Modélisation de la structure de dépendance d'extrêmes multivariés et spatiaux

par Boris Béranger

Thèse de doctorat en Statistiques

Sous la direction de Michel Broniatowski et de Scott Sisson.

Soutenue le 18-01-2016

à Paris 6 en cotutelle avec l'University of New South Wales , dans le cadre de École doctorale Sciences mathématiques de Paris centre (Paris) , en partenariat avec Laboratoire de Statistique Théorique et Appliquée (laboratoire) .

Le jury était composé de Gérard Biau, Anthony Davison, Clément Dombry, Olivier Lopez, Simone Padoan.


  • Résumé

    La prédiction de futurs évènements extrêmes est d’un grand intérêt dans de nombreux domaines tels que l’environnement ou la gestion des risques. Alors que la théorie des valeurs extrêmes univariées est bien connue, la complexité s’accroît lorsque l’on s’intéresse au comportement joint d’extrêmes de plusieurs variables. Un intérêt particulier est porté aux évènements de nature spatiale, définissant le cadre d’un nombre infini de dimensions. Sous l’hypothèse que ces évènements soient marginalement extrêmes, nous focalisons sur la structure de dépendance qui les lie. Dans un premier temps, nous faisons une revue des modèles paramétriques de dépendance dans le cadre multivarié et présentons différentes méthodes d’estimation. Les processus maxstables permettent l’extension au contexte spatial. Nous dérivons la loi en dimension finie du célèbre modèle de Brown- Resnick, permettant de faire de l’inférence par des méthodes de vraisemblance ou de vraisemblance composée. Nous utilisons ensuite des lois asymétriques afin de définir la représentation spectrale d’un modèle plus large : le modèle Extremal Skew-t, généralisant la plupart des modèles présents dans la littérature. Ce modèle a l’agréable propriété d’être asymétrique et non-stationnaire, deux notions présentées par les évènements environnementaux spatiaux. Ce dernier permet un large spectre de structures de dépendance. Les indicateurs de dépendance sont obtenus en utilisant la loi en dimension finie.Enfin, nous présentons une méthode d’estimation non-paramétrique par noyau pour les queues de distributions et l’appliquons à la sélection de modèles. Nous illustrons notre méthode à partir de l’exemple de modèles climatiques.

  • Titre traduit

    Modelling the dependence structure of multivariate and spatial extremes


  • Résumé

    Projection of future extreme events is a major issue in a large number of areas including the environment and risk management. Although univariate extreme value theory is well understood, there is an increase in complexity when trying to understand the joint extreme behavior between two or more variables. Particular interest is given to events that are spatial by nature and which define the context of infinite dimensions. Under the assumption that events correspond marginally to univariate extremes, the main focus is then on the dependence structure that links them. First, we provide a review of parametric dependence models in the multivariate framework and illustrate different estimation strategies. The spatial extension of multivariate extremes is introduced through max-stable processes. We derive the finite-dimensional distribution of the widely used Brown-Resnick model which permits inference via full and composite likelihood methods. We then use Skew-symmetric distributions to develop a spectral representation of a wider max-stable model: the extremal Skew-t model from which most models available in the literature can be recovered. This model has the nice advantages of exhibiting skewness and nonstationarity, two properties often held by environmental spatial events. The latter enables a larger spectrum of dependence structures. Indicators of extremal dependence can be calculated using its finite-dimensional distribution. Finally, we introduce a kernel based non-parametric estimation procedure for univariate and multivariate tail density and apply it for model selection. Our method is illustrated by the example of selection of physical climate models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.