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École doctorale IAEM Lorraine

Surface Realisation from Knowledge

Bases

THÈSE
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Résumé

Bases de Connaissances et Réalisation de Surface

Bikash Gyawali

La Génération Automatique de Langue Naturelle (GLN) vise à produire des textes ou

de la parole dans une langue humaine à partir d’un ensemble de données non-linguistiques.

A partir d’un ensemble de données et d’un but communicatif, la génération automatique

de textes exécutera trois sous-tâches principales: (i) sélection et organisation d’un sous-

ensemble de données d’entrée, lesquelles répondent au but communicatif; (ii) détermination

des mots à utiliser pour verbaliser les données d’entrée; et (iii) regroupement de ces mots

en un texte en langue naturelle verbalisant les données sélectionnées. La dernière sous-

tâche est connue comme la tâche de Réalisation de Surface (RS). Dans ce travail de thèse,

nous étudions la tâche de réalisation de surface quand les données d’entrée sont extraites de

Bases de Connaissances (BC). Ce qui motive la verbalisation de bases de connaissances est

le besoin, d’une part, de faciliter l’accès au contenu de celles-ci (motif pratique) et, d’autre

part, de développer des méthodes générales et fondées sur des principes linguistiques (motif

théorique).

Nous proposons deux nouvelles approches pour la réalisation de surface à partir de bases de

connaissances: une approche supervisée et une approche faiblement supervisée.

Approche supervisée: La Tâche Commune de Réalisation de Surface KBGen (KBGen

challenge) a été conçue avec le but de comparer et d’évaluer les systèmes de réalisation

de surface prenant en entrée des bases de connaissances. A partir d’un sous-ensemble de

données cohérent extrait de la base de connaissances, l’objectif de la tâche de réalisation de

surface est de produire des phrases complexes en anglais qui sont à la fois grammaticales et

naturelles. Dans cette tâche commune, le challenge met à disposition des participants un

petit (208 exemples) corpus parallèle de paires phrase / sous-ensemble de données de la base

de connaissances ainsi que des lexiques qui associent les symboles de la base de connaissances

à des mots et à des phrases. Dans la première partie de cette thèse, nous présentons une

méthode pour extraire une Grammaire d’Arbres Adjoints basée sur les traits (Feature Based

Lexicalized Tree Adjoining Grammar (FB-LTAG)) à partir d’un corpus parallèle de textes

et de données. La grammaire FB-LTAG résultante inclut une sémantique compositionnelle

basée sur l’unification et peut être utilisée par un réalisateur de surface existant pour pro-

duire des phrases à partir de bases de connaissances. Nous appliquons la méthode sur les

données de KBGen, nous étendons le réalisateur de surface existant en ajoutant un mécan-

isme de classement ainsi que de recherche en faisceau, et nous testons la grammaire obtenue

sur les données KBGen. Les évaluations expérimentales montrent que notre approche est



plus performante qu’une approche guidée par les données qui s’appuient sur une grammaire

probabiliste extraite automatiquement et que les phrases produites s’approchent de celles

produites avec une grammaire symbolique développée manuellement. En outre, une car-

actéristique de notre approche est qu’elle s’appuie sur une grammaire compacte (quelques

centaines d’arbres) et fondée sur des principes linguistiques (elle suit les principes séman-

tiques et de domaine de localité étendu dans les grammaires TAG). Nous montrons comment

cette caractéristique donne lieu à une approche hybride où une grammaire extraite automa-

tiquement peut être révisée manuellement et améliorer la couverture et la qualité des phrases

produites.

Approche faiblement supervisée: Une limitation importante de l’approche supervisée

décrite précédemment est qu’elle requiert l’existence d’un corpus parallèle alignant un frag-

ment de la base de connaissances avec une phrase verbalisant ce fragment. Dans la seconde

partie de cette thèse, nous explorons par conséquent une approche pour la réalisation de

surface à partir de données des base de connaisences qui utilise un lexique fourni mais ne

requièrent pas ce type de corpus parallèle. A la place, nous construisons un corpus à partir

de sources hétérogènes de textes liées au domaine des bases de connaissances pour lesquelles

la réalisation de surface est développée (dans ce cas, biologie) et nous utilisons ce corpus

pour identifier les lexicalisations possibles des symboles de la BC (classes et relations). Nous

utilisons ensuite ce corpus pour estimer les probabilités des lexicalisations des symboles de

la BC, des cadres de sous-catégorisation et des liens entre les différents arguments syn-

taxiques et sémantiques d’un évènement donné. Nous proposons des modèles probabilistes

pour la sélection de cadres de sous-catégorisation et associations syntaxiques/sémantiques

appropriés et nous utilisons une fonction attribuant un score qui utilise les probabilités pour

verbaliser une entrée donnée. Nous présentons des évaluations automatiques et des évalu-

ations réalisées par les humains des phrases générées et nous analysons les problèmes lié à

l’apprentissage automatique à partir d’un corpus non-aligné.

Dans chacune de ces approches, nous utilisons des données dérivées d’une ontologie biomédi-

cale existante comme référence d’entrée (à savoir la base de connaissances AURA [Chaudhri

et al., 2013]). Cependant, nos méthodes sont génériques et peuvent être facilement adaptées

pour une entrée à partir d’autres ontologies pour lesquels un corpus parallèle/non-parallèle

existe.



Abstract

Surface Realisation from Knowledge Bases

Bikash Gyawali

Natural Language Generation (NLG) is the task of automatically producing natural lan-

guage text to describe information present in non-linguistic data. Given some non-linguistic

data as input and a defined communicative goal, NLG involves three main tasks: (i) se-

lecting and structuring the relevant portion of input data which addresses the specified

communicative goal; (ii) determining the words that will be used to verbalise the selected

data; and (iii) mapping these words into a natural language text verbalising the information

contained in the selected data. The latter task is known as Surface Realisation (SR) and

in this thesis, we study the SR task in the context of input data coming from Knowledge

Bases (KB). The motivation for verbalising KB data comes from the need of having human

friendly access to such data (practical motive) and of developing generic and linguistically

principled approaches for doing so (theoretical motive).

We present two novel approaches to surface realisation from knowledge base data: a su-

pervised and a weakly supervised approach.

Supervised Approach: The KBGen challenge [Banik et al., 2012, Banik et al., 2013]

was designed to compare and evaluate surface realisation systems taking as input knowledge

base data. Given a knowledge base fragment which forms a coherent unit, the task was to

generate complex sentences which are both grammatical and fluent in English. The chal-

lenge made available to the participants a small (207 training examples) parallel corpus of

text and KB fragment pairs as well as lexicons mapping KB symbols to words and phrases.

In the first part of this thesis, we present a corpus-based method for inducing a Feature

Based Lexicalized Tree Adjoining Grammar (FB-LTAG) from a parallel corpus of text and

data. The resulting extracted TAG includes a unification based semantics and can be used

by an existing surface realiser to generate sentences from KB data. We apply our induction

method to the KBGen data, use an existing surface realiser and implement a ranking module

to test the resulting grammar on KBGen test data. Experimental evaluation shows that our

approach outperforms a data-driven generate-and-rank approach based on an automatically

induced probabilistic grammar; and yields results that are close to those produced by a

handcrafted symbolic approach. Moreover, a distinguishing feature of our approach is that

it relies on an automatically extracted grammar that is compact (a few hundred trees) and

linguistically principled (it follows the semantic and extended domain of locality principles

of Tree Adjoining Grammar). We show that this feature allows for a hybrid approach where

an automatically extracted grammar can be manually revised to improve both coverage and

output quality.



Weakly Supervised Approach. A strong limitation of the supervised approach just de-

scribed is that it requires the existence of a parallel corpus aligning a KB fragment with a

sentence verbalising that fragment. In the second part of this thesis, we therefore explore

an approach for surface realisation from KB data that uses a supplied lexicon but does not

require a parallel corpus. Instead, we build a corpus from heterogeneous sources of text

related to the domain of the knowledge base for which surface realisation is being developed

(in this case, biology) and we use this corpus to identify possible lexicalisations of the KB

symbols (classes and relations). We then use this corpus to estimate the probabilities of KB

symbol lexicalisations, of subcategorisation frames and of the linking between the various

syntactic and semantic arguments of a given event. We propose probabilistic models for the

selection of appropriate frames and syntax/semantics mapping and use a scoring function

that utilises the learnt probabilities to verbalise the given input. We present automatic and

human based evaluations of the output sentences and analyze issues relevant to learning

from non-parallel corpora.

In both these approaches, we use the KBGen data as a reference input. The KBGen data

is itself derived from an existing biomedical ontology (namely, the AURA Knowledge base,

[Chaudhri et al., 2013]). Our methods are generic and can be easily adapted for input from

other ontologies for which a parallel/non-parallel corpora exists.



Je dédie cette thèse à mon temps passé à Nancy.
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1 Introduction

1.1 Génération automatique de langue naturelle et réalisation de

surface(RS)

La Génération Automatique de Langue Naturelle (GLN) peut être définie comme

la tâche qui consiste ) produire un texte en langue naturelle à partir d’informations

codées dans un système de représentation machine (par exemple: les bases de don-

nées, les bases de connaissances, les formules logiques, etc.). La représentation et le

stockage des informations dans de tels systèmes sont souvent régis par des contraintes

formelles, ce qui les rend difficiles à utiliser pour les humains. La GLN se charge de

xi
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générer des descriptions textuelles de ces informations en langue naturelle (telles que

le français, népalais, etc.) et offre ainsi un moyen naturel et fluide de communication

pour les utilisateurs humains.

[Reiter and Dale, 2000] présente une architecture de référence pour les systèmes

GLN. Il s’agit d’une architecture en pipeline qui modélise la tâche de génération

en trois tâches séquentielles: Planification de Document, Planification de Surface et

Réalisation de Surface. La planification de document est la tâche d’identification

et de structuration des unités pertinentes à partir de l’entrée. La planification de

surface (appelé aussi micro-planification) se base sur cette tâche et explore ainsi

l’aspect linguistique des unités sélectionnées, comme par exemple, en identifiant les

formes de mots corrects pour décrire une entité dans l’entrée ou la détermination des

unités de contenu qui se réfèrent à l’autre. La réalisation de surface (RS) se charge

de produire des expressions de surface réelles qui verbalisent ces unités de contenu

dans des structures syntaxiquement correctes et sémantiquement cohérentes.

1.2 Entrées de RS

Selon l’application traitée, la nature des entrées de la réalisation de surface (RS)

différe. Trois grands types d’entrées sont généralement distingués. Le premier type

comprend une collection de données, soit des données brutes non structurées (con-

nues aussi sous le nom de “données plates), soit des données organisées par leurs

interrelations dans un ensemble d’enregistrements comme dans une base de données.

Des exemples de tels entrées RS ont été présentés dans [Reiter et al., 2005], [Belz,

2007], [Ratnaparkhi, 2000], [Angeli et al., 2010], [Konstas and Lapata, 2012b], etc.

Le deuxième type d’entrées comprend les représentations linguistiques (syntaxiques

ou bien sémantiques), comme par exemple, les arbres de dépendance et les représen-

tations de discours [Bohnet et al., 2010], [Wang and Zhang, 2012], [Kondadadi et al.,

2013], [Dethlefs and Cuayáhuitl, 2012a] etc. Enfin, le troisième type est constitué des

structures provenant de divers formalismes logiques, comme la logique de premier

ordre [Gerdemann and Hinrichs, 1990], les termes lambda [Lu and Ng, 2011] et les

bases de connaissances [Stevens et al., 2011], [Cimiano et al., 2013], [Ell and Harth,

2014], [Duma and Klein, 2013], etc.

1.3 Approches de RS

Dans la littérature, trois types d’approches ont été distinguées pour la réalisation

de surface : i) approches basée sur les chablons; ii) approches basées sur les gram-

maires et iii) approches d’associations directes. Dans les approches basées sur les

xii



1. Introduction

chablons, les structures linguistiques incomplètes contenant des trous sont utilisées.

Pour une réalisation de surface réussite, tous les trous dans les chablons doivent

êtres remplis à partir des données d’entrée, et ainsi générer une phrase. Plusieurs

approches de réalisation de surface basées sur les chablons ont été proposées : à

l’aide des chablons définies à la main [Van Deemter and Odijk, 1997], [McRoy et

al., 2003], [Androutsopoulos et al., 2013], etc., ou des chablons extraits automa-

tiquement à partir d’un corpus d’un domaine particulier [Duma and Klein, 2013],

[Ell and Harth, 2014], [Cimiano et al., 2013], etc.. Dans les approches basées sur

les grammaires, une grammaire est utilisée pour décrire l’association entre les don-

nées d’entrée et l’expression de surface. Une grammaire est un ensemble de règles

spécifiant la relation entre les fragments de l’entrée, les constituants syntaxiques

et les expressions de la langue naturelle. Pour la génération, les règles sont com-

binées selon les contraintes imposées par la grammaire afin d’obtenir un texte en

sortie. Plusieurs travaux suivent cet axe en utilisant : i) une grammaire spécifique

à une tâche [Elhadad, 1993], ii) une grammaire existante à large couverture [Car-

roll and Oepen, 2005], [Rajkumar et al., 2011], [Cahill and Van Genabith, 2006],

[Narayan and Gardent, 2012b], et iii) une grammaire créée automatiquement par des

méthodes d’apprentissage automatique [Lu and Ng, 2011], [Belz, 2007], [DeVault et

al., 2008b]. Enfin, les approches d’association directe transforment directement les

variables d’entrées en des expressions de surface à partir d’un corpus parallèle sans

considérer les relations syntaxiques et sémantiques [Bohnet et al., 2010], [Wang and

Zhang, 2012], [Ballesteros et al., 2015], [Guo et al., 2008], [Filippova and Strube,

2007], [Ringger et al., 2004], [Zhong and Stent, 2009], [Konstas and Lapata, 2012b],
[Wong and Mooney, 2007] etc.

1.4 RS à partir des bases de connaissances

Dans cette thèse, nous présentons notre travail sur la RS à partir d’une base de

connaissances (ontologie).

Une ontologie est une conceptualisation d’un domaine à travers des entités on-

tologiques, à savoir les concepts, les individus, les relations et les axiomes. Notre

choix d’ontologies pour la RS est motivé par des raisons théoriques et pratiques.

D’un point de vue théorique, ça nous aide à étudier les défis de la verbalisation posés

par les expressions logiques des ontologies et à explorer les méthodes qui les résol-

vent. D’un point de vue pratique, utiliser les ontologies permet de profiter de toutes

les technologies, les corpus, les ressources, et les outils proposés par la communauté

de web sémantique.

Notre choix d’adopter une approche basée sur une grammaire pour la réalisa-
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tion de surface est inspiré par des motivations linguistiques. Les deux autres types

d’approches (à base de chablons ou bien d’associations directes) discutées précédem-

ment ne peuvent pas modéliser les contraintes linguistiques (syntaxiques et séman-

tiques) qui régissent la bonne forme des phrases dans une langue quelconque. Ainsi,

dans ces approches, les contraintes linguistiques simples (e.g. l’accord sujet-verbe)

et les contraintes les plus complexes (e.g. la liaison entre les arguments syntax-

iques et sémantiques) sont tout simplement ignorées. Cependant, dans les approches

basées sur la grammaire, les données d’entrée sont associées à des constructions lin-

guistiques précisant leurs rôles syntaxiques, tels que les informations des cadres de

sous-catégorisations et catégories lexicales. La grammaire décrit un ensemble de

règles syntaxiques qui stipulent la combinaison des constituants syntaxiques (sélec-

tionnés par les données d’entrée) pour la production de la verbalisation correcte de

la totalité de l’entrée. De cette façon, une approche basée sur la grammaire modélise

la relation syntaxique parmi les données d’entrée et fournit un chablon linguistique

de la réalisation de surface.

En outre, pour éviter les problèmes associés aux grammaires construites manuelle-

ment (perte de temps et intervention massive d’utilisateurs) ou à la réutilisation des

grammaires à large couverture (difficultés de conversion de format [Callaway, 2003]

et [Busemann, 1996]), nous proposons un apprentissage automatique de la gram-

maire à partir d’un corpus d’un domaine donné. Comme le résument les Sections 2

et 3 et le détaillent les Chapitres 3 et 4, nous développons une approche pour ap-

prendre une grammaire à partir d’un corpus parallèle et non parallèle. Le chapitre 3

présente notre approche supervisée pour apprendre une grammaire associant entrée

et réalisation de surface à partir d’un corpus parallèle à l’aide d’un lexique fourni a

priori. Le chapitre 4 présente une autre approche pour la réalisation de surface basée

sur une grammaire qui utilise un lexique fourni mais qui ne nécessite pas un corpus

parallèle.

2 Verbalisation de triples – Une approche supervisée

Dans le contexte de la réalisation surface à partir de bases de connaissances, les

ressources créées manuellement (chablons ou grammaires) ont été largement utilisées.

Des travaux précédents, par exemple [Carenini et al., 1994], [Paris, 1988], [Aguado

et al., 1998], [Galanis et al., 2009] utilisent des chablons écrits manuellement pour

établir la correspondance entre le texte et l’information sémantique dans les bases

de connaissances. D’autres travaux tels que [Bontcheva and Wilks., 2004], [Williams

and Power, 2010] et [Cimiano et al., 2013] utilisent des règles spécifiées manuellement.

xiv



2. Verbalisation de triples – Une approche supervisée

Ici nous explorons un approche alternative dans laquelle nous induisons, à partir

d’un corpus parallèle alignant texte et données, une grammaire qui sera utilisé par un

réalisateur de surface. Étant donné un ensemble d’apprentissage constitué de paires

({t1, . . . , tn},S) où {t1, . . . , tn} est un ensemble de triplets issus d’ontologies, et S est

une phrase verbalisant cet ensemble de triplets, nous développons une méthodolo-

gie pour l’apprentissage de grammaires TAG, qui capture la correspondance entre

les triplets des bases de connaissance et le texte. De plus, nous connectons au-

tomatiquement les unités sémantiques de l’entrée aux constructions syntaxiques de

la grammaire extraite et imposons ainsi une intégration synaxique et sémantique

plus forte en utilisation une sémantique basée unification ([Gardent and Kallmeyer,

2003]). La méthode d’induction suit des principes linguistiques et permet d’obtenir

une grammaire compacte et facilement généralisable qui permet de traiter d’entrée

non vues dans le corpus d’apprentissage.

:TRIPLES (

(|Release-Of-Calcium646| |object| |Particle-In-Motion64582|)

(|Release-Of-Calcium646| |base| |Endoplasmic-Reticulum64603|)

(|Gated-Channel64605| |has-function| |Release-Of-Calcium646|)

(|Release-Of-Calcium646| |agent| |Gated-Channel64605|))

:INSTANCE-TYPES (

(|Release-Of-Calcium646| |instance-of| |Release-Of-Calcium|)

(|Particle-In-Motion64582| |instance-of| |Particle-In-Motion|)

(|Endoplasmic-Reticulum64603| |instance-of| |Endoplasmic-Reticulum|)

(|Gated-Channel64605| |instance-of| |Gated-Channel|))

:ROOT-TYPES (

(|Release-Of-Calcium646| |instance-of| |Event|)

(|Particle-In-Motion64582| |instance-of| |Entity|)

(|Endoplasmic-Reticulum64603| |instance-of| |Entity|)

(|Gated-Channel64605| |instance-of| |Entity|))

Sentence :

The function of a gated channel is to release particles from the endoplasmic reticulum.

Figure 1: Un exemple d’apprentissage avec le dataset KBGen

Notre entrée (le dataset KBGen ) est constitué de données issues d’une base de

données connaissances biologique existante (la KB Bio 101 [Chaudhri et al., 2013])

fournie par le défi KBGen [Banik et al., Banik et al., 2012, 2013]. L’objectif de ce défi

est d’évaluer la génération de grammaires à partir de bases de connaissances. Comme

[Angeli et al., 2010], nous utilisons le terme “scénario” pour décrire le contenu d’une

base de connaissance associé avec la phrase qui lui correspond. Le dataset KBGen est

constitué de 207 scénari d’apprentissages (un exemple est décrit dans la Figure1),

et de 72 scenari de test. Nous apprenons une grammaire qui connecte le contenu
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de la base de connaissance aux chaines de caractères des scenari d’apprentissage,

et utilisons les phrases dans les scenari de test comme phrase de référence pour

l’évaluation des phrases générées par notre approche.

Le dataset KBGen fournit également un lexique qui liste les mots et les phrases qui

peuvent être utilisés pour verbaliser les variables (entités et évènements) apparaissant

dans les ensembles d’apprentissage et de test. Le lexique définit un mapping entre

types d’évènements, verbes, leur formes fléchies et leur nominalisation ainsi qu’entre

entité, noms et forme plurielle. Par exemple, les entrées du lexiques pour les entités

et évènements présentés Figure 1 sont décrites dans la Figure 2 ci-dessous.

Release-Of-Calcium releases, release, released, release
Particle-In-Motion molecule in motion, molecules in motion
Endoplasmic-Reticulum endoplasmic reticulum, endoplasmic reticulum
Gated-Channel gated channel, gated channels

Figure 2: Example Entries from the KBGen Lexicon

Nous avons pour but d’apprendre les arbres dune grammaire d’arbres adjoints

lexicalisée à traits (Feature-Based Lexicalised Tree Adjoining Grammar, FB-LTAG)

chaque exemple de l’ensemble d’apprentissage, afin de construire une grammaire

qui pourra ensuite être utilisée pour la génération à partir des données de test. À

cette fin, nous traitons chaque scenario d’apprentissage séparément, la tâche pou-

vant être résumée comme suit. Premièrement, pour chaque scenario d’apprentissage,

nous alignons les variables de la base de connaissances aux chaines de caractères

de la phrase correspondante, en utilisant la correspondancde exacte ou presque ex-

acte d’une ou plusieurs entrées lexicales. Ensuite, nous définissons un ensemble

d’heuristiques et les utilisons pour projeter les variables de la base de connaissance

sur les noeuds syntaxiques de l’arbre syntaxique de la phrase. Une fois toutes les

projections effectuées, nous obtenons les sous-arbres ayant pour racines les noeuds de

projection des variables et nous les associons aux variables qui correspondent séman-

tiquement. Les motivations et les étapes pour extraire de tels arbres sont expliqués

en détails dans la Section 3.5.2.

Deuxièmement, nous découpons les arbres obtenus pour les variables évènemen-

tielles en des arbres plus petits, chacun représentant des arguments syntaxiques ou

sémantiques à un moment donné. Comme détaillé dans la Section 3.5.4, ceci permet

la création de nouveaux arbres TAG auxiliaires qui représentent des verbalisations

de relations sémantiques indépendantes (servant couramment de modifieurs option-

nels dans les phrases). En outre, cette stratégie permet de limiter un overfit de la

grammaire et de traiter de cas d’entrée où la combinaison des relations donnée n’a
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pas été vue dans les données de test.

Enfin, pour traiter les cas de test avec des variables d’évènement et d’entités non

detectées, nous définissons une procédure d’adaptation de la grammaire automatique

qui connecte un arbre existant dans la grammaire à l’entrée de test donné, en se

basant sur leur similarité sémantique. Dans la Section 3.5.5, nous montrons que

cette procédure fournit une couverture complète pour les 72 scenari de test, et que

nous pouvons adapter les arbres issus de différents ensembles d’apprentissage pour

traiter la même entrée de test.

Pour faire la génération avec la grammaire extraite, nous utilisons un réalisateur

de surface existant, GenI [Gardent et al., 2007]. Nous évaluons les phrases générées en

les comparant avec deux systèmes différents qui génèrent à partir du même dataset

KBGen – le système UDEL [Butler et al., 2013] (un système construit manuelle-

ment avec un système de règles) et le système IMS [Zarrieβ and Richardson, 2013]

(un système statistique utilisant une grammaire probabiliste). Les phrases écrites

par l’humain pour chaque scenario de test fournis par le dataset KBGen servent de

références pour comparer les décisions de chaque système. Une évaluation automa-

tique est réalisé en terme de score BLEU [Papineni et al., 2002] et une évaluation

par des humains a été menée sous la forme d’une enquête demandant à des utilisa-

teurs humains de noter les phrases générées par chaque système pour leur facilité

de compréhension (le text est il facile à lire?), leur qualité grammaticale (la phrase

est elle naturelle et bien formée?) et leur adéquation sémantique avec les phrases

de référence (Le sens de la phrase générée est il le meme que celui de la phrase de

référence?). L’analyse de ces deux évaluations montrent que notre système offre de

moins bonnes performances que le système UDEL construit manuellement, mais de

meilleures performances que le système statistique IMS.

Ainsi, en utilisant le dataset KBGen nous proposons une nouvelle méthode pour

extraction automatique de grammaires qui peuvent permettre de connecter séman-

tiquement et syntactiquement les triplets des bases de connaissances avec les chaînes

de caractères d’un texte. La grammaire résultante est constituée via des principes

linguistiques et possède des performances statisfaisantes au regard des autres ap-

proches symboliques et statistiques. Par ailleurs, notre méthode est générique et

peut être adaptée à toute base de connaissance.
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3 Verbalisation des événements n-aire dans les Ontolo-

gies – Une approche faiblement supervisée

Une forte limitation de l’approche supervisée qu’on vient de décrire est qu’elle néces-

site l’existence d’un corpus parallèle alignant un fragment KB avec une phrase qui

verbalise ce fragment. Dans la deuxième partie de cette thèse, nous explorons donc

une approche pour la réalisation de surface à partir des données KB qui utilise un

lexique fourni mais ne nécessite pas un corpus parallèle.

Notre entrée pour cette expérience, le KBGen+ dataset, est dérivée du KBGen

dataset discuté plus tôt. Dans le KBGen dataset, l’entrée est composée des unités de

contenu, dont chacune exprime un ensemble de relations entre les types de concepts

différents, à savoir événement-à-entité, événement-à-événement, entité-à-événement,

entité-à-entité et les relations propriétés-valeurs. Cependant, dans ce travail, nous

nous intéressons à décrire les événements en lien avec leurs arguments de type entité

seulement et, par conséquent, nous traitons le KBGen dataset pour produire tous

les fragments KB qui représentent un événement unique avec des rôles à des entités

seulement. Le KBGen+ dataset est donc une collection de descriptions d’événements

biologiques par lesquels une description d’événement est constituée d’un événement,

ses arguments et les n-plusieurs rôles reliant chaque argument à l’événement. Au

total, nous obtenons 336 descriptions d’événements pour notre KBGen+ dataset. Un

exemple KBGen+ entrée (seulement le :TRIPLES section) dérivée de l’entrée KBGen

de la Figure 1 est montrée dans la Figure 3 ci-dessous. Notez que nous créons les

phrases de référence pour notre KBGen+ dataset en ne retenant que les structures

de description de l’événement dans les phrases correspondantes du KBGen avec des

modifications minimales et analyse manuelle minutieuse.

:TRIPLES (

(|Release-Of-Calcium646| |object| |Particle-In-Motion64582|)

(|Release-Of-Calcium646| |base| |Endoplasmic-Reticulum64603|)

(|Release-Of-Calcium646| |agent| |Gated-Channel64605|))

Sentence :

A gated channel release particles from the endoplasmic reticulum.

Figure 3: Un Exemple de Scénario d’Apprentissage à partir du KBGen+ Dataset

Pour générer automatiquement des verbalisations en langage naturel des descrip-

tions d’événements dans le répertoire KBGen+ dataset, nous proposons une méthode

probabiliste qui extrait les possibles cadres de verbalisation à partir d’un large cor-

pus d’un domaine spécifique en biologie et qui utilise les probabilités à la fois pour
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sélectionner un cadre approprié étant donnée une description de l’événement et pour

déterminer la mappage entre les arguments syntaxiques et sémantiques. À cette

fin, nous commençons par la collecte des phrases provenant de plusieurs corpus du

domaine biomédical publiquement disponibles. Ceci inclu les corpus BioCause [Mi-

hăilă et al., 2013], BioDef1, BioInfer [Pyysalo et al., 2007], Grec [Thompson et al.,

2009], Genia [Kim et al., 2003a] and PubMedCentral (PMC)2. Nous incluons aussi

les phrases disponibles dans les des concepts nommés dans l’ontologie KB Bio 101

. Cette collection personnalisée de phrases sera le corpus sur lequel notre approche

d’apprentissage va se construire.

Pour identifier les phrases du corpus qui pourraient contenir des verbalisations

des événements et entités du KBGen+ , nous avons également besoin d’un lexique

mappant les variables événement et entité contenues dans KBGen+ à des mots ou

des phrases langage naturel. Pour cela, nous prenons le lexique fourni par le défi

KBGen et nous l’augmentons avec les entrées synonymes pour les événements et

entités du KBGen+ trouvés dans Mesh3 dans le vocabulaire BioDef. Mesh est un

dictionnaire existant à large couverture des termes dans les sciences de la vie et

fournit la synonymie des termes. BioDef est notre nom personnalisé pour vocabulaire

de synonymes que nous construisons automatiquement en analysant les entrées dans

la section 〈Synonyms〉 des pages html rampés d’un dictionnaire de biologie ouvert

à http://www.biology-online.org/dictionary/. The lexique résultant est donc

une fusion de toutes les entrées extraites de toutes les sources mentionnées ci-dessus

pour tous les événements et entités du KBGen+ .

Equipés avec les phrases et le lexique, nous procédons à extraire les cadres syntax-

iques pour les événements survenus dans le dataset KBGen+ tout en traitant chaque

événement à son tour. Pour chaque événement e dans le dataset KBGen+ nous

recherchons toutes les phrases S dans le corpus qui mentionnent une ou plusieurs

des formes de mot disponibles pour cet événement dans le lexique fusionné. Chacune

de ces phrases s ∈ S est ensuite analysée selon l’analyseur de dépendance Stanford
4 pour la structure de dépendance effondrée. Depuis l’arbre d’analyse de dépen-

dance résultant, nous extrayons la sous-arborescence t enracinée au nœud étiqueté

avec la forme de mot pour la variable d’événement et couvrant seulement ses dépen-

dances immédiats en charge (ie les nœuds enfants directs). Le cadre obtenu pour

l’événement e depuis cette phrase s est alors une chaîne composée de séquence or-

1Obtenu par analyse de la section 〈Supplement〉 des pages html rampé à partir de
http://www.biology-online.org/dictionary/

2ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
3http://www.nlm.nih.gov/mesh/filelist.html
4http://nlp.stanford.edu/software/lex-parser.shtml
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donnée de relations de dépendance se produisant dans t ainsi que le tag partie du

discours (pos) du nœud racine. Dans le cadre, nous généralisons les tags NN, NNS,

NNP et NNPS comme NP; les pos tags VBD, VBG, VBN, VBP et VBZ comme

VB et nous gardons le reste tel qu’il est. Par exemple, étant donné la phrase et son

arbre d’analyse de dépendance correspondant comme indiqué dans 4, un cadre VB

enraciné nsubj,VB,dobj est obtenu pour l’événement Block indiquant que la forme

du verbe block exige un sujet et un objet.

New immunosuppressive drug pnu156804 blocks IL-2-dependent proliferation
JJ JJ NN NNS VBZ JJ JJ

AMOD

AMOD

NN NSUBJ

DOBJ

AMOD

Figure 4: Exemple d’arbre de dépendances

La procédure d’extraction de cadre peut nous fournir une grande variété de mod-

èles de verbalisation syntaxiques pour chaque événement dans la dataset KBGen+ .

