Caractérisations des modèles multivariés de stables-Tweedie multiples

par Cyrille clovis Moypemna sembona

Thèse de doctorat en Mathematiques

Sous la direction de Célestin Clotaire Kokonendji.

Soutenue le 17-06-2016

à Besançon , dans le cadre de École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....) , en partenariat avec Laboratoire de Mathématiques de Besançon (Besançon) (laboratoire) et de Laboratoire de Mathématiques de Besançon (laboratoire) .

Le président du jury était Uwe Franz.

Le jury était composé de Célestin Clotaire Kokonendji, Uwe Franz, Jean-François Dupuy, Denys Pommeret, Angelo Efoevi Koudou.

Les rapporteurs étaient Jean-François Dupuy, Denys Pommeret.


  • Résumé

    Ce travail de thèse porte sur différentes caractérisations des modèles multivariés de stables-Tweedie multiples dans le cadre des familles exponentielles naturelles sous la propriété de "steepness". Ces modèles parus en 2014 dans la littérature ont été d’abord introduits et décrits sous une forme restreinte des stables-Tweedie normaux avant les extensions aux cas multiples. Ils sont composés d’un mélange d’une loi unidimensionnelle stable-Tweedie de variable réelle positive fixée, et des lois stables-Tweedie de variables réelles indépendantes conditionnées par la première fixée, de même variance égale à la valeur de la variable fixée. Les modèles stables-Tweedie normaux correspondants sont ceux du mélange d’une loi unidimensionnelle stable-Tweedie positive fixé et les autres toutes gaussiennes indépendantes. A travers des cas particuliers tels que normal, Poisson, gamma, inverse gaussienne, les modèles stables-Tweedie multiples sont très fréquents dans les études de statistique et probabilités appliquées. D’abord, nous avons caractérisé les modèles stables-Tweedie normaux à travers leurs fonctions variances ou matrices de covariance exprimées en fonction de leurs vecteurs moyens. La nature des polynômes associés à ces modèles est déduite selon les valeurs de la puissance variance à l’aide des propriétés de quasi orthogonalité, des systèmes de Lévy-Sheffer, et des relations de récurrence polynomiale. Ensuite, ces premiers résultats nous ont permis de caractériser à l’aide de la fonction variance la plus grande classe des stables-Tweedie multiples. Ce qui a conduit à une nouvelle classification laquelle rend la famille beaucoup plus compréhensible. Enfin, une extension de caractérisation des stables-Tweedie normaux par fonction variance généralisée ou déterminant de la fonction variance a été établie via leur propriété d’indéfinie divisibilité et en passant par les équations de Monge-Ampère correspondantes. Exprimées sous la forme de produit des composantes du vecteur moyen aux puissances multiples, la caractérisationde tous les modèles multivariés stables-Tweedie multiples par fonction variance généralisée reste un problème ouvert.

  • Titre traduit

    Characterizations of multivariates of stables-Tweedie multiples


  • Résumé

    In the framework of natural exponential families, this thesis proposes differents characterizations of multivariate multiple stables-Tweedie under "steepness" property. These models appeared in 2014 in the literature were first introduced and described in a restricted form of the normal stables-Tweedie models before extensions to multiple cases. They are composed by a fixed univariate stable-Tweedie variable having a positive domain, and the remaining random variables given the fixed one are reals independent stables-Tweedie variables, possibly different, with the same dispersion parameter equal to the fixed component. The corresponding normal stables-Tweedie models have a fixed univariate stable-Tweedie and all the others are reals Gaussian variables. Through special cases such that normal, Poisson, gamma, inverse Gaussian, multiple stables-Tweedie models are very common in applied probability and statistical studies. We first characterized the normal stable-Tweedie through their variances function or covariance matrices expressed in terms of their means vector. According to the power variance parameter values, the nature of polynomials associated with these models is deduced with the properties of the quasi orthogonal, Levy-Sheffer systems, and polynomial recurrence relations. Then, these results allowed us to characterize by function variance the largest class of multiple stables-Tweedie. Which led to a new classification, which makes more understandable the family. Finally, a extension characterization of normal stable-Tweedie by generalized variance function or determinant of variance function have been established via their infinite divisibility property and through the corresponding Monge-Ampere equations. Expressed as product of the components of the mean vector with multiple powers parameters reals, the characterization of all multivariate multiple stable- Tweedie models by generalized variance function remains an open problem.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication

Caractérisations des modèles multivariés de stables-Tweedie multiples


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque universitaire électronique, Besançon.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication

Informations

  • Sous le titre : Caractérisations des modèles multivariés de stables-Tweedie multiples
  • Détails : 1 Vol. (109p.)
  • Annexes : Bibliogr.p.105-109
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.