Thèse soutenue

Pollution de l’air intérieur : mesure, impact sur la santé et traitement par méthodes photochimiques.

FR  |  
EN
Auteur / Autrice : Mickael Le Bechec
Direction : Sylvie Lacombe
Type : Thèse de doctorat
Discipline(s) : Chimie Physique
Date : Soutenance le 20/10/2016
Etablissement(s) : Pau
Ecole(s) doctorale(s) : École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-)

Résumé

FR  |  
EN

L’accroissement de la population humaine, l’agriculture intensive et le développement industriel créent une pollution de l’air qui aujourd’hui devient préoccupante pour notre santé et notre environnement. Si la qualité de l’air extérieur fait l’objet depuis plusieurs décennies de règlementations qui permettent aujourd’hui de constater une diminution globale de la pollution dans les grandes agglomérations européennes, la pollution de l’air intérieur a quant à elle été longtemps sous-estimée. En effet, avec le développement de matériaux composites pour la construction et l’ameublement, la gamme de polluants de l’air intérieur s’est très largement agrandie et les concentrations ont globalement augmenté. Plusieurs études ont ainsi montré que de nombreux composés organiques volatils étaient détectés dans l’air intérieur à des concentrations bien plus élevées qu’à l’extérieur. D’autre part, la modification des modes de vie sédentaires et citadines ont pour conséquence une augmentation du temps passé dans des espaces confinés comme les logements, les lieux de travail et les transports en commun. Le simple renouvellement de l’air intérieur par de l’air extérieur devenant de moins en moins satisfaisant dans les grandes agglomérations, de nouvelles méthodes de traitement sont actuellement développées pour diminuer les concentrations de ces polluants tout en limitant la consommation d’énergie. La photocatalyse, en tant que procédé d’oxydation avancé fait partie des technologies intéressantes pour minéraliser des composés organiques volatils (COV). Après un rapide rappel du contexte sociétal de la pollution atmosphérique, les conditions de mesures et les méthodes possibles pour le traitement de cette pollution sont présentées. Le chapitre suivant regroupe les résultats sur le développement de matériaux photocatalytiques innovants et la mesure de leur efficacité. La première partie de ce chapitre fait le bilan des réacteurs photocatalytiques adaptés à l’étude de réactions à l’interface solide-gaz et résume les nombreuses difficultés liées à l’évaluation des performances de divers matériaux dans des conditions le plus souvent difficilement comparables. Dans la seconde partie, un premier matériau composite constitué de film polymère et de dioxyde de titane a été caractérisé par sa capacité à oxyder un composé volatil, le diméthyle disulfure, utilisé en agriculture pour la fumigation. Le développement d’un second matériau photocatalytique original, constitué de fibres de TiO2 pur a, quant à lui, été caractérisé par sa capacité à minéraliser des COV représentatifs de la pollution de l’air intérieur (acétone, heptane, toluène). Les deux dernières parties de ce chapitre se situent à l’interface entre la photochimie et la biologie. Dans un premier temps, la capacité d’inactivation bactérienne d’un textile « intelligent » sur lequel sont fixées des particules de dioxyde de titane couplées à un photosensibilisateur a été étudiée et l’efficacité sous rayonnement visible de ce tissu original a été analysée. L’impact de la pollution de l’air intérieur sur des cellules de la peau fait l’objet de la dernière partie de ce chapitre. Pour cela un montage permettant d’exposer des cellules de kératinocytes en culture, mais également des biopsies de peau humaine, à des concentrations contrôlées en COV a été mis au point. Nous avons ainsi pu mettre en évidence une réponse cellulaire à ce stress environnemental et préciser l’origine de ce stress. Enfin ce travail se termine par une ouverture sur des projets de recherche actuellement en cours ayant pour objet la mesure des espèces réactives de l’oxygène impliquées dans les réactions photochimiques et le développement de nouveau matériaux hybrides polymère/photosensibilisateurs. Des idées de projets à l’interface de la photochimie et de la biologie ouvrent de nouvelles perspectives à la suite de ces premiers résultats.