De plus, nous devons établir la correspondance syntaxique/sémantique entre la struc-

ture syntaxique dans des cadres et les rôles sémantiques dans la dataset KBGen+ pour

un système réussi. Pour résoudre ces problèmes, nous proposons trois différents mod-

èles probabilistes qui sont entrainés sur les cadres extraites et seront utilisés pour

générer les descriptions des événements de KBGen+ pendant la phase de test. Étant

donné F un ensemble de structures syntaxiques, E un ensemble de événements de

KBGen+ D un ensemble de noms de dépendance syntaxiques et R, un ensemble de

KB rôles, nous construisons trois modèles probabilistes génératifs, à savoir la P (f |e),

P (f |r) et P (d|r).

Le modèle P (f |e) avec f ∈ F et e ∈ E dénote la probabilité d’un cadre sachant

un événement. Elle est calculé comme suit:

P (f |e) =
counts ((f, e) ∈ Ce) + 0.1∑

f ′ (counts ((f ′, e) ∈ Ce) + 0.1)
(1)

où Ce représente la collection de toutes les cadres extraites de l’événement e à partir

du corpus de phrases; counts(f, e) est le nombre de fois que le cadre f est observée

pour l’événement e dans Ce et counts(f ′, e) est la fréquence de tout cadre f ′ observé

pour l’événement e dans Ce.

Le modèle P (f |r) avec f ∈ F et r ∈ R dénote la probabilité d’un cadre sachant
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un rôle. Elle est calculée comme suit:

P (f |r) =
counts ((f, r) ∈ Cr) + 0.1∑

f ′ (counts ((f ′, r) ∈ Cr) + 0.1)
(2)

où Cr représente la collection de tous les cadres alignés sur le rôle r; counts(f, r) est

le nombre de fois que le cadre f est observé pour le rôle e dans Cr et counts(f ′, r)

est la fréquence de tout cadre f ′ observé pour le rôle r dans Cr. Pour ce modèle,

nous supposons qu’un cadre de l’événement f extrait de certaines sous-arborescence

de dépendances t est aligné à un rôle r dans le total des descriptions d’événements

KBGen+ chaque fois que t a une entité e comme dépendante et l’entité e est lié via

le rôle r dans l’une des descriptions d’événements dans la dataset KBGen+ .

Le modèle P (d|r) vise à apprendre la relation syntaxe/sémantique pour verbaliser

le cadre sélectionnée. Il est calculé comme suit:

P (d|r) =
counts ((d, r) ∈ Cd) + 0.1∑

d′ (counts ((d
′, r) ∈ Cd) + 0.1)

(3)

où Cd représente la collection de toutes les dépendances alignées sur le rôle r; counts(d, r)

est le nombre de fois la dépendance d est observée pour le rôle r dans Cd et counts(d′, r)

est la fréquence de toute dépendance d′ observé pour le rôle r dans Cd. Pour ce

modèle, nous supposons qu’une relation de dépendance d présente dans une sous-

arborescence de dépendances t peut être aligné à un rôle r dans le total des entrées

à chaque fois que d lie une entité e en t et l’entité e est lié via le rôle r dans l’une des

descriptions d’événements de l’entrée. A l’opposition du modèle ’P (f |r), ici, nous

alignons les rôles de l’entrée à la relation de dépendance correspondante dans le cadre

plutôt qu’au cadre lui-même.

La tâche de la réalisation de surface pour verbaliser les descriptions d’événements

dans la base KBGen+ rend l’utilisation des modèles appris jusqu’ici. Etant donnée

une description de l’événement, nous identifions d’abord l’événement e et l’ensemble

des rôles r1. . . . . . rn qu’il contient. Nous définissons l’arité de l’événement e comme

étant le nombre de types de rôles distincts présents dans la description de l’événement.

Puis, à partir de tous les cadres présents dans Ce pour cet événement, nous ne sélec-

tionnons que ceux qui ont la même arité (ceci est égal au nombre de dépendances

syntaxiques dans le cas de cadres) que l’événement d’entrée. Tous ces cadres sont

des cadres candidats pour notre tâche de réalisation de surface. Nous voulons iden-

tifier les 5 meilleurs cadres pour lesquels nous considérons deux fonctions de score

alternatives (M1) et (M2).
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P (f |e)×
n∏

i=1

P (f |ri) (M1)

P (f |e)×
n∏

i=1

P (f |ri)×
n∏

i=1

P (di|r̂
f
i ) (M2)

où

(r̂f1 , . . . , r̂
f
n) = argmax

(s1,...,sn)∈P({r1,...,rn})

n∏

i=1

P (di|si)

et P({r1, . . . , rn}) est l’ensemble des permutations de roles.

Nous sélectionnons les 5 cadres ayant les meilleurs scores (à partir des deux équa-

tions (M1) et (M2)) et de déterminer la correspondance entre dépendances syntax-

iques que contient le cadre et les rôles sémantiques dans la description de l’événement

d’entrée pour lequel ce cadre a été sélectionné en utilisant la fonction (r̂f1 , . . . , r̂
f
n)

défini ci-dessus. Une fois une telle cartographie est connue, la tâche de génération est

réduite à remplir chaque fente de dépendance dans le cadre de l’entrée avec l’entité

lexicale liée du rôle correspondant (l’entité argument) dans l’entrée et préserver le

premier mot verbalisant l’évènement.

Nous évaluons les résultats obtenus à la fois quantitativement (évaluation Au-

tomatique) et qualitativement (évaluation Humaine) et nous analysons les problèmes

relatifs à l’apprentissage à partir de corpus non-parallèle.

4 Conclusion

Au total, nous proposons deux nouvelles approches motivées linguistiquement pour

la réalisation de surfaces à partir à partir de base de connaissances. Nous utilisons

une entrée échantillon provenant d’une ontologie biomédicale existante, mais nos

approches sont génériques et peuvent être facilement étendues à d’autres ontolo-

gies. Pour chacune de nos approche, nous présentons une description détaillée des

procédures impliquées, nous montrons les résultats obtenus nous les analysons. Nous

identifions les cas de problèmes éventuels, nous présentons les visions linguistiques

dans les causes des échecs et nous fournissons des indications pour une les prochaines

recherches.
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Chapter 1. Introduction

1.1 Thesis Scope

This thesis is about generating sentences from Knowledge Base data. Using an ex-

isting Knowledge Base (the KBBio101 ontology [Chaudhri et al., 2013]) as reference,

we present novel approaches to Surface Realisation from Knowledge Base (KB) data

that are generic and independent of a particular KB domain.

Surface Realisation is the task of automatically producing surface text from some

sentence size input. In a typical Natural Language Generation (NLG) system, it

constitutes the final phase of the generation task. The reference architecture for

NLG system proposed by [Reiter and Dale, 2000] presents a pipeline architecture for

text generation which models the generation task as three main activities in sequence

– Content Planning, Micro Planning and Surface Realisation. Content Planning is

related to choosing and organizing content units from the input that are relevant to

the communicative goal of the NLG system. Micro Planning builds upon this by

exploring the linguistic aspects of the selected content units; for example, identifying

word forms to describe an entity in the input or determining the content units that

refer to each other. Finally, Surface Realisation is responsible for producing actual

surface expressions that verbalise those content units in syntactically correct and

semantically coherent structures when put in the context of natural language text.

Consider a toy input (Figure 1.1) derived from a sample database of student

records to see how the different modules making up the NLG system come into play

while generating a simple sentence.

Academic Year Number of Students Pass % Attendance %
2009 200 52 44
2010 200 68 56
2011 200 80 32

Figure 1.1: A toy database containing student records

Assuming that we want to have a description of academic performance of stu-

dents in different years, the Content Planning module would select the attributes

“Attendance %”, “Pass %” and “Academic Year” and organize them in that order

while leaving out the “Number of Students” attribute since it contains redundant

information (it is the same throughout all the “Academic Year” and the “Pass %”

and “Attendance %” already abstract over the actual numbers). After the relevant

contents are selected, the Content Planning module may also decide on the choice

of discourse rhetoricts to link them (e.g. using “Despite” to express a contrast in

selected content). The Micro Planning phase might then determine the proper word
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forms to express the attributes and attribute values, for example, chosing the lexical

form “success” to denote the “Pass %” attribute and using gradable adjectives like

“low” or “large” to represent values below/above a certain threshold, etc. Finally, the

Surface Realisation module might map the output of the micro planning step into a

sentence such as (1) .

(1) Despite low attendance, a large number of students succeeded in 2011.

In this thesis, we focus our research objectives on the surface realisation task

alone and for this, we assume that the Content Planning and Micro Planning tasks

on the KB have been carried out beforehand. In practice, we accept a fragment of

the KBio101 ontology extracted by the KBGen organisers for the KBGen challenge
[Banik et al., 2012, Banik et al., 2013] as input to our surface realisation task. In this

dataset provided by the KBGen challenge, each input describes a coherent unit of

semantic content which can be verbalised by a single, possibly complex sentence that

is grammatical and meaningful and the set of content units express as many different

relations and concepts of different semantic types (events, entities, properties etc.)

as possible.

Figure 1.2 shows a sample KBGen input. As can be seen, the :TRIPLES section

specifies a single connected unit (possibly a graph) of binary relations between KB

entities (events or individuals), the :INSTANCE-TYPES section provides information

on the semantic types of the entities mentioned in the :TRIPLES section and the

:ROOT-TYPES section defines the data types of these entities. Basically, the appro-

priate content units for the generation of a, possibly complex, sentence have already

been determined and the lexicalisation information is provided. What remains is the

development of methods for generating surface text expressions from these content

units, such as the sentence shown in (2) for the input shown in Figure 1.2.

(2) The function of a gated channel is to release particles from the endoplasmic

reticulum.

We experiment and evaluate a supervised and a weakly supervised approach for

surface realisation from such inputs, discuss their feasibility to address different KB

inputs and provide pointers to further research directions. Learning from parallel

data (supervised learning) allows for immediate analysis of problems faced during

verbalisation since the parallel text serves as a quick reference upon which the output

from our system can be compared against. Also because the supervised approach

learns from parallel text, it promises on reflecting the updates which may occur in the

parallel text (in future) into the sentences generated by the system. Learning from

3
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:TRIPLES (

(|Release-Of-Calcium646| |object| |Particle-In-Motion64582|)

(|Release-Of-Calcium646| |base| |Endoplasmic-Reticulum64603|)

(|Gated-Channel64605| |has-function| |Release-Of-Calcium646|)

(|Release-Of-Calcium646| |agent| |Gated-Channel64605|))

:INSTANCE-TYPES (

(|Release-Of-Calcium646| |instance-of| |Release-Of-Calcium|)

(|Particle-In-Motion64582| |instance-of| |Particle-In-Motion|)

(|Endoplasmic-Reticulum64603| |instance-of| |Endoplasmic-Reticulum|)

(|Gated-Channel64605| |instance-of| |Gated-Channel|))

:ROOT-TYPES (

(|Release-Of-Calcium646| |instance-of| |Event|)

(|Particle-In-Motion64582| |instance-of| |Entity|)

(|Endoplasmic-Reticulum64603| |instance-of| |Entity|)

(|Gated-Channel64605| |instance-of| |Entity|)))

Figure 1.2: Example input from KBGen

non-parallel texts (weakly supervised learning), however, allows for a more general

setting for learning of generation resources whereby the need of having/authoring

the parallel text is eliminated.

1.2 Motivations

There are both practical and theoretical grounds for exploring surface realisation

from Knowledge Base data.

Knowledge Bases are software artifacts for storing, processing and inferring hu-

man knowledge in a computational framework. As such, Knowledge Bases encode

real world knowledge in terms of concepts and relations represented via logical ax-

ioms. This makes them well suited for computational representation and reasoning

but counter-intuitively less insightful for a human user to understand. Moreover,

the expressive complexity of Knowledge Bases is ever increasing (i.e. more complex

logical formalisms are emerging); the Knowledge Bases keep on dynamically evolving

(so as to reflect newly acquired knowledge over time) and they often embody a large

body of domain knowledge. In this context, a verbalisation system allows for auto-

matic expression of Knowledge Base data in the most natural and comprehensible

way to human, can scale up to the changing nature of Knowledge Base content and

provides the information in a piecemeal fashion as relevant to the communicative

goal set by the human user.

Thanks to the Semantic Web vision, Knowledge Bases (ontologies) have gained

huge popularity as knowledge modeling tool across several domains and the number
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of ontologies on the web has exploded in recent years. Ranging from the environmen-

tal domain (e.g. the SWEET5 ontology) to biological processes (e.g. the BioPAX6

ontology), linguistic descriptions (e.g. the GOLD7 ontology) and several others, on-

tologies provide ample opportunities for verbalising data from heterogeneous sources.

Existing research on verbalisation from ontologies have mainly been motivated by

the following three application scenarios :

• Description and Summary generation : Several works target the description

of fragments of ontology data (in the form of logical axioms expressed in

OWL or RDF standards) in response to different use-cases. [Androutsopou-

los et al., 2013], for example, generate multi-lingual (in English and Greek),

multi-sentences text describing classes and individuals in ontologies; [Duma

and Klein, 2013] present a natural language generation system producin short

text describing factual, non-temporal information of entities in DBpedia8 and

[Mellish and Pan, 2006] additionally take into account the knowledge inferred

from logical consequences of axioms in ontologies while verbalising them. Sim-

ilarly, research in aggregating logical axioms in ontologies for obtaining textual

summaries has been presented in [Bontcheva, 2005], [Williams and Power, 2010]

etc. Overall, such systems aim to reduce the work of domain experts by avoid-

ing the need to author resource definitions by hand and to provide an easy

access to the information content to casual users.

• Intelligent Tutoring systems : Verbalising Knowledge Base data with the goal

of tutoring human users in achieving some pedagogical goals have been reported

in the field of Computer-Aided Language Learning (CALL). In [Amoia et al.,

2012], for example, the Knowledge Base contents relevant to a given pedagog-

ical goal are selected and verbalised to make up sentences posing as exercise

questions to human users. Along these lines is the task of question/answer

generation from ontologies. [Papasalouros et al., 2008] generate multiple-choice

questions from ontology, [Gyawali, 2011] generate short answer texts to factoid

questions posed upon ontologies and [Lopez et al., 2007] present the AquaLog

system which derives answers to user queries from multiple ontologies.

• Human friendly interface : Following the idea presented in [Tennant et al.,

1989], [Hallett et al., 2007] proposed the “Conceptual Authoring” model which

5http://sweet.jpl.nasa.gov/
6http://biopax.org/
7http://linguistics-ontology.org/
8http://wiki.dbpedia.org/

5

http://sweet.jpl.nasa.gov/
http://biopax.org/
http://linguistics-ontology.org/
http://wiki.dbpedia.org/


Chapter 1. Introduction

describes the use of natural language text as a human interface to ontologies.

The basic premise of this model is that the underlying logical structures in

ontologies can be masked via natural language text during user interaction

with the ontology, for example while editing or querying the ontology. Such

an interface allows for proposing upcoming suggestions consistent with the

existing knowledge in the ontology in a human friendly way. Based on this

model, [Franconi et al., Franconi et al., 2010, 2011] present a natural language

based query interface to ontologies and [Perez-Beltrachini et al., 2014] extend

it by allowing for incremental query generation. [Evans and Power, 2003], on

the other hand, present a natural language interface for ontology authoring.

In sum, the development of the semantic web and the proliferation of Knowledge

Bases call for many applications in which natural language generation can signifi-

cantly aid human interactions. There are thus practical reasons to work on surface

realisation from Knowledge Bases. Importantly however, this large set of homoge-

neous, logical, data is also a great opportunity for the development, evaluation and

comparison of surface realisers. As is well known, the input to NLG can be varied

(numerical, logical, linguistic) which makes such comparisons difficult across het-

erogeneous data formats. The current availability of large quantities of Knowledge

Base data encoded in a uniform formalism (e.g., in RDF standard) makes such a

comparison now possible. There are thus both practical and theoretical reasons to

explore surface realisation from knowledge bases.

1.3 Research Issues

There are two main issues that need to be tackled when generating sentences from

Knowledge Base data.

First, the mapping between data and text must be accounted for.

As shall be detailed in the next chapter, existing approaches to surface realisation

address this requirement by using templates, grammars or a direct data-to-string

mapping. Templates are partially complete linguistic expressions containing gaps

(slots) which need to be filled up by the data coming from the input for a successful

generation. A grammar specifies a set of transformation rules; each one mapping

some portion of input data to corresponding syntactic constituents and the output

text is generated by combination of those rules. Finally, direct mapping approaches

learn a data-to-text mapping from parallel data-text corpora. The mapping learned
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is then used to generate new sentences from unseen test data. Several works based on

templates, grammars (both manually defined and automatically learnt) and direct

mapping models have been proposed in the literature and integrated with symbolic

as well as with statistical techniques.

In this thesis, we provide new methods for addressing this issues in the super-

vised and weakly supervised settings. In the supervised setting, we automatically

induce a grammar from a parallel data-text corpus and use it for surface realisation

using an existing surface realiser where the choice of the best output is guided by

a language model. In the weakly supervised setting, however, we use the supplied

lexicon to extract a set of lexicalisations and subcategorisation frames for Knowl-

edge Base symbols from non-parallel corpora and then use a probabilistic model to

predict the best mapping of the syntactic arguments in a subcategorisation frame to

the semantic arguments of the corresponding Knowledge Base symbol.

A second important issue that needs to be handled when generating text concerns

the ranking of the alternative sentences generated by the generation system. Because

of the paraphrasing power of natural language or because of the noise introduced by

the generation system, a strategy must be defined for choosing the best paraphrase

from among the many possible alternatives usually produced by the surface realisa-

tion of the input.

Using natural languages, humans can describe a given set of data in different contexts

and via different expressions making use of lexical, phrasal and syntactic paraphrases.

A successful surface realiser would mimick such “human-like” behaviour by producing

coherent and varied sentences. This calls for techniques utilising resources (gram-

mar and templates) that support alternative verbalisations and allow for fluency

rating of sentences so produced. However, integral to this aspect is the drawback of

over-generation that is, the production of overwhelmingly many sentences resulting

from very generic templates or poorly constrained combination rules in the grammar.

By allowing the same input to be verbalised in different ways, the approaches we

propose here allow for paraphrases. To choose the best output, we exploit a basic

ranking technique using a language model in the case of the supervised approach and

a general probabilistic model, in the case of the weakly supervised approach.

Overall, one distinguishing feature of the approaches proposed in this thesis, is that

we make explicit use of linguistic knowledge to guide surface realisation. Many cur-

7
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rent approaches to data-to-text assume either the use of fixed templates or a direct

data-to-text mapping (learned from a parallel corpus using some machine learning

technique). In such approaches, simple linguistic constraints such as subject-verb

agreement and more complex constraints such as the linking between syntactic and

semantic arguments, are mostly ignored. In contrast, we propose approaches for

surface realisation from Knowledge Base data which make explicit use of linguistic

constraints. In the supervised setting, we induce from a parallel data-text corpus

a Feature-Based Lexicalised Tree Adjoining Grammar which imposes strong con-

straints on the syntax-semantic interface i.e., on how the semantic arguments of a

Knowledge Base relation and the syntactic arguments of a verb or a relational noun

lexicalising that relation relate. Similarly, in the weakly supervised approach, we

propose a probabilistic model which makes use of syntactic frames extracted from

corpora and is designed to predict the linking between syntactic and semantic argu-

ments. In short, in this thesis:

we argue for surface realisation approaches which combine explicit linguistic con-

straints with statistical learning either through the combination of an automatically

extracted grammar with a surface realiser guided by a language model or through the

use of a probabilistic model combined with a frame extractor.

All these issues specific to the surface realisation task justify for a stand-alone re-

search; not necessarily in conjunction with the preceding phases (Content Planning

and Micro Planning) for a full scale NLG system. Indeed, in recent years, there has

been increasing interest in surface realisation. Thus, [Bohnet et al., 2010] discuss

surface realisation from the dependency trees of CoNLL-2009 shared task corpus

[Hajič et al., 2009]. The First Surface Realisation Shared Task [Belz et al., 2011]

was held in 2011 inviting research on surface realisation from dependency tree struc-

tures. More recently, the KBGen Challenge [Banik et al., Banik et al., 2012, 2013]

was held in 2013 as a challenge on surface realisation from Knowledge Base data.

Since then, many works have been inspired and focus on the surface realisation task

alone – [Wang and Zhang, 2012], [Guo et al., 2011], [Butler et al., 2013], [Zarrieβ

and Richardson, 2013], to name a few.

From the theoretical perspective, the aim of this thesis is to explore the issues

raised by surface realisation from Knowledge Base data and to propose methods

for addressing those issues in a linguistically principled way and with very minimal

manual effort.

8
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1.4 Contributions

In this thesis, we present two novel approaches to Surface Realisation from Knowl-

edge bases.

Supervised Approach: The KBGen challenge [Banik et al., 2012, Banik et al.,

2013] was designed to compare and evaluate surface realisation systems taking as

input Knowledge Base data. Given a Knowledge Base fragment which forms a co-

herent unit, the task was to generate complex sentences which are both grammatical

and fluent in English. The challenge made available to the participants a small (207

training examples) parallel corpus of text and KB fragment pairs as well as lexi-

cons mapping KB symbols to words and phrases. In the first part of this thesis, we

present a corpus-based method for inducing a Feature Based Lexicalized Tree Ad-

joining Grammar (FB-LTAG) from a parallel corpus of text and data. The resulting

extracted TAG includes a unification based semantics and can be used by an existing

surface realiser to generate sentences from KB data. We apply our induction method

to the KBGen data, use an existing surface realiser and implement a ranking module

to test the resulting grammar on KBGen test data. Experimental evaluation shows

that our approach outperforms a data-driven generate-and-rank approach based on

an automatically induced probabilistic grammar; and yields results that are close

to those produced by a handcrafted symbolic approach. Moreover, a distinguish-

ing feature of our approach is that it relies on an automatically extracted grammar

that is compact (a few hundred trees) and linguistically principled (it follows the se-

mantic and extended domain of locality principles of Tree Adjoining Grammar). We

show that this feature allows for a hybrid approach where an automatically extracted

grammar can be manually revised to improve both coverage and output quality.

Weakly Supervised Approach. A strong limitation of the supervised approach

just described is that it requires the existence of a parallel corpus aligning a KB

fragment with a sentence verbalising that fragment. In the second part of this the-

sis, we therefore explore an approach for surface realisation from KB data that uses

a supplied lexicon but does not require a parallel corpus. Instead, we build a corpus

from heterogeneous sources of text related to the domain of the Knowledge Base for

which surface realisation is being developed (in this case, biology) and we use this

corpus to identify possible lexicalisations of the KB symbols (classes and relations).

We then use this corpus to estimate the probabilities of KB symbol lexicalisations,

of subcategorisation frames and of the linking between the various syntactic and se-

9
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mantic arguments of a given event. We propose probabilistic models for the selection

of appropriate frames and syntax/semantics mapping and use a scoring function that

utilises the learnt probabilities to verbalise the given input. We present automatic

and human based evaluations of the output sentences and analyze issues relevant to

learning from non-parallel corpora.

In both these approaches, we use the KBGen data as a reference input. The KB-

Gen data is itself derived from an existing biomedical ontology (namely, the AURA

Knowledge base, [Chaudhri et al., 2013]). Our methods are generic and can be easily

adapted for input from other ontologies for which a parallel/non-parallel corpora

exists.

1.5 Thesis Roadmap

The organisation of the chapters making up this thesis is as follows.

Chapter 2 provides a broad overview of NLG and studies the surface realisation

task in detail. We discuss the relevant issues, the varying nature of inputs along with

existing approaches to deal with them and put the study of surface realisation from

ontologies into context.

In Chapter 3, we present a complete description of our supervised approach. In

this chapter, we explore the surface realisation task from a grammar based approach.

We learn a Feature based Lexicalised Tree Adjoining Grammar (FB-LTAG) with

unification semantics from parallel corpora of Knowledge Base data and text. We

present a novel method for inducing the grammar from corpora and use it for the

surface realisation task. The grammar we induce is driven by the linguistic principles

of TAG and takes into account both the syntactic and semantic information. We

evaluate the output sentences using both the automatic and human ranking metrics

and show that the grammar we extracted is conceptually simple, is adaptable to

unseen test cases and restricts the overgeneration problem.

In Chapter 4, we describe the weakly supervised approach in detail. This chapter

pursues the surface realisation task from a different perspective; i.e. the use of non-

parallel corpora to learn verbalisation of event descriptions in ontologies. Here, we

present a probabilistic approach which induces syntax/semantic mapping between

the Knowledge Base data and surface text from a large domain corpora. We ana-

lyze the output sentences for their semantic/syntactic accuracy and identify future

research avenues.

For both approaches, we depict the steps involved and we present an analysis of

10
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the problems faced.

Finally, in Chapter 5, we conclude by presenting a summary of our approaches

and providing pointers for further research.
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In this chapter, we present a broad study of Natural Language Generation (NLG)

task and provide a comprehensive overview of the background materials relevant to

our thesis. We introduce the NLG task, present high level architectures for systems

implementing NLG and discuss in details the various issues relevant to NLG task.

Then we focus on the study of the specific NLG issue we pursue in this thesis –

the Surface Realisation task. We categorize the SR inputs in terms of the different

data formats they use and present examples of each input type. Following this,

we present a detailed discussion of the various approaches in SR and highlight the

advantages and limitations of each approach. We then delve into the study of SR

from the specific input format we adopt for our research work – the Knowledge Bases

(ontologies). We present an introduction to ontologies and discuss existing works on

veralisation of ontologies.

2.1 The NLG Task

Natural Language Generation can be defined as the task of generating natural lan-

guage text to describe information encoded in machine representation systems (Eg:

Database, KnowledgeBase, Logical formulas etc.). Information representation/stor-

age in such systems are often in terms of complex relationship between data and

are governed by formal constraints, making them difficult for immediate human con-

sumption. It is thus very desirable that textual descriptions of information contained

in these systems are communicated in a natural and fluent way to human users. NLG

serves this purpose by generating textual descriptions of facts in some natural lan-

guage such as English or Nepali.

2.1.1 Issues to Solve

Such a mapping from meaning representations to natural language implies several

linguistically motivated transformations for a successful generation. In the following

sections, we summarise the linguistic and pragmatic issues inherent to this task.

2.1.1.1 Content Planning

Content Planning is the task of identifying and structuring the relevant units of the

input that can address the overall communicative goal of the generation system. It

is a crucial issue for any NLG system as it determines the scope of the system on

what it can express. Accordingly, content planning must be carried out in relation

to the communicative goals which the particular NLG application needs to meet.

14
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The Content Planning task can be divided into two subtasks. First is the Content

Selection subtask which determines what part of the total input should be expressed

in the output sentence. It involves identifying the content in the input which is

necessary to build up a suitable response given the specified communicative goal of

the NLG system. For example, given the communicative goal of defining a concept

in an ontology, the content planning step could possibly select its superconcepts,

subconcepts and siblings as relevant content units rather than its disjoint concepts.

Second is the Content Structuring subtask in which the selected contents are ordered

and organized into groups. It provides order to the sequence of information to be

described in the generated text. To continue the example just discussed, a possible

structuring scenario could be superconcepts followed by subconcepts followed by

siblings; the siblings could further be grouped as a single unit of information and so

on.

2.1.1.2 Micro Planning

The Micro Planning activity deals with the following issues :

• Lexicalisation : The content units identified from the content planning phase

are still in their non-linguistic form. The lexicalisation task is concerned with

identifying suitable lexemes (noun, verb, adjective inflections) for such content

units which will be used to make up the natural language text describing the

input. For example, in Sentence (1) verbalising the input from Figure 1.1, we

used the lexemes “large” and “low” respectively to describe the numerical values

above and below a certain threshold.

• Generating Referring Expressions (GRE) : In natural languages, different types

of noun phrases (Pronoun, Proper Nouns, Definite descriptions, demonstrative

NPs, Indefinite NPs, etc.) can be used to refer to an entity in the text. Such

noun phrases, called referring expressions, must adequately identify each entity

being talked about – both when the entity is first mentioned in the discourse

(Initial Reference) or when the entity is subsequently referred to after it has

been introduced once in the discourse (Subsequent Reference). GRE deals with

the task of generating such referring expressions in the output text. For exam-

ple, the use of a pronoun can introduce subsequent reference in multisentence

text.

• Aggregation : Aggregation is the task of combining multiple content units into

a common unit for linguistic expression. Typically, aggregation allows for the
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generation of ellided or coordinated structures. For example, the sentences

“John ate an apple. The apple was rotten.” can be aggregated using a par-

ticipial construction as in the sentence “John ate an rotten apple.”.

2.1.1.3 Surface Realisation

Surface Realisation is the task of producing surface text verbalising the information

output. By deploying a direct mapping approach or using templates or a fully speci-

fied linguistic grammar, it deals with the task of producing linguistically correct and

semantically precise verbalisations. As possibly many paraphrases can be realised

from the same input, the surface realisation module should be able to generate all

those while identifying the best for the final output. We defer the details to Section

2.2.

2.1.2 NLG Architecture

The NLG architecture is a conceptual model for the generation task. It provides a

high level framework for addressing the above mentioned issues and their interactions.

In most cases, the NLG architecture models the generation task as a sequential

process (discussed in Section 2.1.2.1). However, other NLG systems propose that the

issues are often an interplay and are expressed by a joint modeling system (discussed

in Section 2.1.2.2).

2.1.2.1 Sequential Architecture

The NLG Reference architecture as proposed in [Reiter and Dale, 2000] has long been

a widely used model for many NLG systems. The model is sketched in Figure 2.1

and demonstrates a pipeline structure for addressing the issues discussed in Section

2.1.1. Typically, given a communicative goal, the Document Planner first performs

the Content Planning task. The output from this step is the Document Plan which

is input to the MicroPlanner for resolving the issues with lexicalisation, GRE and

aggregation. The Text Specification so obtained is usually a deep syntactic struc-

ture and is input to the Surface Realiser module to generate actual text in natural

language.

2.1.2.2 Joint Architecture

The pipeline architecture presented above effectively implies that the modules are in-

dependent of each other and that each of the NLG issues can be handled in isolation.

However, in practice, it is often the case that one affects the other – the boundaries
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Communicative Goal

Document Planner

Document Plan

MicroPlanner

Text Specification

Surface Realiser

Surface Text

Figure 2.1: NLG Reference Architecture

of interaction between the modules disintegrate and mutually interact in a unified

setting. For example, the lexicalisation of a content unit does vary depending upon

the paraphrases produced by the surface realisation task. The defining aspect of

a joint architecture is, therefore, that the modules make their decisions based on

interrelated information.

[Danlos, 1989] present a study of several cases where such interrelated interactions

come into play. For example, the verb conjugation varies depending upon the type

of direct object used (in French, the auxilliary verb switches from avoir to être

whenever the direct object changes from noun to reflexive pronoun : Jean a détesté

Marie (John hated Mary) vs. Jean s’est détesté (John hated himself)), the surface

structure of the sentence needs to be changed to address dative transformations

(John gave [NP a book] [PP to Mary] vs. John gave [NP Mary] [NP a book]), the

referring pronoun should adhere to pragmatic constraints (The pronoun “it” in the

sentence “The dog jumped over the wall. It barked.” can only refer to the dog and

not the wall because the verb “bark” can only be used to describe animate actions)

etc. All these examples justify the need for a joint modeling architecture. Several

works implement joint architecture for generation – [Angeli et al., 2010], [Dethlefs

and Cuayáhuitl, 2012b], [Konstas and Lapata, 2012b], [Kondadadi et al., 2013] etc.

