Contribution à l'analyse et à la détection automatique d'anomalies ECG dans le cas de l'ischémie myocardique
Auteur / Autrice : | Medina Hadjem |
Direction : | Farid Naït-Abdesselam |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 29/03/2016 |
Etablissement(s) : | Sorbonne Paris Cité |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | établissement de préparation : Université Paris Descartes (1970-2019) |
Jury : | Président / Présidente : Themis Palpanas |
Examinateurs / Examinatrices : Farid Naït-Abdesselam, Themis Palpanas, Vincent Vigneron, Amine Naït-Ali, Sofiane Boudaoud, Osman Salem | |
Rapporteurs / Rapporteuses : Vincent Vigneron, Amine Naït-Ali |
Résumé
Les récentes avancées dans le domaine de la miniaturisation des capteurs biomédicaux à ultra-faible consommation énergétique, permettent aujourd’hui la conception de systèmes de télésurveillance médicale, à la fois plus intelligents et moins invasifs. Ces capteurs sont capables de collecter des signaux vitaux tels que le rythme cardiaq ue, la température, la saturation en oxygène, la pression artérielle, l'ECG, l'EMG, etc., et de les transmettre sans fil à un smartphone ou un autre dispositif distant. Ces avancées sus-citées ont conduit une large communauté scientifique à s'intéresser à la conception de nouveaux systèmes d'analyse de données biomédicales, en particulier de l’électrocardiogramme (ECG). S’inscrivant dans cette thématique de recherche, la présente thèse s’intéresse principalement à l’analyse et à la détection automatique des maladies cardiaques coronariennes, en particulier l’ischémie myocardique et l’infarctus du myocarde (IDM). A cette fin, et compte tenu de la nature non stationnaire et fortement bruitée du signal ECG, le premier défi a été d'extraire les paramètres pertinents de l’ECG, sans altérer leurs caractéristiques essentielles. Cette problématique a déjà fait l’objet de plusieurs travaux et ne représente pas l’objectif principal de cette thèse. Néanmoins, étant un prérequis incontournable, elle a nécessité une étude et une compréhension de l'état de l'art afin de sélectionner la méthode la plus appropriée. En s'appuyant sur les paramètres ECG extraits, en particulier les paramètres relatifs au segment ST et à l'onde T, nous avons contribué dans cette thèse par deux approches d'analyse ECG : (1) Une première analyse réalisée au niveau de la série temporelle des paramètres ECG, son objectif est de détecter les élévations anormales du segment ST et de l'onde T, connues pour être un signe précoce d'une ischémie myocardique ou d’un IDM. (2) Une deuxième analyse réalisée au niveau des battements de l’ECG, dont l’objectif est la classification des anomalies du segment ST et de l’onde T en différentes catégories. Cette dernière approche est la plus utilisée dans la littérature, cependant, il est difficile d’interpréter les résultats des travaux existants en raison de l'absence d’une méthodologie standard de classification. Nous avons donc réalisé notre propre étude comparative des principales méthodes de classification utilisées dans la littérature, en prenant en compte diverses classes d'anomalies ST et T, plusieurs paramètres d'évaluation des performances ainsi que plusieurs dérivations du signal ECG. Afin d'aboutir à des résultats plus significatifs, nous avons également réalisé la même étude en prenant en compte la présence d'autres anomalies cardiaques fréquentes dans l’ECG (arythmies). Enfin, en nous basant sur les résultats de cette étude comparative, nous avons proposé une nouvelle approche de classification des anomalies ST-T en utilisant une combinaison de la technique du Boosting et du sous-échantillonnage aléatoire, notre objectif étant de trouver le meilleur compromis entre vrais-positifs et faux-positifs.