Méthodes de Monte Carlo stratifiées pour la simulation des chaines de Markov
Auteur / Autrice : | Joseph El maalouf |
Direction : | Christian Lécot, Rami El Haddad |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques Appliquées |
Date : | Soutenance le 16/12/2016 |
Etablissement(s) : | Université Grenoble Alpes (ComUE) en cotutelle avec Université Saint-Joseph (Beyrouth) |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de Mathématiques (Chambéry) |
Jury : | Président / Présidente : Toni Sayah |
Examinateurs / Examinatrices : Nabil Nassif | |
Rapporteurs / Rapporteuses : Christiane Lemieux, Antoine Lejay |
Mots clés
Résumé
Les méthodes de Monte Carlo sont des méthodes probabilistes qui utilisent des ordinateurs pour résoudre de nombreux problèmes de la science à l’aide de nombres aléatoires. Leur principal inconvénient est leur convergence lente. La mise au point de techniques permettant d’accélérer la convergence est un domaine de recherche très actif. C’est l’objectif principal des méthodes déterministes quasi-Monte Carlo qui remplacent les points pseudo-aléatoires de simulation par des points quasi-aléatoires ayant une excellente répartition uniforme. Ces méthodes ne fournissent pas d’intervalles de confiance permettant d’estimer l’erreur. Nous étudions dans ce travail des méthodes stochastiques qui permettent de réduire la variance des estimateurs Monte Carlo : ces techniques de stratification le font en divisant le domaine d’échantillonnageen sous-domaines. Nous examinons l’intérêt de ces méthodes pour l’approximation des chaînes de Markov, la simulation de la diffusion physique et la résolution numérique de la fragmentation.Dans un premier chapitre, nous présentons les méthodes de Monte Carlo pour l’intégration numérique. Nous donnons le cadre général des méthodes de stratification. Nous insistons sur deux techniques : la stratification simple (MCS) et la stratification Sudoku (SS), qui place les points sur des grilles analogues à celle du jeu. Nous pressentons également les méthodesquasi-Monte Carlo qui partagent avec les méthodes de stratification certaines propriétés d'équipartition des points d’échantillonnage.Le second chapitre décrit l’utilisation des méthodes de Monte Carlo stratifiées pour la simulation des chaînes de Markov. Nous considérons des chaînes homogènes uni-dimensionnelles à espace d’états discret ou continu. Dans le premier cas, nous démontrons une réduction de variance par rapport `a la méthode de Monte Carlo classique ; la variance des schémas MCSou SS est d’ordre 3/2, alors que celle du schéma MC est de 1. Les résultats d’expériences numériques, pour des espaces d’états discrets ou continus, uni- ou multi-dimensionnels montrent une réduction de variance liée à la stratification, dont nous estimons l’ordre.Dans le troisième chapitre, nous examinons l’intérêt de la méthode de stratification Sudoku pour la simulation de la diffusion physique. Nous employons une technique de marche aléatoire et nous examinons successivement la résolution d’une équation de la chaleur, d’une équation de convection-diffusion, de problèmes de réaction-diffusion (équations de Kolmogorov et équation de Nagumo) ; enfin nous résolvons numériquement l’équation de Burgers. Dans chacun de ces cas, des tests numériques mettent en évidence une réduction de la variance due à l’emploi de la méthode de stratification Sudoku.Le quatrième chapitre décrit un schéma de Monte Carlo stratifie permettant de simuler un phénomène de fragmentation. La comparaison des performances dans plusieurs cas permet de constater que la technique de stratification Sudoku réduit la variance d’une estimation Monte Carlo. Nous testons enfin un algorithme de résolution d’un problème inverse, permettant d’approcher le noyau de fragmentation, à partir de résultats de l’évolution d’une distribution ;nous utilisons dans ce cas des points quasi-Monte Carlo pour résoudre le problème direct.