2.1.3 NLG Inputs

NLG systems can target generation from various data types. Historically, NLG

systems evolved from generating texts from database systems. Early applications
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such as the FOG system [Goldberg et al., 1994] generated forecasts summaries from

the weather database and SPOTLIGHT [Anand and Kahn, 1992] produced a textual

description of market analysis from the retail sales database. NLG systems have also

been built upon simple datasets of attribute-value pairs [Ratnaparkhi, 2000] and

time-series numerical data [Belz, 2007] in the past.

Databases are still a major input type for NLG applications ([Angeli et al., 2010],

[Konstas and Lapata, 2012b]) but NLG systems targeting different data sources have

also emerged – logical structures (as in [Lu and Ng, 2011], [Kondadadi et al., 2013],

[Cimiano et al., 2013], [Ell and Harth, 2014]), discourse instructions (as in [Dethlefs

and Cuayáhuitl, 2012b]) and linguistic structures (as in [Gali and Venkatapathy,

2009], [Bohnet et al., 2010], [Guo et al., 2008], [Wang and Zhang, 2012]).

2.2 Surface Realisation

We now focus our study on the SR task into which the main contribution of this

thesis also lies. In sections below, we present a comprehensive study of existing

methodologies and techniques in SR.

2.2.1 Inputs to SR

The input to the Surface Realisation task varies widely depending upon the NLG

application at hand. For example, in NLG systems targeting verbalisation of on-

tology axioms, the input to SR consists of logical axioms (OWL expressions, RDF

triples etc.) while in those that target verbalisation from databases, it involves the

database records (Attribute-Value pairs, Concept Maps etc.). The syntax, structure

and content of the input varies accordingly. Broadly, the input types to SR can be

classified into the following three categories :

1. Data : This type of input comprises of collection of data, either as an unstruc-

tured collection of raw data or organized by their interrelationships into a set

of records as in a database. The unstructured collection of data is also referred

to as “flat” data. The time-series data in weather forecast generation systems,

as described in [Reiter et al., 2005], and [Belz, 2007] and collection of attribute

value pairs, as described in [Ratnaparkhi, 2000] are examples of such input.

Databases, on the other hand, provide structure to data by specifying their

interrelationships. Such related sets of data, in the form of database records,

have been used for generation in [Angeli et al., 2010] and [Konstas and Lapata,

2012b].

18



2.2. Surface Realisation

2. Linguistic Structures : This kind of input comprises linguistically motivated

syntactic/semantic representations. Examples include grammatical structures

(such as the f-structures used in [Guo et al., 2008] and dependency trees in

[Wang and Zhang, 2012]) and discourse representations (as in [Kondadadi et

al., 2013] and [Dethlefs and Cuayáhuitl, 2012a]). Dependency trees from the

CoNLL-2009 shared task [Hajič et al., 2009] treebank have been used for input

to SR in [Wang and Zhang, 2012] and [Bohnet et al., 2010]. Also, [Basile and

Bos, 2011] present a discourse representation corpus, SemBank, intended for

NLG applications.

3. Logical Forms : Input of this type can come from various logical formalism.

[Gerdemann and Hinrichs, 1990], for example, take first order predicate logic

expressions as input. [Lu and Ng, 2011] take lambda expressions, [Androut-

sopoulos et al., 2013] and [Stevens et al., 2011] take OWL axioms, and [Cimiano

et al., 2013], [Ell and Harth, 2014] and [Duma and Klein, 2013] take RDF triples

as input. In this thesis, we present our work on SR taking RDF triples from

biomedical ontology as input.

2.2.2 Approaches to SR

Several appproaches to surface realisation have been proposed in the literature de-

pending on the varying input type and the design requirements of NLG systems.

Below, we outline these approaches and discuss in details the issues relevant to each

of them.

2.2.2.1 Template Based Approaches

Template based approaches are based upon utilizing partially complete linguistic sur-

face structures for generation. Such structures, called templates, contain gaps that

should be filled with the appropriate content for a successful generation. Template

based surface realisation can be illustrated with a simple example of verbalisation

from a toy database. Figure 2.2a presents a small database of bus schedules. A tem-

plate like the one shown in Figure 2.2b can be designed to generate natural language

text describing the schedule of each bus. This template provides a partially complete

text containing gaps that need to be filled with data (the corresponding variables

supplying those data are shown in bold) from the input to generate sentences as

shown in Figure 2.2c.

An early example of such template based approach is the mail-merge feature

available in various document processing applications (such as in the MS-WORD
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Bus No. Origin Destination Duration

B100 Paris Nancy 5 hours
C23 London Paris 8 hours

(a) A toy database of bus schedules

The bus _____(Bus No.) departing from _____(Origin) reaches to
_____(Destination) in _____(Duration).

(b) Example template for describing bus schedules

Generated Sentences :
The bus B100 departing from Paris reaches to Nancy in 5 hours.
The bus C23 departing from London reaches to Paris in 8 hours.

(c) Example sentences generated using the template in 2.2b

Figure 2.2: Depiction of Template based Surface Realisation Approach

application).

Templates can be predesigned and handcrafted particular to the NLG system by

considering the end requirements of the system. In such cases, considerable human

time and expertise is needed both for determining the best verbalisation pattern and

the content units from the input that can fill up the empty gaps in the template.

[Van Deemter and Odijk, 1997], [McRoy et al., 2003] and [Androutsopoulos et al.,

2013], for example, describe generation from predesigned templates.

An alternative approach to handwritten templates is extracting templates from

domain related corpus. It involves learning templates for generation by observing

the alignment between input data and surface text (Data-to-Text alignment) in the

corpus.

Data-to-Text alignment is the process of matching input data to their surface

text expression in sentences of a given corpus. It aims at finding exact or near-exact

string match in the sentences of the corpus. The string matching can either tar-

get the input data itself (in case of linguistic input or whenever the sentences are

annotated with the occurrences of input data) or attempt to match one of several

different verbalisations possible for the data (in case of non-linguistic input). In the

latter case, a lexicon mapping the input data to its several possible verbalisations is

usually available with the input and the alignment involves matching one or several
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of such possibilities. For example, in [Duma and Klein, 2013] the input consists

of natural language words which are aligned to corpus text via exact or near-exact

string matching; in [Marciniak and Strube, 2005], the annotated sentences help direct

alignment and in [Cimiano et al., 2013] lexical entries for input are used in determin-

ing the alignment. Related works have also been described for non-linguistic input

lacking lexical entries – [Liang et al., 2009] propose a probabilistic method for text

alignment of database values; [Trevisan, 2010] tokenize, pos-tag and use hand-written

pattern rules to lexicalise ontology resources and [Walter et al., 2013] propose a semi-

automatic creation of lexicon for approximating the alignment of ontology concepts

to words.

Additionally, the alignment can be targeted upon parallel or non-parallel corpora.

In this thesis, we shall distinguish between alignment technique in parallel corpora

(referring it as Supervised Approach) against that in non-parallel corpora but using

a supplied lexicon (referring it as Weakly Supervised Approach). This distinction

is important for two main reasons. First, the parallel corpora ensures that each

instance of the input is verbalised by at least one sentence of the corpus and second,

the sentence corresponding to an input instance completely verbalises all the data

contained in that instance. Alignment from non-parallel corpora, on the other hand,

doesn’t guarantee these premises and is therefore prone to alignment failures.

Data-to-Text alignment technique forms an integral component of corpus based

learning methods which target automatic learning of grammar/templates to represent

the input by observing such correspondence in the training set examples. Crucially,

the first step is the Data-To-Text Alignment which determines the match of data from

the input to strings in the sentence (from a parallel or a non-parallel text corpora).

Then, an appropriate grammar/templates is extracted by capturing the string of

text between those alignments to represent the relationship expressed between the

corresponding data of the input. This provides the training grammar/templates

which is augmented via induction techniques for addressing the test data.

Corpus based learning offers a number of advantages over handcrafted or reusable

grammar/templates approach – i) it is more robust, ii) has a larger coverage iii) is

language and domain independent and iv) can express more flexibility in terms of

linguistic expression compared to the rigid handwritten approaches. The downside

is that it requires a big corpus and the high variety of output can sometimes over-

whelm the capacity of the system. Addressing these limitations, the corpus (both

parallel and non-parallel) being used for learning is ever growing in the NLP com-

munity and the high amount of output (i.e. overgeneration) is often constrained by

some symbolic or statistical approaches particular to the application. To rank the
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extracted templates, [Lu and Ng, 2011] for example use a log-linear model, [Varges

and Mellish, 2001] uses A* search based pruning and [Kondadadi et al., 2013] an

SVM model.

Several works describe corpus based templates learning for surface realisation us-

ing the Data-to-Text alignment technique. [Ratnaparkhi, 2000] align attribute values

to word forms in the sentences and extract phrase templates. [Kan and McKeown,

2002] learn lexicalised phrase templates for semantic predicates from examples in

annotated training corpus. [Kondadadi et al., 2013] perform alignment of semantic

predicates and entity names from DRS structure of corpus sentences to create tem-

plates. [Angeli et al., 2010] extract templates to describe content from databases and

[Duma and Klein, 2013], [Ell and Harth, 2014], [Cimiano et al., 2013] present cor-

pus based learning approach in extracting templates for verbalising RDF data. All

these works apply supervised data-to-text alignment procedure with the exception

of [Cimiano et al., 2013] who use a non-parallel corpora crawled from the web.

2.2.2.2 Grammar-Based Approaches

In grammar-based approaches, a grammar is used to mediate the mapping between

input data and surface text expression. A grammar consists of a set of rules, spec-

ifying the relation between portions of the input data, syntactic constituents and

natural language expressions. For generation, the rules are combined as per the con-

straints imposed by the grammar and an output text is obtained. Thus, the grammar

acts as an interface between the input data and the output surface text and models

the syntactico-semantic interactions between them.

Surface realisation based on various grammar formalisms have been studied.

Thus, [Rajkumar et al., 2011], [White et al., 2007] use Combinatory Categorical

Grammar (CCG), [Carroll and Oepen, 2005] use Head-Driven Phrase Structure

Grammar (HPSG), [DeVault et al., 2008a], [Narayan and Gardent, 2012b] use Tree

Adjoining Grammar (TAG) and [Zarrieß et al., 2011] use Lexical Functional Gram-

mar (LFG) based approaches.

Like templates, grammars used for surface realisation can be built in several ways.

They can be predesigned and handcrafted manually specific to the NLG application

at hand as is the case for instance, in the Functional Unification Grammar (FUG)

discussed in [Elhadad, 1993]. In building such task-specific grammar, however, con-

siderable human expertise and time is necessary and the grammar so developed

eventually becomes limited to the particular application.

An alternative method is to reuse an existing wide-coverage grammar. Several

wide coverage grammars have been developed in various formalisms and SR modules
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can benefit by simply reusing them, for free. [Copestake and Flickinger, 2000], for

example, present the LinGO English Resource Grammar in HPSG formalism, [Hock-

enmaier and Steedman, 2007] present CCGbank in CCG formalism, [Doran et al.,

1994] present XTAG in TAG formalism and [King et al., 2003] present PARC 700

DEPBANK in dependency grammar formalism. Surface realisation based on reusing

such wide-coverage grammar have been discussed in [Carroll and Oepen, 2005], [Ra-

jkumar et al., 2011], [Cahill and Van Genabith, 2006], [Narayan and Gardent, 2012b]

etc.

A downside of reusing an existing grammar is that it may be not be directly

compatible with the input SR format and thus some format conversion becomes nec-

essary. Indeed, such translation can be quite substantial and may demand as much

effort as to handcraft the grammar particular to the application [Callaway, 2003].

[Busemann, 1996] outline the causes of such inadequacies – i) many wide-coverage

grammars are designed in consideration to parsing as their primary application and

thus adapting them for generation, which is seen as a reverse task of parsing, can be

difficult [Russell et al., 1990] ii) they may not sufficiently address needs specific to

generation task such as presentation formats in tables, list etc and iii) they mostly

model a syntactic structure and the semantic-syntactic mapping as needed for surface

realisation may not be tightly integrated.

To circumvent such limitations, automatic grammar learning from corpus based

examples have been proposed. As discussed earlier in Section 2.2.2.1, the Data-to-

Text alignment comes into play in selecting text fragments representing data items

of the input. Then, the text spans in between are extracted and encoded via rules in

a chosen grammar framework. Several existing works describe this approach in the

context of differing input types and using different grammars. For example, [Lu and

Ng, 2011] learn an SCFG grammar to transform lambda expressions to surface text

from the training examples. They align lambda sub-expressions to word sequences

and learn constituent rules such that the training sentence is obtained when applying

reduction operations (alpha and beta conversions) on the constituents. [Belz, 2007]

accept collection of data values as input and present a semi-automatic approach in

extracting CFG grammar for generation. They build up the terminal production

rules automatically by aligning data to words chunks in the training sentences and

manually author the non-terminal rules for combination of such word chunks. Finally,

[DeVault et al., 2008b] present a supervised corpus based learning of probabilistic

Tree Adjoining Grammar by aligning frames (produced by a dialog system) with

sentences in the training set. To our knowledge, none of the existing works describe

grammar learning in a non-supervised setting.
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2.2.2.3 Direct Mapping Approaches

An approach to surface realisation that is neither template based nor based on gram-

mar is the direct mapping approach. Most of the existing works in this domain deal

with linearizing unordered dependency tree to yield grammatical sentence with cor-

rect word order. [Bohnet et al., 2010] present such an approach for surface realisation

from the dependency trees of CoNLL-2009 shared task corpus [Hajič et al., 2009] and

[Wang and Zhang, 2012], [Ballesteros et al., 2015] discuss surface realisation from

the dependency trees of the 2011 Surface Realisation Shared Task corpus [Belz et

al., 2011]. Similarly, [Guo et al., 2008] perform linearization upon Lexical Func-

tional Grammar f-structures considering them as unordered dependency representa-

tion and [Filippova and Strube, 2007] linearize the dependency parse of sentences

from Wikipedia for generation. Other notable works include those of [Ringger et al.,

2004] and [Zhong and Stent, 2009] where the authors present statistical models for

ordering the unordered tree of syntactic constituents (in German and French) and

positioning of adverbials in sentences (in English), respectively.

Since the inputs in such works already bear complete lexical information (or lack

in few grammatical information such as functional nodes in [Ballesteros et al., 2015]

and dependency relations label in [Gali and Venkatapathy, 2009]), the major con-

tribution in the direct mapping approach lies in finding the best ordering strategy.

Accordingly, both stochastic and rule-based techniques have been proposed for deter-

mining the optimal word order in output sentences. [Gali and Venkatapathy, 2009]

and [Guo et al., 2008], for example, apply ngram filtering, [Bohnet et al., 2010] and

[Wang and Zhang, 2012] propose rule based linearization algorithm and [Ringger et

al., 2004] and [Zhong and Stent, 2009] use linguistic features (syntactic head infor-

mation, semantic relations between words etc.) for building probabilistic decision

models. The latter systems ([Ringger et al., 2004], [Zhong and Stent, 2009]) which

classify their word ordering decisions based on linguistic features are also referred

to as classification-based SR and [Rajkumar and White, 2014] remark that there is

not a clear distinction between such systems and the ones that work on linearising

dependency tree structures since both of them perform incremental word ordering

decisions over competing phrases rather than rank the final sequences of all word

orderings possible.

Another line of work where a direct mapping is learned between input data and

natural language can be found in the work of [Konstas and Lapata, 2012b] and
[Wong and Mooney, 2007]. [Wong and Mooney, 2007] learn an SCFG grammar for

mapping input (in variable-free tree representation such as CLANG) to surface text.
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They then invert an existing semantic parser (WASP [Wong and Mooney, 2006])

for generation. Similarly, [Konstas and Lapata, 2012b] learn a Probabilistic Context

Free Grammar (PCFG) from parallel data which captures the mapping between KB

elements and natural language strings. Contrary to the grammar-based approach,

in these cases, the grammar extracted from the data does not describe the syntax

of natural language but directly, the relation between KB elements and natural

language strings.

2.2.3 Discussion

Models that directly map the input to text (using templates as discussed in Section

2.2.2.1 or with direct mappings as discussed in Section 2.2.2.3) are short of linguistic

knowledge that underlie the nature of human communication. In other words, such

models are unaware of important linguistic constraints (both syntactic and semantic)

that govern the well-formedness of utterances in any language. In Section 2.2.2.1, we

presented templates which, in essence, simply fill up the gaps in the predetermined

sentence structures with the data from the input. Either handwritten or data-driven

(i.e. extracted from domain related corpus by observing the alignment between input

data and sentences in the corpus), they do not support the modeling of syntactic/se-

mantic relations among data present in the input. The same is true for the direct

mapping approaches we discussed in Section 2.2.2.3. There, we presented the models

for reordering of words in unordered dependency trees and extraction of rules for di-

rectly associating data in the input to strings as observed in the parallel texts. Both

of there approaches do not accommodate linguistic information into them. In such

approaches, simple linguistic constraints such as subject-verb agreement and more

complex constraints such as linking between syntactic and semantic arguments are

simply ignored.

In grammar-based approaches, however, the input data is mapped to linguistic

constructs specifing their syntactic roles, such as the subcategorisation information

and part-of-speech categories. The underlying grammar also specifies a set of lin-

guistic rules which regulate the combinations of the syntactic constituents (selected

by the input data) so as to produce linguistically correct verbalisation of the total

input. In this manner, a grammar-based approach models the syntactic relation

among data present in the input and allows for linguistically informed model of sur-

face realisation. Further, it offers a number of advantages as compared to the other

approaches.

First, grammars provide a principled approach for generalisation. For example,

in a Lexicalised Tree Adjoining Grammar, the same grammar entry (tree) can be
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associated to different lexical items (such as loves, hates, likes etc.) realising the same

syntactic function (transitive verb). This not only makes the grammar compact but

also allows a generation system to make linguistically informed guess on mapping of

unseen data (e.g. the relation love) to an appropriate grammar entry based on the

mapping known for some other data (e.g. the relation hate) serving similar syntactic

function. This is in contrast to the other approaches which are restricted to only

what has been explicitly defined or observed in the training data.

Second, grammars present a modular approach to representation and composition

of syntactic constituents in sentences, for example, by building separate grammar

entries for core subcategorisation frames and optional modifiers but defining rules

that allow them to compose, as needed, to form sentences of desired verbosity. Thus

by adopting a grammar-based approach, one can map separate portions of input data

to partial sentence structures in turn which can then be combined for generation. In

general, one can expect that such mappings can be either be found for the entire input

(thereby leading to a complete successful generation) or some portions of the input

can’t be mapped (thus leading to a partial generation). This is clearly an advantage

over other approaches – templates, for example, are non-compositional in nature

(although they can represent complex recursive structures, as noted by [Van Deemter

et al., 2005]) and can therefore be used only when they exactly cover the total input.

By being able to build upon partial structures rather than attempting a complete

matchup procedure, grammar-based approach can be said to be more robust form of

surface realisation technique.

Finally, grammar-based approaches to surface realisation can benefit from a range

of existing wide-coverage grammars. [Copestake and Flickinger, 2000], for example,

present the LinGO English Resource Grammar in HPSG formalism, [Hockenmaier

and Steedman, 2007] present CCGbank in CCG formalism, [Doran et al., 1994]

present XTAG in TAG formalism and [King et al., 2003] present PARC 700 DEP-

BANK in dependency grammar formalism. Such grammars help the generation sys-

tems by providing wider coverage and eschewing the need of authoring task-specific

grammars which are known to be manually intensive and time consuming. However,

as discussed in Section 2.2.2.2, such wide-coverage grammars may not always be

directly compatible with the input SR format at hand and therefore techniques for

automatic grammar learning from corpus based examples have been proposed more

recently.

An important practical issue concerning the grammar-based approaches to sur-

face realisation is the choice of the best verbalisation from the set of multiple alter-

native sentences such systems can generate. Because the mappings (for the input)
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proposed by grammars reflect the expressive power of natural languages (paraphras-

ing, passivisation etc.), more than one paraphrases may be obtained for the same

given input. Therefore, grading of the alternative verbalisations becomes necessary

and this has led to the so called hybrid models of surface realisation whereby the gen-

erated sentences are ranked using some statistical or rule based criteria. Historically,

the use of n-gram based ranking on the final set of output sentences to determine

the best ouput has been widely reported for many existing works. However, as [Ra-

jkumar and White, 2014] note, this approach is not very effective in dealing with

sentences involving many constituents and many recent works incorporate syntatic

knowledge from linguistic theory to obtain better ranking results. [Cahill et al.,

2007], for example, use log-linear model composed of features in the f-structure (in

LFG formalism) and [Nakanishi et al., 2005], [White and Rajkumar, 2009] use a

combination of syntactic features (POS information, distance between head words,

lexical entries of head words etc.) inspired from the works in HPSG parsing and

CCG parsing, respectively to rank the output sentences. On the other hand, ranking

decisions that operate on intermediate levels of realisation procedure (i.e. without

first enumerating all the candidate generations) have been discussed in [Carroll and

Oepen, 2005] (using conditional Maximum Entropy model built on features described

in [Toutanova and Manning, 2002]), [DeVault et al., 2008a] (using beam search which

deploys weighted features learnt from training data), [Narayan and Gardent, 2012a]

(by constricting the grammar search space using polarity filtering ([Gardent and

Kow, 2005])) etc.

In this thesis, we propose two new grammar-based approaches to surface realisa-

tion. In Chapter 3, we present an automatic approach to extracting grammar from

training examples (parallel data/text corpus) and use it for surface realisation of

test inputs. Our approach is closest to [DeVault et al., 2008b] in terms of extracting

a grammar encoding syntax and semantics from training examples but enforces a

tighter syntax/semantics linking information between the syntactic and semantic ar-

guments . Further, we show that by using such syntax/semantics linking information

as features on the grammar, we constrain the generation space and the ouputs are, in

turn, ranked by a n-gram based language model. In Chapter 4, we present another

method for grammar-based surface realisation; extracting a grammar from a non-

parallel text corpora and focusing on learning of verbalisation patterns that respect

the syntactic/semantic linking of arguments. The verbalisation patterns (syntactic

frames) we use here are not templates; rather they describe the syntatic relations

between an event and its arguments (subcategorisation information) and we use this

information for learning of syntactic/semantic linking of arguments. We induce prob-
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abilistic models observing the verbalisation of semantic arguments (in the input) by

syntactic roles in the frames and use them for ranking the n-best outputs.

2.3 NLG from Ontologies

An ontology is a conceptualisation of a given domain describing the entities, the

classes (also called Concepts) and the relations that are present in that domain and

axiomatising their behaviour. Typically, ontologies are encoded using a formal lan-

guage such as OWL or RDF, they describe a hierarchical structure between concepts

and model the relationship between via logical assertions (called axioms). [Gruber,

1993] define an ontology as “an explicit specification of a conceptualization”, meaning

that it serves as a formal model for expressing facts and relationship between facts.

Note that an artifact modeling such theory in a computer representation is also re-

ferred by the same term. [Guarino et al., 2009] differentiate between the use cases of

this terminology – “Ontology” with uppercase initial and as an uncountable noun to

refer to the philosohical discipline and “an ontology” with lowercase initial and as a

countable noun to refer to a computational artifact. Pertaining to the computational

artifact description of an ontology, say O, we reproduce below the formal definition

presented in [Ehrig and Sure, 2004] :

O := (C,HC , RC ,HR, I, RI , A)

“An ontology O consists of the following. The concepts C of the schema are arranged

in a subsumption hierarchy HC . Relations RC exist between concepts. Relations

(Properties) can also be arranged in a hierarchy HR. Instances I of a specific concept

are interconnected by property instances RI . Additionally, one can define axioms A

which can be used to infer knowledge from already existing one.” [Ehrig and Sure,

2004]

Ontologies are used to build computational models of real world domain knowl-

edge. In recent years, the use of ontologies for modeling domain knowledge has

exploded in part due to the Semantic Web vision of exchanging and inferring from

knowledge over the web. In this context, the Resource Description Framework (RDF)

has been devised as a standard protocol for defining concepts and associations be-

tween them in the form of subject-predicate-object expressions (called triples). The

subject and the object denote respective concepts and the predicate deontes a di-

rected relation from the subject to the object concept. In this way, a set of RDF

triples can model the domain knowledge in form of a directed multi-graph. Indeed,
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RDF is also the building block for higher level schema definition languages (such as

RDFS and OWL) in the Semantic Web Stack.9

Although ontologies are well suited for computational representation and reason-

ing, they can be equally less intuitive and less insightful for a human user to grasp.

This can be true for experts who are working on a broad scale ontology and need

to analyze a fairly large chunk of already present logical statements in order to ad-

d/modify newer axioms to the knowledge base and also for beginners trying to get

acquainted with the ontology formalism. Thus, in the course of design, maintenance

and description of ontologies, a human user would perhaps like to seek necessary

information from a given ontology in natural language. In such cases, it would be

desirable to have access to a human comprehensible natural language description of

the knowledge present in the ontology. This is where the motivation for NLG from

ontologies lies in. Further, ontologies have been described to be well fitting for gen-

eration task. [Sun and Mellish, 2006] show that many ontology resources (concepts,

properties and relations) widely use natural language words suitable for generation

and [Power and Third, 2010] argue and provide evidence that current practices in

ontology engineering tend to favour the generation task significantly.

Several works describe generation from ontologies. [Cimiano et al., 2013] generate

text from RDF data in an ontology modeling cooking recipes. [Ell and Harth, 2014]

present a generic method for generation from RDF graph of concepts in any ontology

and [Androutsopoulos et al., 2013] present the NaturalOWL system, a generation

system which verbalises complex logical axioms in ontology via multi-sentence text.

These approaches will be discussed in more details in the following two chapters and

we situate our appraoches with respect to them in the “Related Work” section of the

respective chapters.

2.4 Conclusion

By now, we have discussed NLG and particularly the SR task in detail. We analysed

the key issues in SR and discussed different approaches to SR from various input

formats. We studied the advantages and limitations of each approach (template

based, grammmar based and direct mapping) and presented a survey of the existing

works. In the context of SR from KB data, we outlined the motivations for pursuing

such goal, namely in terms of generating descriptions and aiding human interaction

with ontologies.

In light of these discussions, this thesis proposes verbalisation of RDF triples

9http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
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in ontologies and presents two new grammar-based approaches for doing so. We

present our approaches using a sample input derived from an existing biomedical

ontology; however the approaches are generic and can be easily adapted to other

ontologies. In contrast to the existing works on SR from ontologies, we develop

corpus based learning methods (utilising Data-to-Text alignment techniques) and

extract grammar resources for verbalising KB data both from the parallel (Supervised

Approach, Chapter 3) and non-parallel text corpora (Weakly Supervised Approach,

Chapter 4). For Data-to-Text alignment, we use a supplied lexicon (in Chapter 3)

extending it with existing vocabularies (in Chapter 4) and to address the issue of

high output variety, we utilize symbolic feature based constraints in TAG (in Chapter

3) and a probabilistic scoring approach (in Chapter 4). In the following chapters,

we discuss our work in detail; compare and contrast them with existing works and

highlight our innovative contributions.
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3.1. Introduction

This chapter presents a supervised approach to surface realisation from Knowl-

edge Bases. We present a novel method for corpus based learning of Tree Adjoining

Grammar (TAG) from training examples and discuss ways to generalise, expand and

adapt it to cover test cases. The key feature of our approach is that grammar induc-

tion is driven by the extended domain of locality principle of TAG (Tree Adjoining

Grammar) and takes into account both syntactic and semantic information. The re-

sulting extracted TAGs include a unification based semantics and we use an existing

surface realiser to generate sentences from Knowledge Base data.

3.1 Introduction

In the context of surface realisation from Knowledge Bases, handcrafted resources

(either templates or grammar) have widely been used. Earlier works, for example,

[Carenini et al., 1994], [Paris, 1988], [Aguado et al., 1998], [Galanis et al., 2009] use

handwritten templates for mapping semantic information in KBs to text. Other

works, such as [Bontcheva and Wilks., 2004], [Williams and Power, 2010] and [Cimi-

ano et al., 2013] use a handwritten set of rules instead. As we discussed in Chapter

2, such handcrafted resources come at the cost of human intensive labor and become

specific to the domain of the KB. Clearly, such limitations are major setbacks to the

generation task for an ever growing domain of ontologies.

More recently parallel corpus based template learning methods have been re-

ported for surface realisation, in particular to the RDF triples from an ontology in

[Duma and Klein, 2013] and [Ell and Harth, 2014]. Again, as discussed in Chapter 2,

the template extraction requires that the training sentences describe complete piece

of semantic content in the input and when the test dataset bears new combinations of

semantic content unseen during training, the non-compositional nature of templates

implies that partial surface text observed from different training examples cannot be

used to address semantic content combinations present in those examples.

We, therefore, explore an alternative, corpus-based grammar learning approach

for surface realisation from ontologies in which we extract a symbolic compositional

grammar from parallel data/text corpora. Given a training set consisting of pairs

({t1, . . . , tn},S) where {t1, . . . , tn} is a set of ontology triples and S is a sentence

verbalising that set of triples, we develop a methodology for learning a TAG based

grammar which mediates the mapping between KB triples and text. In addition,

we automatically link the semantic content units from the input to the syntactic

constructs in the extracted grammar thereby allowing for a tighter syntax/seman-

tic integration. The set of grammar rules (TAG trees) are further augmented with
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unification-based semantics and therefore provide compositionality. Thus, our ap-

proach eschews both the handcrafting and non-compositionality problems discussed

above. We follow a linguistically principled and conceptually simple approach and

show that the induced grammar is compact; can be both expanded and adapted to

cover for unseen cases and restricts the overgeneration problem.

In the following sections, we go into the details of our approach and discuss the

relevant issues. We begin with a survey of related work in the domain of surface

realisation from KBs in Section 3.2. In Section 3.3, we introduce the KBGen dataset

upon which our experiments are based and in Section 3.4, we discuss FB-LTAG, the

grammar formalism of choice for this work. In Section 3.5, we present a complete

description of our approach, going into the details of the various subtasks involved

(Data-to-Text Alignment in 3.5.1, various phases of Grammar Learning in 3.5.2,

3.5.4, 3.5.5 and 3.5.3 and Surface Realisation in 3.5.5). Then, we move on to present

the results and their evaluation in Section 3.6. Section 3.7 discusses the problem

cases, limitations and possible remedies and Section 3.8 concludes.

3.2 Related Work

The task of surface realisation from Knowledge Bases is related to work on concept

to text generation.

Earlier work on concept to text generation mainly focuses on generation from

logical forms using rule-based methods. [Wang, 1980] uses hand-written rules to

generate sentences from an extended predicate logic formalism; [Shieber et al., 1990]

introduces a head-driven algorithm for generating from logical forms; [Kay, 1996]

defines a chart based algorithm which enhances efficiency by minimising the num-

ber of semantically incomplete phrases being built; and [Shemtov, 1996] presents an

extension of the chart based generation algorithm presented in [Kay, 1996] which

supports the generation of multiple paraphrases from underspecified semantic in-

put. In all these approaches, grammar and lexicon are developed manually and it

is assumed that the lexicon associates semantic sub-formulae with natural language

expressions. Our approach is similar to these approaches in that it assumes a gram-

mar encoding a compositional semantics. It differs from them however in that, in

our approach, grammar and syntax/semantic mapping information are automatically

acquired from the data.

