Thèse soutenue

Minimisations sous contraintes et flots du périmètre et de l’énergie de Willmore

FR  |  
EN
Auteur / Autrice : Francois Dayrens
Direction : Simon MasnouMatteo Novaga
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 01/07/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon (Lyon ; 2009-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Institut Camille Jordan (Rhône ; 2005-....)
Jury : Président / Présidente : Franck Boyer
Examinateurs / Examinatrices : Dorin Bucur, Pascal Frey, Antoine Lemenant
Rapporteurs / Rapporteuses : Antonin Chambolle, Benoît Merlet

Résumé

FR  |  
EN

Nous étudions la minimisation du périmètre et de l'énergie de Willmore en présence de contraintes ainsi que le flot, défini par les mouvements minimisants, de l'énergie de Willmore. Les problèmes d'optimisation géométriques et les flots que nous considérons reposent sur une propriété de semi-continuité inférieure que nous pouvons assurer en prenant l'enveloppe semi-continue inférieurement des énergies incluant les contraintes.Dans la première partie de la thèse, nous étudions trois problèmes d'optimisation. Le premier concerne le périmètre avec une contrainte de connexité. Le second est un problème de reconstruction de domaine à partir de sections planaires. Cette reconstruction est basée sur la minimisation du périmètre ou de l'énergie de Willmore avec des contraintes d'inclusion-exclusion. Nous développons un modèle de champ de phase pour implémenter numériquement la reconstruction en 2D et 3D à partir de contraintes d'inclusion-exclusion variées. Le troisième problème est l'étude des propriétés des courbes fermées, confinées dans un ouvert borné du plan, minimisant l'énergie élastique (Willmore).La deuxième partie étudie le flot de l'énergie de Willmore par les mouvements minimisants. Le flot pour une surface régulière est difficile à analyser, entre autre car il peut développer des singularités en temps fini. L'enveloppe semi-continue inférieurement et les mouvements minimisants permettent de définir un flot en temps long pour des surfaces moins régulières. Ce flot est étudié dans deux situations : pour la somme de l'énergie de Willmore et du périmètre dans le plan et pour l'énergie de Willmore des fonctions radiales à profil décroissant en toute dimension