Réduction du coût de calcul pour la simulation du comportement mécanique de câbles
Auteur / Autrice : | Nerea Otaño Aramendi |
Direction : | Hachmi Ben Dhia, Damien Durville |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique des solides |
Date : | Soutenance le 14/11/2016 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mécanique des sols, structures et matériaux (Gif-sur-Yvette, Essonne ; 1998-2021) |
établissement opérateur d'inscription : CentraleSupélec (2015-....) | |
Jury : | Président / Présidente : David Néron |
Rapporteur / Rapporteuse : Stéphane Bordas, David Dureisseix, Wilson Tato Vega |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Le travail présenté dans ce mémoire s'intéresse à la simulation du comportement mécanique de câbles d'ascenseurs. Le but de ce travail est d'élaborer une méthode permettant de simuler le comportement mécanique de tels câbles à moindre coût, et avec une précision suffisante.Dans un premier temps, différentes méthodes permettant de modéliser ou de simuler le comportement de ces câbles ont été comparées, et leurs avantages et inconvénients ont été analysés. Les résultats de modèles analytiques et de simulations éléments finis ont été comparés avec des données expérimentales. Les modèles analytiques considérés dans ce travail présentent un coût de calcul bien moins élevé que les modèles éléments finis, mais n'offrent pas une précision suffisante dans leurs résultats pour simuler le comportement de câbles d'ascenseurs. L'approche éléments finis a été retenue pour cette raison comme la plus adaptée pour simuler ce genre de câbles. Les coûts de calcul liés à cette approche sont cependant très élevés, et demandent la mise en oeuvre de méthodes particulières en vue de les réduire.Afin de réduire les temps de calculs, trois types de méthodes ont été considérées : les méthodes d'homogénéisation, les méta-modèles, et les techniques de réduction de modèle. L'approche de réduction de modèle a été retenue comme la plus appropriée et a été implémentée dans le code de simulation par éléments finis Multifil. Des résultats avec une bonne précision ont été obtenus en utilisant cette méthode, mais les coûts des simulations initiales sur le modèle complet afin d'obtenir un ensemble de solutions permettant de construire une base réduite apparaissent trop élevés dès qu'il s'agit de traiter des câbles de longueurs importantes. Pour remédier à ce problème, une méthode de réduction par tronçon a été formulée et implémentée. Cette méthode tire parti de la structure périodique du câble et permet d'identifier a base de réduction seulement sur un motif périodique élémentaire. Cette base est ensuite utilisée pour représenter la solution sur l'ensemble d'un câble composé de plusieurs tronçons.Le coût des multiplications matricielles nécessaires pour transformer le système linéaire du problème initial, en système linéaire réduit reste cependant trop important pour obtenir un gain significatif, en particulier dans le contexte de la résolution d'un problème non-linéaire. Pour pallier cette difficulté, une technique supplémentaire, appelée ``Discrete Empirical Interpolation Method'' (DEIM), a été mise en oeuvre avec succès, et a permis d'obtenir au final une réduction du coût de calcul d'un facteur 4.