Étude de problèmes de diffusion inverse à énergie fixée pour des variétés asymptotiquement hyperboliques

par Damien Gobin

Thèse de doctorat en Mathématiques et leurs interactions

Sous la direction de François Nicoleau et de Thierry Daudé.


  • Résumé

    On étudie des problèmes de diffusion inverse à énergie fixée pour différents types de géométries ayant plus ou moins de symétries. On commence par obtenir un résultat de diffusion inverse local à énergie fixée pour l’équation de Dirac sans masse et sans charge sur des variétés asymptotiquement hyperboliques et à symétrie sphérique. Dans un second chapitre on s’intéresse aux trous noirs de type Reissner-Nordström-de Sitter qui sont des solutions à symétrie sphérique et électriquement chargées de l’équation d’Einstein. On obtient alors un résultat de diffusion inverse à énergie fixée pour l’équation de Dirac massive et chargée. Enfin, on s’intéresse à des variétés de Stäckel de dimension trois ayant la topologie d’un cylindre torique, satisfaisant la condition de Robertson et munies d’une structure asymptotiquement hyperbolique. Sur ces variétés on utilise la théorie de séparation des variables pour l’équation de Helmholtz et une version multivariable de la méthode de Complexification du Moment Angulaire afin d’obtenir un résultat de diffusion inverse à énergie fixée.

  • Titre traduit

    Inverse scattering problems at fixed energy in asymptotically hyperbolic manifolds


  • Résumé

    We study inverse scattering problems at fixed energy for different geometries with more or less symmetries. First, we obtain a local inverse scattering result at fixed energy for the massless and chargeless Dirac equation on asymptotically hyperbolic manifolds with spherical symmetry. In a second chapter, we are interested in Reissner-Nordström-de Sitter black holes which are spherically symmetric and electrically charged solutions of the Einstein equation. We then obtain an inverse scattering result at fixed energy for the massive and charged Dirac equation. Finally, we are interested in Stäckel manifolds of dimension three with the topology of a toric cylinder, satisfying the Robertson condition and endowed with an asymptotically hyperbolic structure. On these manifolds we use the variable separation theory for the Helmholtz equation and a multivariable version of the method of Complexification of the Angular Momentum in order to obtain an inverse scattering result at fixed energy.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (275 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p.265-275

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Nantes. Service commun de la documentation. BU Sciences.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.