With the development of the semantic web and the proliferation of knowledge

bases, generation from knowledge bases has attracted increased interest and so called

ontology verbalisers have been proposed which support the generation of text from
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(parts of) knowledge bases. One main strand of work maps each axiom in the knowl-

edge base to a clause. Thus the OWL verbaliser integrated in the Protégé tool

[Kaljurand and Fuchs, 2007] provides a verbalisation of every axiom present in the

ontology under consideration and [Wilcock, 2003] describes an ontology verbaliser

using XML-based generation. As discussed in [Power and Third, 2010], one im-

portant limitation of these approaches is that they assume a simple deterministic

mapping between knowledge representation languages and some controlled natural

language (CNL). Specifically, the assumption is that each atomic term (individual,

class, property) maps to a word and each axiom maps to a sentence. As a result, the

verbalisation of larger ontology parts can produce very unnatural text such as, Every

cat is an animal. Every dog is an animal. Every horse is an animal. Every rabbit

is an animal. More generally, the CNL based approaches to ontology verbalisation

generate clauses (one per axiom) rather than complex sentences and thus cannot

adequately handle the verbalisation of more complex input such as the KBGen data

where the KB input often requires the generation of a complex sentence rather than

a sequence of base clauses.

To generate more complex output from KB data, several alternative approaches

have been proposed.

The MIAKT project [Bontcheva and Wilks., 2004] and the ONTOGENERA-

TION project [Aguado et al., 1998] use symbolic NLG techniques to produce textual

descriptions from some semantic information contained in a knowledge base. Both

systems require some manual input (lexicons and domain schemas). More sophis-

ticated NLG systems such as TAILOR [Paris, 1988], MIGRAINE [Carenini et al.,

1994], and STOP [Reiter et al., 2003] offer tailored output based on user/patient

models. While offering more flexibility and expressiveness, these systems are dif-

ficult to adapt by non-NLG experts because they require the user to understand

the architecture of the NLG systems [Bontcheva and Wilks., 2004]. Similarly, the

NaturalOWL system [Galanis et al., 2009] has been proposed to generate fluent de-

scriptions of museum exhibits from an OWL ontology. This approach however relies

on extensive manual annotation of the input data.

The SWAT project has focused on producing descriptions of ontologies that are

both coherent and efficient [Williams and Power, 2010]. For instance, instead of the

above output, the SWAT system would generate the sentence: The following are

kinds of animals: cats, dogs, horses and rabbits. . In this approach too however, the

verbaliser output is strongly constrained by a simple Definite Clause Grammar cover-

ing simple clauses and sentences verbalising aggregation patterns such as the above.

More generally, the sentences generated by ontology verbalisers cover a limited set
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of linguistic constructions; the grammar used is manually defined; and the mapping

between semantics and strings is assumed to be deterministic (e.g., a verb maps to

a relation and a noun to a concept). In contrast, we propose an approach where the

grammar is acquired from the data and where the mapping between semantics and

NL expressions is learned from the data rather than fixed a priori.

Recent work has considered data-driven generation from frames, lambda terms

and data base entries.

[DeVault et al., 2008b] describes an approach for generating from the frames pro-

duced by a dialog system. They induce a probabilistic Tree Adjoining Grammar from

a training set aligning frames and sentences using the grammar induction technique

of [Chiang, 2000] and use a beam search that uses weighted features learned from

the training data to rank alternative expansions at each step.

[Lu and Ng, 2011] focuses on generating natural language sentences from log-

ical form (i.e., lambda terms) using a synchronous context-free grammar. They

introduce a novel synchronous context free grammar formalism for generating from

lambda terms; induce such a synchronous grammar using a generative model; and

extract the best output sentence from the generated forest using a log linear model.

[Wong and Mooney, Lu et al., 2007, 2009] focuses on generating from variable-free

tree-structured representations such as the CLANG formal language used in the

ROBOCUP competition and the database entries collected by [Liang et al., 2009] for

weather forecast generation and for the air travel domain (ATIS dataset) by [Dahl

et al., 1994]. [Wong and Mooney, 2007] uses synchronous grammars to transform a

variable free tree structured meaning representation into sentences. [Lu et al., 2009]

uses a Conditional Random Field to generate from the same meaning representations.

Finally, more recent works propose approaches which perform both surface real-

isation and content selection. [Angeli et al., 2010] proposes a log linear model which

decomposes into a sequence of discriminative local decisions. The first classifier de-

termines which records to mention; the second, which fields of these records to select;

and the third, which words to use to verbalise the selected fields. [Kim and Mooney,

2010] uses a generative model for content selection and verbalises the selected input

using WASP−1, an existing generator. Finally, [Konstas and Lapata, Konstas and

Lapata, 2012b, 2012a] develop a joint optimisation approach for content selection and

surface realisation using a generic, domain independent probabilistic grammar which

captures the structure of the database and the mapping from fields to strings. They

intersect the grammar with a language model to improve fluency; use a weighted

hypergraph to pack the derivations; and find the best derivation tree using Viterbi

algorithm.
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Our approach differs from the approaches which assume variable free tree struc-

tured representations [Wong and Mooney, Lu et al., 2007, 2009] and data-based

entries [Kim and Mooney, Konstas and Lapata, Konstas and Lapata, 2010, 2012b,

2012a] in that it handles graph-based, KB input and assumes a compositional se-

mantics. It is closest to [DeVault et al., 2008b] and [Lu and Ng, 2011] who extract a

grammar encoding syntax and semantics from frames and lambda terms respectively.

It differs from the former however in that it enforces a tighter syntax/semantics inte-

gration by requiring that the elementary trees of our extracted grammar encode the

appropriate linking information. While [DeVault et al., 2008b] extracts a TAG gram-

mar associating each elementary tree with a semantics, we additionally require that

these trees encode the appropriate linking between syntactic and semantic arguments

thereby restricting the space of possible tree combinations and drastically reducing

the search space. Although conceptually related to [Lu and Ng, 2011], our approach

extracts a unification based grammar rather than one with lambda terms. The ex-

traction process and the generation algorithms are also fundamentally different. We

use a simple mainly symbolic approach whereas they use a generative approach for

grammar induction and a discriminative approach for sentence generation.

3.3 The KBGen Dataset

We use the dataset provided by the KBGen challenge [Banik et al., Banik et al.,

2012, 2013]. This challenge was designed to evaluate generation from knowledge

bases. The KBGen dataset for training and testing generation systems was extracted

from a biology knowledge base, namely the KB Bio 101 [Chaudhri et al., 2013]. It

was built by semi-automatically selecting content units from this knowledge-base

in such a way that (i) the set of relations in each content unit forms a connected

graph; (ii) each content unit can be verbalised by a single, possibly complex sentence

which is grammatical and meaningful and (iii) the set of content units contain as

many different relations and concepts of different semantic types (events, entities,

properties etc.) as possible.

The foundational component of KB Bio 101 is the Component Library (CLIB)

[Barker et al., 2001], an upper ontology which is linguistically motivated and de-

signed to support the representation of knowledge for automated reasoning [Gun-

ning et al., 2010]. CLIB adopts four simple top level distinctions: (1) entities

(things that are); (2) events (things that happen); (3) relations (associations be-

tween things); and (4) properties (linking entities to their values). Accordingly, in the

KBGen dataset, we have events which are concepts of type Event (e.g., Release-of-
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Calcium, Bioethanol-Production, Isolation etc.), entities which are concepts of type

Entity (e.g., Gated-Channel, Endoplasmic-Reticulum, Algae, Algal-Cell etc.), rela-

tions which are of type event-to-entity (e.g., Release-of-Calcium base Endoplasmic-

Reticulum), event-to-event (e.g., Bioethanol-Production subevent Isolation), entity-

to-event (e.g. Gated-Channel has-function Release-of-Calcium), entity-to-entity (e.g.,

Algae has-part Algal-Cell) and properties which are of type entity-to-value (e.g.,

Endoplasmic-Reticulum shape “hollow”). The KB Bio 101 subsets forming the KB-

Gen dataset, therefore, encode knowledge about events, entities along with their

properties and relations.

The KBGen dataset provides training and test data. Each item in the training

data comprises some KB content (in the form of a set of RDF triples) paired with its

corresponding verbalisation (a single sentence). In Figure 3.1 below, we present some

examples (Figure 3.1a, 3.1c and 3.1b) of training items extracted from the KBGen

dataset. The triples in the :TRIPLES section define the properties (if any) for the

entity variables and the relations among the event and entity variables; the triples in

the :INSTANCE-TYPES section define the predication true for the respective variables

and the :ROOT-TYPES section provides the data types for the variables.

Following a practice introduced by [Angeli et al., 2010], we use the term scenario

to denote a KB content paired with its sentence. In the training input, there are

207 scenarios and the test input consists of 72 scenarios. We shall use the sentences

in the training input to learn a grammar mediating the KB content to strings and

use the sentences in the test input as reference sentences for evaluation of sentences

generated for the KB contents in the test input.

To allow participants to focus on generation proper, the KBGen dataset also

provides a lexicon listing words or phrases that can be used for verbalising entities

and events present in the training and the test data. The lexicon maps event types

to verbs, their inflected forms and nominalizations and each entity type to a noun

and its plural form. For instance, the lexicon entries available for the entities and

events present in Figure 3.1 is shown in Figure 3.2 below.

3.4 Feature-Based Lexicalised Tree Adjoining Grammar

In this section, we present an introduction to the Feature-Based Lexicalised Tree

Adjoining Grammar (FB-LTAG) with unification-based semantics since this is the

formalism in which we will extract the grammar for our surface realisation task. A

Tree Adjoining Grammar consists of a set of tree-shaped grammar rules which can

be combined with each other via two tree combining operations, namely substitution
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:TRIPLES (

(|Release-Of-Calcium646| |object| |Particle-In-Motion64582|)

(|Release-Of-Calcium646| |base| |Endoplasmic-Reticulum64603|)

(|Gated-Channel64605| |has-function| |Release-Of-Calcium646|)

(|Release-Of-Calcium646| |agent| |Gated-Channel64605|))

:INSTANCE-TYPES (

(|Release-Of-Calcium646| |instance-of| |Release-Of-Calcium|)

(|Particle-In-Motion64582| |instance-of| |Particle-In-Motion|)

(|Endoplasmic-Reticulum64603| |instance-of| |Endoplasmic-Reticulum|)

(|Gated-Channel64605| |instance-of| |Gated-Channel|))

:ROOT-TYPES (

(|Release-Of-Calcium646| |instance-of| |Event|)

(|Particle-In-Motion64582| |instance-of| |Entity|)

(|Endoplasmic-Reticulum64603| |instance-of| |Entity|)

(|Gated-Channel64605| |instance-of| |Entity|)))

Sentence :

The function of a gated channel is to release particles from the endoplasmic reticulum.

(a)

:TRIPLES (

(|Diffusion-Of-Anion19310| |object| |Anion19306|)

(|Diffusion-Of-Anion19310| |recipient| |Extra-Cellular-Matrix19307|)

(|Diffusion-Of-Anion19310| |base| |Cell19296|)

(|Diffusion-Of-Anion19310| |raw-material| |Membrane-Potential19309|)

(|Membrane-Potential19309| |has-function| |Diffusion-Of-Anion19310|))

:INSTANCE-TYPES (

(|Anion19306| |instance-of| |Anion|)

(|Extra-Cellular-Matrix19307| |instance-of| |Extra-Cellular-Matrix|)

(|Cell19296| |instance-of| |Cell|)

(|Membrane-Potential19309| |instance-of| |Concentration-Gradient|)

(|Diffusion-Of-Anion19310| |instance-of| |Diffusion-Of-Anion|))

:ROOT-TYPES (

(|Diffusion-Of-Anion19310| |instance-of| |Event|)

(|Anion19306| |instance-of| |Entity|)

(|Extra-Cellular-Matrix19307| |instance-of| |Entity|)

(|Cell19296| |instance-of| |Entity|)

(|Membrane-Potential19309| |instance-of| |Entity|)))

Sentence :

Concentration gradient provides energy for the diffusion of anions from a cell to the
extra cellular matrix.

(b)
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:TRIPLES (

(|Bioethanol-Production6816| |raw-material| |Carbon-Dioxide6823|)

(|Bioethanol-Production6816| |result| |Ethyl-Alcohol6797|)

(|Bioethanol-Production6816| |subevent| |Isolation6799|)

(|Isolation6799| |object| |Starch6811|)

(|Isolation6799| |site| |Laboratory6804|))

:INSTANCE-TYPES (

(|Bioethanol-Production6816| |instance-of| |Bioethanol-Production|)

(|Carbon-Dioxide6823| |instance-of| |Carbon-Dioxide|)

(|Ethyl-Alcohol6797| |instance-of| |Ethyl-Alcohol|)

(|Isolation6799| |instance-of| |Isolation|)

(|Starch6811| |instance-of| |Starch|)

(|Laboratory6804| |instance-of| |Laboratory|))

:ROOT-TYPES (

(|Bioethanol-Production6816| |instance-of| |Event|)

(|Carbon-Dioxide6823| |instance-of| |Entity|)

(|Ethyl-Alcohol6797| |instance-of| |Entity|)

(|Isolation6799| |instance-of| |Event|)

(|Starch6811| |instance-of| |Entity|)

(|Laboratory6804| |instance-of| |Entity|))

Sentence :

During the production of ethyl alcohol, which consumes carbon dioxide, starch is
isolated in the laboratory.

(c)

Figure 3.1: Example Training Scenarios from KBGen dataset

Release-Of-Calcium releases, release, released, release
Particle-In-Motion molecule in motion, molecules in motion
Endoplasmic-Reticulum endoplasmic reticulum, endoplasmic reticulum
Gated-Channel gated channel, gated channels
Bioethanol-Production produces, produce, produced, production
Carbon-Dioxide carbon dioxide, carbon dioxide
Ethyl-Alcohol ethyl alcohol, ethyl alcohols
Isolation isolates, isolate, isolated, isolation
Starch starch, starches
Laboratory laboratory, laboratories
Diffusion-Of-Anion diffuses, diffuse, diffused, diffusion
Anion anion, anions
Extra-Cellular-Matrix extra cellular matrix, extra cellular matrix
Cell cell, cells
Concentration-Gradient concentration gradient, concentration gradients

Figure 3.2: Example Entries from the KBGen Lexicon
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and adjunction. TAG trees are of two types, initial and auxiliary trees. Initial trees

represent non-recursive syntactic constituents such as noun phrases. In contrast,

auxiliary trees represent recursive structures such as adjectives and adverbials.

In an initial tree, the internal nodes are non terminal syntactic categories and

the leaf nodes are either terminals or non terminal syntactic categories marked for

substitution (called substitution node and marked with a ↓ symbol). This is also true

for the auxiliary trees but additionally, the auxiliary trees always bear exactly one

leaf node, called the foot node, for adjunction operation. The foot node is marked

with a ∗ symbol and is always of the same syntactic category of the root node of the

tree. Both intial and auxiliary trees are called elementary trees and are said to be of

type X whenever the root node of the tree has the syntactic category X.

Formally, a tree adjoining grammar is a tuple (
∑

, N, I,A, S) where
∑

is a finite

set of terminals, N is a finite set of non-terminals with (
∑
∩N = ∅); I is a finite set

of initial trees; A is a finite set of auxiliary trees and S is a distinguished non-terminal

symbol with S ∈ N .

In Figure 3.3 below, we present some examples of intial and auxiliary trees. Trees

3.3a (type NP), 3.3b (type NP), 3.3c (type S) and 3.3d (type VP) are examples of

initial trees and the tree 3.3e (type VP) is an example of an auxiliary tree.

NP

John

(a)

NP

Mary

(b)

S

NP↓ VP↓

(c)

VP

V

hates

NP↓

(d)

VP

really VP∗

(e)

Figure 3.3: Example Initial and Auxiliary TAG trees

Lexicalised TAG (LTAG) is a variant of TAG in which all the trees in the grammar

must have at least one leaf with a lexical item. The lexical item associated with

the tree is also called the anchor of the tree and the motivation behind LTAG is

that each TAG tree describes some lexical information with, when relevant, the

subcategorization information of the anchor. In Figure 3.3 above, the tree 3.3c, does

not bear any lexical items and therefore the grammar in Figure 3.3 is not in the

LTAG formalism. An equivalent LTAG representation for the same grammar can be

like the one shown in Figure 3.4 below.

The substitution operation is a simple procedure of replacing a substitution node

in an initial tree with some other tree having the same syntactic category as the

substitution node. The adjunction operation, on the other hand, inserts an auxiliary

tree into an internal node of matching category in a given tree. Both operations
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NP

John

(a)

NP

Mary

(b)

S

NP↓ VP

V

hates

NP↓

(c)

VP

really VP∗

(d)

Figure 3.4: Example LTAG

produce new TAG trees, called derived trees.

Below, we show the substitution and adjunction operation in action. Figure

3.5 depicts the substitution operation. The substitution nodes in the tree 3.5b are

replaced by the intial trees of matching NP type, trees 3.5a and 3.5c (shown via

dotted arrows) and the derived tree in Figure 3.5d is obtained. The derived tree no

longer bears any substitution nodes and is said to be complete. Figure 3.6 depicts the

adjunction operation. During adjunction (shown via dotted arrows), the auxiliary

3.6b tree of type VP inserts into the internal node of matching type in the tree 3.6a

derived tree in 3.6c is obtained. Note that the 3.6b tree can again adjoin with this

derived tree to yield yet another derived tree 3.6d and so on.

NP

John

(a)

S

NP↓ VP

V

hates

NP↓

(b)

NP

Mary

(c)

S

NP

John

VP

V

hates

NP

Mary

(d)

Figure 3.5: Substitution Operation in TAG

When parsing, the TAG trees whose lexical anchor match a word in the input

string are retrieved from the grammar and repeatedly combined using the substitu-

tion and adjunction operations. All the derived trees that contain neither substitu-

tion nor foot nodes and cover the input string are retained. Thus, from the example

grammmar in Figure 3.4, the following sentences can be parsed (among many others)

:

(3) John hates Mary.

(4) Mary hates John.
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S

NP

John

VP

V

hates

NP

Mary

(a)

VP

really VP∗

(b)

S

NP

John

VP

really VP

V

hates

NP

Mary

(c)

S

NP

John

VP

really VP

really VP

V

hates

NP

Mary

(d)

Figure 3.6: Adjunction Operation in TAG

(5) John really hates Mary.

(6) John really really hates Mary.

(7) Mary really really hates John.

To generate sentences however, the grammar needs to relate words and syntax to

semantic information. To this end, we use a Feature-Based Lexicalised Tree Adjoin-

ing Grammar with semantics where tree nodes are decorated with (non recursive)

feature structures and each tree is associated with some semantics i.e., a set of liter-

als whose arguments may be constants or variables. For generation, the trees in the

grammar whose semantics subsume (part of) the input semantics are selected and

combined via substitution and adjunction operations. The semantics of a derived tree

is thus the union of the semantics of the all the trees contributing to its derivation.

Figure 3.7 below shows an example of FB-LTAG equipped with semantics.

Feature unification during the substitution and adjunction works as follows. Sub-

stitution unifies the top feature structure of the substitution node with the top feature
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S

NP[gen:male]↓ VP

V

hates

NP[gen:female]↓

instance(h1,hate)
agent(h1,J)

patient(h1,M)

(a)

S

NP↓ VP

V

hate

NP[gen:male]↓

instance(h2,hate)
agent(h2,W)
patient(h2,J)

(b)

NP[gen:male]

John

instance(J,John)

(c)

NP[gen:female]

Mary

instance(M,Mary)

(d)

NP

We

instance(W,We)

(e)

Figure 3.7: Example FB-LTAG with Semantics

structure of the root of the tree being substituted in. Adjunction unifies the top fea-

ture structure of the root of the tree being adjoined with the top feature structure of

the node being adjoined to; and the bottom feature structure of the foot node of the

auxiliary tree being adjoined with the bottom feature structure of the node being

adjoined to. Figure 3.8 and 3.9 present the substitution and adjunction operation in

FB-LTAG graphically.

Atr
br

A ↓

X

At∪tr
br

X

Figure 3.8: Feature Unification during Substitution in FB-LTAG

In FB-LTAG with unification-based semantics [Gardent and Kallmeyer, 2003],
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A
∗tf
bf

Atr
br X

At
b

X

A
tf
b∪bf

At∪tr
br

Figure 3.9: Feature Unification during Adjunction in FB-LTAG

the feature values in the nodes of the trees come from the variables in the semantic

input instead. Importantly, the semantic variables are shared with syntactic variables

(i.e., variables occurring in the feature structures decorating the tree nodes) so that

when trees are combined as permitted by the semantic composition, the appropriate

syntax/semantics linking is also enforced. For example, the nodes in the trees of

the grammar shown in Figure 3.10 below are decorated with features comprising of

semantic variables so as to obtain a FB-LTAG with unification semantics.

S[idx:h1]

NP[idx:J]↓ VP[idx:h1]

V[idx:h1]

hates

NP[idx:M]↓

instance(h1,hate)
agent(h1,J)

patient(h1,M)

S[idx:h2]

NP[idx:W ]↓ VP[idx:h2]

V[idx:h2]

hate

NP[idx:J]↓

instance(h2,hate)
agent(h2,W)
patient(h2,J)

NP[idx:J]

John

instance(J,John)

NP[idx:M]

Mary

instance(M,Mary)

NP[idx:W ]

We

instance(W,We)

Figure 3.10: Toy FB-LTAG with Unification based Semantics
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Now, if we have the following set of semantics relations as an input for generation :

instance(e,hate), agent(e,X), patient(e,Y), instance(X,John), instance(Y,Mary)

the grammar in Figure 3.10 can only generate the sentence John hates Mary for

this input; thanks to the sharing of variables in the semantics with the features in

the trees. This example, although very small, demonstrates that such an approach

constrains generation by encoding syntax/semantic linking constraints that restrict

the set of generated sentences to those that conform with both the semantic in-

put and the syntax/semantic linking encoded in the grammar. In contrast to the

overgenerate-and-rank approaches which generate all possible derivations and filter

the unwanted outputs later, here, the selection of trees suitable to the input task

comes beforehand. In Figure 3.11 below, we present another example of generation

scenario in the FB-LTAG formalism with unification based semantics for an actual

input taken from the KBGen dataset. The solid lines indicate substitution operation

and the dotted ones indicate the adjunction operation taking place among the trees.

The variables decorating the tree nodes (e.g., GC) abbreviate feature structures of

the form [idx : V ] where V is a unification variable shared with the semantics.

3.5 Approach

We target learning FB-LTAG trees with unification-based semantics from every ex-

ample in the training set so as to build a grammar that can later be used for gen-

eration from the test set inputs. To that end, we process each training scenario in

turn; and the task can be summarised as follows. From each of the training sce-

narios, we first align the KB data with the strings in the corresponding sentence

using Data-to-Text Alignment (Section 3.5.1). Next, we induce FB-LTAG trees aug-

mented with unification-based semantics from the aligned data (Section 3.5.2). To

keep the grammar compact, we generalise the trees, grouping them into tree families

and abstracting the trees from the lexical items they contain (Section 3.5.3). Then,

we pursue an automated grammar expansion activity (Section 3.5.4) in which we

look for possibilites of splitting the existing trees into smaller trees so as to have

several smaller grammar units representing fewer semantic arguments of a relation

at a time. Finally, we automatically adapt the trees obtained from the training sce-

narios to address the unseen cases in test set inputs (Section 3.5.5). The collection of

all such trees constitute the grammar which is used with an existing surface realiser

(Section 3.5.6) to generate from the test set inputs. Below, we describe each of these

steps in detail.
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S

NP↓GC VPRoC

VBZRoC NP↓PM

releases

instance-of(RoC,Release-of-Calcium)

object(RoC,PM)

agent(RoC,GC)

VPRoC

VP∗RoC PP

IN NP↓ER

from

base(RoC,ER)

NPGC

DT NN NN

a gated channel

instance-of(GC,Gated-Channel)

NPPM

particles

instance-of(PM,Particle-In-Motion)

NPER

DT NN NN

the endoplasmic reticulum

instance-of(ER,Endoplasmic-Reticulum)

Input Semantics :
instance-of(RoC,Release-Of-Calcium),
object(RoC,PM),agent(RoC,GC),base(RoC,ER),
instance-of(ER,Endoplasmic-Reticulum),
instance-of(GC,Gated-Channel),
instance-of(PM,Particle-In-Motion)

Generated Sentence :
A gated channel releases particles from the endoplasmic reticulum

Figure 3.11: FB-LTAG with Unification based Semantics for sample KBGen Scenario
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3.5.1 Data-to-Text Alignment

Given a training scenario with the Sentence/KB pair (S,K), the alignment pro-

cedure associates each entity and event variable in K to a substring in S. To

do this, we use the entity and the event lexicon provided by the KBGen dataset.

For each entity and each event variables V in K, we retrieve their corresponding

type (e.g., Release-Of-Calcium for the event variable Release-Of-Calcium646 and

Gated-Channel for the entity variable Gated-Channel64605 in Figure 3.1a) as de-

fined in the :INSTANCE-TYPES section of the input. Then we obtain all the phrases

present for that type (e.g., releases, release, released for the type Release-Of-Calcium

and gated channel, gated channels for the type Gated-Channel from the lexicon

shown in Figure 3.2) from the KBGen lexicon and use a string matching operation

to identify the word forms in the sentence S that match with one of these phrases.

Once such a match is found, we align the corresponding variable V with the matching

words in S. In Figure 3.12, we show an example alignment obtained for the sentence

of the training scenario in Figure 3.1a using the lexicon in Figure 3.2. The bracketed

notations depict the alignment; in each bracket, the matching words of the sentence

are shown followed by the corresponding KB variable and separated by a comma.

As we can see, the variables (Gated-Channel64605, Release-Of-Calcium646 and

Endoplasmic-Reticulum64603) are aligned by exact match of one of the phrases

defined for their types in the lexicon with the words in the sentence.

However, there may not always be an exact match between the phrase associated

with the type of the variable in the KBGen lexicon and the phrase occurring in the

sentence. To account for this, we use some additional similarity based heuristics to

identify the phrase in the sentence that is most likely to be associated with a variable

lacking an exact match in the given sentence, i.e. for the entity variables, we search

for nouns and for the event variables, we look for verbs in the sentence whose overlap

with the variable type (or one of the lexical entries for this type in the lexicon) is not

empty. For example, in Figure 3.1a, the entity variable Particle-In-Motion64582

is aligned to the noun particles in the sentence based on the partial matching with

its type Particle-In-Motion.

The function of a (gated channel, Gated-Channel64605) is to (release,
Release-Of-Calcium646) (particles, Particle-In-Motion64582) from the (endo-
plasmic reticulum, Endoplasmic-Reticulum64603).

Figure 3.12: An example Data-to-Text Alignment
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Note that this alignment procedure heavily relies on the input lexicon for match-

ing of variables in the input to strings in sentences. For a parallel data/text corpus,

it is only reasonable to expect that such a lexicon is provided. In those cases, the

technique described here is fairly generic to establish the alignments of KB inputs

even for different domains. For cases where such lexicon might not be available,

alternative methods for learning such alignments from the corpus sentences them-

selves are worth exploring. [Liang et al., 2009], for example, propose a generative

model which learns the most probable word sequence in a sentence for the given

data value in the input database. [Sun and Mellish, 2006] argue that the usage of

(semi)linguistic terms to represent concepts and relations in ontologies is abundant

and it is therefore feasible to derive lexical items from such observations; [Walter et

al., 2013] propose a semi-automatic method for creating lexical entries of concepts

and relations present in ontologies and [Trevisan, 2010] tokenize, pos-tag and use

hand-written pattern rules to lexicalise ontology resources.

3.5.2 Grammar Extraction

Grammar extraction from the training scenarios is carried out in following phases.

3.5.2.1 Variable Projection

To extract FB-LTAG trees from a training scenario, we first parse its sentence using

the Stanford Constituency Parser10 thereby generating a syntactic parse tree. From

the Data-to-Text Alignment phase we know the substrings in the sentence that cor-

respond to entity and event variables occurring in the input. Using this information,

we then project the entity and event variables to the nodes in the syntactic parse tree

to reflect headedness as follows. A variable aligned with a noun is projected to the

first NP node up the syntactic tree or to the immediately dominating PP if it occurs

in the subtree dominated by the leftmost daughter of that PP. A variable aligned

with a verb is projected to the first VP node up the syntactic tree or in the case

of a predicative sentence, to the root of that sentence. If the node projected with

an event variable is immediately dominated by a parent node of the same category

(e.g. a NP node projected with an event variable has an immediate parent node

NP), we project the event variable to that parent node instead. We observed that

these projection heuristics better represent the headedness information in the parse

tree than that proposed by the Stanford parser. In Figure 3.13 below, we graphically

present the variable projection procedure (via dotted paths) for the training scenario

10http://nlp.stanford.edu/software/lex-parser.shtml
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given in Figure 3.1a. The variable names have been abbreviated11 and are in bold.

S

NP VP

NP PP VBZ S

DT NN IN NP is VP

The fn of DT JJ NN TO VB NP PP

a gated channel to release NNS IN NP

GC RoC particles from DT DT DT

PM the endoplasmic reticulum

ER

Figure 3.13: Visualisation of Variable Projection Procedure

Once entity and event variables have been projected up the parse trees, we extract

FB-LTAG trees along with their semantics from the corresponding input scenario in

several steps.

3.5.2.2 Entity Trees Extraction

In the first step, we extract trees representing the entity variables. From the parse

tree of the sentence, we extract all the subtrees which are rooted at the nodes that

have been projected with some entity variables. This results in a set of NP and PP

trees and we associate each of these trees with the respective predication true of

their labeling variables in the :INSTANCE-TYPES section of the input. Further, we

assign the respective variable name as the top feature structure value for the root

node of the extracted subtrees. Thus, from the parse tree in Figure 3.13, we obtain

the FB-LTAG trees (with features sharing the semantic variables in the input) for

the entity variables, GC, PM and ER as shown in Figure 3.14b, 3.14c and 3.14d

below.

3.5.2.3 Relation Trees Extraction

Next, we extract trees representing the relations between variables as defined in the

:TRIPLES section of the input. This involves the following three steps (I, II and III)

11For clarity reasons, we shall abbreviate the variable names in the trees throughout this text.
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in sequence.

I. Event-to-Entity and Entity-to-Event Relations :

To capture trees representing relations between a given event and possibly many

entities, we first identify all the entity variables in the input that are in relationship

with the given event. That is, given an event variable X, we identify all its dependent

entity variables m by looking for all relations R in the input that relate X to m in the

fashion (X R m). Lets refer to the set of all dependent entity variables identified for

the event variable X as the set Y . Then, from the syntactic parse tree, we extract the

minimal subtree containing the projection nodes for the event variable X and all and

only the dependent entity variables of the event variable X. To this tree, we associate

all the relations Φ in the input such that Φ = {(Z ∈ Y )∧((X R Z)∨(Z RX))}. Using

this procedure, we, therefore, extract (at once) a single tree representing all the event-

to-entity and entity-to-event relations that exist in the input for the given event. In

order to associate the extracted tree with unification based semantics, we assign the

respective variable names as the top feature structure values for the nodes projected

with the entity variables. Further, the node projected with the event variable X

is assigned the bottom feature structure X and we mark the nodes projected with

entity variables as substitution nodes. The tree in Figure 3.14a is an example of such

tree extracted for representing all the relations existing between an event variable

and all its dependent entity variables in the input. It captures all the relations of

the type Event-to-Entity and Entity-to-Event existing between the event variable

Release-of-Calcium and all its dependent entity variables Particles-in-Motion,

Endoplasmic-Reticulum, and Gated-Channel, as present in the training scenario of

Figure 3.1a.

