Domain decomposition like methods for solving an electrocardiography inverse problem

par Mohammed Azeez Hilal

Thèse de doctorat en Mathématiques et leurs interactions

Sous la direction de Abdeljalil Nachaoui et de Sabah Aziz Dhahir.

Le président du jury était Tamaz Tadumadze.

Le jury était composé de Fatima Mohamad Aboud.

Les rapporteurs étaient Florence Hubert, Pascal Omnes.

  • Titre traduit

    Méthodes de type décomposition de domaine pour la résolution d’un problème inverse en électrocardiographie


  • Résumé

    L’objectif de cette thèse est d’étudier un problème électrocardiographique (ECG), modélisant l’activité électrique cardiaque en utilisant un modèle bidomaine stationnaire. Deux types de modélisation sont considérées : la modélisation basée sur un modèle mathématique directe et la modélisation basée sur un problème inverse de Cauchy. Dans le premier cas, le problème directe est résolu en utilisant la méthode de décomposition de domaine et l’approximation par la méthode des éléments finis. Dans le deuxième cas le problème inverse de Cauchy de l’ECG a été reformulé en un problème de point fixe. Puis, un résultat d’existence et l’unicité du point fixe basé sur les degrés topologique de Leray-Schauder a été démontré. Ensuite, quelques algorithmes itératifs régularisant et stables basés sur les techniques de décomposition de domaine ont été développés. Enfin, l’efficacité et la précision des résultats obtenus a été discutés.


  • Résumé

    The aim of the this thesis is to study an electrocardiography (ECG) problem, modeling the cardiac electrical activity by using the stationary bidomain model. Tow types of modeling are considered :The modeling based on direct mathematical model and the modeling based on an inverse Cauchy problem. In the first case, the direct problem is solved by using domain decomposition methods and the approximation by finite elements method. For the inverse Cauchy problem of ECG, it was reformulated into a fixed point problem. In the second case, the existence and uniqueness of fixed point based on the topological degree of Leray-Schauder is showed. Then, some regularizing and stable iterative algorithms based on the techniques of domain decomposition method was developed. Finally, the efficiency and the accurate of the obtained results was discussed.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Nantes. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.