Études de modèles de chimiotactisme à deux espèces

par Casimir Emako Kazianou

Thèse de doctorat en Mathématiques Appliquées

Soutenue le 17-03-2016

à Paris 6 , dans le cadre de École doctorale Sciences mathématiques de Paris centre (Paris) , en partenariat avec Laboratoire Jacques-Louis Lions (laboratoire) et de Modelling and Analysis for Medical and Biological Applications (laboratoire) .

Le jury était composé de Roberto Natalini, Magali Ribot, Vincent Calvez, Axel Buguin, Marie Doumic.


  • Résumé

    Cette thèse s'intéresse à la migration cellulaire d'une population composée de deux espèces qui interagissent par le biais de signaux chimiques. Ces signaux chimiques auxquels sont soumis les deux espèces sont de nature différente. Ils sont soit intérieur (produit par les deux espèces) ou bien extérieur (apporté par le milieu et consommé par les deux espèces). On observe le phénomène de synchronisation et de désynchronisation lors de la migration d'une population composée de deux espèces différentes d'E.Coli. Séparément, les bactéries rouges d'E.Coli se déplacent deux fois plus vite que les bactéries vertes. Cependant dans le cas d'une population mixte composée de rouges et de vertes, les bactéries rouges et vertes se déplacent ensemble ou séparément en fonction de la proportion de la bactérie la plus rapide rouge dans la population.Cette observation expérimentale est interprétée par un modèle macroscopique parabolique de chimiotactisme à deux espèces pour lequel l'existence et la non-existence des ondes de concentration sont prouvées. Ce modèle macroscopique parabolique à deux espèces est construit à partir des modèles microscopiques qui traduisent le mouvement individuel des cellules.Ce phénomène de synchronisation et de désynchronisation est aussi présent dans la dynamique des masses de dirac des deux espèces après l'explosion des solutions classiques dans un modèle d'agrégation à deux espèces avec une seule substance chimique.Nous proposons aussi dans cette thèse une méthode pour obtenir des schémas numériques préservant à la fois l'équilibre et l'asymptotique. Cette méthode est testée aux modèles cinétiques de chimiotactisme et de transfert radiatif.

  • Titre traduit

    Study of two-species chemotaxis models


  • Résumé

    This thesis is concerned about cellular motion of a population composed of two species in interaction through chemical cues. The chemical cues to which the two species are subject are of different kind.They can be internal (produced by the two species) or external (present in the meduim and consommed by the two species). Synchronising and non-synchronising effects are observed during the migration of the population formed by two different strains of E.Coli.Although separately, red bacteria E.Coli travel twice as fast as green bacteria E.Coli, put together, they travel or split depending on the percentage of the faster bacteria in the population. This experimental result is explained by a two-species parabolic macroscopic chemotaxis model for which the existence and non-existence of traveling pulses are showed. The parabolic macroscopic model is derived from microscopic models which describe the individual motion of cells. The synchronising and non-synchronising effect is also encountered in dynamics of the two-species dirac masses after blow-up of classical solutions in a two-species model for aggregation. A method to design both well-balanced and asymptotic preserving schemes is proposed. This method is tested to chemotaxis and radiative transport kinetic models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.