Using Poisson processes for rare event simulation

par Clément Walter

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Josselin Garnier.

Le président du jury était Stéphane Boucheron.

Le jury était composé de Josselin Garnier, Stéphane Boucheron, François Le Gland, Daniel Straub, Éric Moulines, Arnaud Guyader, Gilles Defaux, Tony Lelièvre.

Les rapporteurs étaient François Le Gland, Daniel Straub.

  • Titre traduit

    De l'utilisation des processus de Poisson pour la simulation d'événements rares


  • Résumé

    Cette thèse est une contribution à la problématique de la simulation d'événements rares. A partir de l'étude des méthodes de Splitting, un nouveau cadre théorique est développé, indépendant de tout algorithme. Ce cadre, basé sur la définition d'un processus ponctuel associé à toute variable aléatoire réelle, permet de définir des estimateurs de probabilités, quantiles et moments sans aucune hypothèse sur la variable aléatoire. Le caractère artificiel du Splitting (sélection de seuils) disparaît et l'estimateur de la probabilité de dépasser un seuil est en fait un estimateur de la fonction de répartition jusqu'au seuil considéré. De plus, les estimateurs sont basés sur des processus ponctuels indépendants et identiquement distribués et permettent donc l'utilisation de machine de calcul massivement parallèle. Des algorithmes pratiques sont ainsi également proposés.Enfin l'utilisation de métamodèles est parfois nécessaire à cause d'un temps de calcul toujours trop important. Le cas de la modélisation par processus aléatoire est abordé. L'approche par processus ponctuel permet une estimation simplifiée de l'espérance et de la variance conditionnelles de la variable aléaoire résultante et définit un nouveau critère d'enrichissement SUR adapté aux événements rares


  • Résumé

    This thesis address the issue of extreme event simulation. From a original understanding of the Splitting methods, a new theoretical framework is proposed, regardless of any algorithm. This framework is based on a point process associated with any real-valued random variable and lets defined probability, quantile and moment estimators without any hypothesis on this random variable. The artificial selection of threshold in Splitting vanishes and the estimator of the probability of exceeding a threshold is indeed an estimator of the whole cumulative distribution function until the given threshold. These estimators are based on the simulation of independent and identically distributed replicas of the point process. So they allow for the use of massively parallel computer cluster. Suitable practical algorithms are thus proposed.Finally it can happen that these advanced statistics still require too much samples. In this context the computer code is considered as a random process with known distribution. The point process framework lets handle this additional source of uncertainty and estimate easily the conditional expectation and variance of the resulting random variable. It also defines new SUR enrichment criteria designed for extreme event probability estimation.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.