II. Event-to-Event Relations :

For each relation (say R1) between two events (say X1 and X2), the respective

subtrees (say τX1 and τX1) for those events have already been extracted from Step

I. Now, to capture a tree expressing the relation R1, we extract a minimal subtree

(from the original parse tree) spanning the root nodes of τX1 and τX2 and assign to

this subtree the relation R1 as its semantics. Further, in this tree, we mark the root

nodes of τX1 and τX1 as substitution nodes and decorate them with top structure

values set to X1 and X2 respectively. The tree in Figure 3.16f is an example of such

tree extracted for the event-to-event relation subevent in the training scenario of

Figure 3.1c.
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The training scenarios presented in Figure 3.1a, 3.1b and 3.1c are all examples of

input bearing event-to-entity, entity-to-event and event-to-event relations. In Figure

3.14, 3.15 and 3.16, we show the complete set of trees extracted for these training

scenarios respectively. The input triples (only the :TRIPLES section is shown) are

repeated for convenience. Several cases are worth noting. As we can see from Figure

3.16, more than one subtree can be extracted while covering the relations present

between variables in the same input – for example, Figure 3.16a and Figure 3.16g

show two different trees obtained for representing the relations between event and

entities and Figure 3.16f shows the tree obtained for representing the relation between

event and event variables from the same input in Figure 3.1c. The entity variables

are usually projected to the NP nodes and PP nodes and the event variables to VP

(as in Figure 3.14a and 3.16a) or NP nodes (as in Figure 3.15a and 3.16g). Also

note that the subtrees capturing relations between the variables may capture a verb

(together with its arguments) occuring in a main clause (as in Figure 3.16a) along

with other grammatical units such as prepositional phrases (as in Figure 3.14a and

3.15a) or in a relative or a subordinate clause (as in Figure 3.16g); thereby allowing

for complex sentences.
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:TRIPLES (

(|Release-Of-Calcium646| |object| |Particle-In-Motion64582|)

(|Release-Of-Calcium646| |base| |Endoplasmic-Reticulum64603|)

(|Gated-Channel64605| |has-function| |Release-Of-Calcium646|)

(|Release-Of-Calcium646| |agent| |Gated-Channel64605|))

S

NP VP

NP PP VBZ S

DT NN IN NP↓GC is VPRoC

The function of TO VB NP↓PM PP

to release IN NP↓ER

from

instance-of(RoC,Release-of-Calcium)

object(RoC,PM)

base(RoC,ER)

has-function(GC,RoC)

agent(RoC,GC)

(a)

NPGC

DT NN NN

a gated channel

instance-of(GC,Gated-Channel)

(b)

NPPM

particles

instance-of(PM,Particle-In-Motion)

(c)

NPER

DT NN NN

the endoplasmic reticulum

instance-of(ER,Endoplasmic-Reticulum)

(d)

Figure 3.14: Grammar extracted for Training Scenario in Figure 3.1a

53



Chapter 3. Verbalising Ontologies Triples – A Supervised Approach

:TRIPLES (

(|Diffusion-Of-Anion19310| |object| |Anion19306|)

(|Diffusion-Of-Anion19310| |recipient| |Extra-Cellular-Matrix19307|)

(|Diffusion-Of-Anion19310| |base| |Cell19296|)

(|Diffusion-Of-Anion19310| |raw-material| |Membrane-Potential19309|)

(|Membrane-Potential19309| |has-function| |Diffusion-Of-Anion19310|))

S

NPMP ↓ VP

VBZ NP PP

provides NP PP TO NPEM ↓

NN IN NPDA to

energy for NP PP

DT NN IN NP

the diffusion of NPAN ↓ PP

IN NPCL ↓

from

instance-of(DA,Diffusion-of-Anion)

object(DA,AN)

recipient(DA,EM)

base(DA,CL)

raw-material(DA,MP)

has-function(MP,DA)

(a)

NPMP

NNP

Concentration

NNP

gradient

instance-of(MP,Concentration-Gradient)

(b)

NPCL

DT

a

NN

cell

instance-of(CL,cell)

(c)

NPAN

NNS

anions

instance-of(AN,Anion)

(d)

NPEM

DT

the

JJ

extra

JJ

cellular

NN

matrix

instance-of(EM,Extra-Cellular-Matrix)

(e)

Figure 3.15: Grammar extracted for the Training Scenario in Figure 3.1b54
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:TRIPLES (

(|Bioethanol-Production6816| |raw-material| |Carbon-Dioxide6823|)

(|Bioethanol-Production6816| |result| |Ethyl-Alcohol6797|)

(|Bioethanol-Production6816| |subevent| |Isolation6799|)

(|Isolation6799| |object| |Starch6811|)

(|Isolation6799| |site| |Laboratory6804|))

S

NPST ↓ VP

VBZ

is

VPIS

VBN

isolated

PP

IN

in

NPLB ↓

instance-of(IS,Isolation)

object(IS,ST)

site(IS,LB)

(a)

NPST

NN

starch

instance-of(ST,Starch)

(b)

NPLB

DT

the

NN

laboratory

instance-of(LB,Laboratory)

(c)

NPEA

JJ

ethyl

NN

alcohol

instance-of(EA,Ethyl-Alcohol)

(d)

NPCO

NN

carbon

NN

dioxide

instance-of(CO,Carbon-Dioxide)

(e)

S

PP

IN

During

NPBP ↓

Comma

,

SIS ↓

subevent(BP,IS)

(f)
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NPBP

NP

DT

the

NN

production

PP

IN

of

NP

NPEA ↓ , SBAR

WHNP

WDT

which

S

VP

VBZ

consumes

NPCO ↓

instance-of(BP,Bioethanol-Production)

raw-material(BP,CO)

result(BP,EA)

(g)

Figure 3.16: Grammar extracted for the Training Scenario in Figure 3.1c

III. Entity-to-Entity Relations and Entity-to-Property Values :

The input can also bear relations between entities which are not bound to any event

variables. Consider, for example, a different training scenario shown in Figure 3.17

below. This example is also set in the context of an input having property linking

entity to its value and we shall use it to describe both these aspects.

The tree extraction capturing relation between entities takes place as follows.

We first project the entity variables to the nodes in the parse tree (Figure 3.18a),

extract their subtrees and associate them with the predication true of their respective

variables (Figure 3.18d, 3.18e and 3.18f). Then, for each relation between entities,

we extract a minimal subtree spanning the projection nodes of those entities and

associate that subtree with the semantics of the relation (Figure 3.18b and 3.18c).

For entities linked by properties to their values (e.g. Tracheid linked by the

property thickness to its value “thin” in Figure 3.18), the triples organization in the

KBGen dataset is as follows. It involves two triple statements in the form (X p Y )
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:TRIPLES (

(|Plant-Vein3268| |has-part| |Xylem3269|)

(|Xylem3269| |has-part| |Tracheid3271|)

(|Tracheid3271| |thickness| |Length-Value3413|)

(|Length-Value3413| |value| "thin"))

:INSTANCE-TYPES (

(|Plant-Vein3268| |instance-of| |Plant-Vein|)

(|Xylem3269| |instance-of| |Xylem|)

(|Tracheid3271| |instance-of| |Tracheid|)

(|Length-Value3413| |instance-of| |Length-Value|))

:ROOT-TYPES (

(|Plant-Vein3268| |instance-of| |Entity|)

(|Xylem3269| |instance-of| |Entity|)

(|Tracheid3271| |instance-of| |Entity|)

(|Length-Value3413| |instance-of| |Property-Value|))

Sentence :

The xylem of a plant vein has thin tracheids.

Figure 3.17: Training Scenario showing relation between entities with property values

and (Y value Z) where X is the entity variable (e.g. Tracheid), p (e.g. thickness) is

the property linking that entity to an intermediate variable Y (e.g. Length-Value)

which in turn relates to the actual value Z (e.g. “thin”) via the predicate “value”.

From observations in the KBGen dataset, we see that such values are adjectives (e.g.

“small”, “rough”, “thin” etc.) forming the JJ syntactic category under the NP head

representing that entity in the parse tree (e.g. in Figure 3.18a, the value “thin” is an

adjectival modifier of the entity tracheid). We therefore assume that the properties

act as modifiers to the entities and construct auxialiary FB-LTAG trees of type NP

to represent them. To such trees, we associate the semantics of both the triples

(X p Y ) and (Y value Z). The top and bottom feature values making up the foot

and root node of the tree is the entity variable X and we lexicalise the tree with Z.

The tree in Figure 3.18g is an example.

The resulting grammar from the collection of all trees extracted from all train-

ing scenarios is a Feature-Based Tree Adjoining Grammar with a unification-based

compositional semantics as described in [Gardent and Kallmeyer, 2003]. In particu-

lar, our grammar differs from the traditional probabilistic Tree Adjoining Grammar

extraction as described in e.g., [Chiang, 2000] in that it encodes both syntax and se-

mantics rather than just syntax. It also differ from the semantic FB-TAG extracted

by [DeVault et al., 2008b] in that (i) it encodes the linking between syntactic and
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S

NP VP

NP PP VBZ NP

DT NN IN NP has JJ NNS

The xylem of DT NN NN thin tracheids

a plant vein
XY TR

PV

(a)

NP

NP↓XY PP

IN

of

NP↓PV

has-part(PV,XY)

(b)

S

NP

NP↓XY PP

IN

of

NP

DT

a

NN

plant

NN

vein

VP

VBZ

has

NP↓TR

has-part(XY,TR)

(c)

NPXY

DT

The

NN

xylem

instance-of(XY,Xylem)

(d)

NPPV

DT

a

NN

plant

NN

vein

instance-of(PV,Plant-Vein)

(e)

NPTR

NNS

tracheids

instance-of(TR,Tracheid)

(f)

NPTR

JJ

thin

NP∗TR

thickness(TR,LV)

value(LV,thin)

(g)

Figure 3.18: Grammar extracted for the Training Scenario in 3.17
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semantic arguments; (ii) allows for elementary trees spanning discontiguous strings

(e.g., The function of X is to release Y); and (iii) enforces the semantic principle

underlying TAG namely that an elementary tree containing a syntactic functor also

contains its syntactic arguments. Let us refer to the grammar we have from this

stage as the base grammar; which we shall later expand (in Section 3.5.4) and adapt

to unseen cases (in Section 3.5.5).

3.5.3 Grammar Generalisation

To keep the grammar size compact, we build tree schemas out of the trees in our

grammar. A tree schema is obtained from a tree by replacing its terminal nodes,

relation names and the semantic variables by generic variables whose values are

instantiated at runtime (i.e. during the Surface Realisation phase only). To associate

the terminal nodes, the relation names and semantic variables in the tree schema to

their exact word forms, relations and input variables in the original tree, a separate

lexicon is maintained establishing the correspondence. Figure 3.19a, for example

shows the tree schema for the tree we presented in Figure 3.14a. The terminal nodes

in this tree schema are generic variables, represented as w, w1 . . . . . .wn; the relation

names are generalised to rel1, rel2, θ1, θ2 . . . . . . θn (referring to the thematic roles

of the event) and the semantic variables to A, B and C . The Lexicon in Figure

3.19b then holds the information mapping all these generic variables to their specific

instantiations in the original tree. In the lexicon, the anchor w represents the word

associated with the semantic variable for which this tree schema is generated and

the coanchors w1 . . . . . .wn denote rest of the terminal words in the tree. For each

trees that we extract in our grammar, we create a new tree schema only when some

existing schema (obtained from the trees in previously processed scenarios) doesn’t

suffice. In any case, a new lexical entry is to be created. Effectively, we have reduced

the grammar size while retaining all the instances learnt from the entire training

dataset.

The benefit of using tree schemas is twofold. First, it abstract away the trees

from the word forms they contain and therefore we have a cleaner version of trees

bearing structural information only. Second, and most importantly, it helps to keep

the grammar compact by generalising over the set of similar trees we have extracted

i.e. trees that bear the same syntactic/semantic structure but contain different word

forms, relation names or input variables. For example, the same tree schema in

Figure 3.19a can be used for the tree extracted for a different event (e.g. carry as

verbalised in the sentence “The function of a food vacuole is to carry solid substances

using a pseudopodium.”) using a separate lexical entry shown in Figure 3.19c.
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S

NP

NP

DT

⋄w1

NN

⋄w2

PP

IN

⋄w3

NP↓A

VP

VBZ

⋄w4

S

VPE

TO

⋄w5

VB

⋄w

NP↓B PP

IN

⋄w6

NP↓C

rel1(E), θ1(E,A), θ2(E,B), θ3(E,C), rel2(A,E)

(a)

Lexicon I

Semantics Anchor CoAnchors

Ex.1

rel1 = instance-of,

release

w1 → The

E = release, w2 → function

θ1 = object, B = PM , w3 → of

θ2 = base, C = ER, w4 → is

θ3 = agent, A = GC, w5 → to

rel2 = has-function w6 → from

(b)

Lexicon II

Semantics Anchor CoAnchors

Ex.2

rel1 = instance-of

carry

w1 → The

E = carry, w2 → function

θ1 = object, B = SS, w3 → of

θ2 = instrument, C = PD, w4 → is

θ3 = agent, A = FV , w5 → to

rel2 = has-function w6 → using

(c)

Figure 3.19: Tree Schema to represent the tree in 3.14a and example entries for its lexicon
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In our work, we follow the tree schema (along with the lexicon) based grammar

representation, as just discussed. However, for sake of simplicity and intuitiveness,

we shall restore to presenting complete trees in the sections to follow. In total, the

grammar extracted from the training phase (i.e. after the completion of Grammar

Expansion phase which we next discuss in Section 3.5.4) consists of 477 tree schemas.

In Section 3.5.5, we present our approach for adapting the existing trees from the

training phase to account for the test inputs. This will result in creation of new lexical

entries for the test inputs but the count of tree schemas will effectively remain the

same.

3.5.4 Grammar Expansion

The base grammar nicely captures the predicate/argument dependencies but it is

very specific to the relation combinations seen in the training data. For example,

from Figure 3.14a, we have a tree for an event variable in relation to several of

its arguments but the tree is not usable to describe the same event in the test set

when the event has lesser arguments (excludes optional modifiers, for example) or

is augmented with new relations unseen in the training set. Thus, we look for an

automated procedure that involves learning several smaller trees representing fewer

relations at a time and adding them to the base grammar so as to obtain an expanded

grammar.

We perform the grammar expansion as follows. From each tree τ in the base

grammar which captures relations between multiple variables (i.e. X is the variable

being described in relation to its dependents D(X)), we target the extraction of

smaller subtrees that capture fewer arguments of X at a time. For each argument,

Y ∈ D(X) whose projected node is a leaf node and is immediately dominated by

some PP node in the syntactic tree τ , we proceed to create a new auxiliary tree. The

motivation here is that such PP nodes specify prepositional phrases which may act as

modifiers to the variable X being described in the tree τ and are better represented

via auxiliary trees in the TAG formalism.

For each argument in such configuration, we copy the subtree information of τ

rooted at the PP node until the argument’s projection node and construct a new

auxiliary tree in the grammar. This newly constructed tree has the root and foot

node with the same syntactic category as the node projected for the variable X in τ .

Further, the bottom feature structure of the root node and the top feature structure

of the foot node is assigned the value X and the semantic relation associated with

the argument is assigned to this newly created tree. For instance, given the tree

in Figure 3.14a, the PP tree associated to the argument Endoplasmic-Reticulum is

61



Chapter 3. Verbalising Ontologies Triples – A Supervised Approach

extracted, marked as a auxiliary VP tree with features representing the event variable

Release-of-Calcium and assigned with the relation base(RoC,ET); thereby creating a

new tree for the expanded grammar as illustrated in Figure 3.20b below.

S

NP VP

NP PP VBZ S

DT NN IN NP↓GC is VPRoC

The function of TO VB NP↓PM

to release

instance-of(RoC,Release-of-Calcium)

object(RoC,PM)

has-function(GC,RoC)

agent(RoC,GC)

(a)

VPRoC

VP∗,RoC PP

IN NP↓ER

from

base(RoC,ER)

(b)

Figure 3.20: Trees Added by Grammar Expansion Activity on Figure 3.14

After all possible auxiliary trees from τ have been created in this manner, we

construct one additional new tree τ ′ which is effectively the tree τ minus all the PP

nodes from which the auxiliary trees were derived. The semantics associated with

τ ′ is the semantics of τ minus the relations associated with the arguments present

in the auxiliary trees created ealier. Figure 3.20a shows this tree created from the

tree in Figure 3.14a. Note that this new tree represents the same event variable

Release-of-Calcium but for a fewer number of arguments.
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S

NP↓MP VP

VBZ

provides

NP

NP

NN

energy

PP

IN

for

NPDA

NP

DT

the

NN

diffusion

instance-of(DA,Diffusion-of-Anion)

raw-material(DA,MP)

has-function(MP,DA)

(a)

NPDA

NP∗DA PP

IN

of

NP↓AN

object(DA,AN)

(b)

NPDA

NP∗DA PP

IN

to

NP↓EM

recipient(DA,EM)

(c)

NPDA

NP∗DA PP

IN

from

NP↓CL

base(DA,CL)

(d)

Figure 3.21: Trees Added by Grammar Expansion Activity on Figure 3.15

63



Chapter 3. Verbalising Ontologies Triples – A Supervised Approach

S

NP↓ST VPIS

VBZ

is

VP

VBN

isolated

instance-of(IS,Isolation)

object(IS,ST)

(a)

VPIS

VP∗IS PP

IN

in

NP↓LB

site(IS,LB)

(b)

Figure 3.22: Trees Added by Grammar Expansion Activity on Figure 3.16

Figure 3.20a and 3.20b comprise the total trees obtained via grammar expansion

from the trees in Figure 3.14 (corresponding to the Training Scenario 3.1a). In Figure

3.21, we show all the trees obtained after grammar expansion from trees in Figure

3.15 (corresponding to the Training Scenario 3.1b). The trees in Figure 3.21a, 3.21d,

3.21b and 3.21c are all obtained from the tree in Figure 3.15a. Similarly in Figure

3.22, we present the trees resulting via grammar expansion activity from the trees in

3.16 (corresponding to the Training Scenario 3.1c). There, both the trees in Figure

3.22a and 3.22b are obtained from the tree in Figure 3.16a.

The expanded grammar offers a number of advantages. First, it reduces overfit-

ting by creating smaller, less specific, trees. Second, the new auxiliary trees provide

independent verbalisation of semantic relations. This is in contrast to the base gram-

mar where only a combination of relations could be verbalised all at once. Finally,

it helps to account for test inputs which bear a combination of relations that were

previously unseen in the trees extracted from any single training scenario but could

be obtained via combination of smaller fragments of grammar arising from several

distinct training scenarios. In the following section (Section 3.5.5), we present an

example for such a case while the experimental results as discussed in Section 3.6

justify the overall advantages quantitatively.

At the completion of Grammar Expansion step, the expanded grammar consists

of all the trees from the base grammar and all the newly constructed trees. The

grammar learning from the training scenarios is said to be complete and we proceed

to adapt this grammar to suit the test data requirements as discussed in next section.
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3.5.5 Grammar Adaptation

Given the limited size of the training data, it is often the case that test input bears

new entity and event variables unseen in the training data. However, our grammar

extraction is modeled on capturing relations between variables and we can, therefore,

take advantage of this feature to adapt the grammar for test inputs. We perform the

grammar adaptation as follows.

For each unseen entity variable X defined by a predicate X instance-of Pred_X,

we create a default NP tree with semantics of the form instance-of(X,Pred_X) and

lexicalise it with the word form available in the lexicon. The root node NP is assigned

a top feature structure with the value X.

For unseen event variables, we search for trees in our grammar that describe a

similar event. A similar event is defined as an event which is associated with exactly

the same set of event-to-entity and entity-to-event relations. The arguments them-

selves can differ but the cardinality of relations and arguments must be respectively

equal. In other words, we are looking for an existing tree in the grammar which de-

scribes an event with similar semantics as the unseen event in the test input. When

one is found, we copy the syntactic tree and associate it with the semantics of the

unseen event. In addition, the word form verbalising the event variable in the tree is

replaced by the word form provided for this unseen event variable in the lexicon and

the variables making up the feature structures in the tree are updated to reflect the

variables occuring in the relations making up the semantics of this unseen event.

:TRIPLES (

(|Transfer22328| |object| |Electron22334|)

(|Transfer22328| |recipient| |NAD-Plus22340|)

(|Transfer22328| |agent| |Electron-Shuttle-System22339|)

(|Electron-Shuttle-System22339| |has-function| |Transfer22328|))

:INSTANCE-TYPES (

(|Transfer22328| |instance-of| |Transfer|)

(|Electron22334| |instance-of| |Electron|)

(|NAD-Plus22340| |instance-of| |NAD-Plus|)

(|Electron-Shuttle-System22339| |instance-of| |Electron-Shuttle-System|))

:ROOT-TYPES (

(|Transfer22328| |instance-of| |Event|)

(|Electron22334| |instance-of| |Entity|)

(|NAD-Plus22340| |instance-of| |Entity|)

(|Electron-Shuttle-System22339| |instance-of| |Entity|)))

Figure 3.23: An Example Test Scenario
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Lets consider a Test Scenario as shown in Figure 3.23 above. Figure 3.24 below

shows the resulting grammar obtained by adapting our training grammar for this test

scenario. Given the grammar we have induced from the three Training Scenarios in

Figure 3.1, let us proceed to adapt it for this test input. As we can see, this test

input bears three entity variables Electron22334, NAD-Plus22340 and Electron-

Shuttle-System22339 unseen in the training data. We therefore, first create NP

rooted trees for each of them, lexicalise with their word forms and associate with

their corresponding predicates from the :INSTANCE-TYPES section – Figure 3.24a,

3.24b and 3.24c respectively. The variables names have been abbreviated.

NPEE

an electron

instance-of(EE,Electron)

(a)

NPPL

nad-plus

instance-of(PL,NAD-Plus)

(b)

NPES

an electron shuttle system

instance-of(ES,Electron-Shuttle-

System)

(c)

VPTX

VP∗TX PP

IN

to

NP↓PL

recipient(TX,PL)

(d)

S

NP

NP

DT

the

NN

fn

PP

IN

of

NP↓ES

VP

VBZ

is

S

VPTX

TO

to

VB

transfer

NP↓EE
instance-of(TX,Transfer)

object(TX,EE)

agent(TX,ES)

has-function(ES,TX)

(e)

Figure 3.24: Grammar Adaptation for the Test Scenario in Figure 3.23
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The event variable Transfer22328 occuring in this test input is not present in our

grammar from the training phase. We therefore proceed to build a grammar entry for

this test event by adapting the existing grammar. The event variable Transfer22328

is bound to its arguments via the relations object, recipient, agent and has-function.

As per our definition of event similarity, we can see that this event in conjunction with

its relations object, agent and has-function can be adapted from the tree present in

Figure 3.20a (induced from the Training Scenario of Figure 3.1a) and for the relation

recipient, it can be adapted from the tree in Figure 3.15e (induced from the different

Training Scenario of Figure 3.1b). This gives us two adapted trees in Figure 3.24e

and 3.24d respectively; making up the entire semantics of this unseen event variable

Transfer22328. Note that the word form verbalising the event variable has been

replaced (transfer instead of release in Figure 3.24e) and the feature structure values

have been updated to reflect the variable in the test semantics (both in Figure 3.24d

and 3.24e).

Coincidentally, this example also highlights the benefit of the Grammar Expan-

sion activity discussed earlier. Namely, we have benefitted by adapting the trees

for the test input from the trees induced from two different training scenarios. In

our work, we look for grammar adaptation from the expanded grammar only when

a correct grammar entry can not be adapted from the base grammar; so as to avoid

unnecessarily big grammar.

3.5.6 Surface Realisation

To generate with the grammar we have extracted, we use the GenI surface realiser

[Gardent et al., 2007]. GenI is an existing surface realiser for Tree Adjoining Gram-

mar. Given an input semantics and a FB-LTAG with a unification based semantics,

GenI follows a three-step approach.

First, it selects all the grammar entries whose semantics subsumes the input

semantics. In our case, the input semantics consists of all the triples present in the

:TRIPLES section of the input. When given this input, GenI first selects all the trees

from our grammar whose semantics subsumes (part of) the input semantics.

Second, all selected trees are tried for combination using the FB-LTAG combina-

tion operations (i.e., adjunction and substitution) as constrained by the unification

variables.

Third, the generator outputs the yield of all derived trees which are syntactically

complete and whose semantics is the input semantics.

Thus for instance, given the input semantics shown in Figure 3.1a, 3.1c and 3.1b,

GenI selects all the trees from Figure 3.14, 3.16 and 3.15 respectively; combines them
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using FB-LTAG operations and outputs as generated sentence the sentences shown

in Figure 3.1a, 3.1c and 3.1b. If more than one derivations generate the same exact

sentence (for example, the trees in Figure 3.14 and 3.20 yield the same sentence for

the input in Figure 3.1a), GenI avoids the duplicates and yields a single derivation,

namely the sentence The function of a gated channel is to release particles from the

endoplasmic reticulum.

GenI, however, also allows for a --partial flag, which when present, permits

as output the text coming from derived trees covering some portion of the input

semantics. That is, in the “partial” mode, we can have ouput sentences that only

describe some relations in the input. Note that the derived trees still need to be

syntactically complete (i.e. shouldn’t have any substitution and adjunction nodes)

in order to qualify as successful generation. In our work, we go for partial generation

only when the complete generation fails. We defer the discussion of input cases

requiring partial generation (e.g. the input in Figure 3.18) to Section 3.7.1. Inputs in

Figure 3.1a, 3.1c and 3.1b are all examples of cases that lead to complete generation.

In Figure 3.25 below, we present some examples of sentences generated by our

system. We show sample sentences generated from input semantics bearing relations

between a single event and its entities (Figure 3.25a), multiple events and entities

(Figure 3.25b) and between multiple entities (Figure 3.25c). The word forms verbal-

ising the events are underlined and we put the entities in italics.

Note that several trees in the grammar can subsume some part of semantics for

a given input because the trees making our grammar come from different scenarios

which may contain overlapping or subset semantics of the given input. Therefore, we

can have several different derivations with varying paraphrases as generated sentences

for the same input. Thus, we rank and identify the most suitable sentence generated

for each input. For this, we train a 3-gram language model on the GeniA corpus12

using the SRILM toolkit [Stolcke, 2002]. The GeniA corpus is chosen as a training

corpus because it contains text from the biology domain which is also the domain of

the KB Bio 101 ontology. GeniA consists of 2000 MEDLINE asbtracts about biology

containing more than 400000 words [Kim et al., 2003b] and is a widely used corpus

for different aspects of NLP from biology texts. Here, we use the language model

trained on this corpus to rank our generated sentences by decreasing probability.

12http://www.nactem.ac.uk/genia/
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Relations among a single Event and its Entities

Lysosomal enzymes digest polymers in the lysosome of eukaryotic cells, re-
sulting in monomers.
Culture medium as a nutrient is a solvent in which cells are cultured to
produce culture.

(a)

Relations among Events and Entities

Radioactive treatment of cancer happens with the help of subatomic particles
emitted from atomic nucleus of radioactive isotope.
When a carrier protein moves through a biomembrane, a hydrophilic com-
pound detaches from the binding site.

(b)

Relations among Entities

The xylem of a plant vein has thin tracheids.
Algal cells in algae have a hollow rough ER.

(c)

Figure 3.25: Example generated sentences verbalising different relation types

3.6 Evaluation

Using the induced grammar, we generate sentences for the test input of the KBGen

dataset and perform both automatic and human evaluation. As mentioned earlier,

the KBGen test set consists of 72 scenarios. Each test scenario, on average, contains

16 triples (including the triples defining relations between variables, their predicates

and data types) and 17 words in the corresponding sentence. We have two different

benchmarks against which our sentences can be evaluated. This includes the sen-

tences generated by the two other systems (excluding our system described herein)

participating in the KBGen challenge. The UDEL system [Butler et al., 2013] is a

symbolic handcrafted rule based template system and the IMS system [Zarrieβ and

Richardson, 2013] is a statistical system using a probabilistic grammar induced from

the training data. The human written sentences for each test scenario provided by

the KBGen dataset itself (at the end of the competition) serve as a reference against

which our and the sentences from the two benchmarks shall be ranked and we tally
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the scores for judgement. In Section 3.6.1, we present results of automatic evaluation

and in Section 3.6.2, we present the human evaluation.

We evaluate three configurations of our approach on the KBGen test data: one

with the base grammar we have induced (Base); a second with a manual grammar

expansion of the base grammar (ManExp); and the third one with the expanded

grammar obtained after the automated grammar expansion activity (AutExp). Be-

low, we compare the results obtained in these configurations with that present in the

benchmarks and report the results.

3.6.1 Automatic Evaluation

For automatic evaluation, we first evaluate coverage. Coverage is the percentage of

the total test inputs for which at least one sentence is generated by the respective

systems. In the first column of Table 3.26, we mention the coverage of each system

and in the second column, we show the number of trees present in various configura-

tions of our grammar. It can be seen that our Base system strongly undergenerates

failing to account for 69.5% of the test inputs while both the IMS and the UDEL

system have full coverage. However, because our extracted grammar is linguisti-

cally principled and relatively compact, it is possible to manually edit it. Indeed,

the ManExp results show that, by adding 41 trees to the grammar, coverage can

be increased by 52.5 points reaching a coverage of 83%. Finally, the AutExp re-

sults demonstrate that the automated expansion mechanism permits achieving full

coverage while keeping a relative small grammar (477 trees).

Next, we use the BLEU-4 modified precision score [Papineni et al., 2002] for

evaluating the systems; comparing the sentences generated by various systems to the

KBGen reference sentences. The average BLEU score is shown with respect to all

input (All) and to those inputs for which the systems generate at least one sentence

(Covered). In terms of BLEU score, the best version of our system (AutExp)

outperforms the probabilistic approach of IMS by a large margin (exceeding by 0.17

units) and produces results similar to the fully handcrafted UDEL system (falling

short of 0.03 units).

In sum, our approach permits obtaining BLEU scores and a coverage which are

similar to that obtained by a hand crafted system and outperforms a probabilistic

approach.
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System Coverage # Trees All Covered
IMS 100% 0.12 0.12
UDEL 100% 0.32 0.32
Base 30.5% 371 0.04 0.39
ManExp 83 % 412 0.28 0.34
AutExp 100% 477 0.29 0.29

Figure 3.26: BLEU scores and Grammar Size (Number of Elementary TAG trees)

3.6.2 Human Evaluation

For the human evaluation, we set up an online survey asking people to rate the sen-

tences generated by three systems – the two benchmarks (UDEL and IMS) and the

(AutExp) version of our system since this is the one with the full coverage. The

online portal was developed using the LG-Eval toolkit [Kow and Belz, 2012] and

participants could use a sliding scale from -50 to +50 to rate the sentences. For each

rating, a participant would see a sentence from one of the three systems and the

corresponding KBGen reference sentence. The participant is not aware of the system

from which the sentence to be rated is taken from and can only compare it with the

reference sentence for providing a judgement. We asked the participants to rate each

sentence along three dimensions: Fluency (Is the text easy to read?), Grammat-

icality (Does the sentence sound natural and linguistically correct?) and meaning

similarity or Adequacy (Does the meaning conveyed by the sentence correspond to

the meaning conveyed by the reference sentence?). A Latin Square Experimental

Design was used to ensure that each participant sees the same number of outputs

from each system and for each test set item. By moving the slider from -50 (meaning

total disagreement) to +50 (meaning complete acceptance) to answer each question,

the participants provided their overall ratings (scores). 12 subjects participated in

the evaluation and each sentence was rated by 3 participants.

In Figure 3.27, we report the results of human evaluation. Figure 3.27a shows

the analysis of the systems for their Fluency, Figure 3.27b for Grammaticality

and Figure 3.27c for the Adequacy measures. For all these criteria, we present

the mean score (Mean) obtained for sentences of each system (on a scale of 0 to

5), the grading of systems (Homogeneous Subsets) organized by letters (A, B or C)

denoting their ANOVAs (Analysis of Variance) with post-hoc Tukey significance of

p<0.05 and the measure of standard deviation (Standard Deviation) as observed in

the scores obtained for each system. The grading signifies that the systems rated

with the same grade are homogeneous in the confidence interval of p<0.05 and the
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standard deviation is an estimate of the variation observed in the scores provided by

the participants.

