Mesures résolues en temps dans un conducteur mésoscopique

par Grégoire Roussely

Thèse de doctorat en Physique de la matière condensée et du rayonnement

Sous la direction de Christopher Bauerle.

Soutenue le 07-07-2016

à Grenoble Alpes , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Institut Néel (Grenoble) (laboratoire) .

Le président du jury était Frank W. J. Hekking.

Les rapporteurs étaient Denis-Christian Glattli, Ulf Gennser.


  • Résumé

    Au cours de la dernière décennie, un important effort a été fait dans le domaine des conducteurs électroniques de basse dimensionnalité afin de réaliser une électronique à électrons uniques. Une idée particulièrement attractive étant de pouvoir contrôler complétement la phase d’un électron unique volant pour transporter et manipuler de l’information quantique dans le but de construire un qubit volant. L’injection contrôlée d’électrons uniques dans un système électronique bidimensionnel balistique peut être fait grâce à une source d’électrons uniques basée sur des pulses de tensions lorentziens sub-nanosecondes. Une telle source peut aussi être utilisée pour mettre en évidence de nouveaux phénomènes d’interférences électroniques. Lorsqu’un pulse de tension court est injecté dans un interféromètre électronique, de nouveaux effets d’interférences sont attendus du fait de l’interaction du pulse avec les électrons de la mer de Fermi. Pour la réalisation de cette expérience, il est important de connaître avec précision la vitesse de propagation du paquet d’onde électronique créé par le pulse.Dans cette thèse, nous présentons des mesures résolues en temps d’un pulse de tension court (<100 ps) injecté dans un fil quantique 1D formé dans gaz d’électron bidimensionnel qui nous ont permis de déterminer sa vitesse de propagation. Nous montrons que le pulse se propage bien plus vite que la vitesse de Fermi d’un système sans interaction. La vitesse de propagation est augmentée par les interactions électron-électron. Pour un fil quantique contenant un grand nombre de modes, la vitesse mesurée est en excellent accord avec la vitesse d’un plasmon dans un système 2D en présence de grilles métalliques. En modifiant le potentiel de confinement électrostatique et donc l’intensité des interactions, nous montrons qu’il est possible de contrôler la vitesse de propagation. Nous avons ensuite étudié un interféromètre électronique à deux chemins basé sur deux fils couplés par une barrière tunnel. Nos mesures préliminaires font ressortir une signature qui peut être attribuée à des oscillations tunnel cohérentes des électrons injectés dans ce système. Dans un future proche, cet interféromètre pourrait être utilisé pour mettre en évidence ces nouveaux effets spectaculaires dus à l’interaction du pulse avec les électrons de la mer de Fermi.

  • Titre traduit

    Time resolved measurements in a mesoscopic conductor


  • Résumé

    Over the past decade, an important effort has been made in the field of low dimensional electronic conductors towards single electron electronics with the goal to gain full control of the phase of a single electron in a solid-state system. A particular appealing idea is to use a single flying electron itself to carry and manipulate the quantum information, the so-called solid state flying qubit. On demand single electron injection into such a ballistic two-dimensional electron system can be realized by employing the recently developed single electron source based on sub-nanosecond lorentzian voltage pulses. Such a source could also be used to reveal interesting new physics. When a short voltage pulse is injected in an electronic interferometer, novel interference effects are expected due to the interference of the pulse with the surrounding Fermi sea. For the realization of such experiments it is important to know with high accuracy the propagation velocity of the electron wave packet created by the pulse.In this thesis, we present time resolved measurements of a short voltage pulse (<100 ps) injected into a 1D quantum wire formed in a two-dimensional electron gas and determine its propagation speed. We show that the voltage pulse propagates much faster than the Fermi velocity of a non-interacting system. The propagation speed is enhanced due to electron interactions within the quantum wire. For a quantum wire containing a large number of modes, the measured propagation velocity agrees very well with the 2D plasmon velocity for a gated two-dimensional electron gas. Increasing the confinement potential allows to control the strength of the electron interactions and hence the propagation speed. We then have studied an electronic two-path interferometer based on two tunnel-coupled wires. Our preliminary measurements show a signature that can be attributed to the coherent tunneling of the electrons injected into this system. In the near future, this system could be used to reveal these new striking effects due to the interaction of the voltage pulse with the Fermi sea.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.