Thèse soutenue

Mesures de risque multivariées et applications en science actuarielle

FR  |  
EN
Auteur / Autrice : Khalil Said
Direction : Véronique Maume-DeschampsDidier Rulliere
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 02/12/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Institut Camille Jordan (Rhône ; 2005-....)
Jury : Président / Présidente : Stéphane Girard
Examinateurs / Examinatrices : Fabio Bellini, Steven Vanduffel
Rapporteur / Rapporteuse : Hélène Cossette, Armelle Guillou

Résumé

FR  |  
EN

L'entrée en application depuis le 1er Janvier 2016 de la réforme réglementaire européenne du secteur des assurances Solvabilité 2 est un événement historique qui va changer radicalement les pratiques en matière de gestion des risques. Elle repose sur une prise en compte importante du profil et de la vision du risque, via la possibilité d'utiliser des modèles internes pour calculer les capitaux de solvabilité et l'approche ORSA (Own Risk and Solvency Assessment) pour la gestion interne du risque. La modélisation mathématique est ainsi un outil indispensable pour réussir un exercice réglementaire. La théorie du risque doit être en mesure d'accompagner ce développement en proposant des réponses à des problématiques pratiques, liées notamment à la modélisation des dépendances et aux choix des mesures de risques. Dans ce contexte, cette thèse présente une contribution à l'amélioration de la gestion des risques actuariels. En quatre chapitres nous présentons des mesures multivariées de risque et leurs applications à l'allocation du capital de solvabilité. La première partie de cette thèse est consacrée à l'introduction et l'étude d'une nouvelle famille de mesures multivariées élicitables de risque qu'on appellera des expectiles multivariés. Son premier chapitre présente ces mesures et explique les différentes approches utilisées pour les construire. Les expectiles multivariés vérifient un ensemble de propriétés de cohérence que nous abordons aussi dans ce chapitre avant de proposer un outil d'approximation stochastique de ces mesures de risque. Les performances de cette méthode étant insuffisantes au voisinage des niveaux asymptotiques des seuils des expectiles, l'analyse théorique du comportement asymptotique est nécessaire, et fera le sujet du deuxième chapitre de cette partie. L'analyse asymptotique est effectuée dans un environnement à variations régulières multivariées, elle permet d'obtenir des résultats dans le cas des queues marginales équivalentes. Nous présentons aussi dans le deuxième chapitre le comportement asymptotique des expectiles multivariés sous les hypothèses précédentes en présence d'une dépendance parfaite, ou d'une indépendance asymptotique, et nous proposons à l'aide des statistiques des valeurs extrêmes des estimateurs de l'expectile asymptotique dans ces cas. La deuxième partie de la thèse est focalisée sur la problématique de l'allocation du capital de solvabilité en assurance. Elle est composée de deux chapitres sous forme d'articles publiés. Le premier présente une axiomatisation de la cohérence d'une méthode d'allocation du capital dans le cadre le plus général possible, puis étudie les propriétés de cohérence d'une approche d'allocation basée sur la minimisation d'indicateurs multivariés de risque. Le deuxième article est une analyse probabiliste du comportement de cette dernière approche d'allocation en fonction de la nature des distributions marginales des risques et de la structure de la dépendance. Le comportement asymptotique de l'allocation est aussi étudié et l'impact de la dépendance est illustré par différents modèles marginaux et différentes copules. La présence de la dépendance entre les différents risques supportés par les compagnies d'assurance fait de l'approche multivariée une réponse plus appropriée aux différentes problématiques de la gestion des risques. Cette thèse est fondée sur une vision multidimensionnelle du risque et propose des mesures de nature multivariée qui peuvent être appliquées pour différentes problématiques actuarielles de cette nature