Fluency
System Mean Homogeneous Subsets Standard Deviation
UDEL 4.36 A 0.95
AutExp 3.45 B 1.5
IMS 1.91 C 1.56

(a)

Grammaticality
System Mean Homogeneous Subsets Standard Deviation
UDEL 4.48 A 0.8
AutExp 3.55 B 1.36
IMS 2.05 C 1.65

(b)

Meaning Similarity
System Mean Homogeneous Subsets Standard Deviation
UDEL 3.69 A 1.4
AutExp 3.65 A 1.48
IMS 1.31 B 1.3

(c)

F-ratios
Fluency Grammaticality Meaning Similarity
68.58 71.94 79.55

(d)

Figure 3.27: Human Evaluation Results on a scale of 0 to 5. Homogeneous subsets are
determined using Tukey’s Post Hoc Test with p<0.05.

The homogeneous subsets analysis reveals significant differences among the com-

peting systems. In terms of Fluency and Grammaticality, our system is closer to

the handcrafted UDEL system (margin of 0.91 and 0.93 units respectively) than it

departs from the statistical IMS system (margin of 1.54 and 1.50 units respectively).

In terms of Adequacy, it ranks on the same level as the UDEL system (belonging to

the same homogeneous set A with the margin of 0.04 units) and distances itself from

the IMS system with a very wide margin (2.34 units). Thus, our system consistently

ranks second – behind the handcrafted UDEL system and before the statistical IMS;

confirming the ranking based on BLEU.
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The standard deviation values by themselves do not represent the quality of

the systems evaluated but are indicative of the distribution of scores observed for

each system and are used for the computation of F-ratios (shown in Figure 3.27d).

The relatively high values of F-ratios indicate that the mean values obtained (and

subsequently the homogeneous subsets) are the effect of consistent score patterns

and not likely due to chance.

3.7 Discussion

A key feature of the grammar we have induced is that it respects the linguistic

principles of Tree Adjoining Grammar namely,

Lexicalisation: Each elementary tree should has at least one lexical item. In our

trees, we always have an anchor node and possibly many co-anchors.

Extended Domain of Locality: Each elementary tree contains all (and only) the

arguments slots of the syntactic functor it represents.

Elementary Tree Minimality [Frank, 2002]: Each elementary tree should cap-

ture a single semantic unit.

However, some practical issues arising from this work call for additional research.

These issues have only been partially addressed in this work and in sections below,

we discuss them in turn. We highlight the current remedies and provide pointers for

further research direction.

3.7.1 Partial AND/OR Erroneous Generation

For some inputs, multiple relations share the same entity variables. Let us consider

the example in Figure 3.18. Here, we have two relations, namely the (|Plant-Vein3268|

|has-part| |Xylem3269|) and (|Xylem3269| |has-part| |Tracheid3271|) that

share the same entity variable Xylem3269. As already discussed, our grammar ex-

traction approach is modeled after capturing relations and these relations are of four

different types – event-to-entity, event-to-event, entity-to-event and entity-to-entity

(as seen in Section 3.3). Fundamentally, the entities are the building blocks making

up the relations (the event-to-event relations associate events which in turn are com-

posed of event-to-entity relations) and when they are shared across the relations, it

leads to extraction of trees which cannot be fully combined (semantically plus syn-

tactically) to obtain the correct reference sentence. In other words, we shall either
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have an erroneous generation arising out of the fully combined trees or only some

trees can be combined (i.e. partial generation) which may or may not generate a

complete sentence.

The trees extracted for the input in Figure 3.18 depict such an instance. For

generation from this input, GenI selects all the trees extracted – those in Figure

3.18b, 3.18c, 3.18d, 3.18e, 3.18f and 3.18g making up for the complete semantics in

the input. With all these trees, a syntactically complete generation can occur as

follows. The initial trees in Figure 3.18d and 3.18e can be substituted to the left

and right substitution nodes respectively of the tree in Figure 3.18b and a derived

tree, say d1, is obtained. Another derived tree, say d2, can be obtained by adjoining

the tree in Figure 3.18g to the one in Figure 3.18f. Then the trees d1 and d2 can be

substituted at the left and right substitution nodes of the tree in Figure 3.18c and

a complete (both semantically and syntactically) generation is realised, outputting

the sentence “The xylem of a plant vein of a plant vein has thin tracheids.”, which is

grammatically incorrect sentence.

On the other hand, a grammatically correct sentence could be obtained for the

same input in a partial generation setting. The tree in Figure 3.18d and the derived

tree d2 (obtained as earlier) can be substituted for syntactic completeness in the left

and right substitution nodes of the tree in Figure 3.18c leading to a grammatically

correct sentence “The xylem of a plant vein has thin tracheids.”. This however, leaves

out the semantic information associated to trees in Figure 3.18b and 3.18e; thus an

instance of partial generation.

For the example input just discussed, we have shown cases of complete genera-

tion with ungrammatical ouput and partial generation with grammatically correct

output. This is however not always the case for relations sharing entity variables. In

particular, the complete generation itself may not be possible because of syntactic

combination incompatibility of extracted trees (thus no complete generation at all) or

the partial generation may output incomplete sentences. In any case, the sentences

so generated are not true reflection of their input and therefore additional measures

should be considered to address such inputs.

3.7.2 Multiple Adjunctions Order

For generation resulting from a combination of many adjoining trees, the grammar

we have extracted does not define the order of such combination. That is, although

our grammar constrains the trees that can adjoin to a given node (through the

feature values composed of variables occurring in the semantics), it allows for their

adjunction in any possible order. Let us consider the trees in Figure 3.21, obtained
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after the grammar expansion phase for the input in Figure 3.1b. As we can see, the

subtrees in Figure 3.21d, 3.21b and 3.21c can adjoin to the NP node bearing the

same feature value DA in the subtree of Figure 3.21a in any order. Thus, from this

grammar (and including the entity subtrees from its base grammar in Figure 3.15)

we can have as output the following sentences :

(8) Concentration gradient provides energy for the diffusion of anions from a cell

to the extracellular matrix.

(9) Concentration gradient provides energy for the diffusion to the extracellular

matrix from a cell of anions.

and many more resulting from the different combination order of the adjoining trees.

As we can see, such combinations contribute to overgeneration and also semantically

anomalous sentences (e.g. Sentence 9).

A possible strategy to avoid this problem would be to additionally constrain the

trees in our grammar with more feature values. One could, for instance, add feature

values depicting the verbalisation order of combining relations as seen in the training

scenarios. This would help to improve the grammatical correctness, fluency as well

as adequacy of the generated sentences.

3.7.3 Ranking

As discussed earlier, we can have several different derivations with varying para-

phrases as generated sentences for the same input. In this work, we ranked the

generated sentence using a 3-gram language model. Another possibility, and per-

haps better, would be rank the individual trees selected for the given input before

they are combined via TAG operations. For example, a beam search using the same

language model could be used for identifying the k-best combination of trees, instead.

Following this, the surface realiser would only take those tree combinations as input

and give us k-best sentences as ouput. This strategy also reduces the computational

cost (both time and space) of generation since the number of trees to be used for

generation is minimized.

3.8 Conclusion

We have presented a supervised approach to grammar based generation from Knowl-

edge Bases. Using the KBGen dataset, we proposed a novel method for corpus-based

learning of grammar that can mediate the semantic-syntactic mapping of meaning
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representation in KB triples to strings in sentences. We have shown that the re-

sulting grammar is linguistically principled and compares favorably with competing

symbolic and statistical approaches. At the same time, it is also generic and can be

adapted for generation from any knowledge base data.
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4.1. Introduction

In this chapter, we present a weakly supervised approach for surface realisation

from Knowledge Bases. Taking the KBGen dataset as reference, we present a novel

approach to surface realisation in terms of generating descriptions of events in n-

ary relation to arguments in ontologies. We propose a generic, domain-independent,

probabilistic method which extracts event verbalisation frames from large domain

corpora and uses probabilities both to select an appropriate frame and to map be-

tween syntactic and semantic arguments, i.e. to determine which event argument fills

which syntactic function (e.g., subject, object) in the selected frame. We evaluate

our approach on a corpus of 336 event descriptions, provide a qualitative and quan-

titative analysis of the results obtained and discuss possible directions for further

work.

4.1 Introduction

While earlier work on data-to-text generation heavily relied on handcrafted linguistic

resources, more recent data-driven approaches have focused on learning a genera-

tion system from parallel corpora of data and text. Thus [Angeli et al., Chen and

Mooney, Wong and Mooney, Konstas and Lapata, Konstas and Lapata, 2010, 2008,

2007, 2012b, 2012a] trained and developed data-to-text generators on datasets from

various domains including the air travel domain [Dahl et al., 1994], weather forecasts

[Liang et al., Belz, 2009, 2008] and sportscasting [Chen and Mooney, 2008]. In both

cases, considerable time and expertise must be spent on developing the required lin-

guistic resources. In the handcrafted, symbolic approach, appropriate grammars and

lexicons must be specified while in the supervised approach, an aligned data-text cor-

pus must be built for each new domain. To overcome this shortcoming, we propose

an alternative, a weakly supervised approach to surface realisation from knowledge

bases which could be used for any knowledge base for which there exists large textual

corpora.

A more specific, linguistic, issue which has received relatively little attention

is the non-supervised verbalisation of n-ary relations and the task of appropriately

mapping KB roles to syntactic functions.

In recent work on verbalising RDF triples, relations are restricted to binary rela-

tions (called “property” in the RDF language) and the issue is therefore intrinsically

simpler.

In symbolic approaches dealing with n-ary relations, the mapping between syn-

tactic and semantic arguments is determined by the lexicon and must be manually

specified.
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Finally, in data-driven approaches, the mapping is learned from the alignment

between text and data and is restricted by cases seen in the training data.

Instead, we learn a probabilistic model designed to select the most probable

mapping. In this way, we provide a domain independent, fully automatic, means of

verbalising n-ary relations.

This chapter is organized as follows. Section 4.2 provides a survey of related work.

In Section 4.3, we introduce the KBGen+ dataset which we use for our experiments

in this work. Section 4.4 describes our approach, discussing the various subtasks

(Corpus Collection in 4.4.1, Lexicon Creation in 4.4.2, Frame Extraction in 4.4.3,

Probabilistic Models in 4.4.4 and Surface Realisation in 4.4.5) in detail. Next, we

present the results and their evaluation in Section 4.5 and in Section 4.6, we discuss

the problem cases, limitations and possible remedies. Section 4.7 concludes.

4.2 Related Work

As already mentioned in Section 3.2, there has been much research in recent years

on developing natural language generation systems which support verbalisation from

knowledge and data bases. We now review how these approaches address the points

that were just mentioned, namely, the need to minimize the amount of manual

work required to build the necessary linguistic resources; and the verbalisation of n-

ary relations together with the appropriate linking between syntactic and semantic

arguments.

Many of the existing KB Verbalising tools rely on generating so-called Controlled

Natural Languages (CNL) i.e., a language engineered to be read and written almost

like a natural language but whose syntax and lexicon is restricted to prevent am-

biguity. For instance, the OWL verbaliser integrated in the Protégé tool is a CNL

based generation tool, [Kaljurand and Fuchs, 2007] which provides a verbalisation of

every axiom present in the ontology under consideration. Similarly, [Wilcock, 2003]

describes an ontology verbaliser using XML-based generation. Finally, recent work

by the SWAT project13 has focused on producing descriptions of ontologies that

are both coherent and efficient [Williams and Power, 2010]. In these approaches,

the mapping between relations and verbs is determined either manually or through

string matching. Moreover, KB relations are generally assumed to map to binary

verbs.

More complex NLG systems have also been developed to generate text (rather

than simple sentences) from knowledge bases. Thus, the MIAKT project [Bontcheva

13http://crc.open.ac.uk/Projects/SWAT
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and Wilks., 2004] and the ONTOGENERATION project [Aguado et al., 1998] use

symbolic NLG techniques to produce textual descriptions from some semantic in-

formation contained in a knowledge base. Both systems require some manual input

(lexicons and domain schemas). More sophisticated NLG systems such as TAILOR

[Paris, 1988], MIGRAINE [Carenini et al., 1994], and STOP [Reiter et al., 2003]

offer tailored output based on user/patient models. While offering more flexibility

and expressiveness, these systems are difficult to adapt by non-NLG experts because

they require the user to understand the architecture of the NLG systems [Bontcheva

and Wilks., 2004]. Similarly, the NaturalOWL system [Galanis et al., 2009] has been

proposed to generate fluent descriptions of museum exhibits from an OWL ontology.

These approaches however rely on extensive manual annotation of the input data.

Related to the work discussed in this paper is the task of learning subcategoriza-

tion information from textual corpora. Automatic methods for subcategorization

frame acquisition have been proposed from general text corpora, e.g., [Briscoe and

Carroll, 1997], [Korhonen, 2002], [Sarkar and Zeman, 2000] and specific biomedical

domain corpora as well [Rimell et al., 2013]. Such works are limited to the extraction

of syntactic frames representing subcategorization information. Instead, we focus on

relating the syntactic and semantic frame and, in particular, on the linking between

syntactic and semantic arguments.

We take the insipiration for linking of syntactic and semantic arguments from the

probabilistic mapping approaches proposed in works related to semantic role label-

ing, such as in [Swier and Stevenson, 2004]. There, the authors present an approach

for inducing semantic roles for verb arguments using an existing verb lexicon, the

VerbNet [Kipper et al., 2000]. VerbNet is a computational verb lexicon that specifies

the set of syntactic frames for verbs along with the semantic roles that label the

syntactic slots occuring in those frames. Given a verb occuring in a sentence, [Swier

and Stevenson, 2004] select the entries from the VerbNet lexicon which provide a

near match to the syntactic structure of this verb. Then, using a backoff probabil-

ity model which relies on the frequency of observations seen in the lexicon for the

specific combination of the given verb and its syntactic slots, they induce the most

probable semantic role to assign for each syntactic arguments of the given verb. In

our case, we extract the syntactic frames as observed in the sentences of the corpus

and the semantic roles binding the arguments are present in the input. We identify

the syntactic frames which verbalise the semantic roles of the input and build proba-

bilistic models of syntax/semantics linking taking into account the frequency of such

observations.

Another trend of work relevant to this paper is generation from databases using
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parallel corpora of data and text. [Angeli et al., 2010] train a sequence of discrimina-

tive models to predict data selection, ordering and realisation. [Wong and Mooney,

2007] uses techniques from statistical machine translation to model the generation

task and [Konstas and Lapata, 2012b, Konstas and Lapata, 2012a] learns a proba-

bilistic Context-Free Grammar modelling the structure of the database and of the

associated text. Various systems from the KBGen [Banik et al., 2012, Banik et al.,

2013] shared task – [Butler et al., 2013], [Gyawali and Gardent, 2013] and [Zarrieβ

and Richardson, 2013] perform generation from the same input data source as ours

and use parallel text for supervision. Our approach differs from all these approaches

in that it does not require parallel text/data corpora.

Finally, there has been much work recently on extracting templates from com-

parable corpora. Such approaches are based on finding sentences in the corpus that

bear verbalisation of all the data in the given input. Once such a sentence is found

for an input, a template is constructed from it by replacing the word forms verbalis-

ing the data with slots marked by the variables making up those data in the input.

Figure 4.1 adapted from [Duma and Klein, 2013] depicts this process. The arrows

show the alignment of data in the input to strings in a sentence of the text. As we

can see the sentence verbalises all the data occuring in the input (except for the value

of the rdf:type variable which is, in fact, just a type identifier and doesn’t represent

a verbalizable data unit). A template as shown in Figure 4.1b is then extracted by

replacing the aligned strings with the variables in the input holding the respective

data. In the template, we show the variables making up the slots in bold.

The works described in [Kondadadi et al., 2013], [Ell and Harth, 2014] and [Duma

and Klein, 2013] are all examples of template extraction approach and require com-

parable text corpora that are closely related to the knowledge base which is being

generated from. In practice however, we found that despite the large size of the

training corpus we built for KBGen, it was not possible to extract templates from

this corpus which would succeed in directly matching all the data in a given input to

surface text in the sentences obtained from non-parallel biomedical texts. Instead,

we therefore guess (using probabilities) a lemma and a subcategorization frame for

verbalising the event and we learn the linking between semantic and syntactic argu-

ments.

4.3 The KBGen+ Dataset

The dataset for this experiment is derived from the KBGen dataset discussed earlier

in Chapter 3.
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(a) Template Extraction from Comparable Corpora as shown in [Duma and Klein, 2013]

Name (b.birthPlace, birthDate; d. deathPlace, deathDate) was a shortDe-
scription.

(b) Template Created for the above input

Figure 4.1: An example of Corpus based Template Extraction

In KBGen the input consists of content units, each of which expresses a set

of relations among different concept types, namely event-to-entity, event-to-event,

entity-to-event, entity-to-entity and property-values relations. In this work, however,

we are interested in describing the events in relation to their entity type arguments

only and, therefore, we process the KBGen dataset to produce all KB fragments which

represent a single event with roles to entities only. In other words, given the content

units from the KBGen dataset, we automatically filter out event-to-event, entity-

to-event, entity-to-entity and property-values relations and keep only the event-to-

entity relations so as to obtain the dataset for this experiment (dubbed KBGen+

henceforth). The KBGen+ dataset is thus a collection of biological event descriptions

whereby an event description consists of an event, its arguments and the roles relating

each argument to the event. The events are concepts of type Event (e.g., Release),

arguments are concepts of type Entity (e.g., Gated-Channel, Vascular-Tissue, Iron)

and roles are relations from events to entities (e.g., agent, patient, path, instrument).

Note that more than one event descriptions can sometimes be produced from a single
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content unit of the KBGen dataset. For example, given the following content unit of

KBGen :

:TRIPLES (

(|Detach10084| |object| |Hydrophilic-Compound10085|)

(|Detach10084| |site| |Functional-Region10079|)

(|Move-Through10088| |subevent| |Detach10084|)

(|Move-Through10088| |base| |Biomembrane10093|)

(|Move-Through10088| |agent| |Carrier-Protein10080|))

:INSTANCE-TYPES (

(|Hydrophilic-Compound10085| |instance-of| |Hydrophilic-Compound|)

(|Functional-Region10079| |instance-of| |Binding-Site|)

(|Detach10084| |instance-of| |Detach|)

(|Biomembrane10093| |instance-of| |Biomembrane|)

(|Move-Through10088| |instance-of| |Move-Through|)

(|Carrier-Protein10080| |instance-of| |Carrier-Protein|))

:ROOT-TYPES (

(|Detach10084| |instance-of| |Event|)

(|Hydrophilic-Compound10085| |instance-of| |Entity|)

(|Functional-Region10079| |instance-of| |Entity|)

(|Move-Through10088| |instance-of| |Event|)

(|Biomembrane10093| |instance-of| |Entity|)

(|Carrier-Protein10080| |instance-of| |Entity|))

we obtain the following two isolated event descriptions shown below. For ease of
reading, we shall use the :INSTANCE-TYPES values of the variables in the event de-
scriptions (such as Detach for the event variable Detach10084, Biomembrane for the
entity variable Biomembrane10093 in the event descriptions below) in the remain-
der of this text. Further, we shall present only the triples in the :TRIPLES section
of the input and organize them such that each triple statement is in the fashion
(Event role Entity).

Event Description 1

(|Detach| |object| |Hydrophilic-Compound|)

(|Detach| |site| |Functional-Region|)

Event Description 2

(|Move-Through| |base| |Biomembrane|)

(|Move-Through| |agent| |Carrier-Protein|)
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In total, we obtain 336 event descriptions for our KBGen+ dataset. Various

statistics for this dataset are shown in Table 4.1 below. The counts represent the

total number of occurrences of the corresponding item in the KBGen+ dataset while

the numbers in parenthesis correspond to their distinct counts. As we can see from

the table, on average, event descriptions have more than 2 roles. Further analysis

shows that 4.46% (count 15) of the total event descriptions have exactly 1 role (the

minimum), 0.5% (count 2) have exactly 8 roles (the maximum), 47.61% (count 160)

have exactly 2 roles, 23.51% (count 79) have exactly 3 roles and 24.40% (count 82)

of the total event descriptions have more than 3 roles. Also, from the Table 4.1, we

can see that in total we have 397 (= 126 + 271) distinct variables in the KBGen+

dataset.

Items Count

Total nb of Event Descriptions 336
Min/Avg/Max nb of roles in
an Event Description 1/2.76/8
Total nb of events 336 (126)
Total nb of entities 929 (271)
Total nb of roles 929 (14)

Table 4.1: KBGen+ Statistics.

4.4 Methodology

Our goal is to automatically generate natural language verbalisations of the event de-

scriptions in the KBGen+ dataset. For this, we propose a probabilistic method which

extracts possible verbalisation frames from large biology specific domain corpora and

uses probabilities both to select an appropriate frame given an event description and

to determine the mapping between syntactic and semantic arguments. That is, prob-

abilities are used to determine which event argument fills which syntactic function

(e.g., subject, object) in the produced verbalisation. In sections below, we describe

each of these steps in greater detail.
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4.4.1 Corpus Collection

We begin by gathering sentences from several of the publicly available biomedical do-

main corpora.14 This includes the BioCause [Mihăilă et al., 2013], BioDef15, BioInfer
[Pyysalo et al., 2007], Grec [Thompson et al., 2009], Genia [Kim et al., 2003a] and

PubMedCentral (PMC)16 corpus. We also include the sentences available in anno-

tations of named concepts in the KB Bio 101 ontology. This custom collection of

sentences will be the corpus upon which our learning approach will build on. Table

4.2 lists the count of sentences available in each corpus and in total.

Number of Sentences

BioCause 3,187
BioDef 8,426
BioInfer 1,100
Genia 37,092,000
Grec 2,035
PMC 7,018,743
KBBio101 3,393
Total 44,128,884

Table 4.2: Count of sentences in different corpora

4.4.2 Lexicon Creation

To identify corpus sentences which might contain verbalisations of KBGen+ events

and entities, we build a lexicon mapping the event and entity variables contained in

KBGen+ to natural language words or phrases using several existing resources.

4.4.2.1 KBGen

First, we take the lexicon provided by the KBGen challenge. As discussed in Chapter

3, the KBGen lexicon is composed of entries that provide inflected forms and nomi-

nalizations for the event variables (for example, Block) and singular and plural noun

forms for the entity variables (for example, Earthworm), such as :

14Ideally, since KB Bio 101 was developed based on a textbook, we would use this textbook as
a corpus. Unfortunately, the textbook, previously licensed from Pearson, is no longer available.

15Obtained by parsing the 〈Supplement〉 section of html pages crawled from
http://www.biology-online.org/dictionary/

16ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
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KB Symbol Word forms

Block blocks, block, blocked, blocking

Earthworm earthworm, earthworms

At this phase, we simply copy the entries present for the KBGen+ variables in the

KBGen lexicon and create our lexicon.

4.4.2.2 Mesh and BioDef

To the lexicon so obtained, we add the synonymous entries for KBGen+ events and

entities found in the Mesh17 and in the BioDef vocabulary. Mesh is an existing wide-

coverage thesaurus of terms in life sciences and provides term synonymy. BioDef is

our custom name for the synonyms vocabulary we build automatically by parsing

the entries in 〈Synonyms〉 section of html pages crawled from an open biology dic-

tionary at http://www.biology-online.org/dictionary/. Some example synsets

obtained from Mesh and BioDef are shown below:

block, prevent, stop

neoplasm,tumors,neoplasia,cancer

We use these synsets to augment our lexicon as follows. For each event and entity

variables, we look for synsets that contain one or more word forms already assigned

to that variable in our existing lexicon. If such a synset is found for a variable, we add

all the terms present in that synset as lexical entries for that variable, avoiding du-

plicates. Thus, for the example above, our lexicon would be updated as shown below :

KB Symbol Word forms

Block blocks, block, blocked, blocking, prevent, stop

Earthworm earthworm, earthworms

4.4.2.3 KBBio101

Finally, for generalisation purposes, we automatically extract the direct parent and

siblings of the KBGen+ events and entities in the KB Bio 101 ontology and add them

as a lexical entries for the corresponding KBGen+ event/entity. For example, for the

KB Bio 101 event Block, the direct parent and siblings extracted from the KB Bio

17http://www.nlm.nih.gov/mesh/filelist.html
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101 are, respectively:

make–inaccessible

conceal, deactivate, obstruct

and we update the lexical entries for the event Block with these word forms18 in

order to get an updated lexicon as follows :

KB Symbol Word forms

Block blocks, block, blocked, blocking, prevent, stop,

conceal, deactivate, obstruct

Earthworm earthworm, earthworms

The resulting lexicon is thus a merge of all the entries extracted from all the

above mentioned sources for all the KBGen+ events and entities. In Table 4.3 below,

we present the size of lexicon available from each source (Total Entries) and the

count of distinct KBGen+ variables (events plus entities) for which one or more entry

was found in that source (Intersecting Entries). Table 4.4 details this by showing

the proportion of KBGen+ events and entities for which a lexical entry was found

in each source. At a first glace, it might seem redundant to use both the KBGen

and KBBio101 sources since we obtain a 100% lexical coverage for both the event

and entity variables from each of them. However, in practice, they contribute to

different word forms (e.g. block is obtained from KBGen and obstruct is obtained

from KBBio101 for the event Block) and this is crucial for our task (as discussed

in the following sections) which is based on using syntax/semantic associations as

observed in varying syntactic environments in which the different words occur in the

sentences of the corpus.

Total Entries Intersecting Entries
KBGen 469 397
Mesh 26795 65
BioDef 14934 99
KBBio101 6972 397

Table 4.3: Total number of lexical entries and the number of distinct KBGen+ variables
(events plus entities) observed in each source

In Table 4.5, we present the information on the maximum, minimum and average

number of lexical items available for KBGen+ event and entities in the merged lexicon.

18To avoid overly general classes, we exclude hyphenated and multi-word terms.
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KBGen Mesh BioDef KBBio101 ALL

Event 100% 10.31% 25.39% 100% 100%
Entity 100% 19.18% 24.72% 100% 100%
All 100% 16.37% 24.93% 100% 100%

Table 4.4: Proportion of KBGen+ Events and Entities for which a lexical entry was found

As we can see, by using multiples sources for lexicon creation, we have on average 18

different word forms verbalising the variables in our input. Having such a big lexicon

significantly contributes to extracting a large collection of different syntactic frames

for the events (Section 4.4.3) and suggests plausible syntax/semantics mapping for

verbalisation of event-entity relations (Section 4.4.4).

Minimum Maximum Average

Event 5 97 22
Entity 3 91 16.18
All 3 97 18.03

Table 4.5: Minimum, maximum and average number of lexical items available for KBGen+

events and entities in the merged lexicon

4.4.3 Frame Extraction

Events in KBGen+ take an arbitrary number of participants ranging from 1 to 8.

Knowing the lexicalisation of an event is therefore not sufficient. For each event

lexicalisation, information about syntactic subcategorisation and syntactic/semantic

linking is also required. Consider for instance, the following event representation:

(|Block| |instrument| |PC/EBP|)

(|Block| |object| |TNF-activation|)

(|Block| |base| |Myeloid-Cells|)

Knowing that a possible lexicalisation of the event Block is the finite verb form

blocked (as given by the lexicon) is not sufficient to produce an appropriate verbali-

sation of the KB event e.g.,

(10) C/EBP beta blocked TNF activation in myeloid cells.

In addition, one must know that this verb (i) takes a subject, an object and an

optional prepositional argument introduced by a locative preposition (subcategorisa-

tion information) and (ii) that the instrument role is realised by the subject slot, the
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object role by the object slot and the base role by the prepositional slot (syntax/se-

mantics linking information). That is, we need to know, for each KB event e and

its associated roles (i.e., event-to-entity relations), first, what are the syntactic argu-

ments of each possible lexicalisations of e and second, for each possible lexicalisation,

which role maps to which syntactic function.

To address this issue, we extract syntactic frames from our constructed corpus

and we use the collected data to learn the mapping between the KB and the syntactic

arguments.

Frame extraction proceeds as follows. For each event e in the KBGen+ dataset, we

look for all the sentences S in the corpus that mention one or more of the word forms

available for this event in the merged lexicon. Each of those sentences s ∈ S is then

parsed using the Stanford dependency parser19 for collapsed dependency structure.

From the resulting dependency parse tree, we extract the subtree t rooted at the node

labelled with the word form for the event variable and spanning just its immediate

dependents (i.e. the direct children nodes). The frame obtained for the event e from

this sentence s is then a string composed of ordered sequence of dependency relations

occuring in t along with the part-of-speech (pos) tag of the root node. In the frame,

we generalise the pos tags NN, NNS, NNP and NNPS as NP; the pos tags VBD,

VBG, VBN, VBP and VBZ as VB and preserve the rest as such. We shall call a

frame having the post tag X as a X rooted frame. Thus, given the sentence and the

dependency tree shown in Figure 4.2, the extracted frame for the event Block will

be a VB rooted frame as follows :

nsubj,VB,dobj

indicating that the verb form block requires a subject and an object.

That is, a frame describes the arguments required by the lexicalisations of an

event and the syntactic function they realise (e.g. the verb subcategorisation infor-

mation).

New immunosuppressive drug pnu156804 blocks IL-2-dependent proliferation
JJ JJ NN NNS VBZ JJ JJ

AMOD

AMOD

NN NSUBJ

DOBJ

AMOD

Figure 4.2: Example Dependency Parse Tree

19http://nlp.stanford.edu/software/lex-parser.shtml
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When extracting the subtrees making up the frames, we only consider a subset of

the dependency relations produced by the Stanford parser to avoid including in the

frame adjuncts such as temporal or spatial phrases which are optional rather than

required arguments. Specifically, the dependency relations we consider for frame

construction are:

agent, amod, dobj, nsubj, nsubjpass, prep_across, prep_along, prep_at, prep_inside,

prep_down, prep_for, prep_from, prep_in, prep_away_from, prep_into, prep_with,

prep_out_of, prep_through, prep_to, prep_toward, prep_towards, prep_via, prep_of,

auxpass, vmod_creating, vmod_forming, vmod_producing, vmod_resulting, vmod_using,

xcomp_using.20

A total of 718 distinct event frames were observed whereby 97.63% of the KBGen+

events were assigned at least one frame and each event was assigned an average of

82.01 distinct frames. Several points are worth noting:

• Many different frames can be obtained for the same event. This can arise from

the same or different word forms (corresponding to the event variable in the

lexicon) occurring in different syntactic environments. For example, both Sen-

tence 11 and 12 verbalise the event Block using the same word form block but

give rise to two distinct frames, “nsubj,VB,dobj” and “nsubj,VB,dobj,prep_at”

respectively. Additionally, from Sentence 13, we can extract a different frame

“VB,dobj,prep_in”; this time using a different word form prevent present in

the lexicon for the same event Block.

(11) Studies revealed that grks block excess stimulus.

(12) Alternately, paralytic drugs block synaptic transmission at neuromuscu-

lar junctions.

(13) Intervention studies are needed to prevent functional decline in this

high-risk population.

