non archimédienne aux places de mauvaise réduction des variétés abéliennes.Dans une deuxième partie nous donnons une évaluation approximative de ces invariants nous permettant d'établir une minoration de la hauteur de Faltings faisant intervenir le nombre de composantes de la fibre spéciale du modèle de Néron des variétés abéliennes aux places de mauvaise réduction.On déduit de ces estimations un corollaire qui fournit une borne sur le cardinal du groupe des points rationnels de torsion des variétés abéliennes faisant essentiellement intervenir la hauteur de Faltings. Cette borne est jusqu'à présent la meilleure connue.

  • Titre traduit

    Aritmethic geometry on Abelian varieties : explicit lower bound on the faltings height and bound on torsion


  • Résumé

    This thesis leads essentially to two conclusions. On the one hand we determine a lower bound for the Faltings height of abelian varieties over number fields in which enter new non-archimedean invariants. It consists in the first part of this work in which we introduce systematically this invariants. They are directly linked to the non-archimedean geometry of abelian varities at places of bad reduction.In a second part we provides an approximative evaluation of this invariants which leads to a lower bound on the Faltings heights in terms of the number of components of the special fiber of the Néron model of abelian varieties at places of bad reduction.We deduce from this estimates a corollary that provides an upper bound on the cardinality of the group of rational torsion points of abelian varieties essentially in terms of the Falting height. This bound is the best bound known till now.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.