Élicitation des préférences pour un rangement multicritère basé sur les points de référence

par Jinyan Liu

Thèse de doctorat en Sciences et technologies industrielles

Sous la direction de Vincent Mousseau et de Wassila Ouerdane.

Le président du jury était Chengbin Chu.

Le jury était composé de Vincent Mousseau, Wassila Ouerdane, Alexis Tsoukiàs, Patrick Meyer, Yves De Smet, Antoine Rolland, Marc Pirlot.

Les rapporteurs étaient Alexis Tsoukiàs, Patrick Meyer.


  • Résumé

    L’inférence du modèle de préférence à partir des jugements préférentiels fournis par le décideur, Élicitation des Préférences (EP), est fondamentale au sein de l’Aide Multicritère à la Décision (AMCD), car l’élaboration des recommandations à la fois plausibles, constructives et convaincantes requiert que l’analyste construise un modèle de préférence qui rende compte fidèlement du jugement du décideur. Cependant, l’EP est une mission délicate, parce qu’il s’agit d’attribuer des valeurs aux paramètres du modèle de préférence choisi. Dans ce cadre, plusieurs aspects sont étudiés. Puisque les modèles de préférence étant de plus en plus complexes, on fait alors appel à des algorithmes sophistiqués, et il faut d’autant plus tenir compte de l’aspect computationnel.Ce travail de thèse vise à concevoir des algorithmes afin d’inférer du modèle de préférence à partir des comparaisons par paire (possiblement incohérentes), et de considérer des données de (relativement) grande taille. En particulier, nous nous sommes intéressés à un modèle de rangement multicritère récemment proposé et faisant appel à un certain nombre de points de référence. Ce modèle fait référence à la méthode intitulée “Ranking with Multiple Profiles” (RMP). Plus précisément, nous considérons une version particulière, dite S-RMP. Nos contributions sont divisées en trois parties. Du point de vue théorique, nous nous adressons sur (1) l’interprètabilité des points de référence et (2) la discriminabilité du modèle S-RMP. En termes d’algorithmes, nous présentons, d’abord, (3) un nouveau programme linéaire pour inférer du modèle S-RMP en tenant compte les incohérences et (4) une version robuste améliorée; en outre, (5) une métaheuristique qui procède avec des données massives. (6) Nous menons alors les analyses numériques. (7) Le développement de deux services web est également inclus. En termes d’application, (8) nous présentons une étude de cas.

  • Titre traduit

    Preference elicitation for multi-criteria ranking with multiple reference points


  • Résumé

    The inference of preference model from holistic statements provided by the decision maker (DM), namely, Preference Elicitation (PE), is fundamental to Multi-Criteria Decision Aid (MCDA). In order to conduct plausible, constructive and convincing recommendations, the decision analyst should always take the DM’s preference system into account. However, PE might be tricky, as it involves setting appropriately a series of parameter values of the considered model. Various aspects should be considered. Since the preference models are becoming more and more complicated, PE usually relies on sophisticated algorithms, whereas this brings additionally the computational aspect into consideration.This PhD thesis aims at developing new elicitation algorithms dealing with (possibly inconsistent) pairwise comparisons and processing with (relatively) large input datasets. In particular, a recently introduced multi-criteria ranking method making use of a certain number of reference points is considered. It is known as RMP method as abbreviated for Ranking with Multiple reference Points. More specifically, we are interested in one of its Simplified version, namely S-RMP method. Our contributions are divided into three parts. From the theoretical perspective, we are concerned about (1) the interpretation of reference points in such models and (2) the discriminability of S-RMP model. From the algorithmic perspective, we propose firstly (3) a new linear programming formulation for eliciting S-RMP models from inconsistent pairwise comparisons and also (4) an improved robust elicitation algorithm; besides, (5) a metaheuristic for learning S-RMP models from massive data. (6) Numerical analyses are then performed. (7) The development of two web services is also included. From the practical perspective, (8) we present a realistic case study.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : CentraleSupélec. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.