• The same frame can be observed multiple times for a given event. For example,

given two distinct sentences, Sentence 14 and 15 below, we observe the same

frame “nsubj,VB,dobj” for the event Absorb in both of them.
20 vmod_creating, vmod_forming, vmod_producing, vmod_using, xcomp_using, vmod_resulting

are not directly given by the Stanford parser but reconstructed from a vmod or an xcomp dependency
“collapsed” with the lemmas producing or using much in the same way as the prep_P collapsed
dependency relation provided by the Stanford Parser. These added dependencies are often used in
biomedical text to express e.g., result or raw-material roles.
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(14) The chlorophyll best absorbs light in the blue portion of the electromag-

netic spectrum.

(15) Molecules absorb photon.

• Different events can subcategorise for the same frame. For example, in Sentence

16 and 17 below, two different events Secrete and Store have the same frame

value “nsubj,VB,dobj”.

(16) Pancreas cells secrete digestive enzyme.

(17) Adipose cells store fat molecules.

Given an event E, and a sentence S, Algorithm 1 outlines the complete steps

involved in our approach for extracting all the frames F that can be deduced for

that event from that sentence. For each event in the KBGen+ dataset, we run this

algorithm over all the training sentences; collect the frames so obtained and assign

them to the respective event.

4.4.4 Probabilistic Models

The frame extraction phase helps to learn the syntactic verbalisation patterns for the

events in the KBGen+ dataset. However, the variety of frames learnt for each event

can be very high due to the wide diversity of lexical and syntactic verbalisations

present in the training corpus. Also, not all frames learnt for an event occur with

equal frequencies or in similar contexts in the training corpus. It is therefore nec-

essary to establish some judgement criteria for identifying the frames most suitable

to verbalise a given event. Furthermore, we need to establish the syntactic/seman-

tic mapping between the syntactic structure in frames to the semantic roles in the

KBGen+ dataset for a successful realisation system.

To address these issues, we propose three different probabilistic models that are

trained on the extracted frames and will be used for generating KBGen+ events

descriptions during test time. Given F a set of syntactic frames, E a set of KBGen+

events, D a set of syntactic dependency names and R, a set of KB roles, we discuss

each of the three probability models, namely the P (f |e), P (f |r) and P (d|r) in the

following sections. All these models we propose are generative probability models

and we use a Symmetric Dirichlet prior with hyperparameter α = 0.1 in order to

counterbalance sparse distributions.
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Algorithm 1 Frame Extraction Algorithm

1: function computeFrame(Event E, Sentence S)
2: F = [ ] // Initialised to empty array

3: X = {agent, amod, dobj, nsubj, nsubjpass, prep_across, prep_along, prep_at,
prep_away_from, prep_down, prep_for, prep_from, prep_in, prep_inside,
prep_into, prep_of, prep_out_of, prep_through, prep_to, prep_toward,
prep_towards, prep_via, prep_with, vmod_creating, vmod_forming,
vmod_producing, vmod_resulting, vmod_using, xcomp_using, auxpass}

4: P = Dep_Parse(S) // Get Dependency Parse of S using Stanford Parser

5: Q = Heads(P ) // Get All head words in the parse tree P

6: for each W in contained_in(E,S) do
7: for each H in Q do
8: if H==W then
9: D = Dependents(H) // Get All dependents of H using Stanford Parser

10: Add H to D

11: sort(D) // Sort by node number

12: f = “” // Initialise to empty string

13: for each dependent N in D do
14: if N==H then
15: f = f + get_gpt(N) + “,”
16: else
17: dep = Dependency(H,N) // Dependency relation from H to N

18: if dep ∈ X then
19: f = f + dep +“,”
20: end if
21: end if
22: end for
23: F ← F ⊎ {{f}}
24: end if
25: end for
26: end for
27: return F
28: end function

29: function contained_in(E,S)
30: V = {} // Empty Set

31: W = Words(S) // Get All words in the sentence

32: lex = Lexicon{:E} // Get All lexical items of E from Lexicon

33: for each L in lex do
34: T = Words(L) // Get All words in L

35: if T ⊂W then
36: for each M ∈ T do
37: V ← V ⊎ {{M}}
38: end for
39: end if
40: end for
41: return V
42: end function
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43: function get_gpt(N)
44: P = POS(N) // Get Part-of-Speech for the node using Stanford Parser

45: if P == (NN | NNS | NNP | NNPS$) then
46: return NP
47: else if P == (VBD | VBG | VBN | VBP | VBZ$) then
48: return VB
49: else
50: return P

51: end if
52: end function

4.4.4.1 P(f|e)

The model P (f |e) with f ∈ F and e ∈ E encodes the probability of a frame given an

event. Intuitively, it captures the suitableness of the frame f to verbalise the event e

as observed from the training corpus and provides an estimate for selecting the best

frame to verbalise a given event during test time. It is computed as follows :

P (f |e) =
counts ((f, e) ∈ Ce) + 0.1∑

f ′ (counts ((f ′, e) ∈ Ce) + 0.1)
(4.1)

where Ce represents the collection of all frames extracted for the event e from the

sentence corpus; counts(f, e) is the number of times the frame f is observed for the

event e in Ce and counts(f ′, e) is the frequency of any frame f ′ observed for the

event e in Ce. Ce is directly obtained from the frame extraction procedure discussed

in Section 4.4.3 above and the computation of P (f |e) becomes straightforward.

4.4.4.2 P(f|r)

The model P (f |r) with f ∈ F and r ∈ R encodes the probability of a frame given a

role. Intuitively, its a measure of how appropriately a frame f qualifies for expressing

a given semantic role r and it helps to rank the frames based on the given set of

semantic roles during test time. It is computed as follows :

P (f |r) =
counts ((f, r) ∈ Cr) + 0.1∑

f ′ (counts ((f ′, r) ∈ Cr) + 0.1)
(4.2)

where Cr represents the collection of all frames aligned to the role r; counts(f, r) is

the number of times the frame f is observed for the role r in Cr and counts(f ′, r) is

the frequency of any frame f ′ observed for the role r in Cr.

The computation of Cr is bit involved and takes into account the global align-
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ment of all the KBGen+ roles with all the KBGen+ event frames extracted from the

sentence corpus. Using a toy example (Example 1) resembling the KBGen+ dataset

(triples are in prefix notation (event followed by entity) and separated by space) and

sample sentences taken from the corpus, we explain the assumptions underlying such

alignment and demonstrate the computation of P (f |r) below.

Example 1

Event Descriptions :

A : instrument(Maintain,Electrogenic-Pump) object(Maintain,Membrane-Potential)

B : base(Release,Lysosome) destination(Release,Food-Vacuole) object(Release,Hydrolase)

C : agent(Create,Electrogenic-Pump) result(Create,Membrane-Potential)

Sentences :

A : Mitochondria maintains a membrane potential.

B : Hypertrophic chondrocytes release hydrolases.

Given the event descriptions and the sentences, our frame extraction procedure

generates the frame nsubj,VB,dobj for the event maintains (from Sentence A) and

release (from Sentence B). The dependency subtrees generating the frame for the

corresponding events are shown in Figure 4.3 and 4.4 respectively.

maintains

mitochondria potential

nsubj dobj

Figure 4.3: Dependency subtree :
Maintain

release

chondrocytes hydrolase

nsubj dobj

Figure 4.4: Dependency subtree :
Release

From such dependency subtrees generating the frames for the events in the input,

we target learning the frame-role alignment as follows. We assume that a event frame

f given by a dependency subtree t can be aligned to any role r in the total input

whenever t has some entity e as its dependent and the entity e is bound via the

role r in any of the event descriptions of the input. This assumption is motivated

by the goal of identifying all the semantic roles a given frame is likely to express in

the context of the global input, independent of the particular event generating that

frame.
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In Figure 4.3, the dependency subtree verbalises the entity Membrane-Potential

present in the input since our lexicon provides the term “potential” as once of its

verbalisation alternatives. It provides the frame nsubj,VB,dobj and based on the

assumption just discussed, we look for the roles from the total input that can be

aligned to this frame. In Event Description A, we have the role object and in Event

Description C, we have the role result that bind this entity. We therefore, align the

roles object and result to the frame nsubj,VB,dobj and indicate their frequency of

occurrence as in Table 4.6 below.

result object
nsubj,VB,dobj 1 1

Table 4.6: Cr after processing Event Maintain

In Figure 4.4, the dependency subtree also generates the same frame nsubj,VB,dobj

but verbalises a different entity Hydrolase present in the input. The entity Hydro-

lase is bound via the role object in the Event Description B and we augment Table

4.6 to account this observation. Table 4.7 shows the increment in the frequency value

for the role object since the frame happens to be the same.

result object
nsubj,VB,dobj 1 1 + 1

Table 4.7: Cr after processing Events Maintain and Release

In the toy Example 1 we present, none of the sentences verbalise the event Create

from the Event Description C, yet we benefit from using the role information in it

to build up Cr (as discussed in building Table 4.6). This means that our frame-role

alignment strategy abstracts over the actual events generating the frames and profits

from such correspondences learnt from the global KBGen+ dataset. By using the total

sentences in the corpus and all the event descriptions in the KBGen+ dataset, our Cr
expands to cover all the frames that can be aligned with all the roles present in the

dataset; updating the frequency information each time.

4.4.4.3 P(d|r)

In contrast to the earlier two models which aim at choosing frames given an event,

the P (d|r) aims at learning the syntax/semantic linking for verbalising the selected

frame. Intuitively, it provides the likelihood estimates for mapping a syntactic de-

pendency d to a semantic role r and is used to choose which dependencies in the

selected frame should map to which roles in the input event description during test
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time. It is computed as follows :

P (d|r) =
counts ((d, r) ∈ Cd) + 0.1∑

d′ (counts ((d
′, r) ∈ Cd) + 0.1)

(4.3)

where Cd represents the collection of all dependencies aligned to the role r;

counts(d, r) is the number of times the dependency d is observed for the role r

in Cd and counts(d′, r) is the frequency of any dependency d′ observed for the role r

in Cd.

To compute Cd, we assume that a dependency relation d present in a dependency

subtree t can be aligned to any role r in the total input whenever d binds some entity

e in t and the entity e is bound via the role r in any of the event descriptions of the

input. Contrasting to the P (f |r) model, here, we align the roles of the input to the

corresponding dependency relation in the frame rather than the frame itself.

Using the same toy example (Example 1) above, we demonstrate the computation

of Cd. As discussed earlier, the dependency subtree in Figure 4.3 verbalises the

entity Membrane-Potential which is bound via the roles object and result in the

input. Here, we are interested in aligning the dependency relation binding the entity

Membrane-Potential in the dependency subtree, i.e. the dobj relation, against those

roles and therefore have the frequency information as shown in Table 4.8.

result object
dobj 1 1

Table 4.8: Cd after processing Event Maintain

Similarly, in Figure 4.4, the dependency subtree verbalises the entity Hydrolase

which is bound via the role object in the input and by the dependency relation dobj

in the tree. Updating the frequency information from this observation gives us Table

4.9.

result object
dobj 1 1 + 1

Table 4.9: Cd after processing Events Maintain and Release

As with the P (f |r) model, the alignment abstracts over the events and profits

from learning over the global KBGen+ dataset. And similar to Cr computation, the Cd
expands to account for observations made from processing all the event descriptions

in the KBGen+ dataset using the total sentences in the corpus.

For each of the three models P (f |e), P (f |r) and P (d|r); we assume them to be
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multinomial with their maximum likelihood estimates determined by the labelled

data, Ce, Cr and Cd respectively. Also, we choose to model the conditional proba-

bilities for frames and dependencies given events and roles, and not the other way

around, because such models intuitively match the generation process at test time.

Algorithm 2 outlines the steps we follow in building Ce, Cr and Cd.

Algorithm 2 Preparation of the corpora used to train our probabilistic models
Input KBGen+

Lexicons Le for events and Lt for
entities as described in Section 4.4.2

Raw text corpus T with dependency
trees as described in Section 4.4.3

Output Corpus (multiset) Ce for model P (f |e)
Corpus (multiset) Cr for model P (f |r)
Corpus (multiset) Cd for model P (d|r)

1. For every event e ∈KBGen+ let lex(e) be all possible lexicalisations of e taken
from Le:

2. For every lexicalisation l ∈ lex(e):

3. For every occurrence et ∈ T of l:

(a) Extract the frame f governed by et

(b) Add the observation f with label e in the frame-event corpus:

Ce ← Ce ⊎ {{(f, e)}}

(c) For every entity wt ∈ Lt that is a dependent of et with syntactic relation
d, add every role r associated with this entity in KBGen+ to both role
corpora:

Cr ← Cr ⊎ {{(f, r)}}

Cd ← Cd ⊎ {{(d, r)}}

4.4.5 Surface Realisation

The input to the surface realisation task are individual event descriptions of the

KBGen+ dataset. To verbalize an input event description, we first identify the event

e and the set of roles r1. . . . . . rn it contains. We define the arity of an event as the

count of distinct role types present in the event description in order to account for

aggregation of repeated roles, if any. Thus if the input event description contains

e.g., 2 object roles and an instrument role, its arity will be 2 rather than 3 and this
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accounts for the fact that the two object roles will be verbalised as a coordinated NP

filling in a single dependency function rather than two distinct syntactic arguments

in the generated sentence. Then, from all the frames present in Ce for this event, we

select only those that have the same arity (this equals to the number of syntactic

dependents in case of frames) as the input event. All such frames are candidate

frames for our surface realisation task.

We consider two alternative scoring functions for scoring the candidate frames.

We aim to identify the 5 best frames for each input and set n=5.

In the first model, we select the frame f which maximises the score (M1):

P (f |e)×
n∏

i=1

P (f |ri) (M1)

For the second model, we want to have a scoring function that also takes into

account the optimal mapping of syntactic dependents in the frame (d1, . . . , dn) to

the roles (r1, . . . , rn) in the input for scoring the frame itself. Thus, we first define a

function (r̂f1 , . . . , r̂
f
n) which determines the best permutation for one-to-one mapping

of (d1, . . . , dn) in a given frame f to (r1, . . . , rn) in the input (Equation 4.4) :

(r̂f1 , . . . , r̂
f
n) = argmax

(s1,...,sn)∈P({r1,...,rn})

n∏

i=1

P (di|si) (4.4)

where P({r1, . . . , rn}) is the set of all permutations of the roles21.

and use the mappings proposed by Equation 4.4 to compute the scores in model

(M2) :

P (f |e)×
n∏

i=1

P (f |ri)×
n∏

i=1

P (di|r̂
f
i ) (M2)

Note that both (M1) (and (M2)) can be viewed as a product of experts [Hinton,

2002] but with independently trained experts and without any normalization factor.

It is thus not a probability, but this is fine because the normalization term does not

impact the choice of the winning frame.

Both models (M1) and (M2) generate individual scores for the candidate frames.

By ranking the scores, we identify the top n-best scoring frames and retain only them

for generation purposes. To verbalise each of those n-best frames (both from (M1)

and (M2)), we need to determine the mapping between the syntactic dependents

it contains and the roles in the input event description for which this frame was

21Here, we assume the order of dependencies in f is fixed, and we permute the roles; this is of
course equivalent to permuting the dependencies with fixed roles sequences.
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selected. Again, Equation 4.4 comes to rescue. Then, the generation boils down to

filling every dependency slot in the frame with the lexical entry of the corresponding

role’s bound entity in the input and preserving the head word verbalising the event.

For repeated roles of the input, we aggregate their bound entities via the conjunction

“and” and fill the corresponding dependency slot.

Let us consider an example to see the surface realisation task in practice, the

syntax/semantic mapping in particular. Let us assume that the test input is an

event description with the event Block participating via binary roles instrument and

object to entities Plasma-membrane and Hydrophobic-Compound respectively :

(|Block| |instrument| |Plasma-Membrane|)

(|Block| |object| |Hydrophobic-Compound|)

Let us assume that the following frames (and many more) are observed for the

event Block in Ce :

nsubj,cop,NP,prep_of,rcmod Frame 1

nsubj,VB,acomp,prep_to Frame 2

nsubj,VB,dobj Frame 3

VB,prep_of,prep_to Frame 4

. . . . . . . . .

As we can see, only the frames Frame 3 and Frame 4 from the above list serve

as candidate frames for verbalising the input event description as they are the only

ones with the matching arity (i.e. 2).

Further, let us assume that Frame 3 is the top scoring frame (either from (M1)

or (M2)) and the we have the following P (d|r) probabilities (in log10 scale) from the

training phase :

instrument object
nsubj −1.25 −0.99

dobj −1.15 −0.76

Table 4.10: Sample P (d|r)

For verbalising the frame Frame 3, Equation 4.4 permits the scoring of two dif-

ferent syntax/semantic mapping combinations :

instrument → dobj & object → nsubj = −1.15 + −0.99 = −2.14

instrument → nsubj & object → dobj = −1.25 + −0.76 = −2.01
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and chooses the second mapping as it scores a higher value. Therefore, we pro-

ceed to verbalise the frame Frame 3 such that the entity bound by the instrument

role in the input (i.e. the Plasma-Membrane entity) fills the nsubj dependency slot

and the entity bound by the object role in the input (i.e. the Hydrophobic-Compound

entity) fills the dobj slot in the frame. From the dependency subtree generating the

frame Frame 3 , we have the information of the word form verbalising the event in

the frame (i.e. the word blocks) and from the lexicon we have the word forms to

express the entities (i.e. the word Plasma membrane and Hydrophobic compounds

respectively). Thus the generated sentence is :

(18) Plasma membrane blocks Hydrophobic compounds.

The results obtained by verbalising the n-best frames given by models (M1 &

M2) are separately stored and we present their analysis in Section 4.5.

4.5 Results and Evaluation

We evaluate our approach on the 336 event representations included in the KBGen+

dataset. As discussed in the preceding section, for each event representation in the

input, we extract the 5 best natural language verbalisations according to the score

provided by the models just discussed. To evaluate the generated sentences, we need

to compare them against some reference sentences, which we create by manually

editing the reference sentences provided by the KBGen dataset. As discussed earlier,

our KBGen+ dataset is the subset of the KBGen dataset where only the relations

forming an event description are retained. Thus, we create reference sentences for

our KBGen+ dataset by retaining only the event description structures in the KBGen

sentences with minimal edits and careful manual analysis. In the remainder of this

text, we shall refer to this set of reference sentences for our KBGen+ dataset as gold

corups.

We evaluate the results both quantitatively (Automatic Evaluation) and quali-

tatively (Human Evaluation).

4.5.1 Automatic Evaluation

4.5.1.1 Coverage

We first consider coverage i.e., the proportion of input for which a verbalisation is

produced. In total, we generate output for 321 event descriptions (95.53% of the

total input).
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For 3 input cases involving two distinct events (photorespiration and unequal-

sharing), there was no associated frame because none of the lexicalisations of the

event could be found in the corpus. Covering such cases would involve a more so-

phisticated lexicalisation strategy for instance, the strategy used in [Trevisan, 2010],

where the word forms are tokenized and pos-tagged before being mapped using hand-

written rules to a lexicalisation.

For the other 12 input cases, generation fails because no frame of matching arity

could be found. Several factors account for this failure and we discuss them in detail

in Section 4.6 below.

4.5.1.2 Accuracy

Because the generated verbalisations are not learned from a parallel corpora, the gen-

erated sentences are often very different from the reference sentence. For instance,

the generated sentence may contain a verb while in the reference sentence, the event

is nominalised. Or the event might be verbalised by a transitive verb in the gener-

ated sentence but by a verb taking a prepositional object in the reference sentence

(Eg: A double bond holds together an oxygen and a carbon vs Carbon and oxygen

are held together by double bond). To automatically assess the quality of the gener-

ated sentences, we therefore do not use BLEU. Instead we measure the accuracy of

role mapping and we complement this automatic metric with the human evaluation

described in the next section.

Role mapping is assessed as follows. First, for each event description in the input,

we record the mapping between the KB role of an argument in the event description

and the syntactic dependency of the corresponding natural language argument in

the gold sentence. For instance, given the event description shown in Section 4.4.3

for Sentence 10 (repeated below for convinience as Example 2), we record the syn-

tax/semantics mapping instrument:nsubj, object:dobj, base:prep-in.

Example 2

(|Block| |instrument| |PC/EBP|)

(|Block| |object| |TNF-activation|)

(|Block| |base| |Myeloid-Cells|)

C/EBP beta blocked TNF activation in myeloid cells.

Accuracy is then the proportion of generated role:dependency mappings which

are correct i.e., those that match the mappings in the gold sentence. Although
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this does not address the fact that the generated and the reference sentence may

be very different, it provides some indication of whether the generated mappings

are plausible. We thus report this accuracy for the 1-best and 5-best solutions

provided by our models ((M1) and (M2)), to partly account for the variability in

possible correct answers. We compare our results to two baselines created man-

ually. The first baseline (BL-LING) is obtained using a default role/dependency

assignment which is manually defined using linguistic introspection. The second

(BL-GOLD) is a strong, informed baseline which has access to the frequency of

the role/dependency mapping in the gold corpus. That is, this second baseline as-

signs to each role in the input event description, the syntactic dependency most

frequently assigned to this role in the gold corpus. The default mapping used

for BL-GOLD is as follows: toward/prep_towards, site/prep_in, result/dobj, re-

cipient/prep_to, raw_material/dobj, path/prep_through, origin/prep_from, objec-

t/dobj, instrument/nsubj, donor/prep_from, destination/prep_into, base/prep_in,

away-from/prep_away_from, agent/nsubj. The manually defined mapping used for

BL-LING differs on three mappings namely raw_material/prep-from, instrument-

with,destination-to.

On the 336 event descriptions (929 roles occurrences) contained in the dataset,

we obtain the role mapping accuracies as shown in Table 4.11. For the baselines, we

have only one proposition of role mapping, hence the results for 1-best accuracy only.

However, for the models (M1) and (M2), we have 5 different propositions for role

mappings, each coming from one of the 5-best generated sentences. Thus, we report

the highest accuracy among the 5-best (the 5-best accuracy) and the one obtained

from the topmost scoring output (the 1-best accuracy).

Scoring 5-best acc 1-best acc
BL-Ling 42%
BL-GOLD 49%
M1 48% 30%
M2 49% 31%
M2-BL-LING 57% 43%

Table 4.11: Role Mapping Accuracies

As expected, the difference between BL-LING and BL-GOLD shows that using

information from the GOLD strongly improves accuracy.

While M1 and M2 do not improve on the baseline, an important drawback of

these baselines is that they may map two or more roles in an event description to the

same dependency (e.g., the roles raw-material and result to the dependency dobj).
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Worse, they may map a role to a dependency which is absent from the selected

frame (if the dependency mapped onto by a role in the input does not exist in that

frame). In contrast, our models (M1) and (M2) are linguistically more promising

as they guarantee that each role is mapped to a distinct dependency relation. We

therefore take advantage of both the linguistically inspired baseline (BL-LING) and

the probabilistic approach by combining both into a model (M2-BL-LING) which

simply replaces the mapping proposed by the M2 model by that proposed by the BL-

LING baseline whenever the probability of the M2 model is below a given threshold22.

Because it makes use of the strong prior information contained in the BL-LING

baseline, it has a good accuracy.

4.5.2 Human Evaluation

For human evaluation, we take a sample of 264 inputs from the KBGen+ dataset and

evaluate the mappings of roles to syntax in the sentences generated from the (M2)

model. The sample contains inputs with 1 to 2 roles (40%), 3 roles (30%) and more

than 3 roles (30%). For each sampled input, we consider the 5 best outputs and

manually grade the output as follows:

1. Correct: both the syntax/semantic linking and the lexicalisation of the event

and entities is correct. An example of such output is shown below :

Input :

(|Radioactive-Treatment| |object| |Cancer|)

(|Radioactive-Treatment| |instrument| |Radioactive-Isotope|)

Generated Sentence : Cancer is treated with radioactive isotope.

2. Almost Corrrect: the lexicalisation of the event and entities is correct and the

syntax/semantic linking of core semantic roles is correct. The core roles are

the ones occuring more frequently in the KBGen+ dataset, namely agent, base,

object. An example of such output is shown below :

Input :

(|Share| |agent| |Nitrogen|)

(|Share| |agent| |Hydrogen|)

(|Share| |object| |Valence-Electron|)

(|Share| |result| |Single-Bond|)

22We have empirically chosen a threshold that retains 40% of our model’s outputs; this is the
only threshold value that we have tried, and we have not tuned this threshold at all.
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Generated Sentence : Nitrogen and hydrogen share valence electron to single

bond.

3. Incorrect: all other cases. An example of such output is shown below :

Input :

(|Divide| |site| |Kinetochore-Microtubule|)

(|Divide| |object| |Protein|)

Generated Sentence : Kinetochore microtubules share protein.

Three judges independently graded the generated sentences for the 264 samples

using the above criteria. The inter-annotator agreement, as measured with the Fleiss

Kappa in a preliminary experiment in these conditions, was κ = 0.76 which is con-

sidered as “good agreement” in the literature. 29% of the ouput were found to be

correct, 20% to be almost correct and 51% to be incorrect.

4.6 Discussion

A manual analysis of the results obtained exposes the limitations inherent to our

approach and provides insights for improvements.

4.6.1 Events with no or little Training Data.

One of the causes of generation failure in our approach is that none of the sentences

in the corpus describe the input event and therefore no frames can be extracted for

that event. As presented earlier, this accounts for 3 cases in total but a more detailed

analysis underlines the problem with our sentence corpus – for 17.6% of total events,

less than 20 distinct frames could be extracted while 56.8% of events had more

than 80 frames from the training phase. This highlights the fact that our sentence

corpus is not a uniform dataset for learning and points at the data sparsity problem.

Increasing the training corpus using sentences from additional sources could help to

lessen the problem.

An alternative technique to address the lack of frames in the observed corpus

would be to import the verb subcategorization information from existing wide cov-

erage verb lexicon such VerbNet [Kipper et al., 2000] and FrameNet [Baker et al.,

1998]. In this approach, one or more of the word forms available for events in our
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input could be used for matching against the entries in the verb lexicon and corre-

sponding frames be assigned to our event. Furthermore, a predefined set of event

frames could be manually added to the collection of observed frames by carefully

analysing the input and this would cater to a default/better frame selection.

4.6.2 Frame Arity Mismatch

The second and the most frequent cause of generation failure in our approach is the

mismatch in the event frame arity during training and testing phases. In this case,

although one or more frames have been observed for an event during training, none

of those frames match the arity of the event in the given test input and therefore

cannot be used for generation. To address this shortcoming, event frames observed

during training can be used for automatically generating frames with lower arity; for

example by pruning one or more optional arguments in them such as the preposi-

tional arguments, verbal modifiers and clausal complements. When augmented in

this manner, the newer frames obtained for an event either improve the frequency

distribution (if already observed from other sentences in the corpus) or remedy the

lack of lower arity frame for the given event. It is however, not clear how one can

address the needs for higher arity frames.

4.6.3 High-arity Events

Besides the coverage issue, several factors account for the low quality of the gen-

erated sentences. One major factor negatively affecting the quality of the output

sentences is the number of roles contained in an event description. Unsurprisingly,

the greater the number of roles, the lower the quality of output sentence. That is, for

event descriptions with 3 or less roles, the number of correct output is higher (40%,

23%, 37% respectively for correct, almost correct and incorrect) as there are less pos-

sibilities to be considered. Further, the roles that are less frequent in the KBGen+

dataset often score lower probabilities (i.e., are more often incorrectly mapped to

syntax) than roles which occur more frequently. Thus, the three most frequent roles

(agent,object, base) have a 5-best role mapping accuracy that ranges from 43% to

77%, while most other roles have much lower accuracy. Again, this points out the

data sparsity problem and could be improved by using either more data or a more

sophisticated smoothing or learning strategy. However, linguistic factors are also at

play here (described in Section 4.6.4 and 4.6.5 below).
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4.6.4 Not all Semantic Roles are verbalised by thematic roles

First, some semantic roles are often verbalised as verbs rather than thematic roles

in the gold corpus. For example, the reference sentence in the gold corpus for the

input in Example 3 is shown in Sentence (19).

Example 3

(|Intracellular-Digestion44355| |object| |Polymer44401|)

(|Intracellular-Digestion44355| |object| |Solid-Substance44361|)

(|Intracellular-Digestion44355| |result| |Monomer44397|)

(|Intracellular-Digestion44355| |site| |Lysosome44357|)

Reference Sentence :

(19) Intracellular digestion of polymers and solid substances in the lysosome pro-

duces monomers.

As we can see, in this sentence, the event Intracellular-Digestion is verbalised

as a noun (Intracellular digestion) and the role result as a verb (produces). More

generally, a role in the KB is not necessarily realised as a thematic role of the event.

This is mostly true for events which are often verbalised in their nominalized form

(e.g. the events Intracellular-Digestion, Photosynthesis, Respiration etc.). Our

approach inherently assumes that events are verbalised as verbs rather than nouns

and is therefore not sufficient to address this issue.

Note that although we can extract NP rooted frames (in addition to the usual VB

rooted frames, for example when using the lexical entry digestion for Intracellular-

Digestion) for such events; the frames so obtained are not good for our task because

they either lead to ungrammatical sentence generation or are extracted because of

dependency parser error. Consider the scenarios in Example 4 and 5. Example 4

shows the NP rooted frame “amod,NP,prep_of,vmod_producing” extracted for the

event Intracellular-Digestion from some sentence (Sentence (20)) in the training

corpus. When this frame is used to generate from the input in Example 3, we obtain

an ungrammatical sentence as shown in Sentence (21). Example 5, on the other

hand, shows a NP rooted frame extracted for the event photosynthesis arising from

the Sentence (22) because of dependency parser error.

Example 4

(20) Orlistat partially blocks intestinal digestion of fat, producing weight loss.
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Dependency subtree around the event Intracellular-Digestion using it’s lexical entry

digestion :

digestion

fatintestinal loss

amod
prep_of vmod_producing

Figure 4.5: Dependency subtree : Intracellular-Digestion

Frame extracted : amod,NP,prep_of,vmod_producing

Generated Sentence for the Input in Example 3:

(21) Lysosome digestion of polymer and solid substances producing monomer.

Example 5

(22) The cotyledons of the dicots function similar to leaves (i.e. perform photosyn-

thesis).

Dependency subtree around the event Photosynthesis using it’s lexical entry photo-

synthesis :

photosynthesis

i.e. perform

amodamod

Figure 4.6: Dependency subtree resulting from parser error

4.6.5 Semantic Arguments of the Events verbalised as NP modifiers

Second, in some cases, an entity which is an argument of the event in the input is ver-

balised as prepositional modifiers of some other entity in the same event description

rather than as an argument of the event. This is frequently the case for the entity
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related by the role base in the event description. For instance, the Sentence (23)

shows the gold sentence for an input containing the entity Eukaryotic-Cell as a base

argument. As we can see, in this case, the entity Eukaryotic-Cell is verbalised by a

prepositional phrase modifying another entity lysosome rather than as an argument

of the event digest.

(23) Lysosomal enzymes digest nucleic acids and proteins in the lysosome of eukary-

otic cells.

Further study is needed to assess how the current approach can be extended to

address both these issues.

4.7 Conclusion and Directions for Further Research

We have presented an approach for verbalising triples in ontologies which differs from

previous work in that (i) it uses a non-parallel corpora and (ii) it focuses on n-ary

relations and iii) on the issue of how to automatically map natural language and KB

arguments. Our evaluation shows encouraging results and identifies three main open

questions for further research. How best to deal with data sparsity to account for

lack of frames and for event descriptions involving a high number of roles or roles

that are infrequent? How to handle semantic roles that are verbalised as modifiers

rather than as syntactic arguments? How to account for cases where KB roles are

verbalised by verbs rather than by syntactic dependencies?

