Thèse soutenue

Développement d’une plateforme immunobiologique microstructurée intégrée à un microscope plasmonique pour le diagnostic de l’inflammation en temps réel

FR  |  
EN
Auteur / Autrice : Sinan Muldur
Direction : Christophe A. Marquette
Type : Thèse de doctorat
Discipline(s) : Biotechnologie
Date : Soutenance le 13/12/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Interdisciplinaire Sciences-Santé (Villeurbanne ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (Villeurbanne, Rhône)
établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Jury : Président / Présidente : Loïc Blum
Examinateurs / Examinatrices : Wilfrid Boireau
Rapporteur / Rapporteuse : Ingrid Bazin, Claire Rossi, Donald Martin

Résumé

FR  |  
EN

Dans son ensemble, les techniques de pointe actuelles procurent l'information nécessaire à une analyse approfondie de la cellule, ce qui nécessite cependant l’utilisation d’instruments et de plateformes analytiques différentes. Les biopuces à cellule permettent l’analyse des cellules vivantes en temps réel et constituent donc un outil important pour de nombreuses applications dans la recherche biomédicale telles que la toxicologie et la pharmaceutique.En effet, le suivi en temps réel de la réponse non-seulement physique mais aussi chimique des cellules, obtenue suite à des stimuli externes spécifiques et en utilisant un système d'imagerie cellulaire, peut fournir une meilleure compréhension des mécanismes et des voies de signalisation impliquées dans la réaction toxicologique.Le développement de tels dispositifs multianalytiques pour l'analyse biologique repose essentiellement sur la capacité de produire des surfaces fonctionnelles de pointe permettant une interaction et organisation contrôlée des cellules et d'autres entités telles que par exemple des anticorps ou des nanoparticules. Par conséquent, un grand effort technologique repose sur le développement des techniques permettant la création de motifs fonctionnels sur une surface de nature souvent inerte. Dans cette thèse, nous proposons deux techniques de micro- et nanofabrication permettant la création de motifs de cellules et d’anticorps sur un revêtement non-adhésif composé de poly (oxyde d'éthylène) (« PEO-like ») déposé par plasma. La première approche consiste à immobiliser par physisorption un micro-réseau de molécules adhésives de la matrice extracellulaire (par exemple la fibronectine) en utilisant des techniques d’impression par microcontact et par non-contact. La deuxième approche permet la création de motifs adhésifs sur la surface constitués de nanoparticules d'or (Au NPs) en utilisant des techniques d’impression similaire. L'immobilisation des Au NPs sur le revêtement « PEO-like » ne nécessite pas de modifications chimiques et est réalisé par une technique d'autoassemblage simple et irréversible. Ces surfaces d'or nanostructurées ont été testées pour l’analyse du phénomène de reconnaissance biomoléculaire et en tant que plateforme de culture cellulaire. Finalement, cette plateforme a été intégrée à un microscope plasmonique qui a permis, de façon préliminaire, la surveillance et la visualisation de la motilité d’une cellule unique, cela en temps réel et sans marquage, ainsi que la détection spécifique et sensible de protéines tests