Thèse soutenue

Modélisation de l'interaction champ électrique-particules diélectriques entre effets électromécaniques et aspects électrocinétiques : application aux cellules biologiques

FR
Auteur / Autrice : Abdellah Ogbi
Direction : Laurent NicolasRonan Perrussel
Type : Thèse de doctorat
Discipline(s) : Modélisation
Date : Soutenance le 09/02/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : Laboratoire : Laboratoire AMPERE (Ecully, Rhône)
établissement opérateur d'inscription : École Centrale de Lyon (1857-....)
Jury : Président / Présidente : Frédéric Bouillault
Examinateurs / Examinatrices : Laurent Nicolas, Ronan Perrussel, Damien Voyer
Rapporteurs / Rapporteuses : Olivier Chadebec, Clair Poignard

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans ce travail, nous nous intéressons à l’interaction champ électrique-particule diélectrique dans les phénomènes diélectrophorétiques, aussi bien d’un point de vue théorique que numérique. L’application à long terme concerne l’électro- manipulation des cellules biologiques. La compréhension de ces phénomènes nécessite une modélisation complète des mécanismes de polarisation qui régissent l’interaction champ-particule, et met en oeuvre des modèles électromécanique et électroci- nétique. Après avoir introduit les différents phénomènes et notions nécessaires, nous abordons la modélisation de la polarisation à l’aide de la théorie du potentiel et proposons une approche pour déterminer numériquement les coefficients de polarisation identifiés. Nous montrons que, si le développement multipolaire peut se réduire au premier ordre pour le cas d’une particule sphérique plongée dans un champ uniforme, les ordres supérieurs sont nécessaires pour les particules non sphériques. Nous montrons également comment un processus d’homogénéisation permet d’étudier les configurations de particules multicouches avec cette approche. Dans le cadre de l’étude électromécanique des phénomènes diélectrophorétiques, nous mettons ensuite en œuvre cette approche multipolaire. Deux applications traitées numériquement sont présentées. Nous y montrons la pertinence de cette approche pour calculer la force et le couple exercés sur une particule dans des situations où le champ appliqué présente de fortes non-uniformités, l’approche dipolaire classique se révélant beaucoup moins performante dans ce cas. La particule et son milieu de suspension étant en réalité deux milieux en contact mais non-indépendants, des phénomènes électrocinétiques se produisent à l’interface. Ces effets interfaciaux sont abordés en vue de les prendre en compte dans le phénomène d’électrorotation d’une cellule biologique. Nous modélisons le problème complet d’une particule sphérique chargée plongée dans un milieu de suspension et soumise à un champ tournant en prenant en compte les effets électroosmotiques. La résolution par éléments finis de ce problème couplé montre la pertinence de l’approche développée, notamment pour les basses fréquences.