A more fine grained study of probabilistic models could be useful for obtaining

better results. The probability models we have discussed here are based on distri-

bution of two variables. For example P (d|r) only takes into account two variables –

the dependency d and role r variables. Instead, by conditioning the probabilities on

additional variables, e.g. P (d|r, e), we can obtain a different distribution that takes

more variables into context. For this example, it means that the dependency d is

ranked not just in terms of its likelihood to be associated to the given role r but also

in the context that role r has been observed for the event e. The study of proper

models that make for good generation output is worth exploring.

Further, the probability models used in this work for ranking the n-best frames

extracted for event descriptions could be augmented with vector based approaches.

In particular, some similarity scoring function like the one implemented in [Cheung

and Penn, 2014] using vector space distribution of words could be used to compute

the similarity of the arguments in a given input event description with the arguments

present in the subtree from which the frame is extracted for that event description.

109



Chapter 4. Verbalising n-Ary Events in Ontologies – A Weakly Supervised Approach

These scores obtained for the respectived frames could, in turn, be combined with

the probablistic scores we obtain; in a log-linear fashion as described in [Lu and Ng,

2011] to obtain a final ranking of the extracted frames.

From a practical perspective, an evaluation of our approach across different KB

domains remains an open challenge. Spanning it across different KB domains will

call for domain-specific practical considerations. Firstly, the availability of textual

corpora in the given domain is a stringent requirement. Also, the availability of

appropriate lexicon and domain-specific vocabularies will impact the coverage and

quality of generated outputs. On a positive note, however, the approach discussed

here is generic and can therefore be expected to scale up to different KB domains;

provided such practical constraints are adequately met.

Finally, our work could be extended to account for generation of multi-sentences

text for describing several related event descriptions at once. This would involve

identifying multiple event descriptions from the input that describe a given event

in relation to varying entities or different events that can be correlated in domain-

specific context. Furthermore, in order to achieve a coherent discourse level text, the

mutli-sentence text needs to introduce appropriate discourse markers rather than

simply group single setences obtained from individual event descriptions. This calls

for design principles spanning higher level NLG tasks (Content Planning and Micro

Planning) in addition to the Surface Realisation task described in our work.
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5.1 Summary

We have presented two different approaches to Surface Realisation from Knowledge

Bases. We explored this task in the context of verbalising RDF triples in ontologies

and proposed novel methods for doing so. We started with an introduction to the

Surface Realisation task, identified the challenges integral to it and outlined practical

reasons that motivate the study of surface realisation. We then discussed the het-

erogeneous data formats/sources that form input to surface realisation in context of

different applications and presented a comprehensive survey of existing approaches

catering to the different input types. Following this, we focused our study of surface

realisation particularly on the task of verbalising data in Knowledge Bases (ontolo-

gies) and proposed two novel approaches for doing so in Chapter 3 and 4 respectively.

In Chapter 3, we proposed a supervised approach to surface realisation from KB

data. There, we presented our automatic approach for learning symbolic grammar

from parallel data/text corpus for mapping RDF triples in ontologies to text in sen-

tences. The novelty in this approach lied in i) proposing a new grammar induction

procedure in the context of mapping KB data to text in sentences and ii) build-

ing a grammar which encodes both the syntactic and semantic information. We
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induced the grammar conforming to the linguistic principles of TAG and demon-

strated that our approach allows for inducing a grammar which is compact, can

feasibly be adapted to cover unseen cases and restricts overgeneration.

In Chapter 4, we presented the weakly supervised approach which targeted learn-

ing of verbalisation patterns for ontology triples from non-parallel text corpora. We

developed different probabilistic models accounting for the choice of syntactic frames

and their mapping of semantic arguments while verbalising event descriptions in on-

tologies. Learning verbalisation patterns from non-parallel corpora and building

probabilistic models to induce plausible syntactic/semantic argument linking infor-

mation constitute the novel aspects of this work. We presented examples of output

sentences obtained by utilizing such models; analysed them and identified the issues

relevant to this approach.

As already discussed in Chapter 2 (Section 2.3), ontologies represent an increasily

popular choice of knowledge representation and sharing format across the web. In

recent years, we have seen a huge surge in the use of domain-ontologies for automated

knowledge sharing and having a natural language based access would significantly

aid to their human consumption and growth. In this context, many recent works in

surface realisation have focused on generation from these data sources. In this thesis,

we contributed to this growing line of research by proposing two novel approaches.

Both the approaches we presented here are generic and are independent of the on-

tology domain. Our approaches are suited to the verbalisation of multiple triples at

once and are based on learning of generation resource from parallel and non-parallel

texts, thus avoiding the drawbacks of handcrafted authoring as prevalent in many

existing systems.

For each of our approaches, we have presented a detailed description of the pro-

cedure involved using examples, wherever appropriate. We have shown the results

obtained and performed their analysis following automatic and human evaluations.

We identified possible problem cases and provided linguistic insights into the causes

for failures. In the context of addressing those shortcomings and from a broader per-

spective of a long term research, we envision several research avenues for our work

as outlined in the following section.

5.2 Directions for Future Research

• Automatic Data-to-Text Alignment : Both the approaches that we have pre-

sented in this thesis are based on learning from the sentences in a given cor-

pus (either parallel or non-parallel) and integral to this approach is the Data-

112



5.2. Directions for Future Research

to-Text Alignment model which essentially relies on the supplied lexicon for

mapping of KB symbols in input to word forms in the sentences. While we

used a lexicon for such alignment, it would be interesting to explore alterna-

tive methods which propose learning such alignments from the corpus sentences

themselves. [Liang et al., 2009], for example, propose a generative model which

learns the most probable word sequence in a sentence for the given data value in

the input database. They observe the distribution of words given the data type

(integer, string and categorical fields) and the data value itself over the whole

corpus and use probability scores to determine the most likely sequence of words

expressing the data value. In our context, following similar approach would in-

volve building a generative model which reflects the distribution of words in the

corpus given the variable types (event, entity and property-values) and their

values (e.g. gated channel) and provides the most likely word sequence for

alignment. [Walter et al., 2013] propose a semi-automatic method for creating

lexical entries of concepts and relations present in ontologies. They use a do-

main corpus; extract the syntactic structures which bind the arugments of the

given relation and assign the frequent syntactic structures as the lexical item

for that relation. Following this approach, we could, for example, learn the

lexical items for event variables (they capture the relationships between entity

variables in the input) from the corpus and use those lexical items to guide our

Data-to-Text Alignment strategy. Effectively, such approaches would enable

us to make build a system independent of hand-written lexical resources.

• Improving the Quality of Generated Sentences : For improving the quality

of generated sentences, we envision a process in which human feedback is in-

corporated in learning the verbalisation patterns of semantic relations in the

input. Such method has been proposed, for example, in [Wang et al., 2015] in

which the authors first generate a cannonical verbalisation of logical expressions

and request crowdsourced human edits for obtaining grammatical paraphrases.

They show that the process is feasible and time efficient. In our context, we

could present a small set of generated sentences (along with their KB input)

and use similar crowdsourcing approach for obtaining alternative/better ver-

balisations of the corresponding inputs. The resulting sentences so obtained

for each input can be expected to represent natural human utterances set in

the context of verbalising KB data rather than the generic nature of sentences

in domain corpora which are intended for general purposes. Especially with

our weakly supervised approach, where we use multiple non-parallel corpora,
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learning the syntax/semantic mapping from such human reviewed sentences

and analysing its effects on the quality of generated sentences is worth explor-

ing.

• Alternative Probabilistic Models for the Weakly supervised Approach : In the

weakly supervised approach, we observed the distribution of frames in the cor-

pus and proposed different probability models to account for the choice of best

frames and the mapping of semantic relations in the input to syntactic depen-

dencies in those frames. Our models, however, are representative of only a few

of the several probability models that can be built from the same distribution.

For this work, we based our decisions on proposing models which intuitively

reflected the generation process and were conceptually simple. A study into

alternative probability models that can be derived from the same distribution

would allow for comparing the quality of current models. Furthermore, when

combining those models for the surface realisation task, we assumed them to

be independent of each other and used a simple scoring function. Instead, us-

ing some Markovian conditioning for chaining of the probability models, for

example, to consider the order of roles in the event description would allow for

different propositions of frames and syntax/semantics mapping than the ones

we have currently adopted in this work. A linear combination strategy of our

probability models using weights learnt automatically (designing features to

represent events, entities, relations and modeling the conditional dependencies

of these variables in terms of their feature values; the approach followed in

Conditional Random Fields [Lafferty, 2001]) or set after a careful emperical

analysis presents another possibility of research. Exploring such alternative

forms of probability models and their combinations will help in investigating

the best verbalisation scheme.

• Different Data Types and Application Domains : In Section 2.2.1, we discussed

the three different data types that make the input to surface realisation tasks,

namely the databases, linguistic structures and logical forms. In this thesis, we

pursued the surface realisation task for the specific input type coming from KBs

which represent the “logical forms” category. As discussed earlier, the syntax,

structure and content of each of these input types vary widely. However, our

approaches in this thesis have been formulated on the basic notion of capturing

relations existing between data items and each of these input types essentially

express some relations existing among their data items, although in a very

different way. It is, therefore, only logical to assume that our approaches could
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be adapted to fit the syntactic structures in these different input types following

a careful anaylsis of each input type. More importantly, such approaches could

benefit from the corpus based learning strategies we have pursued in this thesis.

Following the data/text alignment strategy that we used in our works, we could

target corpus based learning from datasets from different application domains,

such as the TACoS corpus [Regneri et al., 2013] which provides a timestamp

annotations of video data. Adapting our approach to different data types and

application domains would help to study the generality and scalability of our

approach.

• Integrated NLG Platform : In this thesis, we focused our research objectives

specifically to the surface realisation task and studied it in greater detail. It

would be interesting to study this work in integration with other phases of a

typical full-scale NLG systems, i.e. the Content Planning and the Micro Plan-

ning tasks. Content Planning would help in automatically determining the

interesting/coherent fragments of KB data and organising them into appro-

priate discourse plans, possibly allowing for generation of multi-sentence texts

by grouping the relevant fragments of data. Studies in Micro Planning would

help for automatic lexicalisation, integration of referring expression and aggre-

gation of similar content units. When integrated with our surface realisation

approach, this would allow for an end-to-end generation system with fully au-

tonomous selection, organisation and verbalisation of fragments of knowledge

bases relevant to the changing user goals in a dynamic NLG application.
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Appendix A

Results from Supervised Approach

In this chapter, we present some representative examples of output obtained from our

supervised approach. In Chapter 3, we have already shown examples of sentences

generated while verbalising different relation types in the input (Event-to-Entity,

Entity-to-Event, Event-to-Event, Entity-to-Entity and Entity-to-Property Values).

Here, instead, we present sample outputs reflecting the qualitative nature of gener-

ated sentences – Correct vs. Incorrect.

We present the sample cases with their input, generated sentence and the cor-

responding reference sentence. Wherever appropriate, we remark on the cause of

difference between the generated and the reference sentence.

Correct Result : Exact Match

:TRIPLES (

(|Transfer22329| |object| |Electron22336|)

(|Transfer22329| |donor| |NADH22341|)

(|Transfer22329| |result| |FADH222344|)

(|Transfer22329| |agent| |Electron-Shuttle-System22339|)

(|Electron-Shuttle-System22339| |has-function| |Transfer22329|))

:INSTANCE-TYPES (

(|Electron22336| |instance-of| |Electron|)

(|NADH22341| |instance-of| |NADH|)

(|FADH222344| |instance-of| |FADH|)

(|Electron-Shuttle-System22339| |instance-of| |Electron-Shuttle-System|)

(|Transfer22329| |instance-of| |Transfer|))

:ROOT-TYPES (

(|Transfer22329| |instance-of| |Event|)

(|Electron22336| |instance-of| |Entity|)

(|NADH22341| |instance-of| |Entity|)

(|FADH222344| |instance-of| |Entity|)
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(|Electron-Shuttle-System22339| |instance-of| |Entity|))

Generated Sentence :

The function of an electron shuttle system is to transfer an electron from nadh to fadh.

Reference Sentence :

The function of an electron shuttle system is to transfer an electron from nadh to fadh.

Correct Result : Non-Exact Match

:TRIPLES (

(|Cellulose-Digestion12782| |object| |Cellulose12780|)

(|Cellulose-Digestion12782| |raw-material| |Water-Molecule12783|)

(|Cellulose-Digestion12782| |base| |Cell12789|)

(|Cellulose-Digestion12782| |agent| |Cellulase12781|)

(|Cellulase12781| |has-function| |Cellulose-Digestion12782|))

:INSTANCE-TYPES (

(|Cellulose12780| |instance-of| |Cellulose|)

(|Water-Molecule12783| |instance-of| |Water-Molecule|)

(|Cell12789| |instance-of| |Cell|)

(|Cellulase12781| |instance-of| |Cellulase|)

(|Cellulose-Digestion12782| |instance-of| |Cellulose-Digestion|)

(|Water-Molecule| |subclasses| |Chemical-Entity|))

:ROOT-TYPES (

(|Cellulose-Digestion12782| |instance-of| |Event|)

(|Cellulose12780| |instance-of| |Entity|)

(|Water-Molecule12783| |instance-of| |Entity|)

(|Cell12789| |instance-of| |Entity|)

(|Cellulase12781| |instance-of| |Entity|))

Generated Sentence :

The function of cellulase is to digest cellulose in a cell, using water molecule.

Reference Sentence :

The function of cellulase is to digest cellulose in a cell, using a water molecule.

Remarks : The verbalisation for the entity variable |Water-Molecule12783| was obtained

during grammar adaptation by creating a default NP tree with its lexical information “water

molecule”; thereby missing the indefinite determiner “a”.

Correct Result : Non-Exact Match

:TRIPLES (

(|Diffusion-Of-Anion19310| |object| |Anion19306|)

(|Diffusion-Of-Anion19310| |recipient| |Extra-Cellular-Matrix19307|)

(|Diffusion-Of-Anion19310| |raw-material| |Membrane-Potential19309|)

(|Membrane-Potential19309| |has-function| |Diffusion-Of-Anion19310|))
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:INSTANCE-TYPES (

(|Anion19306| |instance-of| |Anion|)

(|Extra-Cellular-Matrix19307| |instance-of| |Extra-Cellular-Matrix|)

(|Membrane-Potential19309| |instance-of| |Concentration-Gradient|)

(|Diffusion-Of-Anion19310| |instance-of| |Diffusion-Of-Anion|))

:ROOT-TYPES (

(|Diffusion-Of-Anion19310| |instance-of| |Event|)

(|Anion19306| |instance-of| |Entity|)

(|Extra-Cellular-Matrix19307| |instance-of| |Entity|)

(|Membrane-Potential19309| |instance-of| |Entity|)))

Generated Sentence :

A function of concentration gradient is to provide energy for the diffusion of anions to

extra cellular matrix.

Reference Sentence :

A function of a concentration gradient is to provide energy for the diffusion of anions

and particles to the extra cellular matrix.

Remarks : The provided reference sentence is not an exact verbalisation of the input because it

contains extra information “particles” than that provided in the triples section of the input.

Correct Result : Non-Exact Match

:TRIPLES (

(|Photosynthesis2401| |raw-material| |Carbon-Dioxide2376|)

(|Photosynthesis2401| |result| |Oxygen-Molecule2379|)

(|Cellular-Respiration2386| |result| |Carbon-Dioxide2376|))

:INSTANCE-TYPES (

(|Photosynthesis2401| |instance-of| |Photosynthesis|)

(|Oxygen-Molecule2379| |instance-of| |Oxygen-Molecule|)

(|Cellular-Respiration2386| |instance-of| |Cellular-Respiration|)

(|Carbon-Dioxide2376| |instance-of| |Carbon-Dioxide|))

:ROOT-TYPES (

(|Photosynthesis2401| |instance-of| |Event|)

(|Carbon-Dioxide2376| |instance-of| |Entity|)

(|Oxygen-Molecule2379| |instance-of| |Entity|)

(|Cellular-Respiration2386| |instance-of| |Event|))

Generated Sentence :

Photosynthesis uses carbon dioxide and produces oxygen molecule.

Reference Sentence :

Cellular respiration produces carbon dioxide, which is used by photosynthesis to produce

oxygen molecules.

Remarks : This is a case of partial generation; the entity Carbon-Dioxide2376 is shared across
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different event variables in the input.

Correct Result : Non-Exact Match

:TRIPLES (

(|Emit41865| |object| |Subatomic-Particle41867|)

(|Emit41865| |base| |Atomic-Nucleus41869|)

(|Radioactive-Isotope41868| |has-region| |Atomic-Nucleus41869|)

(|Radioactive-Treatment41863| |object| |Cancer41864|)

(|Radioactive-Treatment41863| |instrument| |Radioactive-Isotope41868|))

:INSTANCE-TYPES (

(|Subatomic-Particle41867| |instance-of| |Subatomic-Particle|)

(|Emit41865| |instance-of| |Emit|)

(|Atomic-Nucleus41869| |instance-of| |Atomic-Nucleus|)

(|Cancer41864| |instance-of| |Cancer|)

(|Radioactive-Treatment41863| |instance-of| |Radioactive-Treatment|)

(|Radioactive-Isotope41868| |instance-of| |Radioactive-Isotope|))

:ROOT-TYPES (

(|Emit41865| |instance-of| |Event|)

(|Subatomic-Particle41867| |instance-of| |Entity|)

(|Atomic-Nucleus41869| |instance-of| |Entity|)

(|Radioactive-Isotope41868| |instance-of| |Entity|)

(|Radioactive-Treatment41863| |instance-of| |Event|)

(|Cancer41864| |instance-of| |Entity|))

Generated Sentence :

Cancer is treated with subatomic particles emitted from atomic nucleus of radioactive

isotope.

Reference Sentence :

A radioactive isotope whose nucleus emits subatomic particles is used in radiation

treatment for cancer.

Remarks : The generated sentence is a correct paraphrase of the reference sentence; obtained

after adaptation of different subtrees (learnt from different training scenarios) for this input.

Incorrect Result

:TRIPLES (

(|Diffusion-Of-Anion19310| |object| |Anion19306|)

(|Diffusion-Of-Anion19310| |agent| |Transport-Protein19295|)

(|Diffusion-Of-Anion19310| |donor| |Cytoplasm19308|)

(|Diffusion-Of-Anion19310| |raw-material| |Membrane-Potential19309|)

(|Membrane-Potential19309| |has-function| |Diffusion-Of-Anion19310|))

:INSTANCE-TYPES (

(|Anion19306| |instance-of| |Anion|)
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(|Transport-Protein19295| |instance-of| |Transport-Protein|)

(|Cytoplasm19308| |instance-of| |Cytoplasm|)

(|Membrane-Potential19309| |instance-of| |Concentration-Gradient|)

(|Diffusion-Of-Anion19310| |instance-of| |Diffusion-Of-Anion|))

:ROOT-TYPES (

(|Diffusion-Of-Anion19310| |instance-of| |Event|)

(|Anion19306| |instance-of| |Entity|)

(|Transport-Protein19295| |instance-of| |Entity|)

(|Cytoplasm19308| |instance-of| |Entity|)

(|Membrane-Potential19309| |instance-of| |Entity|))

Generated Sentence :

A function of concentration gradient is to provide energy for the diffusion of anions

from cytoplasm by transport proteins.

Reference Sentence :

A function of a concentration gradient is to provide energy for diffusion of anions from

the cytoplasm using a transport protein.

Remarks : The language model ranks an alternative verbalisation pattern for the relation agent

as the highest scoring output.

Incorrect Result

:TRIPLES (

(|Sieve-Tube-Element37616| |has-part| |Ion-Channel37606|)

(|Sieve-Tube-Element37616| |has-part| |Nucleus37644|)

(|Sieve-Tube-Element37616| |has-part| |Cytoplasm37645|)

(|Loading-Of-Sugar37791| |destination| |Sieve-Tube-Element37616|)

(|Loading-Of-Sugar37791| |object| |Sugar37615|))

:INSTANCE-TYPES (

(|Ion-Channel37606| |instance-of| |Ion-Channel|)

(|Nucleus37644| |instance-of| |Nucleus|)

(|Cytoplasm37645| |instance-of| |Cytoplasm|)

(|Sieve-Tube-Element37616| |instance-of| |Sieve-Tube-Element|)

(|Loading-Of-Sugar37791| |instance-of| |Loading-Of-Sugar|)

(|Sugar37615| |instance-of| |Sugar|))

:ROOT-TYPES (

(|Sieve-Tube-Element37616| |instance-of| |Entity|)

(|Ion-Channel37606| |instance-of| |Entity|)

(|Nucleus37644| |instance-of| |Entity|)

(|Cytoplasm37645| |instance-of| |Entity|)

(|Loading-Of-Sugar37791| |instance-of| |Event|)

(|Sugar37615| |instance-of| |Entity|))

Generated Sentence :
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Sugar is loaded into sieve tube element containing the cytoplasm containing an ion

channel containing the nucleus.

Reference Sentence :

Sugar is loaded into the sieve tube element, which consists of an ion channel, a nucleus

and a cytoplasm.

Remarks : The repeating relation has-part is separately verbalised for each dependent entity;

leading to ungrammatical sentence generation.

Incorrect Result

:TRIPLES (

(|Constant-Motion10010| |object| |Molecule10022|)

(|Constant-Motion10010| |speed| |Speed-Value10014|)

(|Speed-Value10014| |directly-proportional| |Quantity-Value10013|)

(|Molecule10022| |possesses| |Kinetic-Energy10012|)

(|Kinetic-Energy10012| |quantity| |Quantity-Value10013|))

:INSTANCE-TYPES (

(|Constant-Motion10010| |instance-of| |Constant-Motion|)

(|Speed-Value10014| |instance-of| |Speed-Value|)

(|Molecule10022| |instance-of| |Molecule|)

(|Kinetic-Energy10012| |instance-of| |Kinetic-Energy|)

(|Quantity-Value10013| |instance-of| |Quantity-Value|))

:ROOT-TYPES (

(|Constant-Motion10010| |instance-of| |Event|)

(|Molecule10022| |instance-of| |Entity|)

(|Speed-Value10014| |instance-of| |Property-Value|)

(|Quantity-Value10013| |instance-of| |Property-Value|)

(|Kinetic-Energy10012| |instance-of| |Entity|))

Generated Sentence :

Molecule has kinetic energy.

Reference Sentence :

The speed of a moving molecule is directly proportional to the kinetic energy of the

molecule.

Remarks : This is again a case of partial generation, but now the generated sentence is incor-

rect.
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Results from Weakly Supervised

Approach

In Chapter 4, we set the human evaluation criteria for evaluation of sentences gen-

erated from our weakly supervised approach in terms of “Correct”, “Almost Correct”

and “Incorrect” results. The “Correct” results are the ones for which both the syn-

tax/semantic linking and lexicalisation of event and entity variables are correct. For

“Almost Correct” results, the lexicalisation of the event and entity variables is cor-

rect and the syntax/semantic mapping of the core roles (agent, base and object)

is correct. The “Incorrect” results comprise all other instances.

Here, we present sample results from our weakly supervised approach conforming

to those criteria. We further categorize the results in terms of the number of roles

they verbalise (2 roles, 3 roles and higher than 3 roles) and for each result, we present

its input and the corresponding reference sentence. Similar to the analysis of results

from the supervised approach, we remark on the cause of difference between the

generated and the reference sentence, wherever appropriate.

Correct : 2 roles

:TRIPLES (

(|Transfer-Of-Malate8384| |object| |Malate8420|)

(|Transfer-Of-Malate8384| |destination| |Bundle-Sheath-Cell8422|))

:INSTANCE-TYPES (

(|Malate8420| |instance-of| |Malate|)

(|Bundle-Sheath-Cell8422| |instance-of| |Bundle-Sheath-Cell|)

(|Transfer-Of-Malate8384| |instance-of| |Transfer-Of-Malate|))

:ROOT-TYPES (

(|Transfer-Of-Malate8384| |instance-of| |Event|)
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(|Malate8420| |instance-of| |Entity|)

(|Bundle-Sheath-Cell8422| |instance-of| |Entity|))

Generated Sentence :

Malate is transferred to bundle sheath cell.

Reference Sentence :

Malate is transferred to a bundle sheath cell.

Correct : 3 roles

:TRIPLES (

(|Cotransport15508| |subevent| |Active-Transport-Using-ATP15491|)

(|Cotransport15508| |base| |Plant-Cell15472|)

(|Cotransport15508| |agent| |S-H-ion-Cotransporter569|)

(|Cotransport15508| |object| |Sucrose15460|))

:INSTANCE-TYPES (

(|Active-Transport-Using-ATP15491| |instance-of| |Active-Transport-Using-ATP|)

(|Plant-Cell15472| |instance-of| |Plant-Cell|)

(|Cotransport15508| |instance-of| |Cotransport|)

(|S-H-ion-Cotransporter569| |instance-of| |Sucrose-Hydrogen-ion-Cotransporter|)

(|Sucrose15460| |instance-of| |Sucrose|))

:ROOT-TYPES (

(|Active-Transport-Using-ATP15491| |instance-of| |Event|)

(|Cotransport15508| |instance-of| |Event|)

(|Plant-Cell15472| |instance-of| |Entity|)

(|Sucrose15460| |instance-of| |Entity|)

(|S-H-ion-Cotransporter569| |instance-of| |Entity|))

Generated Sentence :

Sucrose hydrogen ion cotransporter transports sucrose in plant cell.

Reference Sentence :

Sucrose-hydrogen ion cotransporter transports sucrose in a plant cell.

Almost Correct : 2 roles

:TRIPLES (

(|Active-Transport24644| |object| |Hydrogen-Ion24643|)

(|Active-Transport24644| |path| |Inner-Membrane24819|))

:INSTANCE-TYPES (

(|Hydrogen-Ion24643| |instance-of| |Hydrogen-Ion|)

(|Inner-Membrane24819| |instance-of| |Inner-Membrane|)

(|Active-Transport24644| |instance-of| |Active-Transport|))

:ROOT-TYPES (

(|Active-Transport24644| |instance-of| |Event|)
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(|Hydrogen-Ion24643| |instance-of| |Entity|)

(|Inner-Membrane24819| |instance-of| |Entity|))

Generated Sentence :

Hydrogen ions are transported from inner membrane.

Reference Sentence :

Hydrogen ions are transported through an inner membrane.

Remarks : The event and the entity variables are lexicalised correctly but the subcategorisation

frame selected for event variable doesn’t offer the possibility of verbalising the semantic role

“path” via correct syntactic expression.

Almost Correct : more than 3 roles

:TRIPLES (

(|Release-Of-Calcium-Ion64543| |object| |Calcium-Ion64542|)

(|Release-Of-Calcium-Ion64543| |raw-material| |Chemical-Energy64541|)

(|Release-Of-Calcium-Ion64543| |agent| |Gated-Channel64540|)

(|Release-Of-Calcium-Ion64543| |raw-material| |Membrane-Potential64538|))

:INSTANCE-TYPES (

(|Calcium-Ion64542| |instance-of| |Calcium-Ion|)

(|Chemical-Energy64541| |instance-of| |Chemical-Energy|)

(|Gated-Channel64540| |instance-of| |Gated-Channel|)

(|Membrane-Potential64538| |instance-of| |Concentration-Gradient|)

(|Release-Of-Calcium-Ion64543| |instance-of| |Release-Of-Calcium-Ion|))

:ROOT-TYPES (

(|Release-Of-Calcium-Ion64543| |instance-of| |Event|)

(|Calcium-Ion64542| |instance-of| |Entity|)

(|Chemical-Energy64541| |instance-of| |Entity|)

(|Gated-Channel64540| |instance-of| |Entity|)

(|Membrane-Potential64538| |instance-of| |Entity|))

Generated Sentence :

Gated channel releases calcium ion to chemical energy and concentration gradient.

Reference Sentence :

A gated channel releases calcium ions using chemical energy and a concentration gra-

dient.

Remarks : The core semantic roles “object” and “agent” are mapped to correct syntac-

tic roles and with aggregation of similar roles but the syntax/semantic mapping for the role

“raw-material” is not correct.

Incorrect : 2 roles

:TRIPLES (
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(|Leave69963| |object| |Water-Molecule69961|)

(|Leave69963| |destination| |Atmosphere69967|))

:INSTANCE-TYPES (

(|Water-Molecule69961| |instance-of| |Water-Molecule|)

(|Atmosphere69967| |instance-of| |Atmosphere|)

(|Leave69963| |instance-of| |Leave|))

:ROOT-TYPES (

(|Leave69963| |instance-of| |Event|)

(|Water-Molecule69961| |instance-of| |Entity|)

(|Atmosphere69967| |instance-of| |Entity|))

Generated Sentence :

Water molecules withdraw from atmosphere.

Reference Sentence :

Water molecules leave into the atmosphere.

Remarks : The subcategorisation frame obtained for the event variable “leave” is based on its

synonymous lexical entry “withdraw” which is not a correct verbalisation of the event in the

context of specified input.

Incorrect : 3 roles

:TRIPLES (

(|Decomposition15146| |result| |Inorganic-Molecule15149|)

(|Decomposition15146| |agent| |Fungus15140|)

(|Decomposition15146| |object| |Detritus15145|))

:INSTANCE-TYPES (

(|Inorganic-Molecule15149| |instance-of| |Inorganic-Molecule|)

(|Decomposition15146| |instance-of| |Decomposition|)

(|Detritus15145| |instance-of| |Detritus|)

(|Fungus15140| |instance-of| |Fungus|))

:ROOT-TYPES (

(|Decomposition15146| |instance-of| |Event|)

(|Inorganic-Molecule15149| |instance-of| |Entity|)

(|Fungus15140| |instance-of| |Entity|)

(|Detritus15145| |instance-of| |Entity|))

Generated Sentence :

Detritus decomposes inorganic molecule into fungus.

Reference Sentence :

Fungus decomposes detritus into inorganic molecules.

Remarks : The frame chosen for verbalisation of the input event description is correct but the

syntax/semantic mapping for none of the roles is correct.
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Incorrect : more than 3 roles

:TRIPLES (

(|Attach23994| |instrument| |Hydrogen-Bond24033|)

(|Attach23994| |result| |Enzyme-Substrate-Complex23993|)

(|Attach23994| |object| |Chemical-Entity24036|)

(|Attach23994| |base| |Protein-Enzyme24003|)

(|Attach23994| |site| |Active-Site24027|))

:INSTANCE-TYPES (

(|Hydrogen-Bond24033| |instance-of| |Hydrogen-Bond|)

(|Enzyme-Substrate-Complex23993| |instance-of| |Enzyme-Substrate-Complex|)

(|Chemical-Entity24036| |instance-of| |Chemical-Entity|)

(|Attach23994| |instance-of| |Attach|)

(|Protein-Enzyme24003| |instance-of| |Protein-Enzyme|)

(|Active-Site24027| |instance-of| |Active-Site|))

:ROOT-TYPES (

(|Attach23994| |instance-of| |Event|)

(|Hydrogen-Bond24033| |instance-of| |Entity|)

(|Enzyme-Substrate-Complex23993| |instance-of| |Entity|)

(|Chemical-Entity24036| |instance-of| |Entity|)

(|Protein-Enzyme24003| |instance-of| |Entity|)

(|Active-Site24027| |instance-of| |Entity|))

Generated Sentence :

In protein enzyme, enzyme substrate complex are attached along hydrogen bond to

active site by chemical entity.

Reference Sentence :

An enzyme substrate complex is formed when a chemical attaches to the active site of

a protein enzyme with a hydrogen bond.

Remarks : The semantic argument “Active-Site24027” is a modifier of another argument

“Protein-Enzyme24003” of the event rather than as a thematic argument of the event itself.

Also, the semantic relation “result” is not realised as a thematic role of the event in the

reference sentence.
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